diff options
author | dos-reis <gdr@axiomatics.org> | 2013-05-10 09:21:22 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2013-05-10 09:21:22 +0000 |
commit | 0f2fe8a37ab42191fa2b871e0ce8bd05c701eed7 (patch) | |
tree | 21351b5529ef766fc386e2103d6da0e249513220 /src | |
parent | 095dc531352b8055aa4ec355d8cf1157901377fa (diff) | |
download | open-axiom-0f2fe8a37ab42191fa2b871e0ce8bd05c701eed7.tar.gz |
Add opposite? and annihilate? exports.
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 7 | ||||
-rw-r--r-- | src/algebra/catdef.spad.pamphlet | 21 | ||||
-rw-r--r-- | src/algebra/integer.spad.pamphlet | 2 | ||||
-rw-r--r-- | src/hyper/pages/releaseNotes.ht | 2 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3134 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6422 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 58 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 7950 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 20846 |
9 files changed, 19240 insertions, 19202 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index b10d0648..ac33f792 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,10 @@ +2013-05-10 Gabriel Dos Reis <gdr@integrable-solutions.net> + + * algebra/catdef.spad.pamphlet (AbelianMonoid) [opposite?]: New. + (Rng)[annihilate?]: New. + (EntireRing) [annihilate?]: Implement. + * algebra/integer.spad.pamphlet (Integer): Implement new exports. + 2013-05-09 Gabriel Dos Reis <gdr@integrable-solutions.net> * interp/lexing.boot (Keywords): Add "do". diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet index 8562e269..a864ed03 100644 --- a/src/algebra/catdef.spad.pamphlet +++ b/src/algebra/catdef.spad.pamphlet @@ -223,7 +223,7 @@ AbelianGroup(): Category == Join(CancellationAbelianMonoid, LeftLinearSet Intege )abbrev category ABELMON AbelianMonoid ++ Author: ++ Date Created: -++ Date Last Updated: +++ Date Last Updated: May 10, 2013. ++ Basic Functions: ++ Related Constructors: ++ Also See: @@ -240,7 +240,6 @@ AbelianGroup(): Category == Join(CancellationAbelianMonoid, LeftLinearSet Intege -- following domain must be compiled with subsumption disabled -- define SourceLevelSubset to be EQUAL AbelianMonoid(): Category == AbelianSemiGroup with - --operations 0: % ++ 0 is the additive identity element. sample: % @@ -249,6 +248,9 @@ AbelianMonoid(): Category == AbelianSemiGroup with ++ zero?(x) tests if x is equal to 0. *: (NonNegativeInteger,%) -> % ++ n * x is left-multiplication by a non negative integer + opposite?: (%,%) -> Boolean + ++ \spad{opposite?(x,y)} holds if the sum of \spad{x} + ++ and \spad{y} is \spad{0}. add import RepeatedDoubling(%) zero? x == x = 0 @@ -258,6 +260,7 @@ AbelianMonoid(): Category == AbelianSemiGroup with n:NonNegativeInteger * x:% == zero? n => 0 double(n pretend PositiveInteger,x) + opposite?(x,y) == zero?(x + y) @ @@ -792,7 +795,7 @@ DivisionRing(): Category == )abbrev category ENTIRER EntireRing ++ Author: ++ Date Created: -++ Date Last Updated: +++ Date Last Updated: May 10, 2013. ++ Basic Functions: ++ Related Constructors: ++ Also See: @@ -809,6 +812,8 @@ DivisionRing(): Category == EntireRing():Category == Join(Ring,BiModule(%,%)) with noZeroDivisors ++ if a product is zero then one of the factors ++ must be zero. + add + annihilate?(x,y) == zero? x or zero? y @ @@ -1433,6 +1438,7 @@ OrderedAbelianGroup(): Category == positive? x => x negative? x => -x 0 + opposite?(x,y) == x = -y @ \section{category OAMON OrderedAbelianMonoid} @@ -2020,7 +2026,12 @@ Dioid(): Category == Join(OrderedAbelianMonoid,SemiRing) ++ ++ Conditional attributes: ++ \spadnoZeroDivisors\tab{25}\spad{ ab = 0 => a=0 or b=0} -Rng(): Category == Join(AbelianGroup,SemiGroup) +Rng(): Category == Join(AbelianGroup,SemiGroup) with + annihilate?: (%,%) -> Boolean + ++ \spad{annihilate?(x,y)} holds when the product + ++ of \spad{x} and \spad{y} is \spad{0}. + add + annihilate?(x,y) == zero?(x * y) @ @@ -2188,7 +2199,7 @@ VectorSpace(S:Field): Category == Module(S) with <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. ---Copyright (C) 2007-2012, Gabriel Dos Reis. +--Copyright (C) 2007-2013, Gabriel Dos Reis. --All rights reversed. -- --Redistribution and use in source and binary forms, with or without diff --git a/src/algebra/integer.spad.pamphlet b/src/algebra/integer.spad.pamphlet index 5806c706..ba924720 100644 --- a/src/algebra/integer.spad.pamphlet +++ b/src/algebra/integer.spad.pamphlet @@ -205,6 +205,8 @@ Integer: IntegerNumberSystem with zero? p => unitCanonical q zero? q => unitCanonical p gcd([p,q])$HeuGcd(ZP) + opposite?(x,y) == x = -y + annihilate?(x,y) == zero? x or zero? y -- myNextPrime: (%,NonNegativeInteger) -> % -- myNextPrime(x,n) == -- nextPrime(x)$IntegerPrimesPackage(%) diff --git a/src/hyper/pages/releaseNotes.ht b/src/hyper/pages/releaseNotes.ht index 14dd1fd5..6d8fab4c 100644 --- a/src/hyper/pages/releaseNotes.ht +++ b/src/hyper/pages/releaseNotes.ht @@ -35,6 +35,8 @@ contains additions of new features and domains including: IndexedProductTerm The compiler now accepts and process do-statement, like the interpreter. Fix for an interpreter performance regression introduced in 1.4.2. + The category AbelianMonoid has a new export: opposite?. + The category Rng has a new export: annihilate?. \endscroll \autobuttons diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index c0908d72..a099c5fb 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1962139 . 3577105535) +(1963183 . 3577141751) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -17,11 +17,11 @@ NIL NIL NIL (-22 S) -((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element."))) +((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (|opposite?| (((|Boolean|) $ $) "\\spad{opposite?(x,y)} holds if the sum of \\spad{x} and \\spad{y} is \\spad{0}.")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element."))) NIL NIL (-23) -((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element."))) +((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with an additive identity element. \\blankline")) (|opposite?| (((|Boolean|) $ $) "\\spad{opposite?(x,y)} holds if the sum of \\spad{x} and \\spad{y} is \\spad{0}.")) (* (($ (|NonNegativeInteger|) $) "\\spad{n * x} is left-multiplication by a non negative integer")) (|zero?| (((|Boolean|) $) "\\spad{zero?(x)} tests if \\spad{x} is equal to 0.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|Zero| (($) "0 is the additive identity element."))) NIL NIL (-24 S) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3989 . T) (-3987 . T) (-3986 . T) ((-3994 "*") . T) (-3985 . T) (-3990 . T) (-3984 . T)) +((-3993 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T)) NIL (-30) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3091) +(-32 R -3094) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-951 (-484))))) +((|HasCategory| |#1| (QUOTE (-952 (-485))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -3992))) +((|HasAttribute| |#1| (QUOTE -3996))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3091 UP UPUP -2613) +(-40 -3094 UP UPUP -2616) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3985 |has| (-347 |#2|) (-311)) (-3990 |has| (-347 |#2|) (-311)) (-3984 |has| (-347 |#2|) (-311)) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089)))))) (|HasCategory| (-347 |#2|) (QUOTE (-581 (-484)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) -(-41 R -3091) +((-3989 |has| (-348 |#2|) (-312)) (-3994 |has| (-348 |#2|) (-312)) (-3988 |has| (-348 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-348 |#2|) (QUOTE (-118))) (|HasCategory| (-348 |#2|) (QUOTE (-120))) (|HasCategory| (-348 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-318))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-299))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091)))))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-813 (-1091)))))) (|HasCategory| (-348 |#2|) (QUOTE (-582 (-485)))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-348 (-485)))))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091)))))) +(-41 R -3094) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -362) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-257)))) +((|HasCategory| |#1| (QUOTE (-258)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3989 |has| |#1| (-495)) (-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3992 . T) (-3993 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) +((-3996 . T) (-3997 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-758)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) +((|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-485))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3989 . T)) +((-3993 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3091) +(-54 |Base| R -3094) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,28 +158,28 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-311)))) +((|HasCategory| |#1| (QUOTE (-312)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-3992 . T) ((-3994 "*") . T) (-3993 . T) (-3989 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3990 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3981 . T) (-3980 . T) (-3988 . T) (-3991 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3979 . T)) +((-3996 . T) ((-3998 "*") . T) (-3997 . T) (-3993 . T) (-3991 . T) (-3990 . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3992 . T) (-3995 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3983 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3989 . T)) +((-3993 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -222,24 +222,24 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3994 "*")))) +((|HasAttribute| |#1| (QUOTE (-3998 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-3993 . T)) +((-3997 . T)) NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-823))) (|HasCategory| (-485) (QUOTE (-952 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-555 (-474)))) (|HasCategory| (-485) (QUOTE (-935))) (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758))) (OR (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758)))) (|HasCategory| (-485) (QUOTE (-952 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-798 (-328)))) (|HasCategory| (-485) (QUOTE (-798 (-485)))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-813 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-811 (-1091)))) (|HasCategory| (-485) (QUOTE (-454 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-582 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (|HasCategory| (-485) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -254,11 +254,11 @@ NIL NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-554 (-473)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-474)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-1015))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-72)))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL (-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -280,22 +280,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3091 UP) +(-88 -3094 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1065))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-327)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1089)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-257))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-823))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-935))) (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-742))) (|HasCategory| (-89 |#1|) (QUOTE (-758)))) (|HasCategory| (-89 |#1|) (QUOTE (-952 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1067))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-328)))) (|HasCategory| (-89 |#1|) (QUOTE (-798 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-89 |#1|) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-582 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-813 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1091)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -454) (QUOTE (-1091)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-823)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) (-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) +((|HasAttribute| |#1| (QUOTE -3997))) (-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -306,15 +306,15 @@ NIL NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL (-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -322,24 +322,24 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-758)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015))))) (|HasCategory| (-101) (QUOTE (-554 (-774)))) (|HasCategory| (-101) (QUOTE (-555 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-101) (QUOTE (-758))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| (-101) (QUOTE (-1015))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1015))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -358,13 +358,13 @@ NIL NIL (-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3994 "*") . T)) +(((-3998 "*") . T)) NIL -(-108 |minix| -2620 R) +(-108 |minix| -2623 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2620 S T$) +(-109 |minix| -2623 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -386,8 +386,8 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3992 . T) (-3982 . T) (-3993 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-317)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-554 (-473)))) (|HasCategory| (-117) (QUOTE (-317))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) +((-3996 . T) (-3986 . T) (-3997 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-318)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-555 (-474)))) (|HasCategory| (-117) (QUOTE (-318))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -402,7 +402,7 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3989 . T)) +((-3993 . T)) NIL (-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -410,9 +410,9 @@ NIL NIL (-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3989 . T)) +((-3993 . T)) NIL -(-121 -3091 UP UPUP) +(-121 -3094 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -423,14 +423,14 @@ NIL (-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -3992))) +((|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasAttribute| |#1| (QUOTE -3996))) (-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3987 . T) (-3986 . T) (-3989 . T)) +((-3991 . T) (-3990 . T) (-3993 . T)) NIL (-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -452,7 +452,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3091) +(-131 R -3094) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -483,10 +483,10 @@ NIL (-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3988)) (|HasAttribute| |#2| (QUOTE -3991)) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-495)))) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496)))) (-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3985 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3988 |has| |#1| (-6 -3988)) (-3991 |has| |#1| (-6 -3991)) (-1374 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -498,8 +498,8 @@ NIL NIL (-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3985 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3988 |has| |#1| (-6 -3988)) (-3991 |has| |#1| (-6 -3991)) (-1374 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3988)) (|HasAttribute| |#1| (QUOTE -3991)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091))))) (|HasCategory| |#1| (QUOTE (-813 (-1091))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-823))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3995)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -522,7 +522,7 @@ NIL NIL (-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3994 "*") . T) (-3985 . T) (-3990 . T) (-3984 . T) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -539,7 +539,7 @@ NIL (-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|)))) +((|HasCategory| (-859 |#2|) (|%list| (QUOTE -798) (|devaluate| |#1|)))) (-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -576,7 +576,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3091) +(-162 R -3094) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -604,23 +604,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3091 UP UPUP R) +(-169 -3094 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3091 FP) +(-170 -3094 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-823))) (|HasCategory| (-485) (QUOTE (-952 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-555 (-474)))) (|HasCategory| (-485) (QUOTE (-935))) (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758))) (OR (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758)))) (|HasCategory| (-485) (QUOTE (-952 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-798 (-328)))) (|HasCategory| (-485) (QUOTE (-798 (-485)))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-813 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-811 (-1091)))) (|HasCategory| (-485) (QUOTE (-454 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-582 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (|HasCategory| (-485) (QUOTE (-118))))) (-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3091) +(-173 R -3094) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -634,19 +634,19 @@ NIL NIL (-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) (-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3989 . T)) +((-3993 . T)) NIL -(-178 R -3091) +(-178 R -3094) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3767 . T) (-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -654,19 +654,19 @@ NIL NIL (-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3994 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) (-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-183 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-3993 . T)) +((-3997 . T)) NIL (-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3989 . T)) +((-3993 . T)) NIL (-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -678,7 +678,7 @@ NIL NIL (-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL (-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -690,7 +690,7 @@ NIL NIL (-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3989 . T)) +((-3993 . T)) NIL (-191) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) @@ -699,28 +699,28 @@ NIL (-192 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -3992))) +((|HasAttribute| |#1| (QUOTE -3996))) (-193 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-3993 . T)) +((-3997 . T)) NIL (-194) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-195 S -2620 R) +(-195 S -2623 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3989)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013)))) -(-196 -2620 R) +((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasAttribute| |#3| (QUOTE -3993)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) +(-196 -2623 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-3986 |has| |#2| (-962)) (-3987 |has| |#2| (-962)) (-3989 |has| |#2| (-6 -3989)) (-3992 . T)) +((-3990 |has| |#2| (-963)) (-3991 |has| |#2| (-963)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) NIL -(-197 -2620 R) +(-197 -2623 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3986 |has| |#2| (-962)) (-3987 |has| |#2| (-962)) (-3989 |has| |#2| (-6 -3989)) (-3992 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3989)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) -(-198 -2620 A B) +((-3990 |has| |#2| (-963)) (-3991 |has| |#2| (-963)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-198 -2623 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -734,7 +734,7 @@ NIL NIL (-201) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3985 . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-202 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -742,20 +742,20 @@ NIL NIL (-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-205 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL (-206 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3994 "*") |has| |#2| (-146)) (-3985 |has| |#2| (-495)) (-3990 |has| |#2| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-474))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-207) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -770,23 +770,23 @@ NIL NIL (-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3989 OR (-2561 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3989)) (-2561 (|has| |#4| (-962)) (|has| |#4| (-810 (-1089))))) (-3986 |has| |#4| (-962)) (-3987 |has| |#4| (-962)) (-3992 . T)) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-311))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-317))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1089))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3989)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) +((-3993 OR (-2564 (|has| |#4| (-963)) (|has| |#4| (-190))) (|has| |#4| (-6 -3993)) (-2564 (|has| |#4| (-963)) (|has| |#4| (-811 (-1091))))) (-3990 |has| |#4| (-963)) (-3991 |has| |#4| (-963)) (-3996 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-963))) (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-719))) (OR (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-758)))) (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-318))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-485)))) (|HasCategory| |#4| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-485)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-813 (-1091)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-811 (-1091))))) (|HasCategory| |#4| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#4| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-485)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-719))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-758))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-485)))) (|HasCategory| |#4| (QUOTE (-1015)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-665))) (|HasCategory| |#4| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-485)))) (|HasCategory| |#4| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#4| (QUOTE (-582 (-485)))) (|HasCategory| |#4| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1091)))) (|HasCategory| |#4| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-485)))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-952 (-485)))) (|HasCategory| |#4| (QUOTE (-1015)))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#4| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1091)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasAttribute| |#4| (QUOTE -3993)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-963))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-963)))) (-12 (|HasCategory| |#4| (QUOTE (-813 (-1091)))) (|HasCategory| |#4| (QUOTE (-963)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3989 OR (-2561 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3989)) (-2561 (|has| |#3| (-962)) (|has| |#3| (-810 (-1089))))) (-3986 |has| |#3| (-962)) (-3987 |has| |#3| (-962)) (-3992 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3989)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) +((-3993 OR (-2564 (|has| |#3| (-963)) (|has| |#3| (-190))) (|has| |#3| (-6 -3993)) (-2564 (|has| |#3| (-963)) (|has| |#3| (-811 (-1091))))) (-3990 |has| |#3| (-963)) (-3991 |has| |#3| (-963)) (-3996 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-318))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1091))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1091)))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-190)))) (-213 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL (-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL (-215 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -827,15 +827,15 @@ NIL (-224 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-189)))) +((|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-189)))) (-225 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-226 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#3| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#3| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#3| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#3| (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#3| (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#3| (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#3| (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-227 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -848,22 +848,22 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-230 R -3091) +(-230 R -3094) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-231 R -3091) +(-231 R -3094) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL (-232 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-311)))) +((|HasCategory| |#1| (QUOTE (-312)))) (-233 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-311)))) +((|HasCategory| |#1| (QUOTE (-312)))) (-234) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL @@ -875,10 +875,10 @@ NIL (-236 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013)))) +((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015)))) (-237 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-3993 . T)) +((-3997 . T)) NIL (-238 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -899,3870 +899,3878 @@ NIL (-242 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) +((|HasAttribute| |#1| (QUOTE -3997))) (-243 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-244 S R |Mod| -2036 -3515 |exactQuo|) +(-244 S R |Mod| -2039 -3519 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-245) +(-245 S) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3985 . T) (-3986 . T) (-3987 . T) (-3989 . T)) +NIL NIL (-246) +((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) +((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T)) +NIL +(-247) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-247 R) +(-248 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-248 S) +(-249 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3989 OR (|has| |#1| (-962)) (|has| |#1| (-410))) (-3986 |has| |#1| (-962)) (-3987 |has| |#1| (-962))) -((|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-410))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-253))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-664)))) -(-249 S R) +((-3993 OR (|has| |#1| (-963)) (|has| |#1| (-411))) (-3990 |has| |#1| (-963)) (-3991 |has| |#1| (-963))) +((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-665)))) (|HasCategory| |#1| (QUOTE (-411))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-411)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-665)))) +(-250 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-250 |Key| |Entry|) +(-251 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-251) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-252) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-252 S) +(-253 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) -(-253) +((|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) +(-254) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-254 -3091 S) +(-255 -3094 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-255 E -3091) +(-256 E -3094) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-256 S) +(-257 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-257) +(-258) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-258 S R) +(-259 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-259 R) +(-260 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-260 -3091) +(-261 -3094) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-261) +(-262) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-262) +(-263) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-263 R FE |var| |cen|) +(-264 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-473)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-1065))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-327)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -259) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-257))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) -(-264 R) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-823))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-935))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-758))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-742))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-758)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-952 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-328)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-798 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-582 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-813 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -454) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-823)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +(-265 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3989 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-962)) (|has| |#1| (-410)))) (|has| |#1| (-962)) (|has| |#1| (-410))) (-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) ((-3994 "*") |has| |#1| (-495)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-495)) (-3984 |has| |#1| (-495))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484))))) -(-265 R S) +((-3993 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-963)) (|has| |#1| (-411)))) (|has| |#1| (-963)) (|has| |#1| (-411))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-963))))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-963)))) (-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#1| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-952 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-485))))) +(-266 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-266 R FE) +(-267 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-267 R -3091) +(-268 R -3094) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-269 FE |var| |cen|) +(-270 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-270 M) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-485)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-271 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-271 E OV R P) +(-272 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-272 S) +(-273 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-717)))) -(-273 S E) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| (-485) (QUOTE (-718)))) +(-274 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-274 S) +(-275 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-695) (QUOTE (-717)))) -(-275 S R E) +((|HasCategory| (-696) (QUOTE (-718)))) +(-276 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) -(-276 R E) +((|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) +(-277 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-277 S) +(-278 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-278 S -3091) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-279 S -3094) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-317)))) -(-279 -3091) +((|HasCategory| |#2| (QUOTE (-318)))) +(-280 -3094) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-280 E) +(-281 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-281) +(-282) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-282 -3091 UP UPUP R) +(-283 -3094 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-283 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-284 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-284 S -3091 UP UPUP R) +(-285 S -3094 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-285 -3091 UP UPUP R) +(-286 -3094 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-286 S R) +(-287 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-287 R) +((|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-288 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-288 |p| |n|) +(-289 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) -(-289 S -3091 UP UPUP) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-318)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-318))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) +(-290 S -3094 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-311)))) -(-290 -3091 UP UPUP) +((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-312)))) +(-291 -3094 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3985 |has| (-347 |#2|) (-311)) (-3990 |has| (-347 |#2|) (-311)) (-3984 |has| (-347 |#2|) (-311)) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 |has| (-348 |#2|) (-312)) (-3994 |has| (-348 |#2|) (-312)) (-3988 |has| (-348 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-291 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-292 |p| |extdeg|) +(-293 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) -(-293 GF |defpol|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-318)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-318))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) +(-294 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-294 GF |extdeg|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-295 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-295 GF) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-296 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-296 F1 GF F2) +(-297 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-297 S) +(-298 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-298) +(-299) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-299 R UP -3091) +(-300 R UP -3094) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-300 |p| |extdeg|) +(-301 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) -(-301 GF |uni|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-819 |#1|) (QUOTE (-118))) (|HasCategory| (-819 |#1|) (QUOTE (-318)))) (|HasCategory| (-819 |#1|) (QUOTE (-120))) (|HasCategory| (-819 |#1|) (QUOTE (-318))) (|HasCategory| (-819 |#1|) (QUOTE (-118)))) +(-302 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-302 GF |extdeg|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-303 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-303 GF |defpol|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-304 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-304 GF) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-305 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-305 -3091 GF) +(-306 -3094 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-306 -3091 FP FPP) +(-307 -3094 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-307 GF |n|) +(-308 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118)))) -(-308 R |ls|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-118)))) +(-309 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL -(-309 S) +(-310 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3989 . T)) +((-3993 . T)) NIL -(-310 S) +(-311 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-311) +(-312) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-312 S) +(-313 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-313 |Name| S) +(-314 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-314 S R) +(-315 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-495)))) -(-315 R) +((|HasCategory| |#2| (QUOTE (-496)))) +(-316 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3989 |has| |#1| (-495)) (-3987 . T) (-3986 . T)) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) NIL -(-316 S) +(-317 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-317) +(-318) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-318 S R UP) +(-319 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-311)))) -(-319 R UP) +((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312)))) +(-320 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-320 A S) +(-321 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013)))) -(-321 S) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015)))) +(-322 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3992 . T)) +((-3996 . T)) NIL -(-322 S A R B) +(-323 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-323 |VarSet| R) +(-324 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3987 . T) (-3986 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) NIL -(-324 S V) +(-325 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-325 S R) +(-326 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-581 (-484))))) -(-326 R) +((|HasCategory| |#2| (QUOTE (-582 (-485))))) +(-327 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-327) +(-328) ((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3975 . T) (-3983 . T) (-3767 . T) (-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3979 . T) (-3987 . T) (-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-328 |Par|) +(-329 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-329 |Par|) +(-330 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-330 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-331 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-332 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) ((|HasCategory| |#1| (QUOTE (-146)))) -(-332 R |Basis|) +(-333 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-333 S) +(-334 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-334 S) +(-335 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-335) +((|HasCategory| |#1| (QUOTE (-758)))) +(-336) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-336) +(-337) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-337 |n| |class| R) +(-338 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-338 -3091 UP UPUP R) +(-339 -3094 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-339 -3091 UP) +(-340 -3094 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-340 R) +(-341 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-341 S) +(-342 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-342) +(-343) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-343 S) +(-344 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3975)) (|HasAttribute| |#1| (QUOTE -3983))) -(-344) +((|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3987))) +(-345) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3767 . T) (-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-345 R) +(-346 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-453 (-1089) $))) (|HasCategory| |#1| (QUOTE (-259 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-1133))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-389)))) -(-346 R S) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-454 (-1091) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-390)))) +(-347 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-347 S) +(-348 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3979 -12 (|has| |#1| (-6 -3990)) (|has| |#1| (-389)) (|has| |#1| (-6 -3979))) (-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1089)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-348 A B) +((-3983 -12 (|has| |#1| (-6 -3994)) (|has| |#1| (-390)) (|has| |#1| (-6 -3983))) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-952 (-1091)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390)))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-349 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-349 S R UP) +(-350 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-350 R UP) +(-351 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-351 A S) +(-352 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) -(-352 S) +((|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) +(-353 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-353 R -3091 UP A) +(-354 R -3094 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3989 . T)) +((-3993 . T)) NIL -(-354 R1 F1 U1 A1 R2 F2 U2 A2) +(-355 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-355 R -3091 UP A |ibasis|) +(-356 R -3094 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|)))) -(-356 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -952) (|devaluate| |#2|)))) +(-357 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-357 S R) +(-358 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-311)))) -(-358 R) +((|HasCategory| |#2| (QUOTE (-312)))) +(-359 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3989 |has| |#1| (-495)) (-3987 . T) (-3986 . T)) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) NIL -(-359 R) +(-360 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-360 S R) +(-361 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) -(-361 R) +((|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-555 (-474))))) +(-362 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3989 OR (|has| |#1| (-962)) (|has| |#1| (-410))) (-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) ((-3994 "*") |has| |#1| (-495)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-495)) (-3984 |has| |#1| (-495))) +((-3993 OR (|has| |#1| (-963)) (|has| |#1| (-411))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496))) NIL -(-362 R A S B) +(-363 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-363 R FE |x| |cen|) +(-364 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-364 R FE |Expon| UPS TRAN |x|) +(-365 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-365 A S) +(-366 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317)))) -(-366 S) +((|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-318)))) +(-367 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3992 . T) (-3982 . T) (-3993 . T)) +((-3996 . T) (-3986 . T) (-3997 . T)) NIL -(-367 S A R B) +(-368 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-368 R -3091) +(-369 R -3094) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-369 R E) +(-370 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3979 -12 (|has| |#1| (-6 -3979)) (|has| |#2| (-6 -3979))) (-3986 . T) (-3987 . T) (-3989 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#2| (QUOTE -3979)))) -(-370 R -3091) +((-3983 -12 (|has| |#1| (-6 -3983)) (|has| |#2| (-6 -3983))) (-3990 . T) (-3991 . T) (-3993 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#2| (QUOTE -3983)))) +(-371 R -3094) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-371 R -3091) +(-372 R -3094) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-372 R -3091) +(-373 R -3094) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-373 R -3091) +(-374 R -3094) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-374) +(-375) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-375 R -3091 UP) +(-376 R -3094 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-951 (-48))))) -(-376) +((|HasCategory| |#2| (QUOTE (-952 (-48))))) +(-377) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-377 |f|) +(-378 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-378) +(-379) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-379 UP) +(-380 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-380 R UP -3091) +(-381 R UP -3094) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-381 R UP) +(-382 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-382 R) +(-383 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-344)))) -(-383) +((|HasCategory| |#1| (QUOTE (-345)))) +(-384) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-384 |Dom| |Expon| |VarSet| |Dpol|) +(-385 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-311)))) -(-385 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-312)))) +(-386 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-386 |Dom| |Expon| |VarSet| |Dpol|) +(-387 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-387 |Dom| |Expon| |VarSet| |Dpol|) +(-388 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-388 S) +(-389 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-389) +(-390) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-390 R |n| |ls| |gamma|) +(-391 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3989 |has| (-347 (-858 |#1|)) (-495)) (-3987 . T) (-3986 . T)) -((|HasCategory| (-347 (-858 |#1|)) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-347 (-858 |#1|)) (QUOTE (-495)))) -(-391 |vl| R E) +((-3993 |has| (-348 (-859 |#1|)) (-496)) (-3991 . T) (-3990 . T)) +((|HasCategory| (-348 (-859 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-348 (-859 |#1|)) (QUOTE (-496)))) +(-392 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3994 "*") |has| |#2| (-146)) (-3985 |has| |#2| (-495)) (-3990 |has| |#2| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-392 R BP) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-474))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-393 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-393 OV E S R P) +(-394 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-394 E OV R P) +(-395 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-395 R) +(-396 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-396 R FE) +(-397 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-397 RP TP) +(-398 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-398 |vl| R IS E |ff| P) +(-399 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-399 E V R P Q) +(-400 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-400 R E |VarSet| P) +(-401 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-401 S R E) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-402 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-402 R E) +(-403 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-403) +(-404) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-404) +(-405) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-405) +(-406) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-406 S R E) +(-407 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-407 R E) +(-408 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-408 |lv| -3091 R) +(-409 |lv| -3094 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-409 S) +(-410 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-410) +(-411) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3989 . T)) +((-3993 . T)) NIL -(-411 |Coef| |var| |cen|) +(-412 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-412 |Key| |Entry| |Tbl| |dent|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-485)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-413 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) -(-413 R E V P) +((-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) +(-414 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-414) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-415) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-415) +(-416) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-416 |Key| |Entry| |hashfn|) +(-417 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-417) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-418) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-418 |vl| R) +(-419 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3994 "*") |has| |#2| (-146)) (-3985 |has| |#2| (-495)) (-3990 |has| |#2| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-419 -2620 S) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-474))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-420 -2623 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3986 |has| |#2| (-962)) (-3987 |has| |#2| (-962)) (-3989 |has| |#2| (-6 -3989)) (-3992 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3989)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) -(-420) +((-3990 |has| |#2| (-963)) (-3991 |has| |#2| (-963)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-421) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-421 S) +(-422 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-422 -3091 UP UPUP R) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-423 -3094 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-423 BP) +(-424 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-424) +(-425) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118))))) -(-425 A S) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-823))) (|HasCategory| (-485) (QUOTE (-952 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-555 (-474)))) (|HasCategory| (-485) (QUOTE (-935))) (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758))) (OR (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758)))) (|HasCategory| (-485) (QUOTE (-952 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-798 (-328)))) (|HasCategory| (-485) (QUOTE (-798 (-485)))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-813 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-811 (-1091)))) (|HasCategory| (-485) (QUOTE (-454 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-582 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (|HasCategory| (-485) (QUOTE (-118))))) +(-426 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) -(-426 S) +((|HasAttribute| |#1| (QUOTE -3996)) (|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) +(-427 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-427 S) +(-428 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-428) +(-429) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-429 S) +(-430 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-430) +(-431) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-431 -3091 UP |AlExt| |AlPol|) +(-432 -3094 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-432) +(-433) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484))))) -(-433 S |mn|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-963))) (|HasCategory| $ (QUOTE (-952 (-485))))) +(-434 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-434 R |mnRow| |mnCol|) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-435 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-435 K R UP) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-436 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-436 R UP -3091) +(-437 R UP -3094) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-437 |mn|) +(-438 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-554 (-473)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72)))) -(-438 K R UP L) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1015)))) (|HasCategory| (-85) (QUOTE (-555 (-474)))) (|HasCategory| (-85) (QUOTE (-758))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| (-85) (QUOTE (-1015))) (|HasCategory| (-85) (QUOTE (-554 (-774)))) (|HasCategory| (-85) (QUOTE (-72)))) +(-439 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-439) +(-440) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-440 R Q A B) +(-441 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-441 -3091 |Expon| |VarSet| |DPoly|) +(-442 -3094 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-554 (-1089))))) -(-442 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-555 (-1091))))) +(-443 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-443 T$) +(-444 T$) ((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) -(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3055 (|f| |x| |x|) |x|))) . T)) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3058 (|f| |x| |x|) |x|))) . T)) NIL -(-444) +(-445) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-445 A S) +(-446 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-446 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-447 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-447 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-448 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-448 A S) +(-449 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-449 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-450 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-450 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-451 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-451 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) +(-452 A S) ((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}."))) NIL NIL -(-452 S A B) +(-453 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-453 A B) +(-454 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-454 S E |un|) +(-455 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-717)))) -(-455 S |mn|) +((|HasCategory| |#2| (QUOTE (-718)))) +(-456 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-456) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-457) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-457 |p| |n|) +(-458 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-317)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-317))) (|HasCategory| (-517 |#1|) (QUOTE (-118)))) -(-458 R |mnRow| |mnCol| |Row| |Col|) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-318)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-318))) (|HasCategory| (-518 |#1|) (QUOTE (-118)))) +(-459 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-459 R |Row| |Col| M) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-460 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -3993))) -(-460 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3997))) +(-461 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -3993))) -(-461 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -3997))) +(-462 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3994 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72)))) -(-462) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) +(-463) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-463) +(-464) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-464 S) +(-465 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-466 GF) +(-467 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-467) +(-468) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-468 R) +(-469 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-469 |Varset|) +(-470 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-695) (QUOTE (-1013))))) -(-470 K -3091 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-696) (QUOTE (-1015))))) +(-471 K -3094 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-471) +(-472) NIL NIL NIL -(-472) +(-473) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-473) +(-474) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-474 R) +(-475 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-475 |Coef| UTS) +(-476 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-476 K -3091 |Par|) +(-477 K -3094 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-477 R BP |pMod| |nextMod|) +(-478 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-478 OV E R P) +(-479 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-479 K UP |Coef| UTS) +(-480 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-480 |Coef| UTS) +(-481 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-481 R UP) +(-482 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-482 S) +(-483 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-483) +(-484) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3990 . T) (-3991 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-484) +(-485) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3980 . T) (-3984 . T) (-3979 . T) (-3990 . T) (-3991 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-485) +(-486) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-487) +(-488) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-488) +(-489) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-489 |Key| |Entry| |addDom|) +(-490 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-490 R -3091) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-491 R -3094) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-491 R0 -3091 UP UPUP R) +(-492 R0 -3094 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-492) +(-493) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-493 R) +(-494 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3767 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-494 S) +(-495 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-495) +(-496) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-496 R -3091) +(-497 R -3094) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-497 I) +(-498 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-498 R -3091 L) +(-499 R -3094 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) -(-499) +((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) +(-500) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-500 -3091 UP UPUP R) +(-501 -3094 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-501 -3091 UP) +(-502 -3094 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-502 R -3091 L) +(-503 R -3094 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) -(-503 R -3091) +((|HasCategory| |#3| (|%list| (QUOTE -602) (|devaluate| |#2|)))) +(-504 R -3094) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-570))))) -(-504 -3091 UP) +((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-571))))) +(-505 -3094 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-505 S) +(-506 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-506 -3091) +(-507 -3094) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-507 R) +(-508 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3767 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-508) +(-509) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-509 R -3091) +(-510 R -3094) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495)))) -(-510 -3091 UP) +((-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-952 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496)))) +(-511 -3094 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-511 R -3091) +(-512 R -3094) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-512) +(-513) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-513) +(-514) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-515) +(-516) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-516 |p| |unBalanced?|) +(-517 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-517 |p|) +(-518 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317)))) -(-518) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-318)))) +(-519) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-519 -3091) +(-520 -3094) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-951 (-1089))))) -(-520 E -3091) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-952 (-1091))))) +(-521 E -3094) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-521 R -3091) +(-522 R -3094) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-522) +(-523) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-523 I) +(-524 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-524 GF) +(-525 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-525 R) +(-526 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-120)))) -(-526) +(-527) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-527 R E V P TS) +(-528 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-528) +(-529) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-529 E V R P) +(-530 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-530 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484)))))) (-531 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485)))))) +(-532 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3994 "*") |has| |#1| (-495)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-495)))) -(-532) +(((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-496)))) +(-533) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-533 A B) +(-534 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-534 A B C) +(-535 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-535 R -3091 FG) +(-536 R -3094 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-536 S) +(-537 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-537 R |mn|) +(-538 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-538 S |Index| |Entry|) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-539 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#3| (QUOTE (-1013)))) -(-539 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-758))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#3| (QUOTE (-1015)))) +(-540 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-540) +(-541) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-541 R A) +(-542 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3989 OR (-2561 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) (-3987 . T) (-3986 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) -(-542) +((-3993 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-543) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-543) +(-544) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-544) +(-545) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-546) +(-547) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-547) +(-548) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-548 |Entry|) +(-549 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3857 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-549 S |Key| |Entry|) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-1074) (QUOTE (-758))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-550 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-550 |Key| |Entry|) +(-551 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-3993 . T)) +((-3997 . T)) NIL -(-551 S) +(-552 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484)))))) -(-552 R S) +((|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#1| (QUOTE (-555 (-802 (-485)))))) +(-553 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-553 S) +(-554 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-554 S) +(-555 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-555 -3091 UP) +(-556 -3094 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-556 S) +(-557 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-558 S) +(-559 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-559 A R S) +(-560 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-756)))) -(-560 S R) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-757)))) +(-561 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-561 R) +(-562 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3989 . T)) +((-3993 . T)) NIL -(-562 R -3091) +(-563 R -3094) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-563 R UP) +(-564 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3987 . T) (-3986 . T) ((-3994 "*") . T) (-3985 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) -(-564 R E V P TS ST) +((-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) +(-565 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-565 OV E Z P) +(-566 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-566) +(-567) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-567 |VarSet| R |Order|) +(-568 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3989 . T)) +((-3993 . T)) NIL -(-568 R |ls|) +(-569 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-569 R -3091) +(-570 R -3094) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-570) +(-571) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-571 |lv| -3091) +(-572 |lv| -3094) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-572) +(-573) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-554 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-259 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-1072) (QUOTE (-757))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) -(-573 R A) +((-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-51) (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-555 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1015)))) (|HasCategory| (-1074) (QUOTE (-758))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1015))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1015)))) +(-574 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3989 OR (-2561 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) (-3987 . T) (-3986 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) -(-574 S R) +((-3993 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -359) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-575 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-311)))) -(-575 R) +((|HasCategory| |#2| (QUOTE (-312)))) +(-576 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3987 . T) (-3986 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) NIL -(-576 R FE) +(-577 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-577 R) +(-578 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-578 |vars|) +(-579 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-579 S R) +(-580 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2559 (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-311)))) -(-580 K B) +((-2562 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) +(-581 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3987 . T) (-3986 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-578 |#2|) (QUOTE (-1013))))) -(-581 R) +((-3991 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-579 |#2|) (QUOTE (-1015))))) +(-582 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-582 K B) +(-583 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-583 S) +(-584 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-584 S) +(-585 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-585 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-586 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-586 A B) +(-587 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-587 A B C) +(-588 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-588 T$) +(-589 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-589 S) +(-590 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-590 S) +(-591 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-591 R) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-592 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-592 S E |un|) +(-593 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-593 A S) +(-594 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) -(-594 S) +((|HasAttribute| |#1| (QUOTE -3997))) +(-595 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-595 M R S) +(-596 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-715)))) -(-596 R -3091 L) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-716)))) +(-597 R -3094 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-597 A -2491) +(-598 A -2494) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) -(-598 A) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) +(-599 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) -(-599 A M) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) +(-600 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) -(-600 S A) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) +(-601 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-311)))) -(-601 A) +((|HasCategory| |#2| (QUOTE (-312)))) +(-602 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-602 -3091 UP) +(-603 -3094 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-603 A L) +(-604 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-604 S) +(-605 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-605) +(-606) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-606 R) +(-607 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-607 |VarSet| R) +(-608 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3987 . T) (-3986 . T)) -((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-146)))) -(-608 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146)))) +(-609 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-609 S) +(-610 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-610 -3091 |Row| |Col| M) +(-611 -3094 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-611 -3091) +(-612 -3094) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-612 R E OV P) +(-613 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-613 |n| R) +(-614 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3989 . T) (-3992 . T) (-3986 . T) (-3987 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3994 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3994 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-614) +((-3993 . T) (-3996 . T) (-3990 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-615) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-615 |VarSet|) +(-616 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-616 A S) +(-617 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-617 S) +(-618 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-618) +(-619) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-619 |VarSet|) +(-620 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-620 A) +(-621 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-621 A C) +(-622 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-622 A B C) +(-623 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-623) +(-624) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-624 A) +(-625 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-625 A C) +(-626 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-626 A B C) +(-627 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-627 S R |Row| |Col|) +(-628 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-3994 "*"))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-495)))) -(-628 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3998 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496)))) +(-629 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL -(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-630 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-630 R |Row| |Col| M) +(-631 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495)))) -(-631 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3992 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3994 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496)))) (-632 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-3996 . T) (-3997 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-633 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-633 T$) +(-634 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-634 R Q) +(-635 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-635 S) +(-636 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-3993 . T)) +((-3997 . T)) NIL -(-636 U) +(-637 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-637) +(-638) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-638 OV E -3091 PG) +(-639 OV E -3094 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-639 R) +(-640 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-640 S D1 D2 I) +(-641 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-641 S) +(-642 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-642 S) +(-643 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-643 S T$) +(-644 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-644 S -2668 I) +(-645 S -2671 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-645 E OV R P) +(-646 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-646 R) +(-647 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-647 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-648 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-648) +(-649) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-649 R |Mod| -2036 -3515 |exactQuo|) +(-650 R |Mod| -2039 -3519 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-650 R P) +(-651 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3988 |has| |#1| (-311)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-651 IS E |ff|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-996) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-996) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-996) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-652 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-652 R M) +(-653 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) (-3989 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-653 R |Mod| -2036 -3515 |exactQuo|) +(-654 R |Mod| -2039 -3519 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3989 . T)) +((-3993 . T)) NIL -(-654 S R) +(-655 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-655 R) +(-656 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-656 -3091) +(-657 -3094) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3989 . T)) +((-3993 . T)) NIL -(-657 S) +(-658 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-658) +(-659) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-659 S) +(-660 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-660) +(-661) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-661 S R UP) +(-662 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317)))) -(-662 R UP) +((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318)))) +(-663 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3985 |has| |#1| (-311)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-663 S) +(-664 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-664) +(-665) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-665 T$) +(-666 T$) ((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-666 T$) +(-667 T$) ((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2414 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-667 -3091 UP) +(-668 -3094 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-668 |VarSet| E1 E2 R S PR PS) +(-669 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-670 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-670 E OV R PPR) +(-671 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-671 |vl| R) +(-672 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3994 "*") |has| |#2| (-146)) (-3985 |has| |#2| (-495)) (-3990 |has| |#2| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-672 E OV R PRF) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| (-775 |#1|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| (-775 |#1|) (QUOTE (-555 (-474))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-673 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-673 E OV R P) +(-674 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-674 R S M) +(-675 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-675 R M) +(-676 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) (-3989 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757)))) -(-676 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3992 . T) (-3982 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-758)))) (-677 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-3996 . T) (-3986 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-678 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3982 . T) (-3993 . T)) +((-3986 . T) (-3997 . T)) NIL -(-678) +(-679) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-679 S) +(-680 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-680 |Coef| |Var|) +(-681 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3987 . T) (-3986 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-681 OV E R P) +(-682 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-682 E OV R P) +(-683 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-683 S R) +(-684 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-684 R) +(-685 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-685 S) +(-686 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-686) +(-687) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-687 S) +(-688 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-688) +(-689) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-689 |Par|) +(-690 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-690 -3091) +(-691 -3094) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-691 P -3091) +(-692 P -3094) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-692 T$) +(-693 T$) NIL NIL NIL -(-693 UP -3091) +(-694 UP -3094) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-694 R) +(-695 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3994 "*") . T)) +(((-3998 "*") . T)) NIL -(-696 R -3091) +(-697 R -3094) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-697) +(-698) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-698 S) +(-699 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-699 R |PolR| E |PolE|) +(-700 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-700 R E V P TS) +(-701 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-701 -3091 |ExtF| |SUEx| |ExtP| |n|) +(-702 -3094 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-702 BP E OV R P) +(-703 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-703 |Par|) +(-704 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-704 R |VarSet|) +(-705 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2559 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-2559 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2559 (|HasCategory| |#1| (QUOTE (-905 (-484))))))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-705 R) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#2| (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-555 (-1091))))) (|HasCategory| |#2| (QUOTE (-555 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-555 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-1091)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-555 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-555 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-906 (-485))))))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-706 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3988 |has| |#1| (-311)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-706 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-996) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-996) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-996) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-707 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-707 R) +(-708 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) -(-708 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) +(-709 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-709 S) +(-710 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146)))) -(-710) +((-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-146)))) +(-711) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-712) +(-713) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-713 |Curve|) +(-714 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-714 S) +(-715 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-716 S) +(-717 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-717) +(-718) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-718) +(-719) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-719) +(-720) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-720 S R) +(-721 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317)))) -(-721 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-318)))) +(-722 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-722) +(-723) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-723 R) +(-724 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-347 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) -(-724 OR R OS S) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-348 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-911 |#1|) (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) +(-725 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-725 R -3091 L) +(-726 R -3094 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-726 R -3091) +(-727 R -3094) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-727 R -3091) +(-728 R -3094) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-728 -3091 UP UPUP R) +(-729 -3094 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-729 -3091 UP L LQ) +(-730 -3094 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-730 -3091 UP L LQ) +(-731 -3094 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-731 -3091 UP) +(-732 -3094 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-732 -3091 L UP A LO) +(-733 -3094 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-733 -3091 UP) +(-734 -3094 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-734 -3091 LO) +(-735 -3094 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-735 -3091 LODO) +(-736 -3094 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-736 -2620 S |f|) +(-737 -2623 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3986 |has| |#2| (-962)) (-3987 |has| |#2| (-962)) (-3989 |has| |#2| (-6 -3989)) (-3992 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3989)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) -(-737 R) +((-3990 |has| |#2| (-963)) (-3991 |has| |#2| (-963)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (OR (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-318))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1015)))) (-12 (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-1015)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-963)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-963)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-738 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-739 (-1089)) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-739 (-1089)) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-738 |Kernels| R |var|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-740 (-1091)) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-740 (-1091)) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-740 (-1091)) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-740 (-1091)) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-740 (-1091)) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-739 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3994 "*") |has| |#2| (-311)) (-3985 |has| |#2| (-311)) (-3990 |has| |#2| (-311)) (-3984 |has| |#2| (-311)) (-3989 . T) (-3987 . T) (-3986 . T)) -((|HasCategory| |#2| (QUOTE (-311)))) -(-739 S) +(((-3998 "*") |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 . T) (-3991 . T) (-3990 . T)) +((|HasCategory| |#2| (QUOTE (-312)))) +(-740 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-740 S) +(-741 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-741) +((|HasCategory| |#1| (QUOTE (-758)))) +(-742) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-742 P R) +(-743 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-743 S) +(-744 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3992 . T) (-3982 . T) (-3993 . T)) +((-3996 . T) (-3986 . T) (-3997 . T)) NIL -(-744 R) +(-745 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3989 |has| |#1| (-756))) -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) -(-745 R S) +((-3993 |has| |#1| (-757))) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) +(-746 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-746 R) +(-747 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) (-3989 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-747 A S) +(-748 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-748 S) +(-749 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-751 R) +(-752 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3989 |has| |#1| (-756))) -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) -(-752 R S) +((-3993 |has| |#1| (-757))) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) +(-753 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-754 -2620 S) +(-755 -2623 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3989 . T)) +((-3993 . T)) NIL -(-757) +(-758) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-758 T$ |f|) +(-759 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-553 (-773))))) -(-759 S) +((|HasCategory| |#1| (QUOTE (-554 (-774))))) +(-760 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-761 S R) +(-762 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) -(-762 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) +(-763 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-763 R C) +(-764 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) -(-764 R |sigma| -3242) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) +(-765 R |sigma| -3246) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311)))) -(-765 |x| R |sigma| -3242) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-312)))) +(-766 |x| R |sigma| -3246) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-311)))) -(-766 R) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-312)))) +(-767 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) -(-767) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) +(-768) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-770 S) +(-771 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-774 |VariableList|) +(-775 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-776 R |vl| |wl| |wtlevel|) +(-777 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) -(-777 R PS UP) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) +(-778 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-778 R |x| |pt|) +(-779 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-779 |p|) +(-780 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-780 |p|) +(-781 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-781 |p|) +(-782 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1089)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-473)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-1065))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-327)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1089)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1089)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-257))) (|HasCategory| (-779 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))))) -(-782 |p| PADIC) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-780 |#1|) (QUOTE (-823))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-1091)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-120))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-474)))) (|HasCategory| (-780 |#1|) (QUOTE (-935))) (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758))) (OR (|HasCategory| (-780 |#1|) (QUOTE (-742))) (|HasCategory| (-780 |#1|) (QUOTE (-758)))) (|HasCategory| (-780 |#1|) (QUOTE (-952 (-485)))) (|HasCategory| (-780 |#1|) (QUOTE (-1067))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-328)))) (|HasCategory| (-780 |#1|) (QUOTE (-798 (-485)))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-780 |#1|) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-780 |#1|) (QUOTE (-582 (-485)))) (|HasCategory| (-780 |#1|) (QUOTE (-189))) (|HasCategory| (-780 |#1|) (QUOTE (-813 (-1091)))) (|HasCategory| (-780 |#1|) (QUOTE (-190))) (|HasCategory| (-780 |#1|) (QUOTE (-811 (-1091)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -454) (QUOTE (-1091)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -780) (|devaluate| |#1|)) (|%list| (QUOTE -780) (|devaluate| |#1|)))) (|HasCategory| (-780 |#1|) (QUOTE (-258))) (|HasCategory| (-780 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-780 |#1|) (QUOTE (-823)))) (|HasCategory| (-780 |#1|) (QUOTE (-118))))) +(-783 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-783 S T$) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-952 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-784 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))) -(-784) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1015))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774)))))) +(-785) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-785) +(-786) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-787 CF1 CF2) +(-788 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-788 |ComponentFunction|) +(-789 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-789 CF1 CF2) +(-790 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-790 |ComponentFunction|) +(-791 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-791) +(-792) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-792 CF1 CF2) +(-793 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-793 |ComponentFunction|) +(-794 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-794) +(-795) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-795 R) +(-796 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-796 R S L) +(-797 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-797 S) +(-798 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-798 |Base| |Subject| |Pat|) +(-799 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2559 (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-2559 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2559 (|HasCategory| |#2| (QUOTE (-951 (-1089)))))) (|HasCategory| |#2| (QUOTE (-951 (-1089))))) -(-799 R S) +((-12 (-2562 (|HasCategory| |#2| (QUOTE (-952 (-1091))))) (-2562 (|HasCategory| |#2| (QUOTE (-963))))) (-12 (|HasCategory| |#2| (QUOTE (-963))) (-2562 (|HasCategory| |#2| (QUOTE (-952 (-1091)))))) (|HasCategory| |#2| (QUOTE (-952 (-1091))))) +(-800 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-800 R A B) +(-801 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-801 R) +(-802 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-802 R -2668) +(-803 R -2671) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-803 R S) +(-804 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-804 |VarSet|) +(-805 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-805 UP R) +(-806 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-806 A T$ S) +(-807 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-807 T$ S) +(-808 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-808 UP -3091) +(-809 UP -3094) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-809 R S) +(-810 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-810 S) +(-811 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3989 . T)) +((-3993 . T)) NIL -(-811 A S) +(-812 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-812 S) +(-813 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-813 S) +(-814 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-814 S) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-815 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-757)))) -(-815 |n| R) +((-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-758)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-758)))) +(-816 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-816 S) +(-817 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3989 . T)) +((-3993 . T)) NIL -(-817 S) +(-818 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-818 |p|) +(-819 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317)))) -(-819 R E |VarSet| S) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-318)))) +(-820 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-820 R S) +(-821 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-821 S) +(-822 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-822) +(-823) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-823 R0 -3091 UP UPUP R) +(-824 R0 -3094 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-824 UP UPUP R) +(-825 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-825 UP UPUP) +(-826 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-826 R) +(-827 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-827 R) +(-828 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-828 E OV R P) +(-829 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-829) +(-830) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-830 -3091) +(-831 -3094) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-831) +(-832) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3994 "*") . T)) +(((-3998 "*") . T)) NIL -(-832 R) +(-833 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-833) +(-834) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-834 |xx| -3091) +(-835 |xx| -3094) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-835 -3091 P) +(-836 -3094 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-836 R |Var| |Expon| GR) +(-837 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-837) +(-838) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-838 S) +(-839 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-840) +(-841) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-841) +(-842) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-842 R -3091) +(-843 R -3094) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-843 S A B) +(-844 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-844 S R -3091) +(-845 S R -3094) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-845 I) +(-846 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 S E) +(-847 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-847 S R L) +(-848 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-848 S E V R P) +(-849 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|)))) -(-849 -2668) +((|HasCategory| |#3| (|%list| (QUOTE -798) (|devaluate| |#1|)))) +(-850 -2671) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-850 R -3091 -2668) +(-851 R -3094 -2671) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-851 S R Q) +(-852 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-852 S) +(-853 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-853 S R P) +(-854 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-854) +(-855) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-855 R) +(-856 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-856 |lv| R) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-857 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-857 |TheField| |ThePols|) +(-858 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-858 R) +((|HasCategory| |#1| (QUOTE (-757)))) +(-859 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-1089) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-1089) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1089) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1089) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-1089) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-859 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-1091) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-1091) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-1091) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-1091) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-1091) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-860 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-860 |x| R) +(-861 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-861 S R E |VarSet|) +(-862 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| |#4| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) -(-862 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-823))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-798 (-328)))) (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| |#4| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#4| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-555 (-474))))) +(-863 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-863 E V R P -3091) +(-864 E V R P -3094) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-864 E |Vars| R P S) +(-865 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-865 E V R P -3091) +(-866 E V R P -3094) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-389)))) -(-866) +((|HasCategory| |#3| (QUOTE (-390)))) +(-867) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-868 R E) +(-869 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3990))) -(-869 R L) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994))) +(-870 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-870 S) +(-871 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-871 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-872 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-872) +(-873) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-873 -3091) +(-874 -3094) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-874 I) +(-875 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-876 A B) +(-877 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3989 -12 (|has| |#2| (-410)) (|has| |#1| (-410)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) -(-877) +((-3993 -12 (|has| |#2| (-411)) (|has| |#1| (-411)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-318)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-719))) (|HasCategory| |#2| (QUOTE (-719)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-411))) (|HasCategory| |#2| (QUOTE (-411)))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665))))) (-12 (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-665)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-758))))) +(-878) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-878 T$) +(-879 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-879 T$) +(-880 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-880 S T$) +(-881 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-881) +(-882) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-882 S) +(-883 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL -(-883 R |polR|) +(-884 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-389)))) -(-884) +((|HasCategory| |#1| (QUOTE (-390)))) +(-885) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-885) +(-886) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-886 S |Coef| |Expon| |Var|) +(-887 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-887 |Coef| |Expon| |Var|) +(-888 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-888) +(-889) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-889 S R E |VarSet| P) +(-890 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-495)))) -(-890 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-496)))) +(-891 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3992 . T)) +((-3996 . T)) NIL -(-891 R E V P) +(-892 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-389)))) -(-892 K) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-390)))) +(-893 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-893 |VarSet| E RC P) +(-894 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-894 R) +(-895 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-895 R1 R2) +(-896 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-896 R) +(-897 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-897 K) +(-898 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-898 R E OV PPR) +(-899 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-899 K R UP -3091) +(-900 K R UP -3094) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-900 R |Var| |Expon| |Dpoly|) +(-901 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257))))) -(-901 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258))))) +(-902 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-902 R E V P TS) +(-903 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-903) +(-904) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-904 A S) +(-905 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-951 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1065)))) -(-905 S) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-952 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-1067)))) +(-906 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-906 A B R S) +(-907 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-907 |n| K) +(-908 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-908) +(-909) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-909 S) +(-910 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL -(-910 R) +(-911 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3985 |has| |#1| (-245)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483)))) -(-911 S R) +((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-484)))) +(-912 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-245)))) -(-912 R) +((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-246)))) +(-913 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3985 |has| |#1| (-245)) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-913 QR R QS S) +(-914 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-914 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-915 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-916 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-916) +(-917) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-917 -3091 UP UPUP |radicnd| |n|) +(-918 -3094 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3985 |has| (-347 |#2|) (-311)) (-3990 |has| (-347 |#2|) (-311)) (-3984 |has| (-347 |#2|) (-311)) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089)))))) (|HasCategory| (-347 |#2|) (QUOTE (-581 (-484)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) -(-918 |bb|) +((-3989 |has| (-348 |#2|) (-312)) (-3994 |has| (-348 |#2|) (-312)) (-3988 |has| (-348 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-348 |#2|) (QUOTE (-118))) (|HasCategory| (-348 |#2|) (QUOTE (-120))) (|HasCategory| (-348 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-318))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (|HasCategory| (-348 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-299))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091)))))) (OR (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-813 (-1091)))))) (|HasCategory| (-348 |#2|) (QUOTE (-582 (-485)))) (OR (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-348 (-485)))))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-348 |#2|) (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-189))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-190))) (|HasCategory| (-348 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-348 |#2|) (QUOTE (-312))) (|HasCategory| (-348 |#2|) (QUOTE (-811 (-1091)))))) +(-919 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118))))) -(-919) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-823))) (|HasCategory| (-485) (QUOTE (-952 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-555 (-474)))) (|HasCategory| (-485) (QUOTE (-935))) (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758))) (OR (|HasCategory| (-485) (QUOTE (-742))) (|HasCategory| (-485) (QUOTE (-758)))) (|HasCategory| (-485) (QUOTE (-952 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-798 (-328)))) (|HasCategory| (-485) (QUOTE (-798 (-485)))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-485) (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-813 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-811 (-1091)))) (|HasCategory| (-485) (QUOTE (-454 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-582 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-823)))) (|HasCategory| (-485) (QUOTE (-118))))) +(-920) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-920) +(-921) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-921 RP) +(-922 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-922 S) +(-923 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-923 A S) +(-924 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-1013)))) -(-924 S) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-1015)))) +(-925 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-925 S) +(-926 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-926) +(-927) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3985 . T) (-3990 . T) (-3984 . T) (-3987 . T) (-3986 . T) ((-3994 "*") . T) (-3989 . T)) +((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T)) NIL -(-927 R -3091) +(-928 R -3094) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-928 R -3091) +(-929 R -3094) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-929 -3091 UP) +(-930 -3094 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-930 -3091 UP) +(-931 -3094 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-931 S) +(-932 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-932 F1 UP UPUP R F2) +(-933 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-933) +(-934) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-934) +(-935) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-935 |Pol|) +(-936 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-936 |Pol|) +(-937 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-937) +(-938) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-938 |TheField|) +(-939 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3985 . T) (-3990 . T) (-3984 . T) (-3987 . T) (-3986 . T) ((-3994 "*") . T) (-3989 . T)) -((OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-484))))) -(-939 -3091 L) +((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| (-348 (-485)) (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| (-348 (-485)) (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-348 (-485)) (QUOTE (-952 (-485))))) +(-940 -3094 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-940 S) +(-941 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-941 R E V P) +(-942 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-942) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-943) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-943 R) +(-944 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3994 "*")))) -(-944 R) +((|HasAttribute| |#1| (QUOTE (-3998 "*")))) +(-945 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257)))) -(-945 S) +((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) +(-946 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-946 S) +(-947 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-947 S) +(-948 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-948 -3091 |Expon| |VarSet| |FPol| |LFPol|) +(-949 -3094 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-949) +(-950) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-950 A S) +(-951 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-951 S) +(-952 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-952 Q R) +(-953 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-953 R) +(-954 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-954) +(-955) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-955 UP) +(-956 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-956 R) +(-957 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-957 T$) +(-958 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-958 T$) +(-959 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-959 R |ls|) +(-960 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1013))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-473)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-774 |#2|) (QUOTE (-317))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72)))) -(-960) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (|HasCategory| (-705 |#1| (-775 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -705) (|devaluate| |#1|) (|%list| (QUOTE -775) (|devaluate| |#2|)))))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-555 (-474)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-775 |#2|) (QUOTE (-318))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-705 |#1| (-775 |#2|)) (QUOTE (-72)))) +(-961) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-961 S) +(-962 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-962) +(-963) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3989 . T)) +((-3993 . T)) NIL -(-963 |xx| -3091) +(-964 |xx| -3094) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-964 S) +(-965 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-965 S |m| |n| R |Row| |Col|) +(-966 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-257))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146)))) -(-966 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146)))) +(-967 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-3992 . T) (-3987 . T) (-3986 . T)) +((-3996 . T) (-3991 . T) (-3990 . T)) NIL -(-967 |m| |n| R) +(-968 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3992 . T) (-3987 . T) (-3986 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-257))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773))))) -(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3996 . T) (-3991 . T) (-3990 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-554 (-774))))) +(-969 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-969 R) +(-970 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-970) -((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) +(-971 S) +((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-971 S T$) +(-972) +((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) +NIL +NIL +(-973 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1013)))) -(-972 S) +((|HasCategory| |#1| (QUOTE (-1015)))) +(-974 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-973) +(-975) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-974 |TheField| |ThePolDom|) +(-976 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-975) +(-977) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3980 . T) (-3984 . T) (-3979 . T) (-3990 . T) (-3991 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-976 S R E V) +(-978 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-905 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-554 (-1089))))) -(-977 R E V) +((|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-906 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#4| (QUOTE (-555 (-1091))))) +(-979 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-978) +(-980) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-979 S |TheField| |ThePols|) +(-981 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-980 |TheField| |ThePols|) +(-982 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-981 R E V P TS) +(-983 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-982 S R E V P) +(-984 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-983 R E V P) +(-985 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-984 R E V P TS) +(-986 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-985) +(-987) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-986) +(-988) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-987 |Base| R -3091) +(-989 |Base| R -3094) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-988 |f|) +(-990 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-989 |Base| R -3091) +(-991 |Base| R -3094) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-990 R |ls|) +(-992 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-991 R UP M) +(-993 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3985 |has| |#1| (-311)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))))) -(-992 UP SAE UPA) +((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-318))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))))) +(-994 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-993 UP SAE UPA) +(-995 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-994) +(-996) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-995) +(-997) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-996 S) +(-998 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-997) +(-999) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-998 R) +(-1000 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-999 R) +(-1001 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1000 S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-1002 (-1091)) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-1002 (-1091)) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-1002 (-1091)) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-1002 (-1091)) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-1002 (-1091)) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1002 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1001 S) +(-1003 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) -(-1002 R S) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) +(-1004 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1003) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1005) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1004 S) +(-1006 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1001 |#1|) (QUOTE (-1013)))) -(-1005 R S) +((|HasCategory| (-1003 |#1|) (QUOTE (-1015)))) +(-1007 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1006 S) +(-1008 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1007 S L) +(-1009 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1008) +(-1010) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1009 S) +(-1011 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3992 . T) (-3982 . T) (-3993 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-1010 A S) +((-3996 . T) (-3986 . T) (-3997 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1012 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1011 S) +(-1013 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3982 . T)) +((-3986 . T)) NIL -(-1012 S) +(-1014 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1013) +(-1015) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1014 |m| |n|) +(-1016 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1015) +(-1017) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1016 |Str| |Sym| |Int| |Flt| |Expr|) +(-1018 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1017 |Str| |Sym| |Int| |Flt| |Expr|) +(-1019 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1018 R E V P TS) +(-1020 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1019 R E V P TS) +(-1021 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1020 R E V P) +(-1022 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1021) +(-1023) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1022 T$) +(-1024 T$) ((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1023 T$) +(-1025 T$) ((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1024 S) +(-1026 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1025) +(-1027) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1026 |dimtot| |dim1| S) +(-1028 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3986 |has| |#3| (-962)) (-3987 |has| |#3| (-962)) (-3989 |has| |#3| (-6 -3989)) (-3992 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3989)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) -(-1027 R |x|) +((-3990 |has| |#3| (-963)) (-3991 |has| |#3| (-963)) (-3993 |has| |#3| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-774)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (OR (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758)))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-318))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963))) (|HasCategory| |#3| (QUOTE (-1015)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-813 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-811 (-1091))))) (|HasCategory| |#3| (QUOTE (-1015))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-348 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-1015))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-719))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-758))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-665))) (|HasCategory| |#3| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-963))))) (|HasCategory| (-485) (QUOTE (-758))) (-12 (|HasCategory| |#3| (QUOTE (-582 (-485)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-813 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-485)))) (|HasCategory| |#3| (QUOTE (-1015)))) (-12 (|HasCategory| |#3| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#3| (QUOTE (-1015)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-963)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1091)))) (|HasCategory| |#3| (QUOTE (-963)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1015))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) +(-1029 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-389)))) -(-1028) +((|HasCategory| |#1| (QUOTE (-390)))) +(-1030) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1029) +(-1031) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1030 R -3091) +(-1032 R -3094) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1031 R) +(-1033 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1032) +(-1034) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1033) +(-1035) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3980 . T) (-3984 . T) (-3979 . T) (-3990 . T) (-3991 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1034 S) +(-1036 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3992 . T) (-3993 . T)) +((-3996 . T) (-3997 . T)) NIL -(-1035 S |ndim| R |Row| |Col|) +(-1037 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-311))) (|HasAttribute| |#3| (QUOTE (-3994 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1036 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3998 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1038 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3992 . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3996 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1037 R |Row| |Col| M) +(-1039 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1038 R |VarSet|) +(-1040 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1039 |Coef| |Var| SMP) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| |#2| (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| |#2| (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1041 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311)))) -(-1040 R E V P) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1042 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1041 UP -3091) +(-1043 UP -3094) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1042 R) +(-1044 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1043 R) +(-1045 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1044 R) +(-1046 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1045 S A) +(-1047 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1046 R) +((|HasCategory| |#1| (QUOTE (-758)))) +(-1048 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1047 R) +(-1049 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1048) +(-1050) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1049) +(-1051) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1050) +(-1052) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1051) +(-1053) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1052) +(-1054) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1053 V C) +(-1055 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1054 V C) +(-1056 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-1053 |#1| |#2|) (|%list| (QUOTE -259) (|%list| (QUOTE -1053) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72)))) -(-1055 |ndim| R) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1015))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1015)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-554 (-774)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72)))) +(-1057 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3989 . T) (-3981 |has| |#2| (-6 (-3994 "*"))) (-3992 . T) (-3986 . T) (-3987 . T)) -((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3994 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasAttribute| |#2| (QUOTE (-3994 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1056 S) +((-3993 . T) (-3985 |has| |#2| (-6 (-3998 "*"))) (-3996 . T) (-3990 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1058 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1057) +(-1059) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1058 R E V P TS) +(-1060 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1059 R E V P) +(-1061 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1060) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1062) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1061 S) +(-1063 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1062 A S) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1064 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1063 S) +(-1065 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1064 |Key| |Ent| |dent|) +(-1066 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) -(-1065) +((-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) +(-1067) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1066) +(-1068) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1067 |Coef|) +(-1069 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1068 S) +(-1070 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-3993 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1069 S) +((-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1071 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1070 A B) +(-1072 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1071 A B C) +(-1073 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1072) +(-1074) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) -(-1073 |Entry|) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-758)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) (|HasCategory| (-117) (QUOTE (-554 (-774)))) (|HasCategory| (-117) (QUOTE (-555 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-117) (QUOTE (-758))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| (-117) (QUOTE (-1015))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1015))))) +(-1075 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3857 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-1074 A) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1015))) (|HasCategory| (-1074) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-1076 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) -(-1075 |Coef|) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) +(-1077 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1076 |Coef|) +(-1078 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1077 R UP) +(-1079 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-257)))) -(-1078 |n| R) +((|HasCategory| |#1| (QUOTE (-258)))) +(-1080 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1079 S1 S2) +(-1081 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1080) +(-1082) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1081 |Coef| |var| |cen|) +(-1083 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3994 "*") OR (-2561 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2561 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-822)))) (-3985 OR (-2561 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-741))) (|has| |#1| (-495)) (-2561 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-822)))) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1082 R -3091) +(((-3998 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-823)))) (-3989 OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-742))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-823)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-952 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-555 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -454) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-798 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-758)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1084 R -3094) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1083 R) +(-1085 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1084 R) +(-1086 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3988 |has| |#1| (-311)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1085 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-328)))) (|HasCategory| (-996) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#1| (QUOTE (-798 (-485)))) (|HasCategory| (-996) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-555 (-474)))) (|HasCategory| (-996) (QUOTE (-555 (-474))))) (|HasCategory| |#1| (QUOTE (-582 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-823)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-813 (-1091)))) (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1087 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1086 E OV R P) +(-1088 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1087 |Coef| |var| |cen|) +(-1089 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1088 |Coef| |var| |cen|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-485)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1090 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1089) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1091) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1090 R) +(-1092 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1091 R) +(-1093 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-6 -3990)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3990))) -(-1092) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#1| (QUOTE (-952 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-952 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-390))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-886) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994))) +(-1094) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1093) +(-1095) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1094) +(-1096) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1095 N) +(-1097 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1096 N) +(-1098 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1097) +(-1099) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1098 R) +(-1100 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1099) +(-1101) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1100 S) +(-1102 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1101 |Key| |Entry|) +(-1103 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3992 . T) (-3993 . T)) -((-12 (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3857) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-1102 S) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| |#2| (QUOTE (-554 (-774))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-555 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#2| (QUOTE (-1015))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-774)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-1104 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1103 S) +(-1105 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1104 R) +(-1106 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1105 S |Key| |Entry|) +(-1107 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1106 |Key| |Entry|) +(-1108 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-3993 . T)) +((-3997 . T)) NIL -(-1107 |Key| |Entry|) +(-1109 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1108) +(-1110) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1109 S) +(-1111 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1110) +(-1112) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1111 R) +(-1113 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1112) +(-1114) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1113 S) +(-1115 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1114) +(-1116) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1115 S) +(-1117 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1116 S) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1015))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1118 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1117) +(-1119) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1118 R -3091) +(-1120 R -3094) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1119 R |Row| |Col| M) +(-1121 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1120 R -3091) +(-1122 R -3094) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|))))) -(-1121 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -798) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -555) (|%list| (QUOTE -802) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -798) (|devaluate| |#1|))))) +(-1123 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311)))) -(-1122 S R E V P) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1124 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-317)))) -(-1123 R E V P) +((|HasCategory| |#4| (QUOTE (-318)))) +(-1125 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1124 |Curve|) +(-1126 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1125) +(-1127) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1126 S) +(-1128 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) -(-1127 -3091) +((|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-554 (-774))))) +(-1129 -3094) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1128) +(-1130) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1129) +(-1131) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1130 S) +(-1132 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-757)))) -(-1131) +((|HasCategory| |#1| (QUOTE (-758)))) +(-1133) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1132 S) +(-1134 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1133) +(-1135) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1134) +(-1136) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1135) +(-1137) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1136) +(-1138) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1137) +(-1139) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1138 |Coef| |var| |cen|) +(-1140 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3994 "*") OR (-2561 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2561 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-822)))) (-3985 OR (-2561 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-741))) (|has| |#1| (-495)) (-2561 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-822)))) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1139 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3998 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-742))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-823)))) (-3989 OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-742))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-823)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-952 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-555 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-758))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-952 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -454) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-798 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-758)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1140 |Coef|) +(-1142 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1141 S |Coef| UTS) +(-1143 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-311)))) -(-1142 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-312)))) +(-1144 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1143 |Coef| UTS) +(-1145 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-120))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1144 ZP) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1027))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-935)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-952 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -454) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-582 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-798 (-328))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-758)))) (|HasCategory| |#2| (QUOTE (-823))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-813 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1146 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1145 S) +(-1147 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) -(-1146 R S) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1015)))) +(-1148 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1147 |x| R) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1149 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3994 "*") |has| |#2| (-146)) (-3985 |has| |#2| (-495)) (-3988 |has| |#2| (-311)) (-3990 |has| |#2| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1148 |x| R |y| S) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3992 |has| |#2| (-312)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-328)))) (|HasCategory| (-996) (QUOTE (-798 (-328))))) (-12 (|HasCategory| |#2| (QUOTE (-798 (-485)))) (|HasCategory| (-996) (QUOTE (-798 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-328))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-328)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-802 (-485))))) (|HasCategory| (-996) (QUOTE (-555 (-802 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-555 (-474)))) (|HasCategory| (-996) (QUOTE (-555 (-474))))) (|HasCategory| |#2| (QUOTE (-582 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485)))))) (|HasCategory| |#2| (QUOTE (-952 (-348 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-823)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-813 (-1091)))) (|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-390))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1150 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1149 R Q UP) +(-1151 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1150 R UP) +(-1152 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1151 R UP) +(-1153 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1152 R U) +(-1154 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1153 S R) +(-1155 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1065)))) -(-1154 R) +((|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-390))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1067)))) +(-1156 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3988 |has| |#1| (-311)) (-3990 |has| |#1| (-6 -3990)) (-3987 . T) (-3986 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1155 R PR S PS) +(-1157 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1156 S |Coef| |Expon|) +(-1158 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#2|) (QUOTE (-1089)))))) -(-1157 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-811 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#2|) (QUOTE (-1091)))))) +(-1159 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1158 RC P) +(-1160 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1159 |Coef| |var| |cen|) +(-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1160 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-485)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1161 |Coef|) +(-1163 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1162 S |Coef| ULS) +(-1164 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1163 |Coef| ULS) +(-1165 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1164 |Coef| ULS) +(-1166 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3990 |has| |#1| (-311)) (-3984 |has| |#1| (-311)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) -(-1165 R FE |var| |cen|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-348 (-485)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -348) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-348 (-485)))))) +(-1167 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3994 "*") |has| (-1159 |#2| |#3| |#4|) (-146)) (-3985 |has| (-1159 |#2| |#3| |#4|) (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-484)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-389))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-495)))) -(-1166 A S) +(((-3998 "*") |has| (-1161 |#2| |#3| |#4|) (-146)) (-3989 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-348 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-348 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-952 (-348 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-952 (-348 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-952 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-390))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496)))) +(-1168 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -3993))) -(-1167 S) +((|HasAttribute| |#1| (QUOTE -3997))) +(-1169 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1168 |Coef| |var| |cen|) +(-1170 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3943) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1169 |Coef1| |Coef2| UTS1 UTS2) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-811 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-696)) (|devaluate| |#1|)))) (|HasCategory| (-696) (QUOTE (-1027))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-696))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-873))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-348 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1171 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1170 S |Coef|) +(-1172 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (|%list| (QUOTE -3080) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3809) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311)))) -(-1171 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-873))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -585) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-38 (-348 (-485))))) (|HasCategory| |#2| (QUOTE (-312)))) +(-1173 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3994 "*") |has| |#1| (-146)) (-3985 |has| |#1| (-495)) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1172 |Coef| UTS) +(-1174 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1173 -3091 UP L UTS) +(-1175 -3094 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-495)))) -(-1174) +((|HasCategory| |#1| (QUOTE (-496)))) +(-1176) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1175 |sym|) +(-1177 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1176 S R) +(-1178 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1177 R) +((|HasCategory| |#2| (QUOTE (-917))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-665))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1179 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3993 . T) (-3992 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1178 R) +(-1180 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3993 . T) (-3992 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) -(-1179 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-774)))) (|HasCategory| |#1| (QUOTE (-555 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-758))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| (-485) (QUOTE (-758))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-665))) (|HasCategory| |#1| (QUOTE (-963))) (-12 (|HasCategory| |#1| (QUOTE (-917))) (|HasCategory| |#1| (QUOTE (-963)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1181 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1180) +(-1182) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1181) +(-1183) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1182) +(-1184) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1183) +(-1185) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1184) +(-1186) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1185 A S) +(-1187 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1186 S) +(-1188 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3987 . T) (-3986 . T)) +((-3991 . T) (-3990 . T)) NIL -(-1187 R) +(-1189 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1188 K R UP -3091) +(-1190 K R UP -3094) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1189) +(-1191) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1190) +(-1192) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1191 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1193 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3987 |has| |#1| (-146)) (-3986 |has| |#1| (-146)) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) -(-1192 R E V P) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1194 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3993 . T) (-3992 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1193 R) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-555 (-474)))) (|HasCategory| |#4| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-554 (-774)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1195 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3986 . T) (-3987 . T) (-3989 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1194 |vl| R) +(-1196 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3989 . T) (-3985 |has| |#2| (-6 -3985)) (-3987 . T) (-3986 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3985))) -(-1195 R |VarSet| XPOLY) +((-3993 . T) (-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1197 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1196 S -3091) +(-1198 S -3094) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1197 -3091) +((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) +(-1199 -3094) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3984 . T) (-3990 . T) (-3985 . T) ((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1198 |vl| R) +(-1200 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3985 |has| |#2| (-6 -3985)) (-3987 . T) (-3986 . T) (-3989 . T)) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1199 |VarSet| R) +(-1201 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3985 |has| |#2| (-6 -3985)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-347 (-484))))) (|HasAttribute| |#2| (QUOTE -3985))) -(-1200 R) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-656 (-348 (-485))))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1202 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3985 |has| |#1| (-6 -3985)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3985))) -(-1201 |vl| R) +((-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3989))) +(-1203 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3985 |has| |#2| (-6 -3985)) (-3987 . T) (-3986 . T) (-3989 . T)) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1202 R E) +(-1204 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3989 . T) (-3990 |has| |#1| (-6 -3990)) (-3985 |has| |#1| (-6 -3985)) (-3987 . T) (-3986 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasAttribute| |#1| (QUOTE -3990)) (|HasAttribute| |#1| (QUOTE -3985))) -(-1203 |VarSet| R) +((-3993 . T) (-3994 |has| |#1| (-6 -3994)) (-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3989))) +(-1205 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3985 |has| |#2| (-6 -3985)) (-3987 . T) (-3986 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3985))) -(-1204) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1206) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1205 A) +(-1207 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1206 R |ls| |ls2|) +(-1208 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1207 R) +(-1209 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1208 |p|) +(-1210 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3994 "*") . T) (-3986 . T) (-3987 . T) (-3989 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL NIL NIL @@ -4780,4 +4788,4 @@ NIL NIL NIL NIL -((-3 NIL 1962119 1962124 1962129 1962134) (-2 NIL 1962099 1962104 1962109 1962114) (-1 NIL 1962079 1962084 1962089 1962094) (0 NIL 1962059 1962064 1962069 1962074) (-1208 "ZMOD.spad" 1961868 1961881 1961997 1962054) (-1207 "ZLINDEP.spad" 1960966 1960977 1961858 1961863) (-1206 "ZDSOLVE.spad" 1950927 1950949 1960956 1960961) (-1205 "YSTREAM.spad" 1950422 1950433 1950917 1950922) (-1204 "YDIAGRAM.spad" 1950056 1950065 1950412 1950417) (-1203 "XRPOLY.spad" 1949276 1949296 1949912 1949981) (-1202 "XPR.spad" 1947071 1947084 1948994 1949093) (-1201 "XPOLYC.spad" 1946390 1946406 1946997 1947066) (-1200 "XPOLY.spad" 1945945 1945956 1946246 1946315) (-1199 "XPBWPOLY.spad" 1944416 1944436 1945751 1945820) (-1198 "XFALG.spad" 1941464 1941480 1944342 1944411) (-1197 "XF.spad" 1939927 1939942 1941366 1941459) (-1196 "XF.spad" 1938370 1938387 1939811 1939816) (-1195 "XEXPPKG.spad" 1937629 1937655 1938360 1938365) (-1194 "XDPOLY.spad" 1937243 1937259 1937485 1937554) (-1193 "XALG.spad" 1936911 1936922 1937199 1937238) (-1192 "WUTSET.spad" 1932914 1932931 1936545 1936572) (-1191 "WP.spad" 1932121 1932165 1932772 1932839) (-1190 "WHILEAST.spad" 1931919 1931928 1932111 1932116) (-1189 "WHEREAST.spad" 1931590 1931599 1931909 1931914) (-1188 "WFFINTBS.spad" 1929253 1929275 1931580 1931585) (-1187 "WEIER.spad" 1927475 1927486 1929243 1929248) (-1186 "VSPACE.spad" 1927148 1927159 1927443 1927470) (-1185 "VSPACE.spad" 1926841 1926854 1927138 1927143) (-1184 "VOID.spad" 1926518 1926527 1926831 1926836) (-1183 "VIEWDEF.spad" 1921719 1921728 1926508 1926513) (-1182 "VIEW3D.spad" 1905680 1905689 1921709 1921714) (-1181 "VIEW2D.spad" 1893579 1893588 1905670 1905675) (-1180 "VIEW.spad" 1891299 1891308 1893569 1893574) (-1179 "VECTOR2.spad" 1889938 1889951 1891289 1891294) (-1178 "VECTOR.spad" 1888657 1888668 1888908 1888935) (-1177 "VECTCAT.spad" 1886569 1886580 1888625 1888652) (-1176 "VECTCAT.spad" 1884290 1884303 1886348 1886353) (-1175 "VARIABLE.spad" 1884070 1884085 1884280 1884285) (-1174 "UTYPE.spad" 1883714 1883723 1884060 1884065) (-1173 "UTSODETL.spad" 1883009 1883033 1883670 1883675) (-1172 "UTSODE.spad" 1881225 1881245 1882999 1883004) (-1171 "UTSCAT.spad" 1878704 1878720 1881123 1881220) (-1170 "UTSCAT.spad" 1875851 1875869 1878272 1878277) (-1169 "UTS2.spad" 1875446 1875481 1875841 1875846) (-1168 "UTS.spad" 1870458 1870486 1873978 1874075) (-1167 "URAGG.spad" 1865179 1865190 1870448 1870453) (-1166 "URAGG.spad" 1859864 1859877 1865135 1865140) (-1165 "UPXSSING.spad" 1857632 1857658 1859068 1859201) (-1164 "UPXSCONS.spad" 1855450 1855470 1855823 1855972) (-1163 "UPXSCCA.spad" 1854021 1854041 1855296 1855445) (-1162 "UPXSCCA.spad" 1852734 1852756 1854011 1854016) (-1161 "UPXSCAT.spad" 1851323 1851339 1852580 1852729) (-1160 "UPXS2.spad" 1850866 1850919 1851313 1851318) (-1159 "UPXS.spad" 1848221 1848249 1849057 1849206) (-1158 "UPSQFREE.spad" 1846636 1846650 1848211 1848216) (-1157 "UPSCAT.spad" 1844431 1844455 1846534 1846631) (-1156 "UPSCAT.spad" 1841927 1841953 1844032 1844037) (-1155 "UPOLYC2.spad" 1841398 1841417 1841917 1841922) (-1154 "UPOLYC.spad" 1836478 1836489 1841240 1841393) (-1153 "UPOLYC.spad" 1831476 1831489 1836240 1836245) (-1152 "UPMP.spad" 1830408 1830421 1831466 1831471) (-1151 "UPDIVP.spad" 1829973 1829987 1830398 1830403) (-1150 "UPDECOMP.spad" 1828234 1828248 1829963 1829968) (-1149 "UPCDEN.spad" 1827451 1827467 1828224 1828229) (-1148 "UP2.spad" 1826815 1826836 1827441 1827446) (-1147 "UP.spad" 1824285 1824300 1824672 1824825) (-1146 "UNISEG2.spad" 1823782 1823795 1824241 1824246) (-1145 "UNISEG.spad" 1823135 1823146 1823701 1823706) (-1144 "UNIFACT.spad" 1822238 1822250 1823125 1823130) (-1143 "ULSCONS.spad" 1816281 1816301 1816651 1816800) (-1142 "ULSCCAT.spad" 1814018 1814038 1816127 1816276) (-1141 "ULSCCAT.spad" 1811863 1811885 1813974 1813979) (-1140 "ULSCAT.spad" 1810103 1810119 1811709 1811858) (-1139 "ULS2.spad" 1809617 1809670 1810093 1810098) (-1138 "ULS.spad" 1801883 1801911 1802828 1803251) (-1137 "UINT8.spad" 1801760 1801769 1801873 1801878) (-1136 "UINT64.spad" 1801636 1801645 1801750 1801755) (-1135 "UINT32.spad" 1801512 1801521 1801626 1801631) (-1134 "UINT16.spad" 1801388 1801397 1801502 1801507) (-1133 "UFD.spad" 1800453 1800462 1801314 1801383) (-1132 "UFD.spad" 1799580 1799591 1800443 1800448) (-1131 "UDVO.spad" 1798461 1798470 1799570 1799575) (-1130 "UDPO.spad" 1796042 1796053 1798417 1798422) (-1129 "TYPEAST.spad" 1795961 1795970 1796032 1796037) (-1128 "TYPE.spad" 1795893 1795902 1795951 1795956) (-1127 "TWOFACT.spad" 1794545 1794560 1795883 1795888) (-1126 "TUPLE.spad" 1794052 1794063 1794457 1794462) (-1125 "TUBETOOL.spad" 1790919 1790928 1794042 1794047) (-1124 "TUBE.spad" 1789566 1789583 1790909 1790914) (-1123 "TSETCAT.spad" 1777637 1777654 1789534 1789561) (-1122 "TSETCAT.spad" 1765694 1765713 1777593 1777598) (-1121 "TS.spad" 1764322 1764338 1765288 1765385) (-1120 "TRMANIP.spad" 1758686 1758703 1764010 1764015) (-1119 "TRIMAT.spad" 1757649 1757674 1758676 1758681) (-1118 "TRIGMNIP.spad" 1756176 1756193 1757639 1757644) (-1117 "TRIGCAT.spad" 1755688 1755697 1756166 1756171) (-1116 "TRIGCAT.spad" 1755198 1755209 1755678 1755683) (-1115 "TREE.spad" 1753838 1753849 1754870 1754897) (-1114 "TRANFUN.spad" 1753677 1753686 1753828 1753833) (-1113 "TRANFUN.spad" 1753514 1753525 1753667 1753672) (-1112 "TOPSP.spad" 1753188 1753197 1753504 1753509) (-1111 "TOOLSIGN.spad" 1752851 1752862 1753178 1753183) (-1110 "TEXTFILE.spad" 1751412 1751421 1752841 1752846) (-1109 "TEX1.spad" 1750968 1750979 1751402 1751407) (-1108 "TEX.spad" 1748162 1748171 1750958 1750963) (-1107 "TBCMPPK.spad" 1746263 1746286 1748152 1748157) (-1106 "TBAGG.spad" 1745321 1745344 1746243 1746258) (-1105 "TBAGG.spad" 1744387 1744412 1745311 1745316) (-1104 "TANEXP.spad" 1743795 1743806 1744377 1744382) (-1103 "TALGOP.spad" 1743519 1743530 1743785 1743790) (-1102 "TABLEAU.spad" 1743000 1743011 1743509 1743514) (-1101 "TABLE.spad" 1741275 1741298 1741545 1741572) (-1100 "TABLBUMP.spad" 1738054 1738065 1741265 1741270) (-1099 "SYSTEM.spad" 1737282 1737291 1738044 1738049) (-1098 "SYSSOLP.spad" 1734765 1734776 1737272 1737277) (-1097 "SYSPTR.spad" 1734664 1734673 1734755 1734760) (-1096 "SYSNNI.spad" 1733887 1733898 1734654 1734659) (-1095 "SYSINT.spad" 1733291 1733302 1733877 1733882) (-1094 "SYNTAX.spad" 1729625 1729634 1733281 1733286) (-1093 "SYMTAB.spad" 1727693 1727702 1729615 1729620) (-1092 "SYMS.spad" 1723722 1723731 1727683 1727688) (-1091 "SYMPOLY.spad" 1722855 1722866 1722937 1723064) (-1090 "SYMFUNC.spad" 1722356 1722367 1722845 1722850) (-1089 "SYMBOL.spad" 1719851 1719860 1722346 1722351) (-1088 "SUTS.spad" 1716964 1716992 1718383 1718480) (-1087 "SUPXS.spad" 1714306 1714334 1715155 1715304) (-1086 "SUPFRACF.spad" 1713411 1713429 1714296 1714301) (-1085 "SUP2.spad" 1712803 1712816 1713401 1713406) (-1084 "SUP.spad" 1709887 1709898 1710660 1710813) (-1083 "SUMRF.spad" 1708861 1708872 1709877 1709882) (-1082 "SUMFS.spad" 1708490 1708507 1708851 1708856) (-1081 "SULS.spad" 1700743 1700771 1701701 1702124) (-1080 "syntax.spad" 1700512 1700521 1700733 1700738) (-1079 "SUCH.spad" 1700202 1700217 1700502 1700507) (-1078 "SUBSPACE.spad" 1692333 1692348 1700192 1700197) (-1077 "SUBRESP.spad" 1691503 1691517 1692289 1692294) (-1076 "STTFNC.spad" 1687971 1687987 1691493 1691498) (-1075 "STTF.spad" 1684070 1684086 1687961 1687966) (-1074 "STTAYLOR.spad" 1676747 1676758 1683977 1683982) (-1073 "STRTBL.spad" 1675134 1675151 1675283 1675310) (-1072 "STRING.spad" 1674002 1674011 1674387 1674414) (-1071 "STREAM3.spad" 1673575 1673590 1673992 1673997) (-1070 "STREAM2.spad" 1672703 1672716 1673565 1673570) (-1069 "STREAM1.spad" 1672409 1672420 1672693 1672698) (-1068 "STREAM.spad" 1669405 1669416 1672012 1672027) (-1067 "STINPROD.spad" 1668341 1668357 1669395 1669400) (-1066 "STEPAST.spad" 1667575 1667584 1668331 1668336) (-1065 "STEP.spad" 1666892 1666901 1667565 1667570) (-1064 "STBL.spad" 1665282 1665310 1665449 1665464) (-1063 "STAGG.spad" 1663981 1663992 1665272 1665277) (-1062 "STAGG.spad" 1662678 1662691 1663971 1663976) (-1061 "STACK.spad" 1662100 1662111 1662350 1662377) (-1060 "SRING.spad" 1661860 1661869 1662090 1662095) (-1059 "SREGSET.spad" 1659592 1659609 1661494 1661521) (-1058 "SRDCMPK.spad" 1658169 1658189 1659582 1659587) (-1057 "SRAGG.spad" 1653352 1653361 1658137 1658164) (-1056 "SRAGG.spad" 1648555 1648566 1653342 1653347) (-1055 "SQMATRIX.spad" 1646232 1646250 1647148 1647235) (-1054 "SPLTREE.spad" 1640974 1640987 1645770 1645797) (-1053 "SPLNODE.spad" 1637594 1637607 1640964 1640969) (-1052 "SPFCAT.spad" 1636403 1636412 1637584 1637589) (-1051 "SPECOUT.spad" 1634955 1634964 1636393 1636398) (-1050 "SPADXPT.spad" 1627046 1627055 1634945 1634950) (-1049 "spad-parser.spad" 1626511 1626520 1627036 1627041) (-1048 "SPADAST.spad" 1626212 1626221 1626501 1626506) (-1047 "SPACEC.spad" 1610427 1610438 1626202 1626207) (-1046 "SPACE3.spad" 1610203 1610214 1610417 1610422) (-1045 "SORTPAK.spad" 1609752 1609765 1610159 1610164) (-1044 "SOLVETRA.spad" 1607515 1607526 1609742 1609747) (-1043 "SOLVESER.spad" 1605971 1605982 1607505 1607510) (-1042 "SOLVERAD.spad" 1601997 1602008 1605961 1605966) (-1041 "SOLVEFOR.spad" 1600459 1600477 1601987 1601992) (-1040 "SNTSCAT.spad" 1600059 1600076 1600427 1600454) (-1039 "SMTS.spad" 1598376 1598402 1599653 1599750) (-1038 "SMP.spad" 1596184 1596204 1596574 1596701) (-1037 "SMITH.spad" 1595029 1595054 1596174 1596179) (-1036 "SMATCAT.spad" 1593147 1593177 1594973 1595024) (-1035 "SMATCAT.spad" 1591197 1591229 1593025 1593030) (-1034 "SKAGG.spad" 1590166 1590177 1591165 1591192) (-1033 "SINT.spad" 1589465 1589474 1590032 1590161) (-1032 "SIMPAN.spad" 1589193 1589202 1589455 1589460) (-1031 "SIGNRF.spad" 1588318 1588329 1589183 1589188) (-1030 "SIGNEF.spad" 1587604 1587621 1588308 1588313) (-1029 "syntax.spad" 1587021 1587030 1587594 1587599) (-1028 "SIG.spad" 1586383 1586392 1587011 1587016) (-1027 "SHP.spad" 1584327 1584342 1586339 1586344) (-1026 "SHDP.spad" 1573820 1573847 1574337 1574434) (-1025 "SGROUP.spad" 1573428 1573437 1573810 1573815) (-1024 "SGROUP.spad" 1573034 1573045 1573418 1573423) (-1023 "catdef.spad" 1572744 1572756 1572855 1573029) (-1022 "catdef.spad" 1572300 1572312 1572565 1572739) (-1021 "SGCF.spad" 1565439 1565448 1572290 1572295) (-1020 "SFRTCAT.spad" 1564385 1564402 1565407 1565434) (-1019 "SFRGCD.spad" 1563448 1563468 1564375 1564380) (-1018 "SFQCMPK.spad" 1558261 1558281 1563438 1563443) (-1017 "SEXOF.spad" 1558104 1558144 1558251 1558256) (-1016 "SEXCAT.spad" 1555932 1555972 1558094 1558099) (-1015 "SEX.spad" 1555824 1555833 1555922 1555927) (-1014 "SETMN.spad" 1554284 1554301 1555814 1555819) (-1013 "SETCAT.spad" 1553769 1553778 1554274 1554279) (-1012 "SETCAT.spad" 1553252 1553263 1553759 1553764) (-1011 "SETAGG.spad" 1549801 1549812 1553232 1553247) (-1010 "SETAGG.spad" 1546358 1546371 1549791 1549796) (-1009 "SET.spad" 1544667 1544678 1545764 1545803) (-1008 "syntax.spad" 1544370 1544379 1544657 1544662) (-1007 "SEGXCAT.spad" 1543526 1543539 1544360 1544365) (-1006 "SEGCAT.spad" 1542451 1542462 1543516 1543521) (-1005 "SEGBIND2.spad" 1542149 1542162 1542441 1542446) (-1004 "SEGBIND.spad" 1541907 1541918 1542096 1542101) (-1003 "SEGAST.spad" 1541637 1541646 1541897 1541902) (-1002 "SEG2.spad" 1541072 1541085 1541593 1541598) (-1001 "SEG.spad" 1540885 1540896 1540991 1540996) (-1000 "SDVAR.spad" 1540161 1540172 1540875 1540880) (-999 "SDPOL.spad" 1537854 1537864 1538144 1538271) (-998 "SCPKG.spad" 1535944 1535954 1537844 1537849) (-997 "SCOPE.spad" 1535122 1535130 1535934 1535939) (-996 "SCACHE.spad" 1533819 1533829 1535112 1535117) (-995 "SASTCAT.spad" 1533729 1533737 1533809 1533814) (-994 "SAOS.spad" 1533602 1533610 1533719 1533724) (-993 "SAERFFC.spad" 1533316 1533335 1533592 1533597) (-992 "SAEFACT.spad" 1533018 1533037 1533306 1533311) (-991 "SAE.spad" 1530669 1530684 1531279 1531414) (-990 "RURPK.spad" 1528329 1528344 1530659 1530664) (-989 "RULESET.spad" 1527783 1527806 1528319 1528324) (-988 "RULECOLD.spad" 1527636 1527648 1527773 1527778) (-987 "RULE.spad" 1525885 1525908 1527626 1527631) (-986 "RTVALUE.spad" 1525621 1525629 1525875 1525880) (-985 "syntax.spad" 1525339 1525347 1525611 1525616) (-984 "RSETGCD.spad" 1521782 1521801 1525329 1525334) (-983 "RSETCAT.spad" 1511751 1511767 1521750 1521777) (-982 "RSETCAT.spad" 1501740 1501758 1511741 1511746) (-981 "RSDCMPK.spad" 1500241 1500260 1501730 1501735) (-980 "RRCC.spad" 1498626 1498655 1500231 1500236) (-979 "RRCC.spad" 1497009 1497040 1498616 1498621) (-978 "RPTAST.spad" 1496712 1496720 1496999 1497004) (-977 "RPOLCAT.spad" 1476217 1476231 1496580 1496707) (-976 "RPOLCAT.spad" 1455515 1455531 1475880 1475885) (-975 "ROMAN.spad" 1454844 1454852 1455381 1455510) (-974 "ROIRC.spad" 1453925 1453956 1454834 1454839) (-973 "RNS.spad" 1452902 1452910 1453827 1453920) (-972 "RNS.spad" 1451965 1451975 1452892 1452897) (-971 "RNGBIND.spad" 1451126 1451139 1451920 1451925) (-970 "RNG.spad" 1450862 1450870 1451116 1451121) (-969 "RMODULE.spad" 1450644 1450654 1450852 1450857) (-968 "RMCAT2.spad" 1450065 1450121 1450634 1450639) (-967 "RMATRIX.spad" 1448875 1448893 1449217 1449256) (-966 "RMATCAT.spad" 1444455 1444485 1448831 1448870) (-965 "RMATCAT.spad" 1439925 1439957 1444303 1444308) (-964 "RLINSET.spad" 1439630 1439640 1439915 1439920) (-963 "RINTERP.spad" 1439519 1439538 1439620 1439625) (-962 "RING.spad" 1438990 1438998 1439499 1439514) (-961 "RING.spad" 1438469 1438479 1438980 1438985) (-960 "RIDIST.spad" 1437862 1437870 1438459 1438464) (-959 "RGCHAIN.spad" 1436417 1436432 1437310 1437337) (-958 "RGBCSPC.spad" 1436207 1436218 1436407 1436412) (-957 "RGBCMDL.spad" 1435770 1435781 1436197 1436202) (-956 "RFFACTOR.spad" 1435233 1435243 1435760 1435765) (-955 "RFFACT.spad" 1434969 1434980 1435223 1435228) (-954 "RFDIST.spad" 1433966 1433974 1434959 1434964) (-953 "RF.spad" 1431641 1431651 1433956 1433961) (-952 "RETSOL.spad" 1431061 1431073 1431631 1431636) (-951 "RETRACT.spad" 1430490 1430500 1431051 1431056) (-950 "RETRACT.spad" 1429917 1429929 1430480 1430485) (-949 "RETAST.spad" 1429730 1429738 1429907 1429912) (-948 "RESRING.spad" 1429078 1429124 1429668 1429725) (-947 "RESLATC.spad" 1428403 1428413 1429068 1429073) (-946 "REPSQ.spad" 1428135 1428145 1428393 1428398) (-945 "REPDB.spad" 1427843 1427853 1428125 1428130) (-944 "REP2.spad" 1417558 1417568 1427685 1427690) (-943 "REP1.spad" 1411779 1411789 1417508 1417513) (-942 "REP.spad" 1409334 1409342 1411769 1411774) (-941 "REGSET.spad" 1407160 1407176 1408968 1408995) (-940 "REF.spad" 1406679 1406689 1407150 1407155) (-939 "REDORDER.spad" 1405886 1405902 1406669 1406674) (-938 "RECLOS.spad" 1404783 1404802 1405486 1405579) (-937 "REALSOLV.spad" 1403924 1403932 1404773 1404778) (-936 "REAL0Q.spad" 1401223 1401237 1403914 1403919) (-935 "REAL0.spad" 1398068 1398082 1401213 1401218) (-934 "REAL.spad" 1397941 1397949 1398058 1398063) (-933 "RDUCEAST.spad" 1397663 1397671 1397931 1397936) (-932 "RDIV.spad" 1397319 1397343 1397653 1397658) (-931 "RDIST.spad" 1396887 1396897 1397309 1397314) (-930 "RDETRS.spad" 1395752 1395769 1396877 1396882) (-929 "RDETR.spad" 1393892 1393909 1395742 1395747) (-928 "RDEEFS.spad" 1392992 1393008 1393882 1393887) (-927 "RDEEF.spad" 1392003 1392019 1392982 1392987) (-926 "RCFIELD.spad" 1389222 1389230 1391905 1391998) (-925 "RCFIELD.spad" 1386527 1386537 1389212 1389217) (-924 "RCAGG.spad" 1384464 1384474 1386517 1386522) (-923 "RCAGG.spad" 1382328 1382340 1384383 1384388) (-922 "RATRET.spad" 1381689 1381699 1382318 1382323) (-921 "RATFACT.spad" 1381382 1381393 1381679 1381684) (-920 "RANDSRC.spad" 1380702 1380710 1381372 1381377) (-919 "RADUTIL.spad" 1380459 1380467 1380692 1380697) (-918 "RADIX.spad" 1377504 1377517 1379049 1379142) (-917 "RADFF.spad" 1375421 1375457 1375539 1375695) (-916 "RADCAT.spad" 1375017 1375025 1375411 1375416) (-915 "RADCAT.spad" 1374611 1374621 1375007 1375012) (-914 "QUEUE.spad" 1374025 1374035 1374283 1374310) (-913 "QUATCT2.spad" 1373646 1373664 1374015 1374020) (-912 "QUATCAT.spad" 1371817 1371827 1373576 1373641) (-911 "QUATCAT.spad" 1369753 1369765 1371514 1371519) (-910 "QUAT.spad" 1368360 1368370 1368702 1368767) (-909 "QUAGG.spad" 1367194 1367204 1368328 1368355) (-908 "QQUTAST.spad" 1366963 1366971 1367184 1367189) (-907 "QFORM.spad" 1366582 1366596 1366953 1366958) (-906 "QFCAT2.spad" 1366275 1366291 1366572 1366577) (-905 "QFCAT.spad" 1364978 1364988 1366177 1366270) (-904 "QFCAT.spad" 1363314 1363326 1364515 1364520) (-903 "QEQUAT.spad" 1362873 1362881 1363304 1363309) (-902 "QCMPACK.spad" 1357788 1357807 1362863 1362868) (-901 "QALGSET2.spad" 1355784 1355802 1357778 1357783) (-900 "QALGSET.spad" 1351889 1351921 1355698 1355703) (-899 "PWFFINTB.spad" 1349305 1349326 1351879 1351884) (-898 "PUSHVAR.spad" 1348644 1348663 1349295 1349300) (-897 "PTRANFN.spad" 1344780 1344790 1348634 1348639) (-896 "PTPACK.spad" 1341868 1341878 1344770 1344775) (-895 "PTFUNC2.spad" 1341691 1341705 1341858 1341863) (-894 "PTCAT.spad" 1340946 1340956 1341659 1341686) (-893 "PSQFR.spad" 1340261 1340285 1340936 1340941) (-892 "PSEUDLIN.spad" 1339147 1339157 1340251 1340256) (-891 "PSETPK.spad" 1325852 1325868 1339025 1339030) (-890 "PSETCAT.spad" 1320252 1320275 1325832 1325847) (-889 "PSETCAT.spad" 1314626 1314651 1320208 1320213) (-888 "PSCURVE.spad" 1313625 1313633 1314616 1314621) (-887 "PSCAT.spad" 1312408 1312437 1313523 1313620) (-886 "PSCAT.spad" 1311281 1311312 1312398 1312403) (-885 "PRTITION.spad" 1309979 1309987 1311271 1311276) (-884 "PRTDAST.spad" 1309698 1309706 1309969 1309974) (-883 "PRS.spad" 1299316 1299333 1309654 1309659) (-882 "PRQAGG.spad" 1298751 1298761 1299284 1299311) (-881 "PROPLOG.spad" 1298355 1298363 1298741 1298746) (-880 "PROPFUN2.spad" 1297978 1297991 1298345 1298350) (-879 "PROPFUN1.spad" 1297384 1297395 1297968 1297973) (-878 "PROPFRML.spad" 1295952 1295963 1297374 1297379) (-877 "PROPERTY.spad" 1295448 1295456 1295942 1295947) (-876 "PRODUCT.spad" 1293145 1293157 1293429 1293484) (-875 "PRINT.spad" 1292897 1292905 1293135 1293140) (-874 "PRIMES.spad" 1291158 1291168 1292887 1292892) (-873 "PRIMELT.spad" 1289279 1289293 1291148 1291153) (-872 "PRIMCAT.spad" 1288922 1288930 1289269 1289274) (-871 "PRIMARR2.spad" 1287689 1287701 1288912 1288917) (-870 "PRIMARR.spad" 1286744 1286754 1286914 1286941) (-869 "PREASSOC.spad" 1286126 1286138 1286734 1286739) (-868 "PR.spad" 1284644 1284656 1285343 1285470) (-867 "PPCURVE.spad" 1283781 1283789 1284634 1284639) (-866 "PORTNUM.spad" 1283572 1283580 1283771 1283776) (-865 "POLYROOT.spad" 1282421 1282443 1283528 1283533) (-864 "POLYLIFT.spad" 1281686 1281709 1282411 1282416) (-863 "POLYCATQ.spad" 1279812 1279834 1281676 1281681) (-862 "POLYCAT.spad" 1273314 1273335 1279680 1279807) (-861 "POLYCAT.spad" 1266336 1266359 1272704 1272709) (-860 "POLY2UP.spad" 1265788 1265802 1266326 1266331) (-859 "POLY2.spad" 1265385 1265397 1265778 1265783) (-858 "POLY.spad" 1263053 1263063 1263568 1263695) (-857 "POLUTIL.spad" 1262018 1262047 1263009 1263014) (-856 "POLTOPOL.spad" 1260766 1260781 1262008 1262013) (-855 "POINT.spad" 1259649 1259659 1259736 1259763) (-854 "PNTHEORY.spad" 1256351 1256359 1259639 1259644) (-853 "PMTOOLS.spad" 1255126 1255140 1256341 1256346) (-852 "PMSYM.spad" 1254675 1254685 1255116 1255121) (-851 "PMQFCAT.spad" 1254266 1254280 1254665 1254670) (-850 "PMPREDFS.spad" 1253728 1253750 1254256 1254261) (-849 "PMPRED.spad" 1253215 1253229 1253718 1253723) (-848 "PMPLCAT.spad" 1252292 1252310 1253144 1253149) (-847 "PMLSAGG.spad" 1251877 1251891 1252282 1252287) (-846 "PMKERNEL.spad" 1251456 1251468 1251867 1251872) (-845 "PMINS.spad" 1251036 1251046 1251446 1251451) (-844 "PMFS.spad" 1250613 1250631 1251026 1251031) (-843 "PMDOWN.spad" 1249903 1249917 1250603 1250608) (-842 "PMASSFS.spad" 1248878 1248894 1249893 1249898) (-841 "PMASS.spad" 1247896 1247904 1248868 1248873) (-840 "PLOTTOOL.spad" 1247676 1247684 1247886 1247891) (-839 "PLOT3D.spad" 1244140 1244148 1247666 1247671) (-838 "PLOT1.spad" 1243313 1243323 1244130 1244135) (-837 "PLOT.spad" 1238236 1238244 1243303 1243308) (-836 "PLEQN.spad" 1225638 1225665 1238226 1238231) (-835 "PINTERPA.spad" 1225422 1225438 1225628 1225633) (-834 "PINTERP.spad" 1225044 1225063 1225412 1225417) (-833 "PID.spad" 1224018 1224026 1224970 1225039) (-832 "PICOERCE.spad" 1223675 1223685 1224008 1224013) (-831 "PI.spad" 1223292 1223300 1223649 1223670) (-830 "PGROEB.spad" 1221901 1221915 1223282 1223287) (-829 "PGE.spad" 1213574 1213582 1221891 1221896) (-828 "PGCD.spad" 1212528 1212545 1213564 1213569) (-827 "PFRPAC.spad" 1211677 1211687 1212518 1212523) (-826 "PFR.spad" 1208380 1208390 1211579 1211672) (-825 "PFOTOOLS.spad" 1207638 1207654 1208370 1208375) (-824 "PFOQ.spad" 1207008 1207026 1207628 1207633) (-823 "PFO.spad" 1206427 1206454 1206998 1207003) (-822 "PFECAT.spad" 1204137 1204145 1206353 1206422) (-821 "PFECAT.spad" 1201875 1201885 1204093 1204098) (-820 "PFBRU.spad" 1199763 1199775 1201865 1201870) (-819 "PFBR.spad" 1197323 1197346 1199753 1199758) (-818 "PF.spad" 1196897 1196909 1197128 1197221) (-817 "PERMGRP.spad" 1191667 1191677 1196887 1196892) (-816 "PERMCAT.spad" 1190328 1190338 1191647 1191662) (-815 "PERMAN.spad" 1188884 1188898 1190318 1190323) (-814 "PERM.spad" 1184694 1184704 1188717 1188732) (-813 "PENDTREE.spad" 1184108 1184118 1184388 1184393) (-812 "PDSPC.spad" 1182921 1182931 1184098 1184103) (-811 "PDSPC.spad" 1181732 1181744 1182911 1182916) (-810 "PDRING.spad" 1181574 1181584 1181712 1181727) (-809 "PDMOD.spad" 1181390 1181402 1181542 1181569) (-808 "PDECOMP.spad" 1180860 1180877 1181380 1181385) (-807 "PDDOM.spad" 1180298 1180311 1180850 1180855) (-806 "PDDOM.spad" 1179734 1179749 1180288 1180293) (-805 "PCOMP.spad" 1179587 1179600 1179724 1179729) (-804 "PBWLB.spad" 1178185 1178202 1179577 1179582) (-803 "PATTERN2.spad" 1177923 1177935 1178175 1178180) (-802 "PATTERN1.spad" 1176267 1176283 1177913 1177918) (-801 "PATTERN.spad" 1170842 1170852 1176257 1176262) (-800 "PATRES2.spad" 1170514 1170528 1170832 1170837) (-799 "PATRES.spad" 1168097 1168109 1170504 1170509) (-798 "PATMATCH.spad" 1166338 1166369 1167849 1167854) (-797 "PATMAB.spad" 1165767 1165777 1166328 1166333) (-796 "PATLRES.spad" 1164853 1164867 1165757 1165762) (-795 "PATAB.spad" 1164617 1164627 1164843 1164848) (-794 "PARTPERM.spad" 1162673 1162681 1164607 1164612) (-793 "PARSURF.spad" 1162107 1162135 1162663 1162668) (-792 "PARSU2.spad" 1161904 1161920 1162097 1162102) (-791 "script-parser.spad" 1161424 1161432 1161894 1161899) (-790 "PARSCURV.spad" 1160858 1160886 1161414 1161419) (-789 "PARSC2.spad" 1160649 1160665 1160848 1160853) (-788 "PARPCURV.spad" 1160111 1160139 1160639 1160644) (-787 "PARPC2.spad" 1159902 1159918 1160101 1160106) (-786 "PARAMAST.spad" 1159030 1159038 1159892 1159897) (-785 "PAN2EXPR.spad" 1158442 1158450 1159020 1159025) (-784 "PALETTE.spad" 1157556 1157564 1158432 1158437) (-783 "PAIR.spad" 1156630 1156643 1157199 1157204) (-782 "PADICRC.spad" 1154035 1154053 1155198 1155291) (-781 "PADICRAT.spad" 1152095 1152107 1152308 1152401) (-780 "PADICCT.spad" 1150644 1150656 1152021 1152090) (-779 "PADIC.spad" 1150347 1150359 1150570 1150639) (-778 "PADEPAC.spad" 1149036 1149055 1150337 1150342) (-777 "PADE.spad" 1147788 1147804 1149026 1149031) (-776 "OWP.spad" 1147036 1147066 1147646 1147713) (-775 "OVERSET.spad" 1146609 1146617 1147026 1147031) (-774 "OVAR.spad" 1146390 1146413 1146599 1146604) (-773 "OUTFORM.spad" 1135798 1135806 1146380 1146385) (-772 "OUTBFILE.spad" 1135232 1135240 1135788 1135793) (-771 "OUTBCON.spad" 1134302 1134310 1135222 1135227) (-770 "OUTBCON.spad" 1133370 1133380 1134292 1134297) (-769 "OUT.spad" 1132488 1132496 1133360 1133365) (-768 "OSI.spad" 1131963 1131971 1132478 1132483) (-767 "OSGROUP.spad" 1131881 1131889 1131953 1131958) (-766 "ORTHPOL.spad" 1130392 1130402 1131824 1131829) (-765 "OREUP.spad" 1129886 1129914 1130113 1130152) (-764 "ORESUP.spad" 1129228 1129252 1129607 1129646) (-763 "OREPCTO.spad" 1127117 1127129 1129148 1129153) (-762 "OREPCAT.spad" 1121304 1121314 1127073 1127112) (-761 "OREPCAT.spad" 1115381 1115393 1121152 1121157) (-760 "ORDTYPE.spad" 1114618 1114626 1115371 1115376) (-759 "ORDTYPE.spad" 1113853 1113863 1114608 1114613) (-758 "ORDSTRCT.spad" 1113639 1113654 1113802 1113807) (-757 "ORDSET.spad" 1113339 1113347 1113629 1113634) (-756 "ORDRING.spad" 1113156 1113164 1113319 1113334) (-755 "ORDMON.spad" 1113011 1113019 1113146 1113151) (-754 "ORDFUNS.spad" 1112143 1112159 1113001 1113006) (-753 "ORDFIN.spad" 1111963 1111971 1112133 1112138) (-752 "ORDCOMP2.spad" 1111256 1111268 1111953 1111958) (-751 "ORDCOMP.spad" 1109782 1109792 1110864 1110893) (-750 "OPSIG.spad" 1109444 1109452 1109772 1109777) (-749 "OPQUERY.spad" 1109025 1109033 1109434 1109439) (-748 "OPERCAT.spad" 1108491 1108501 1109015 1109020) (-747 "OPERCAT.spad" 1107955 1107967 1108481 1108486) (-746 "OP.spad" 1107697 1107707 1107777 1107844) (-745 "ONECOMP2.spad" 1107121 1107133 1107687 1107692) (-744 "ONECOMP.spad" 1105927 1105937 1106729 1106758) (-743 "OMSAGG.spad" 1105715 1105725 1105883 1105922) (-742 "OMLO.spad" 1105148 1105160 1105601 1105640) (-741 "OINTDOM.spad" 1104911 1104919 1105074 1105143) (-740 "OFMONOID.spad" 1103050 1103060 1104867 1104872) (-739 "ODVAR.spad" 1102311 1102321 1103040 1103045) (-738 "ODR.spad" 1101955 1101981 1102123 1102272) (-737 "ODPOL.spad" 1099603 1099613 1099943 1100070) (-736 "ODP.spad" 1089240 1089260 1089613 1089710) (-735 "ODETOOLS.spad" 1087889 1087908 1089230 1089235) (-734 "ODESYS.spad" 1085583 1085600 1087879 1087884) (-733 "ODERTRIC.spad" 1081616 1081633 1085540 1085545) (-732 "ODERED.spad" 1081015 1081039 1081606 1081611) (-731 "ODERAT.spad" 1078648 1078665 1081005 1081010) (-730 "ODEPRRIC.spad" 1075741 1075763 1078638 1078643) (-729 "ODEPRIM.spad" 1073139 1073161 1075731 1075736) (-728 "ODEPAL.spad" 1072525 1072549 1073129 1073134) (-727 "ODEINT.spad" 1071960 1071976 1072515 1072520) (-726 "ODEEF.spad" 1067455 1067471 1071950 1071955) (-725 "ODECONST.spad" 1067000 1067018 1067445 1067450) (-724 "OCTCT2.spad" 1066641 1066659 1066990 1066995) (-723 "OCT.spad" 1064956 1064966 1065670 1065709) (-722 "OCAMON.spad" 1064804 1064812 1064946 1064951) (-721 "OC.spad" 1062600 1062610 1064760 1064799) (-720 "OC.spad" 1060135 1060147 1062297 1062302) (-719 "OASGP.spad" 1059950 1059958 1060125 1060130) (-718 "OAMONS.spad" 1059472 1059480 1059940 1059945) (-717 "OAMON.spad" 1059230 1059238 1059462 1059467) (-716 "OAMON.spad" 1058986 1058996 1059220 1059225) (-715 "OAGROUP.spad" 1058524 1058532 1058976 1058981) (-714 "OAGROUP.spad" 1058060 1058070 1058514 1058519) (-713 "NUMTUBE.spad" 1057651 1057667 1058050 1058055) (-712 "NUMQUAD.spad" 1045627 1045635 1057641 1057646) (-711 "NUMODE.spad" 1036979 1036987 1045617 1045622) (-710 "NUMFMT.spad" 1035819 1035827 1036969 1036974) (-709 "NUMERIC.spad" 1027934 1027944 1035625 1035630) (-708 "NTSCAT.spad" 1026442 1026458 1027902 1027929) (-707 "NTPOLFN.spad" 1026019 1026029 1026385 1026390) (-706 "NSUP2.spad" 1025411 1025423 1026009 1026014) (-705 "NSUP.spad" 1018848 1018858 1023268 1023421) (-704 "NSMP.spad" 1015760 1015779 1016052 1016179) (-703 "NREP.spad" 1014162 1014176 1015750 1015755) (-702 "NPCOEF.spad" 1013408 1013428 1014152 1014157) (-701 "NORMRETR.spad" 1013006 1013045 1013398 1013403) (-700 "NORMPK.spad" 1010948 1010967 1012996 1013001) (-699 "NORMMA.spad" 1010636 1010662 1010938 1010943) (-698 "NONE1.spad" 1010312 1010322 1010626 1010631) (-697 "NONE.spad" 1010053 1010061 1010302 1010307) (-696 "NODE1.spad" 1009540 1009556 1010043 1010048) (-695 "NNI.spad" 1008435 1008443 1009514 1009535) (-694 "NLINSOL.spad" 1007061 1007071 1008425 1008430) (-693 "NFINTBAS.spad" 1004621 1004638 1007051 1007056) (-692 "NETCLT.spad" 1004595 1004606 1004611 1004616) (-691 "NCODIV.spad" 1002819 1002835 1004585 1004590) (-690 "NCNTFRAC.spad" 1002461 1002475 1002809 1002814) (-689 "NCEP.spad" 1000627 1000641 1002451 1002456) (-688 "NASRING.spad" 1000231 1000239 1000617 1000622) (-687 "NASRING.spad" 999833 999843 1000221 1000226) (-686 "NARNG.spad" 999233 999241 999823 999828) (-685 "NARNG.spad" 998631 998641 999223 999228) (-684 "NAALG.spad" 998196 998206 998599 998626) (-683 "NAALG.spad" 997781 997793 998186 998191) (-682 "MULTSQFR.spad" 994739 994756 997771 997776) (-681 "MULTFACT.spad" 994122 994139 994729 994734) (-680 "MTSCAT.spad" 992216 992237 994020 994117) (-679 "MTHING.spad" 991875 991885 992206 992211) (-678 "MSYSCMD.spad" 991309 991317 991865 991870) (-677 "MSETAGG.spad" 991154 991164 991277 991304) (-676 "MSET.spad" 989100 989110 990848 990887) (-675 "MRING.spad" 986077 986089 988808 988875) (-674 "MRF2.spad" 985639 985653 986067 986072) (-673 "MRATFAC.spad" 985185 985202 985629 985634) (-672 "MPRFF.spad" 983225 983244 985175 985180) (-671 "MPOLY.spad" 981029 981044 981388 981515) (-670 "MPCPF.spad" 980293 980312 981019 981024) (-669 "MPC3.spad" 980110 980150 980283 980288) (-668 "MPC2.spad" 979764 979797 980100 980105) (-667 "MONOTOOL.spad" 978115 978132 979754 979759) (-666 "catdef.spad" 977548 977559 977769 978110) (-665 "catdef.spad" 976946 976957 977202 977543) (-664 "MONOID.spad" 976267 976275 976936 976941) (-663 "MONOID.spad" 975586 975596 976257 976262) (-662 "MONOGEN.spad" 974334 974347 975446 975581) (-661 "MONOGEN.spad" 973104 973119 974218 974223) (-660 "MONADWU.spad" 971184 971192 973094 973099) (-659 "MONADWU.spad" 969262 969272 971174 971179) (-658 "MONAD.spad" 968422 968430 969252 969257) (-657 "MONAD.spad" 967580 967590 968412 968417) (-656 "MOEBIUS.spad" 966316 966330 967560 967575) (-655 "MODULE.spad" 966186 966196 966284 966311) (-654 "MODULE.spad" 966076 966088 966176 966181) (-653 "MODRING.spad" 965411 965450 966056 966071) (-652 "MODOP.spad" 964068 964080 965233 965300) (-651 "MODMONOM.spad" 963799 963817 964058 964063) (-650 "MODMON.spad" 960869 960881 961584 961737) (-649 "MODFIELD.spad" 960231 960270 960771 960864) (-648 "MMLFORM.spad" 959091 959099 960221 960226) (-647 "MMAP.spad" 958833 958867 959081 959086) (-646 "MLO.spad" 957292 957302 958789 958828) (-645 "MLIFT.spad" 955904 955921 957282 957287) (-644 "MKUCFUNC.spad" 955439 955457 955894 955899) (-643 "MKRECORD.spad" 955027 955040 955429 955434) (-642 "MKFUNC.spad" 954434 954444 955017 955022) (-641 "MKFLCFN.spad" 953402 953412 954424 954429) (-640 "MKBCFUNC.spad" 952897 952915 953392 953397) (-639 "MHROWRED.spad" 951408 951418 952887 952892) (-638 "MFINFACT.spad" 950808 950830 951398 951403) (-637 "MESH.spad" 948603 948611 950798 950803) (-636 "MDDFACT.spad" 946822 946832 948593 948598) (-635 "MDAGG.spad" 946113 946123 946802 946817) (-634 "MCDEN.spad" 945323 945335 946103 946108) (-633 "MAYBE.spad" 944623 944634 945313 945318) (-632 "MATSTOR.spad" 941939 941949 944613 944618) (-631 "MATRIX.spad" 940718 940728 941202 941229) (-630 "MATLIN.spad" 938086 938110 940602 940607) (-629 "MATCAT2.spad" 937368 937416 938076 938081) (-628 "MATCAT.spad" 928930 928952 937336 937363) (-627 "MATCAT.spad" 920364 920388 928772 928777) (-626 "MAPPKG3.spad" 919279 919293 920354 920359) (-625 "MAPPKG2.spad" 918617 918629 919269 919274) (-624 "MAPPKG1.spad" 917445 917455 918607 918612) (-623 "MAPPAST.spad" 916784 916792 917435 917440) (-622 "MAPHACK3.spad" 916596 916610 916774 916779) (-621 "MAPHACK2.spad" 916365 916377 916586 916591) (-620 "MAPHACK1.spad" 916009 916019 916355 916360) (-619 "MAGMA.spad" 913815 913832 915999 916004) (-618 "MACROAST.spad" 913410 913418 913805 913810) (-617 "LZSTAGG.spad" 910664 910674 913400 913405) (-616 "LZSTAGG.spad" 907916 907928 910654 910659) (-615 "LWORD.spad" 904661 904678 907906 907911) (-614 "LSTAST.spad" 904445 904453 904651 904656) (-613 "LSQM.spad" 902723 902737 903117 903168) (-612 "LSPP.spad" 902258 902275 902713 902718) (-611 "LSMP1.spad" 900101 900115 902248 902253) (-610 "LSMP.spad" 898958 898986 900091 900096) (-609 "LSAGG.spad" 898627 898637 898926 898953) (-608 "LSAGG.spad" 898316 898328 898617 898622) (-607 "LPOLY.spad" 897278 897297 898172 898241) (-606 "LPEFRAC.spad" 896549 896559 897268 897273) (-605 "LOGIC.spad" 896151 896159 896539 896544) (-604 "LOGIC.spad" 895751 895761 896141 896146) (-603 "LODOOPS.spad" 894681 894693 895741 895746) (-602 "LODOF.spad" 893727 893744 894638 894643) (-601 "LODOCAT.spad" 892393 892403 893683 893722) (-600 "LODOCAT.spad" 891057 891069 892349 892354) (-599 "LODO2.spad" 890371 890383 890778 890817) (-598 "LODO1.spad" 889812 889822 890092 890131) (-597 "LODO.spad" 889237 889253 889533 889572) (-596 "LODEEF.spad" 888039 888057 889227 889232) (-595 "LO.spad" 887440 887454 887973 888000) (-594 "LNAGG.spad" 883627 883637 887430 887435) (-593 "LNAGG.spad" 879778 879790 883583 883588) (-592 "LMOPS.spad" 876546 876563 879768 879773) (-591 "LMODULE.spad" 876330 876340 876536 876541) (-590 "LMDICT.spad" 875711 875721 875959 875986) (-589 "LLINSET.spad" 875418 875428 875701 875706) (-588 "LITERAL.spad" 875324 875335 875408 875413) (-587 "LIST3.spad" 874635 874649 875314 875319) (-586 "LIST2MAP.spad" 871562 871574 874625 874630) (-585 "LIST2.spad" 870264 870276 871552 871557) (-584 "LIST.spad" 868146 868156 869489 869516) (-583 "LINSET.spad" 867925 867935 868136 868141) (-582 "LINFORM.spad" 867388 867400 867893 867920) (-581 "LINEXP.spad" 866131 866141 867378 867383) (-580 "LINELT.spad" 865502 865514 866014 866041) (-579 "LINDEP.spad" 864351 864363 865414 865419) (-578 "LINBASIS.spad" 863987 864002 864341 864346) (-577 "LIMITRF.spad" 861934 861944 863977 863982) (-576 "LIMITPS.spad" 860844 860857 861924 861929) (-575 "LIECAT.spad" 860328 860338 860770 860839) (-574 "LIECAT.spad" 859840 859852 860284 860289) (-573 "LIE.spad" 857844 857856 859118 859260) (-572 "LIB.spad" 856015 856023 856461 856476) (-571 "LGROBP.spad" 853368 853387 856005 856010) (-570 "LFCAT.spad" 852427 852435 853358 853363) (-569 "LF.spad" 851382 851398 852417 852422) (-568 "LEXTRIPK.spad" 847005 847020 851372 851377) (-567 "LEXP.spad" 845024 845051 846985 847000) (-566 "LETAST.spad" 844723 844731 845014 845019) (-565 "LEADCDET.spad" 843129 843146 844713 844718) (-564 "LAZM3PK.spad" 841873 841895 843119 843124) (-563 "LAUPOL.spad" 840540 840553 841440 841509) (-562 "LAPLACE.spad" 840123 840139 840530 840535) (-561 "LALG.spad" 839899 839909 840103 840118) (-560 "LALG.spad" 839683 839695 839889 839894) (-559 "LA.spad" 839123 839137 839605 839644) (-558 "KVTFROM.spad" 838866 838876 839113 839118) (-557 "KTVLOGIC.spad" 838410 838418 838856 838861) (-556 "KRCFROM.spad" 838156 838166 838400 838405) (-555 "KOVACIC.spad" 836887 836904 838146 838151) (-554 "KONVERT.spad" 836609 836619 836877 836882) (-553 "KOERCE.spad" 836346 836356 836599 836604) (-552 "KERNEL2.spad" 836049 836061 836336 836341) (-551 "KERNEL.spad" 834769 834779 835898 835903) (-550 "KDAGG.spad" 833878 833900 834749 834764) (-549 "KDAGG.spad" 832995 833019 833868 833873) (-548 "KAFILE.spad" 831885 831901 832120 832147) (-547 "JVMOP.spad" 831798 831806 831875 831880) (-546 "JVMMDACC.spad" 830852 830860 831788 831793) (-545 "JVMFDACC.spad" 830168 830176 830842 830847) (-544 "JVMCSTTG.spad" 828897 828905 830158 830163) (-543 "JVMCFACC.spad" 828343 828351 828887 828892) (-542 "JVMBCODE.spad" 828254 828262 828333 828338) (-541 "JORDAN.spad" 826071 826083 827532 827674) (-540 "JOINAST.spad" 825773 825781 826061 826066) (-539 "IXAGG.spad" 823906 823930 825763 825768) (-538 "IXAGG.spad" 821894 821920 823753 823758) (-537 "IVECTOR.spad" 820709 820724 820864 820891) (-536 "ITUPLE.spad" 819885 819895 820699 820704) (-535 "ITRIGMNP.spad" 818732 818751 819875 819880) (-534 "ITFUN3.spad" 818238 818252 818722 818727) (-533 "ITFUN2.spad" 817982 817994 818228 818233) (-532 "ITFORM.spad" 817337 817345 817972 817977) (-531 "ITAYLOR.spad" 815331 815346 817201 817298) (-530 "ISUPS.spad" 807780 807795 814317 814414) (-529 "ISUMP.spad" 807281 807297 807770 807775) (-528 "ISAST.spad" 807000 807008 807271 807276) (-527 "IRURPK.spad" 805717 805736 806990 806995) (-526 "IRSN.spad" 803721 803729 805707 805712) (-525 "IRRF2F.spad" 802214 802224 803677 803682) (-524 "IRREDFFX.spad" 801815 801826 802204 802209) (-523 "IROOT.spad" 800154 800164 801805 801810) (-522 "IRFORM.spad" 799478 799486 800144 800149) (-521 "IR2F.spad" 798692 798708 799468 799473) (-520 "IR2.spad" 797720 797736 798682 798687) (-519 "IR.spad" 795556 795570 797602 797629) (-518 "IPRNTPK.spad" 795316 795324 795546 795551) (-517 "IPF.spad" 794881 794893 795121 795214) (-516 "IPADIC.spad" 794650 794676 794807 794876) (-515 "IP4ADDR.spad" 794207 794215 794640 794645) (-514 "IOMODE.spad" 793729 793737 794197 794202) (-513 "IOBFILE.spad" 793114 793122 793719 793724) (-512 "IOBCON.spad" 792979 792987 793104 793109) (-511 "INVLAPLA.spad" 792628 792644 792969 792974) (-510 "INTTR.spad" 786022 786039 792618 792623) (-509 "INTTOOLS.spad" 783830 783846 785649 785654) (-508 "INTSLPE.spad" 783158 783166 783820 783825) (-507 "INTRVL.spad" 782724 782734 783072 783153) (-506 "INTRF.spad" 781156 781170 782714 782719) (-505 "INTRET.spad" 780588 780598 781146 781151) (-504 "INTRAT.spad" 779323 779340 780578 780583) (-503 "INTPM.spad" 777786 777802 779044 779049) (-502 "INTPAF.spad" 775662 775680 777715 777720) (-501 "INTHERTR.spad" 774936 774953 775652 775657) (-500 "INTHERAL.spad" 774606 774630 774926 774931) (-499 "INTHEORY.spad" 771045 771053 774596 774601) (-498 "INTG0.spad" 764809 764827 770974 770979) (-497 "INTFACT.spad" 763876 763886 764799 764804) (-496 "INTEF.spad" 762287 762303 763866 763871) (-495 "INTDOM.spad" 760910 760918 762213 762282) (-494 "INTDOM.spad" 759595 759605 760900 760905) (-493 "INTCAT.spad" 757862 757872 759509 759590) (-492 "INTBIT.spad" 757369 757377 757852 757857) (-491 "INTALG.spad" 756557 756584 757359 757364) (-490 "INTAF.spad" 756057 756073 756547 756552) (-489 "INTABL.spad" 754439 754470 754602 754629) (-488 "INT8.spad" 754319 754327 754429 754434) (-487 "INT64.spad" 754198 754206 754309 754314) (-486 "INT32.spad" 754077 754085 754188 754193) (-485 "INT16.spad" 753956 753964 754067 754072) (-484 "INT.spad" 753482 753490 753822 753951) (-483 "INS.spad" 750985 750993 753384 753477) (-482 "INS.spad" 748574 748584 750975 750980) (-481 "INPSIGN.spad" 748044 748057 748564 748569) (-480 "INPRODPF.spad" 747140 747159 748034 748039) (-479 "INPRODFF.spad" 746228 746252 747130 747135) (-478 "INNMFACT.spad" 745203 745220 746218 746223) (-477 "INMODGCD.spad" 744707 744737 745193 745198) (-476 "INFSP.spad" 743004 743026 744697 744702) (-475 "INFPROD0.spad" 742084 742103 742994 742999) (-474 "INFORM1.spad" 741709 741719 742074 742079) (-473 "INFORM.spad" 738920 738928 741699 741704) (-472 "INFINITY.spad" 738472 738480 738910 738915) (-471 "INETCLTS.spad" 738449 738457 738462 738467) (-470 "INEP.spad" 736995 737017 738439 738444) (-469 "INDE.spad" 736644 736661 736905 736910) (-468 "INCRMAPS.spad" 736081 736091 736634 736639) (-467 "INBFILE.spad" 735177 735185 736071 736076) (-466 "INBFF.spad" 731027 731038 735167 735172) (-465 "INBCON.spad" 729293 729301 731017 731022) (-464 "INBCON.spad" 727557 727567 729283 729288) (-463 "INAST.spad" 727218 727226 727547 727552) (-462 "IMPTAST.spad" 726926 726934 727208 727213) (-461 "IMATRIX.spad" 725936 725962 726448 726475) (-460 "IMATQF.spad" 725030 725074 725892 725897) (-459 "IMATLIN.spad" 723651 723675 724986 724991) (-458 "IIARRAY2.spad" 723120 723158 723323 723350) (-457 "IFF.spad" 722533 722549 722804 722897) (-456 "IFAST.spad" 722147 722155 722523 722528) (-455 "IFARRAY.spad" 719674 719689 721372 721399) (-454 "IFAMON.spad" 719536 719553 719630 719635) (-453 "IEVALAB.spad" 718949 718961 719526 719531) (-452 "IEVALAB.spad" 718360 718374 718939 718944) (-451 "indexedp.spad" 717916 717928 718350 718355) (-450 "IDPOAMS.spad" 717594 717606 717828 717833) (-449 "IDPOAM.spad" 717236 717248 717506 717511) (-448 "IDPO.spad" 716650 716662 717148 717153) (-447 "IDPC.spad" 715365 715377 716640 716645) (-446 "IDPAM.spad" 715032 715044 715277 715282) (-445 "IDPAG.spad" 714701 714713 714944 714949) (-444 "IDENT.spad" 714353 714361 714691 714696) (-443 "catdef.spad" 714124 714135 714236 714348) (-442 "IDECOMP.spad" 711363 711381 714114 714119) (-441 "IDEAL.spad" 706325 706364 711311 711316) (-440 "ICDEN.spad" 705538 705554 706315 706320) (-439 "ICARD.spad" 704931 704939 705528 705533) (-438 "IBPTOOLS.spad" 703538 703555 704921 704926) (-437 "IBITS.spad" 703051 703064 703184 703211) (-436 "IBATOOL.spad" 700036 700055 703041 703046) (-435 "IBACHIN.spad" 698543 698558 700026 700031) (-434 "IARRAY2.spad" 697604 697630 698215 698242) (-433 "IARRAY1.spad" 696683 696698 696829 696856) (-432 "IAN.spad" 695065 695073 696514 696607) (-431 "IALGFACT.spad" 694676 694709 695055 695060) (-430 "HYPCAT.spad" 694100 694108 694666 694671) (-429 "HYPCAT.spad" 693522 693532 694090 694095) (-428 "HOSTNAME.spad" 693338 693346 693512 693517) (-427 "HOMOTOP.spad" 693081 693091 693328 693333) (-426 "HOAGG.spad" 690363 690373 693071 693076) (-425 "HOAGG.spad" 687395 687407 690105 690110) (-424 "HEXADEC.spad" 685620 685628 685985 686078) (-423 "HEUGCD.spad" 684711 684722 685610 685615) (-422 "HELLFDIV.spad" 684317 684341 684701 684706) (-421 "HEAP.spad" 683774 683784 683989 684016) (-420 "HEADAST.spad" 683315 683323 683764 683769) (-419 "HDP.spad" 672948 672964 673325 673422) (-418 "HDMP.spad" 670495 670510 671111 671238) (-417 "HB.spad" 668770 668778 670485 670490) (-416 "HASHTBL.spad" 667104 667135 667315 667342) (-415 "HASAST.spad" 666820 666828 667094 667099) (-414 "HACKPI.spad" 666311 666319 666722 666815) (-413 "GTSET.spad" 665238 665254 665945 665972) (-412 "GSTBL.spad" 663621 663656 663795 663810) (-411 "GSERIES.spad" 660993 661020 661812 661961) (-410 "GROUP.spad" 660266 660274 660973 660988) (-409 "GROUP.spad" 659547 659557 660256 660261) (-408 "GROEBSOL.spad" 658041 658062 659537 659542) (-407 "GRMOD.spad" 656622 656634 658031 658036) (-406 "GRMOD.spad" 655201 655215 656612 656617) (-405 "GRIMAGE.spad" 648114 648122 655191 655196) (-404 "GRDEF.spad" 646493 646501 648104 648109) (-403 "GRAY.spad" 644964 644972 646483 646488) (-402 "GRALG.spad" 644059 644071 644954 644959) (-401 "GRALG.spad" 643152 643166 644049 644054) (-400 "GPOLSET.spad" 642610 642633 642822 642849) (-399 "GOSPER.spad" 641887 641905 642600 642605) (-398 "GMODPOL.spad" 641035 641062 641855 641882) (-397 "GHENSEL.spad" 640118 640132 641025 641030) (-396 "GENUPS.spad" 636411 636424 640108 640113) (-395 "GENUFACT.spad" 635988 635998 636401 636406) (-394 "GENPGCD.spad" 635590 635607 635978 635983) (-393 "GENMFACT.spad" 635042 635061 635580 635585) (-392 "GENEEZ.spad" 633001 633014 635032 635037) (-391 "GDMP.spad" 630390 630407 631164 631291) (-390 "GCNAALG.spad" 624313 624340 630184 630251) (-389 "GCDDOM.spad" 623505 623513 624239 624308) (-388 "GCDDOM.spad" 622759 622769 623495 623500) (-387 "GBINTERN.spad" 618779 618817 622749 622754) (-386 "GBF.spad" 614562 614600 618769 618774) (-385 "GBEUCLID.spad" 612444 612482 614552 614557) (-384 "GB.spad" 609970 610008 612400 612405) (-383 "GAUSSFAC.spad" 609283 609291 609960 609965) (-382 "GALUTIL.spad" 607609 607619 609239 609244) (-381 "GALPOLYU.spad" 606063 606076 607599 607604) (-380 "GALFACTU.spad" 604276 604295 606053 606058) (-379 "GALFACT.spad" 594489 594500 604266 604271) (-378 "FUNDESC.spad" 594167 594175 594479 594484) (-377 "FUNCTION.spad" 594016 594028 594157 594162) (-376 "FT.spad" 592316 592324 594006 594011) (-375 "FSUPFACT.spad" 591230 591249 592266 592271) (-374 "FST.spad" 589316 589324 591220 591225) (-373 "FSRED.spad" 588796 588812 589306 589311) (-372 "FSPRMELT.spad" 587662 587678 588753 588758) (-371 "FSPECF.spad" 585753 585769 587652 587657) (-370 "FSINT.spad" 585413 585429 585743 585748) (-369 "FSERIES.spad" 584604 584616 585233 585332) (-368 "FSCINT.spad" 583921 583937 584594 584599) (-367 "FSAGG2.spad" 582656 582672 583911 583916) (-366 "FSAGG.spad" 581773 581783 582612 582651) (-365 "FSAGG.spad" 580852 580864 581693 581698) (-364 "FS2UPS.spad" 575367 575401 580842 580847) (-363 "FS2EXPXP.spad" 574508 574531 575357 575362) (-362 "FS2.spad" 574163 574179 574498 574503) (-361 "FS.spad" 568435 568445 573942 574158) (-360 "FS.spad" 562509 562521 568018 568023) (-359 "FRUTIL.spad" 561463 561473 562499 562504) (-358 "FRNAALG.spad" 556740 556750 561405 561458) (-357 "FRNAALG.spad" 552029 552041 556696 556701) (-356 "FRNAAF2.spad" 551477 551495 552019 552024) (-355 "FRMOD.spad" 550885 550915 551406 551411) (-354 "FRIDEAL2.spad" 550489 550521 550875 550880) (-353 "FRIDEAL.spad" 549714 549735 550469 550484) (-352 "FRETRCT.spad" 549233 549243 549704 549709) (-351 "FRETRCT.spad" 548659 548671 549132 549137) (-350 "FRAMALG.spad" 547039 547052 548615 548654) (-349 "FRAMALG.spad" 545451 545466 547029 547034) (-348 "FRAC2.spad" 545056 545068 545441 545446) (-347 "FRAC.spad" 543043 543053 543430 543603) (-346 "FR2.spad" 542379 542391 543033 543038) (-345 "FR.spad" 536167 536177 541440 541509) (-344 "FPS.spad" 533006 533014 536057 536162) (-343 "FPS.spad" 529873 529883 532926 532931) (-342 "FPC.spad" 528919 528927 529775 529868) (-341 "FPC.spad" 528051 528061 528909 528914) (-340 "FPATMAB.spad" 527813 527823 528041 528046) (-339 "FPARFRAC.spad" 526655 526672 527803 527808) (-338 "FORDER.spad" 526346 526370 526645 526650) (-337 "FNLA.spad" 525770 525792 526314 526341) (-336 "FNCAT.spad" 524365 524373 525760 525765) (-335 "FNAME.spad" 524257 524265 524355 524360) (-334 "FMONOID.spad" 523938 523948 524213 524218) (-333 "FMONCAT.spad" 521107 521117 523928 523933) (-332 "FMCAT.spad" 518783 518801 521075 521102) (-331 "FM1.spad" 518148 518160 518717 518744) (-330 "FM.spad" 517763 517775 518002 518029) (-329 "FLOATRP.spad" 515506 515520 517753 517758) (-328 "FLOATCP.spad" 512945 512959 515496 515501) (-327 "FLOAT.spad" 510036 510044 512811 512940) (-326 "FLINEXP.spad" 509758 509768 510026 510031) (-325 "FLINEXP.spad" 509437 509449 509707 509712) (-324 "FLASORT.spad" 508763 508775 509427 509432) (-323 "FLALG.spad" 506433 506452 508689 508758) (-322 "FLAGG2.spad" 505150 505166 506423 506428) (-321 "FLAGG.spad" 502216 502226 505130 505145) (-320 "FLAGG.spad" 499183 499195 502099 502104) (-319 "FINRALG.spad" 497268 497281 499139 499178) (-318 "FINRALG.spad" 495279 495294 497152 497157) (-317 "FINITE.spad" 494431 494439 495269 495274) (-316 "FINITE.spad" 493581 493591 494421 494426) (-315 "FINAALG.spad" 482766 482776 493523 493576) (-314 "FINAALG.spad" 471963 471975 482722 482727) (-313 "FILECAT.spad" 470497 470514 471953 471958) (-312 "FILE.spad" 470080 470090 470487 470492) (-311 "FIELD.spad" 469486 469494 469982 470075) (-310 "FIELD.spad" 468978 468988 469476 469481) (-309 "FGROUP.spad" 467641 467651 468958 468973) (-308 "FGLMICPK.spad" 466436 466451 467631 467636) (-307 "FFX.spad" 465822 465837 466155 466248) (-306 "FFSLPE.spad" 465333 465354 465812 465817) (-305 "FFPOLY2.spad" 464393 464410 465323 465328) (-304 "FFPOLY.spad" 455735 455746 464383 464388) (-303 "FFP.spad" 455143 455163 455454 455547) (-302 "FFNBX.spad" 453666 453686 454862 454955) (-301 "FFNBP.spad" 452190 452207 453385 453478) (-300 "FFNB.spad" 450658 450679 451874 451967) (-299 "FFINTBAS.spad" 448172 448191 450648 450653) (-298 "FFIELDC.spad" 445757 445765 448074 448167) (-297 "FFIELDC.spad" 443428 443438 445747 445752) (-296 "FFHOM.spad" 442200 442217 443418 443423) (-295 "FFF.spad" 439643 439654 442190 442195) (-294 "FFCGX.spad" 438501 438521 439362 439455) (-293 "FFCGP.spad" 437401 437421 438220 438313) (-292 "FFCG.spad" 436196 436217 437085 437178) (-291 "FFCAT2.spad" 435943 435983 436186 436191) (-290 "FFCAT.spad" 429108 429130 435782 435938) (-289 "FFCAT.spad" 422352 422376 429028 429033) (-288 "FF.spad" 421803 421819 422036 422129) (-287 "FEVALAB.spad" 421511 421521 421793 421798) (-286 "FEVALAB.spad" 420995 421007 421279 421284) (-285 "FDIVCAT.spad" 419091 419115 420985 420990) (-284 "FDIVCAT.spad" 417185 417211 419081 419086) (-283 "FDIV2.spad" 416841 416881 417175 417180) (-282 "FDIV.spad" 416299 416323 416831 416836) (-281 "FCTRDATA.spad" 415307 415315 416289 416294) (-280 "FCOMP.spad" 414686 414696 415297 415302) (-279 "FAXF.spad" 407721 407735 414588 414681) (-278 "FAXF.spad" 400808 400824 407677 407682) (-277 "FARRAY.spad" 399000 399010 400033 400060) (-276 "FAMR.spad" 397144 397156 398898 398995) (-275 "FAMR.spad" 395272 395286 397028 397033) (-274 "FAMONOID.spad" 394956 394966 395226 395231) (-273 "FAMONC.spad" 393276 393288 394946 394951) (-272 "FAGROUP.spad" 392916 392926 393172 393199) (-271 "FACUTIL.spad" 391128 391145 392906 392911) (-270 "FACTFUNC.spad" 390330 390340 391118 391123) (-269 "EXPUPXS.spad" 387222 387245 388521 388670) (-268 "EXPRTUBE.spad" 384510 384518 387212 387217) (-267 "EXPRODE.spad" 381678 381694 384500 384505) (-266 "EXPR2UPS.spad" 377800 377813 381668 381673) (-265 "EXPR2.spad" 377505 377517 377790 377795) (-264 "EXPR.spad" 373150 373160 373864 374151) (-263 "EXPEXPAN.spad" 370095 370120 370727 370820) (-262 "EXITAST.spad" 369831 369839 370085 370090) (-261 "EXIT.spad" 369502 369510 369821 369826) (-260 "EVALCYC.spad" 368962 368976 369492 369497) (-259 "EVALAB.spad" 368542 368552 368952 368957) (-258 "EVALAB.spad" 368120 368132 368532 368537) (-257 "EUCDOM.spad" 365710 365718 368046 368115) (-256 "EUCDOM.spad" 363362 363372 365700 365705) (-255 "ES2.spad" 362875 362891 363352 363357) (-254 "ES1.spad" 362445 362461 362865 362870) (-253 "ES.spad" 355316 355324 362435 362440) (-252 "ES.spad" 348108 348118 355229 355234) (-251 "ERROR.spad" 345435 345443 348098 348103) (-250 "EQTBL.spad" 343771 343793 343980 344007) (-249 "EQ2.spad" 343489 343501 343761 343766) (-248 "EQ.spad" 338395 338405 341190 341296) (-247 "EP.spad" 334721 334731 338385 338390) (-246 "ENV.spad" 333399 333407 334711 334716) (-245 "ENTIRER.spad" 333067 333075 333343 333394) (-244 "EMR.spad" 332355 332396 332993 333062) (-243 "ELTAGG.spad" 330609 330628 332345 332350) (-242 "ELTAGG.spad" 328827 328848 330565 330570) (-241 "ELTAB.spad" 328302 328315 328817 328822) (-240 "ELFUTS.spad" 327737 327756 328292 328297) (-239 "ELEMFUN.spad" 327426 327434 327727 327732) (-238 "ELEMFUN.spad" 327113 327123 327416 327421) (-237 "ELAGG.spad" 325084 325094 327093 327108) (-236 "ELAGG.spad" 322992 323004 325003 325008) (-235 "ELABOR.spad" 322338 322346 322982 322987) (-234 "ELABEXPR.spad" 321270 321278 322328 322333) (-233 "EFUPXS.spad" 318046 318076 321226 321231) (-232 "EFULS.spad" 314882 314905 318002 318007) (-231 "EFSTRUC.spad" 312897 312913 314872 314877) (-230 "EF.spad" 307673 307689 312887 312892) (-229 "EAB.spad" 305973 305981 307663 307668) (-228 "DVARCAT.spad" 302979 302989 305963 305968) (-227 "DVARCAT.spad" 299983 299995 302969 302974) (-226 "DSMP.spad" 297716 297730 298021 298148) (-225 "DSEXT.spad" 297018 297028 297706 297711) (-224 "DSEXT.spad" 296240 296252 296930 296935) (-223 "DROPT1.spad" 295905 295915 296230 296235) (-222 "DROPT0.spad" 290770 290778 295895 295900) (-221 "DROPT.spad" 284729 284737 290760 290765) (-220 "DRAWPT.spad" 282902 282910 284719 284724) (-219 "DRAWHACK.spad" 282210 282220 282892 282897) (-218 "DRAWCX.spad" 279688 279696 282200 282205) (-217 "DRAWCURV.spad" 279235 279250 279678 279683) (-216 "DRAWCFUN.spad" 268767 268775 279225 279230) (-215 "DRAW.spad" 261643 261656 268757 268762) (-214 "DQAGG.spad" 259821 259831 261611 261638) (-213 "DPOLCAT.spad" 255178 255194 259689 259816) (-212 "DPOLCAT.spad" 250621 250639 255134 255139) (-211 "DPMO.spad" 243324 243340 243462 243668) (-210 "DPMM.spad" 236040 236058 236165 236371) (-209 "DOMTMPLT.spad" 235811 235819 236030 236035) (-208 "DOMCTOR.spad" 235566 235574 235801 235806) (-207 "DOMAIN.spad" 234677 234685 235556 235561) (-206 "DMP.spad" 232270 232285 232840 232967) (-205 "DMEXT.spad" 232137 232147 232238 232265) (-204 "DLP.spad" 231497 231507 232127 232132) (-203 "DLIST.spad" 230118 230128 230722 230749) (-202 "DLAGG.spad" 228535 228545 230108 230113) (-201 "DIVRING.spad" 228077 228085 228479 228530) (-200 "DIVRING.spad" 227663 227673 228067 228072) (-199 "DISPLAY.spad" 225853 225861 227653 227658) (-198 "DIRPROD2.spad" 224671 224689 225843 225848) (-197 "DIRPROD.spad" 214041 214057 214681 214778) (-196 "DIRPCAT.spad" 213236 213252 213939 214036) (-195 "DIRPCAT.spad" 212057 212075 212762 212767) (-194 "DIOSP.spad" 210882 210890 212047 212052) (-193 "DIOPS.spad" 209878 209888 210862 210877) (-192 "DIOPS.spad" 208848 208860 209834 209839) (-191 "catdef.spad" 208706 208714 208838 208843) (-190 "DIFRING.spad" 208544 208552 208686 208701) (-189 "DIFFSPC.spad" 208123 208131 208534 208539) (-188 "DIFFSPC.spad" 207700 207710 208113 208118) (-187 "DIFFMOD.spad" 207189 207199 207668 207695) (-186 "DIFFDOM.spad" 206354 206365 207179 207184) (-185 "DIFFDOM.spad" 205517 205530 206344 206349) (-184 "DIFEXT.spad" 205336 205346 205497 205512) (-183 "DIAGG.spad" 204966 204976 205316 205331) (-182 "DIAGG.spad" 204604 204616 204956 204961) (-181 "DHMATRIX.spad" 202981 202991 204126 204153) (-180 "DFSFUN.spad" 196621 196629 202971 202976) (-179 "DFLOAT.spad" 193228 193236 196511 196616) (-178 "DFINTTLS.spad" 191459 191475 193218 193223) (-177 "DERHAM.spad" 189373 189405 191439 191454) (-176 "DEQUEUE.spad" 188762 188772 189045 189072) (-175 "DEGRED.spad" 188379 188393 188752 188757) (-174 "DEFINTRF.spad" 185961 185971 188369 188374) (-173 "DEFINTEF.spad" 184499 184515 185951 185956) (-172 "DEFAST.spad" 183883 183891 184489 184494) (-171 "DECIMAL.spad" 182112 182120 182473 182566) (-170 "DDFACT.spad" 179933 179950 182102 182107) (-169 "DBLRESP.spad" 179533 179557 179923 179928) (-168 "DBASIS.spad" 179159 179174 179523 179528) (-167 "DBASE.spad" 177823 177833 179149 179154) (-166 "DATAARY.spad" 177309 177322 177813 177818) (-165 "CYCLOTOM.spad" 176815 176823 177299 177304) (-164 "CYCLES.spad" 173607 173615 176805 176810) (-163 "CVMP.spad" 173024 173034 173597 173602) (-162 "CTRIGMNP.spad" 171524 171540 173014 173019) (-161 "CTORKIND.spad" 171127 171135 171514 171519) (-160 "CTORCAT.spad" 170368 170376 171117 171122) (-159 "CTORCAT.spad" 169607 169617 170358 170363) (-158 "CTORCALL.spad" 169196 169206 169597 169602) (-157 "CTOR.spad" 168887 168895 169186 169191) (-156 "CSTTOOLS.spad" 168132 168145 168877 168882) (-155 "CRFP.spad" 161904 161917 168122 168127) (-154 "CRCEAST.spad" 161624 161632 161894 161899) (-153 "CRAPACK.spad" 160691 160701 161614 161619) (-152 "CPMATCH.spad" 160192 160207 160613 160618) (-151 "CPIMA.spad" 159897 159916 160182 160187) (-150 "COORDSYS.spad" 154906 154916 159887 159892) (-149 "CONTOUR.spad" 154333 154341 154896 154901) (-148 "CONTFRAC.spad" 150083 150093 154235 154328) (-147 "CONDUIT.spad" 149841 149849 150073 150078) (-146 "COMRING.spad" 149515 149523 149779 149836) (-145 "COMPPROP.spad" 149033 149041 149505 149510) (-144 "COMPLPAT.spad" 148800 148815 149023 149028) (-143 "COMPLEX2.spad" 148515 148527 148790 148795) (-142 "COMPLEX.spad" 144221 144231 144465 144723) (-141 "COMPILER.spad" 143770 143778 144211 144216) (-140 "COMPFACT.spad" 143372 143386 143760 143765) (-139 "COMPCAT.spad" 141447 141457 143109 143367) (-138 "COMPCAT.spad" 139263 139275 140927 140932) (-137 "COMMUPC.spad" 139011 139029 139253 139258) (-136 "COMMONOP.spad" 138544 138552 139001 139006) (-135 "COMMAAST.spad" 138307 138315 138534 138539) (-134 "COMM.spad" 138118 138126 138297 138302) (-133 "COMBOPC.spad" 137041 137049 138108 138113) (-132 "COMBINAT.spad" 135808 135818 137031 137036) (-131 "COMBF.spad" 133230 133246 135798 135803) (-130 "COLOR.spad" 132067 132075 133220 133225) (-129 "COLONAST.spad" 131733 131741 132057 132062) (-128 "CMPLXRT.spad" 131444 131461 131723 131728) (-127 "CLLCTAST.spad" 131106 131114 131434 131439) (-126 "CLIP.spad" 127214 127222 131096 131101) (-125 "CLIF.spad" 125869 125885 127170 127209) (-124 "CLAGG.spad" 122406 122416 125859 125864) (-123 "CLAGG.spad" 118827 118839 122282 122287) (-122 "CINTSLPE.spad" 118182 118195 118817 118822) (-121 "CHVAR.spad" 116320 116342 118172 118177) (-120 "CHARZ.spad" 116235 116243 116300 116315) (-119 "CHARPOL.spad" 115761 115771 116225 116230) (-118 "CHARNZ.spad" 115523 115531 115741 115756) (-117 "CHAR.spad" 112891 112899 115513 115518) (-116 "CFCAT.spad" 112219 112227 112881 112886) (-115 "CDEN.spad" 111439 111453 112209 112214) (-114 "CCLASS.spad" 109619 109627 110881 110920) (-113 "CATEGORY.spad" 108693 108701 109609 109614) (-112 "CATCTOR.spad" 108584 108592 108683 108688) (-111 "CATAST.spad" 108210 108218 108574 108579) (-110 "CASEAST.spad" 107924 107932 108200 108205) (-109 "CARTEN2.spad" 107314 107341 107914 107919) (-108 "CARTEN.spad" 103066 103090 107304 107309) (-107 "CARD.spad" 100361 100369 103040 103061) (-106 "CAPSLAST.spad" 100143 100151 100351 100356) (-105 "CACHSET.spad" 99767 99775 100133 100138) (-104 "CABMON.spad" 99322 99330 99757 99762) (-103 "BYTEORD.spad" 98997 99005 99312 99317) (-102 "BYTEBUF.spad" 96964 96972 98250 98277) (-101 "BYTE.spad" 96439 96447 96954 96959) (-100 "BTREE.spad" 95577 95587 96111 96138) (-99 "BTOURN.spad" 94648 94657 95249 95276) (-98 "BTCAT.spad" 94041 94050 94616 94643) (-97 "BTCAT.spad" 93454 93465 94031 94036) (-96 "BTAGG.spad" 92921 92928 93422 93449) (-95 "BTAGG.spad" 92408 92417 92911 92916) (-94 "BSTREE.spad" 91215 91224 92080 92107) (-93 "BRILL.spad" 89421 89431 91205 91210) (-92 "BRAGG.spad" 88378 88387 89411 89416) (-91 "BRAGG.spad" 87299 87310 88334 88339) (-90 "BPADICRT.spad" 85359 85370 85605 85698) (-89 "BPADIC.spad" 85032 85043 85285 85354) (-88 "BOUNDZRO.spad" 84689 84705 85022 85027) (-87 "BOP1.spad" 82148 82157 84679 84684) (-86 "BOP.spad" 77291 77298 82138 82143) (-85 "BOOLEAN.spad" 76840 76847 77281 77286) (-84 "BOOLE.spad" 76491 76498 76830 76835) (-83 "BOOLE.spad" 76140 76149 76481 76486) (-82 "BMODULE.spad" 75853 75864 76108 76135) (-81 "BITS.spad" 75285 75292 75499 75526) (-80 "catdef.spad" 75168 75178 75275 75280) (-79 "catdef.spad" 74919 74929 75158 75163) (-78 "BINDING.spad" 74341 74348 74909 74914) (-77 "BINARY.spad" 72576 72583 72931 73024) (-76 "BGAGG.spad" 71782 71791 72556 72571) (-75 "BGAGG.spad" 70996 71007 71772 71777) (-74 "BEZOUT.spad" 70137 70163 70946 70951) (-73 "BBTREE.spad" 67080 67089 69809 69836) (-72 "BASTYPE.spad" 66580 66587 67070 67075) (-71 "BASTYPE.spad" 66078 66087 66570 66575) (-70 "BALFACT.spad" 65538 65550 66068 66073) (-69 "AUTOMOR.spad" 64989 64998 65518 65533) (-68 "ATTREG.spad" 61712 61719 64741 64984) (-67 "ATTRAST.spad" 61429 61436 61702 61707) (-66 "ATRIG.spad" 60899 60906 61419 61424) (-65 "ATRIG.spad" 60367 60376 60889 60894) (-64 "ASTCAT.spad" 60271 60278 60357 60362) (-63 "ASTCAT.spad" 60173 60182 60261 60266) (-62 "ASTACK.spad" 59577 59586 59845 59872) (-61 "ASSOCEQ.spad" 58411 58422 59533 59538) (-60 "ARRAY2.spad" 57844 57853 58083 58110) (-59 "ARRAY12.spad" 56557 56568 57834 57839) (-58 "ARRAY1.spad" 55436 55445 55782 55809) (-57 "ARR2CAT.spad" 51218 51239 55404 55431) (-56 "ARR2CAT.spad" 47020 47043 51208 51213) (-55 "ARITY.spad" 46392 46399 47010 47015) (-54 "APPRULE.spad" 45676 45698 46382 46387) (-53 "APPLYORE.spad" 45295 45308 45666 45671) (-52 "ANY1.spad" 44366 44375 45285 45290) (-51 "ANY.spad" 43217 43224 44356 44361) (-50 "ANTISYM.spad" 41662 41678 43197 43212) (-49 "ANON.spad" 41371 41378 41652 41657) (-48 "AN.spad" 39839 39846 41202 41295) (-47 "AMR.spad" 38024 38035 39737 39834) (-46 "AMR.spad" 36072 36085 37787 37792) (-45 "ALIST.spad" 33310 33331 33660 33687) (-44 "ALGSC.spad" 32445 32471 33182 33235) (-43 "ALGPKG.spad" 28228 28239 32401 32406) (-42 "ALGMFACT.spad" 27421 27435 28218 28223) (-41 "ALGMANIP.spad" 24922 24937 27265 27270) (-40 "ALGFF.spad" 22740 22767 22957 23113) (-39 "ALGFACT.spad" 21859 21869 22730 22735) (-38 "ALGEBRA.spad" 21692 21701 21815 21854) (-37 "ALGEBRA.spad" 21557 21568 21682 21687) (-36 "ALAGG.spad" 21069 21090 21525 21552) (-35 "AHYP.spad" 20450 20457 21059 21064) (-34 "AGG.spad" 19159 19166 20440 20445) (-33 "AGG.spad" 17832 17841 19115 19120) (-32 "AF.spad" 16277 16292 17781 17786) (-31 "ADDAST.spad" 15963 15970 16267 16272) (-30 "ACPLOT.spad" 14840 14847 15953 15958) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1963163 1963168 1963173 1963178) (-2 NIL 1963143 1963148 1963153 1963158) (-1 NIL 1963123 1963128 1963133 1963138) (0 NIL 1963103 1963108 1963113 1963118) (-1210 "ZMOD.spad" 1962912 1962925 1963041 1963098) (-1209 "ZLINDEP.spad" 1962010 1962021 1962902 1962907) (-1208 "ZDSOLVE.spad" 1951971 1951993 1962000 1962005) (-1207 "YSTREAM.spad" 1951466 1951477 1951961 1951966) (-1206 "YDIAGRAM.spad" 1951100 1951109 1951456 1951461) (-1205 "XRPOLY.spad" 1950320 1950340 1950956 1951025) (-1204 "XPR.spad" 1948115 1948128 1950038 1950137) (-1203 "XPOLYC.spad" 1947434 1947450 1948041 1948110) (-1202 "XPOLY.spad" 1946989 1947000 1947290 1947359) (-1201 "XPBWPOLY.spad" 1945460 1945480 1946795 1946864) (-1200 "XFALG.spad" 1942508 1942524 1945386 1945455) (-1199 "XF.spad" 1940971 1940986 1942410 1942503) (-1198 "XF.spad" 1939414 1939431 1940855 1940860) (-1197 "XEXPPKG.spad" 1938673 1938699 1939404 1939409) (-1196 "XDPOLY.spad" 1938287 1938303 1938529 1938598) (-1195 "XALG.spad" 1937955 1937966 1938243 1938282) (-1194 "WUTSET.spad" 1933958 1933975 1937589 1937616) (-1193 "WP.spad" 1933165 1933209 1933816 1933883) (-1192 "WHILEAST.spad" 1932963 1932972 1933155 1933160) (-1191 "WHEREAST.spad" 1932634 1932643 1932953 1932958) (-1190 "WFFINTBS.spad" 1930297 1930319 1932624 1932629) (-1189 "WEIER.spad" 1928519 1928530 1930287 1930292) (-1188 "VSPACE.spad" 1928192 1928203 1928487 1928514) (-1187 "VSPACE.spad" 1927885 1927898 1928182 1928187) (-1186 "VOID.spad" 1927562 1927571 1927875 1927880) (-1185 "VIEWDEF.spad" 1922763 1922772 1927552 1927557) (-1184 "VIEW3D.spad" 1906724 1906733 1922753 1922758) (-1183 "VIEW2D.spad" 1894623 1894632 1906714 1906719) (-1182 "VIEW.spad" 1892343 1892352 1894613 1894618) (-1181 "VECTOR2.spad" 1890982 1890995 1892333 1892338) (-1180 "VECTOR.spad" 1889701 1889712 1889952 1889979) (-1179 "VECTCAT.spad" 1887613 1887624 1889669 1889696) (-1178 "VECTCAT.spad" 1885334 1885347 1887392 1887397) (-1177 "VARIABLE.spad" 1885114 1885129 1885324 1885329) (-1176 "UTYPE.spad" 1884758 1884767 1885104 1885109) (-1175 "UTSODETL.spad" 1884053 1884077 1884714 1884719) (-1174 "UTSODE.spad" 1882269 1882289 1884043 1884048) (-1173 "UTSCAT.spad" 1879748 1879764 1882167 1882264) (-1172 "UTSCAT.spad" 1876895 1876913 1879316 1879321) (-1171 "UTS2.spad" 1876490 1876525 1876885 1876890) (-1170 "UTS.spad" 1871502 1871530 1875022 1875119) (-1169 "URAGG.spad" 1866223 1866234 1871492 1871497) (-1168 "URAGG.spad" 1860908 1860921 1866179 1866184) (-1167 "UPXSSING.spad" 1858676 1858702 1860112 1860245) (-1166 "UPXSCONS.spad" 1856494 1856514 1856867 1857016) (-1165 "UPXSCCA.spad" 1855065 1855085 1856340 1856489) (-1164 "UPXSCCA.spad" 1853778 1853800 1855055 1855060) (-1163 "UPXSCAT.spad" 1852367 1852383 1853624 1853773) (-1162 "UPXS2.spad" 1851910 1851963 1852357 1852362) (-1161 "UPXS.spad" 1849265 1849293 1850101 1850250) (-1160 "UPSQFREE.spad" 1847680 1847694 1849255 1849260) (-1159 "UPSCAT.spad" 1845475 1845499 1847578 1847675) (-1158 "UPSCAT.spad" 1842971 1842997 1845076 1845081) (-1157 "UPOLYC2.spad" 1842442 1842461 1842961 1842966) (-1156 "UPOLYC.spad" 1837522 1837533 1842284 1842437) (-1155 "UPOLYC.spad" 1832520 1832533 1837284 1837289) (-1154 "UPMP.spad" 1831452 1831465 1832510 1832515) (-1153 "UPDIVP.spad" 1831017 1831031 1831442 1831447) (-1152 "UPDECOMP.spad" 1829278 1829292 1831007 1831012) (-1151 "UPCDEN.spad" 1828495 1828511 1829268 1829273) (-1150 "UP2.spad" 1827859 1827880 1828485 1828490) (-1149 "UP.spad" 1825329 1825344 1825716 1825869) (-1148 "UNISEG2.spad" 1824826 1824839 1825285 1825290) (-1147 "UNISEG.spad" 1824179 1824190 1824745 1824750) (-1146 "UNIFACT.spad" 1823282 1823294 1824169 1824174) (-1145 "ULSCONS.spad" 1817325 1817345 1817695 1817844) (-1144 "ULSCCAT.spad" 1815062 1815082 1817171 1817320) (-1143 "ULSCCAT.spad" 1812907 1812929 1815018 1815023) (-1142 "ULSCAT.spad" 1811147 1811163 1812753 1812902) (-1141 "ULS2.spad" 1810661 1810714 1811137 1811142) (-1140 "ULS.spad" 1802927 1802955 1803872 1804295) (-1139 "UINT8.spad" 1802804 1802813 1802917 1802922) (-1138 "UINT64.spad" 1802680 1802689 1802794 1802799) (-1137 "UINT32.spad" 1802556 1802565 1802670 1802675) (-1136 "UINT16.spad" 1802432 1802441 1802546 1802551) (-1135 "UFD.spad" 1801497 1801506 1802358 1802427) (-1134 "UFD.spad" 1800624 1800635 1801487 1801492) (-1133 "UDVO.spad" 1799505 1799514 1800614 1800619) (-1132 "UDPO.spad" 1797086 1797097 1799461 1799466) (-1131 "TYPEAST.spad" 1797005 1797014 1797076 1797081) (-1130 "TYPE.spad" 1796937 1796946 1796995 1797000) (-1129 "TWOFACT.spad" 1795589 1795604 1796927 1796932) (-1128 "TUPLE.spad" 1795096 1795107 1795501 1795506) (-1127 "TUBETOOL.spad" 1791963 1791972 1795086 1795091) (-1126 "TUBE.spad" 1790610 1790627 1791953 1791958) (-1125 "TSETCAT.spad" 1778681 1778698 1790578 1790605) (-1124 "TSETCAT.spad" 1766738 1766757 1778637 1778642) (-1123 "TS.spad" 1765366 1765382 1766332 1766429) (-1122 "TRMANIP.spad" 1759730 1759747 1765054 1765059) (-1121 "TRIMAT.spad" 1758693 1758718 1759720 1759725) (-1120 "TRIGMNIP.spad" 1757220 1757237 1758683 1758688) (-1119 "TRIGCAT.spad" 1756732 1756741 1757210 1757215) (-1118 "TRIGCAT.spad" 1756242 1756253 1756722 1756727) (-1117 "TREE.spad" 1754882 1754893 1755914 1755941) (-1116 "TRANFUN.spad" 1754721 1754730 1754872 1754877) (-1115 "TRANFUN.spad" 1754558 1754569 1754711 1754716) (-1114 "TOPSP.spad" 1754232 1754241 1754548 1754553) (-1113 "TOOLSIGN.spad" 1753895 1753906 1754222 1754227) (-1112 "TEXTFILE.spad" 1752456 1752465 1753885 1753890) (-1111 "TEX1.spad" 1752012 1752023 1752446 1752451) (-1110 "TEX.spad" 1749206 1749215 1752002 1752007) (-1109 "TBCMPPK.spad" 1747307 1747330 1749196 1749201) (-1108 "TBAGG.spad" 1746365 1746388 1747287 1747302) (-1107 "TBAGG.spad" 1745431 1745456 1746355 1746360) (-1106 "TANEXP.spad" 1744839 1744850 1745421 1745426) (-1105 "TALGOP.spad" 1744563 1744574 1744829 1744834) (-1104 "TABLEAU.spad" 1744044 1744055 1744553 1744558) (-1103 "TABLE.spad" 1742319 1742342 1742589 1742616) (-1102 "TABLBUMP.spad" 1739098 1739109 1742309 1742314) (-1101 "SYSTEM.spad" 1738326 1738335 1739088 1739093) (-1100 "SYSSOLP.spad" 1735809 1735820 1738316 1738321) (-1099 "SYSPTR.spad" 1735708 1735717 1735799 1735804) (-1098 "SYSNNI.spad" 1734931 1734942 1735698 1735703) (-1097 "SYSINT.spad" 1734335 1734346 1734921 1734926) (-1096 "SYNTAX.spad" 1730669 1730678 1734325 1734330) (-1095 "SYMTAB.spad" 1728737 1728746 1730659 1730664) (-1094 "SYMS.spad" 1724766 1724775 1728727 1728732) (-1093 "SYMPOLY.spad" 1723899 1723910 1723981 1724108) (-1092 "SYMFUNC.spad" 1723400 1723411 1723889 1723894) (-1091 "SYMBOL.spad" 1720895 1720904 1723390 1723395) (-1090 "SUTS.spad" 1718008 1718036 1719427 1719524) (-1089 "SUPXS.spad" 1715350 1715378 1716199 1716348) (-1088 "SUPFRACF.spad" 1714455 1714473 1715340 1715345) (-1087 "SUP2.spad" 1713847 1713860 1714445 1714450) (-1086 "SUP.spad" 1710931 1710942 1711704 1711857) (-1085 "SUMRF.spad" 1709905 1709916 1710921 1710926) (-1084 "SUMFS.spad" 1709534 1709551 1709895 1709900) (-1083 "SULS.spad" 1701787 1701815 1702745 1703168) (-1082 "syntax.spad" 1701556 1701565 1701777 1701782) (-1081 "SUCH.spad" 1701246 1701261 1701546 1701551) (-1080 "SUBSPACE.spad" 1693377 1693392 1701236 1701241) (-1079 "SUBRESP.spad" 1692547 1692561 1693333 1693338) (-1078 "STTFNC.spad" 1689015 1689031 1692537 1692542) (-1077 "STTF.spad" 1685114 1685130 1689005 1689010) (-1076 "STTAYLOR.spad" 1677791 1677802 1685021 1685026) (-1075 "STRTBL.spad" 1676178 1676195 1676327 1676354) (-1074 "STRING.spad" 1675046 1675055 1675431 1675458) (-1073 "STREAM3.spad" 1674619 1674634 1675036 1675041) (-1072 "STREAM2.spad" 1673747 1673760 1674609 1674614) (-1071 "STREAM1.spad" 1673453 1673464 1673737 1673742) (-1070 "STREAM.spad" 1670449 1670460 1673056 1673071) (-1069 "STINPROD.spad" 1669385 1669401 1670439 1670444) (-1068 "STEPAST.spad" 1668619 1668628 1669375 1669380) (-1067 "STEP.spad" 1667936 1667945 1668609 1668614) (-1066 "STBL.spad" 1666326 1666354 1666493 1666508) (-1065 "STAGG.spad" 1665025 1665036 1666316 1666321) (-1064 "STAGG.spad" 1663722 1663735 1665015 1665020) (-1063 "STACK.spad" 1663144 1663155 1663394 1663421) (-1062 "SRING.spad" 1662904 1662913 1663134 1663139) (-1061 "SREGSET.spad" 1660636 1660653 1662538 1662565) (-1060 "SRDCMPK.spad" 1659213 1659233 1660626 1660631) (-1059 "SRAGG.spad" 1654396 1654405 1659181 1659208) (-1058 "SRAGG.spad" 1649599 1649610 1654386 1654391) (-1057 "SQMATRIX.spad" 1647276 1647294 1648192 1648279) (-1056 "SPLTREE.spad" 1642018 1642031 1646814 1646841) (-1055 "SPLNODE.spad" 1638638 1638651 1642008 1642013) (-1054 "SPFCAT.spad" 1637447 1637456 1638628 1638633) (-1053 "SPECOUT.spad" 1635999 1636008 1637437 1637442) (-1052 "SPADXPT.spad" 1628090 1628099 1635989 1635994) (-1051 "spad-parser.spad" 1627555 1627564 1628080 1628085) (-1050 "SPADAST.spad" 1627256 1627265 1627545 1627550) (-1049 "SPACEC.spad" 1611471 1611482 1627246 1627251) (-1048 "SPACE3.spad" 1611247 1611258 1611461 1611466) (-1047 "SORTPAK.spad" 1610796 1610809 1611203 1611208) (-1046 "SOLVETRA.spad" 1608559 1608570 1610786 1610791) (-1045 "SOLVESER.spad" 1607015 1607026 1608549 1608554) (-1044 "SOLVERAD.spad" 1603041 1603052 1607005 1607010) (-1043 "SOLVEFOR.spad" 1601503 1601521 1603031 1603036) (-1042 "SNTSCAT.spad" 1601103 1601120 1601471 1601498) (-1041 "SMTS.spad" 1599420 1599446 1600697 1600794) (-1040 "SMP.spad" 1597228 1597248 1597618 1597745) (-1039 "SMITH.spad" 1596073 1596098 1597218 1597223) (-1038 "SMATCAT.spad" 1594191 1594221 1596017 1596068) (-1037 "SMATCAT.spad" 1592241 1592273 1594069 1594074) (-1036 "SKAGG.spad" 1591210 1591221 1592209 1592236) (-1035 "SINT.spad" 1590509 1590518 1591076 1591205) (-1034 "SIMPAN.spad" 1590237 1590246 1590499 1590504) (-1033 "SIGNRF.spad" 1589362 1589373 1590227 1590232) (-1032 "SIGNEF.spad" 1588648 1588665 1589352 1589357) (-1031 "syntax.spad" 1588065 1588074 1588638 1588643) (-1030 "SIG.spad" 1587427 1587436 1588055 1588060) (-1029 "SHP.spad" 1585371 1585386 1587383 1587388) (-1028 "SHDP.spad" 1574864 1574891 1575381 1575478) (-1027 "SGROUP.spad" 1574472 1574481 1574854 1574859) (-1026 "SGROUP.spad" 1574078 1574089 1574462 1574467) (-1025 "catdef.spad" 1573788 1573800 1573899 1574073) (-1024 "catdef.spad" 1573344 1573356 1573609 1573783) (-1023 "SGCF.spad" 1566483 1566492 1573334 1573339) (-1022 "SFRTCAT.spad" 1565429 1565446 1566451 1566478) (-1021 "SFRGCD.spad" 1564492 1564512 1565419 1565424) (-1020 "SFQCMPK.spad" 1559305 1559325 1564482 1564487) (-1019 "SEXOF.spad" 1559148 1559188 1559295 1559300) (-1018 "SEXCAT.spad" 1556976 1557016 1559138 1559143) (-1017 "SEX.spad" 1556868 1556877 1556966 1556971) (-1016 "SETMN.spad" 1555328 1555345 1556858 1556863) (-1015 "SETCAT.spad" 1554813 1554822 1555318 1555323) (-1014 "SETCAT.spad" 1554296 1554307 1554803 1554808) (-1013 "SETAGG.spad" 1550845 1550856 1554276 1554291) (-1012 "SETAGG.spad" 1547402 1547415 1550835 1550840) (-1011 "SET.spad" 1545711 1545722 1546808 1546847) (-1010 "syntax.spad" 1545414 1545423 1545701 1545706) (-1009 "SEGXCAT.spad" 1544570 1544583 1545404 1545409) (-1008 "SEGCAT.spad" 1543495 1543506 1544560 1544565) (-1007 "SEGBIND2.spad" 1543193 1543206 1543485 1543490) (-1006 "SEGBIND.spad" 1542951 1542962 1543140 1543145) (-1005 "SEGAST.spad" 1542681 1542690 1542941 1542946) (-1004 "SEG2.spad" 1542116 1542129 1542637 1542642) (-1003 "SEG.spad" 1541929 1541940 1542035 1542040) (-1002 "SDVAR.spad" 1541205 1541216 1541919 1541924) (-1001 "SDPOL.spad" 1538897 1538908 1539188 1539315) (-1000 "SCPKG.spad" 1536986 1536997 1538887 1538892) (-999 "SCOPE.spad" 1536164 1536172 1536976 1536981) (-998 "SCACHE.spad" 1534861 1534871 1536154 1536159) (-997 "SASTCAT.spad" 1534771 1534779 1534851 1534856) (-996 "SAOS.spad" 1534644 1534652 1534761 1534766) (-995 "SAERFFC.spad" 1534358 1534377 1534634 1534639) (-994 "SAEFACT.spad" 1534060 1534079 1534348 1534353) (-993 "SAE.spad" 1531711 1531726 1532321 1532456) (-992 "RURPK.spad" 1529371 1529386 1531701 1531706) (-991 "RULESET.spad" 1528825 1528848 1529361 1529366) (-990 "RULECOLD.spad" 1528678 1528690 1528815 1528820) (-989 "RULE.spad" 1526927 1526950 1528668 1528673) (-988 "RTVALUE.spad" 1526663 1526671 1526917 1526922) (-987 "syntax.spad" 1526381 1526389 1526653 1526658) (-986 "RSETGCD.spad" 1522824 1522843 1526371 1526376) (-985 "RSETCAT.spad" 1512793 1512809 1522792 1522819) (-984 "RSETCAT.spad" 1502782 1502800 1512783 1512788) (-983 "RSDCMPK.spad" 1501283 1501302 1502772 1502777) (-982 "RRCC.spad" 1499668 1499697 1501273 1501278) (-981 "RRCC.spad" 1498051 1498082 1499658 1499663) (-980 "RPTAST.spad" 1497754 1497762 1498041 1498046) (-979 "RPOLCAT.spad" 1477259 1477273 1497622 1497749) (-978 "RPOLCAT.spad" 1456557 1456573 1476922 1476927) (-977 "ROMAN.spad" 1455886 1455894 1456423 1456552) (-976 "ROIRC.spad" 1454967 1454998 1455876 1455881) (-975 "RNS.spad" 1453944 1453952 1454869 1454962) (-974 "RNS.spad" 1453007 1453017 1453934 1453939) (-973 "RNGBIND.spad" 1452168 1452181 1452962 1452967) (-972 "RNG.spad" 1451777 1451785 1452158 1452163) (-971 "RNG.spad" 1451384 1451394 1451767 1451772) (-970 "RMODULE.spad" 1451166 1451176 1451374 1451379) (-969 "RMCAT2.spad" 1450587 1450643 1451156 1451161) (-968 "RMATRIX.spad" 1449397 1449415 1449739 1449778) (-967 "RMATCAT.spad" 1444977 1445007 1449353 1449392) (-966 "RMATCAT.spad" 1440447 1440479 1444825 1444830) (-965 "RLINSET.spad" 1440152 1440162 1440437 1440442) (-964 "RINTERP.spad" 1440041 1440060 1440142 1440147) (-963 "RING.spad" 1439512 1439520 1440021 1440036) (-962 "RING.spad" 1438991 1439001 1439502 1439507) (-961 "RIDIST.spad" 1438384 1438392 1438981 1438986) (-960 "RGCHAIN.spad" 1436939 1436954 1437832 1437859) (-959 "RGBCSPC.spad" 1436729 1436740 1436929 1436934) (-958 "RGBCMDL.spad" 1436292 1436303 1436719 1436724) (-957 "RFFACTOR.spad" 1435755 1435765 1436282 1436287) (-956 "RFFACT.spad" 1435491 1435502 1435745 1435750) (-955 "RFDIST.spad" 1434488 1434496 1435481 1435486) (-954 "RF.spad" 1432163 1432173 1434478 1434483) (-953 "RETSOL.spad" 1431583 1431595 1432153 1432158) (-952 "RETRACT.spad" 1431012 1431022 1431573 1431578) (-951 "RETRACT.spad" 1430439 1430451 1431002 1431007) (-950 "RETAST.spad" 1430252 1430260 1430429 1430434) (-949 "RESRING.spad" 1429600 1429646 1430190 1430247) (-948 "RESLATC.spad" 1428925 1428935 1429590 1429595) (-947 "REPSQ.spad" 1428657 1428667 1428915 1428920) (-946 "REPDB.spad" 1428365 1428375 1428647 1428652) (-945 "REP2.spad" 1418080 1418090 1428207 1428212) (-944 "REP1.spad" 1412301 1412311 1418030 1418035) (-943 "REP.spad" 1409856 1409864 1412291 1412296) (-942 "REGSET.spad" 1407682 1407698 1409490 1409517) (-941 "REF.spad" 1407201 1407211 1407672 1407677) (-940 "REDORDER.spad" 1406408 1406424 1407191 1407196) (-939 "RECLOS.spad" 1405305 1405324 1406008 1406101) (-938 "REALSOLV.spad" 1404446 1404454 1405295 1405300) (-937 "REAL0Q.spad" 1401745 1401759 1404436 1404441) (-936 "REAL0.spad" 1398590 1398604 1401735 1401740) (-935 "REAL.spad" 1398463 1398471 1398580 1398585) (-934 "RDUCEAST.spad" 1398185 1398193 1398453 1398458) (-933 "RDIV.spad" 1397841 1397865 1398175 1398180) (-932 "RDIST.spad" 1397409 1397419 1397831 1397836) (-931 "RDETRS.spad" 1396274 1396291 1397399 1397404) (-930 "RDETR.spad" 1394414 1394431 1396264 1396269) (-929 "RDEEFS.spad" 1393514 1393530 1394404 1394409) (-928 "RDEEF.spad" 1392525 1392541 1393504 1393509) (-927 "RCFIELD.spad" 1389744 1389752 1392427 1392520) (-926 "RCFIELD.spad" 1387049 1387059 1389734 1389739) (-925 "RCAGG.spad" 1384986 1384996 1387039 1387044) (-924 "RCAGG.spad" 1382850 1382862 1384905 1384910) (-923 "RATRET.spad" 1382211 1382221 1382840 1382845) (-922 "RATFACT.spad" 1381904 1381915 1382201 1382206) (-921 "RANDSRC.spad" 1381224 1381232 1381894 1381899) (-920 "RADUTIL.spad" 1380981 1380989 1381214 1381219) (-919 "RADIX.spad" 1378026 1378039 1379571 1379664) (-918 "RADFF.spad" 1375943 1375979 1376061 1376217) (-917 "RADCAT.spad" 1375539 1375547 1375933 1375938) (-916 "RADCAT.spad" 1375133 1375143 1375529 1375534) (-915 "QUEUE.spad" 1374547 1374557 1374805 1374832) (-914 "QUATCT2.spad" 1374168 1374186 1374537 1374542) (-913 "QUATCAT.spad" 1372339 1372349 1374098 1374163) (-912 "QUATCAT.spad" 1370275 1370287 1372036 1372041) (-911 "QUAT.spad" 1368882 1368892 1369224 1369289) (-910 "QUAGG.spad" 1367716 1367726 1368850 1368877) (-909 "QQUTAST.spad" 1367485 1367493 1367706 1367711) (-908 "QFORM.spad" 1367104 1367118 1367475 1367480) (-907 "QFCAT2.spad" 1366797 1366813 1367094 1367099) (-906 "QFCAT.spad" 1365500 1365510 1366699 1366792) (-905 "QFCAT.spad" 1363836 1363848 1365037 1365042) (-904 "QEQUAT.spad" 1363395 1363403 1363826 1363831) (-903 "QCMPACK.spad" 1358310 1358329 1363385 1363390) (-902 "QALGSET2.spad" 1356306 1356324 1358300 1358305) (-901 "QALGSET.spad" 1352411 1352443 1356220 1356225) (-900 "PWFFINTB.spad" 1349827 1349848 1352401 1352406) (-899 "PUSHVAR.spad" 1349166 1349185 1349817 1349822) (-898 "PTRANFN.spad" 1345302 1345312 1349156 1349161) (-897 "PTPACK.spad" 1342390 1342400 1345292 1345297) (-896 "PTFUNC2.spad" 1342213 1342227 1342380 1342385) (-895 "PTCAT.spad" 1341468 1341478 1342181 1342208) (-894 "PSQFR.spad" 1340783 1340807 1341458 1341463) (-893 "PSEUDLIN.spad" 1339669 1339679 1340773 1340778) (-892 "PSETPK.spad" 1326374 1326390 1339547 1339552) (-891 "PSETCAT.spad" 1320774 1320797 1326354 1326369) (-890 "PSETCAT.spad" 1315148 1315173 1320730 1320735) (-889 "PSCURVE.spad" 1314147 1314155 1315138 1315143) (-888 "PSCAT.spad" 1312930 1312959 1314045 1314142) (-887 "PSCAT.spad" 1311803 1311834 1312920 1312925) (-886 "PRTITION.spad" 1310501 1310509 1311793 1311798) (-885 "PRTDAST.spad" 1310220 1310228 1310491 1310496) (-884 "PRS.spad" 1299838 1299855 1310176 1310181) (-883 "PRQAGG.spad" 1299273 1299283 1299806 1299833) (-882 "PROPLOG.spad" 1298877 1298885 1299263 1299268) (-881 "PROPFUN2.spad" 1298500 1298513 1298867 1298872) (-880 "PROPFUN1.spad" 1297906 1297917 1298490 1298495) (-879 "PROPFRML.spad" 1296474 1296485 1297896 1297901) (-878 "PROPERTY.spad" 1295970 1295978 1296464 1296469) (-877 "PRODUCT.spad" 1293667 1293679 1293951 1294006) (-876 "PRINT.spad" 1293419 1293427 1293657 1293662) (-875 "PRIMES.spad" 1291680 1291690 1293409 1293414) (-874 "PRIMELT.spad" 1289801 1289815 1291670 1291675) (-873 "PRIMCAT.spad" 1289444 1289452 1289791 1289796) (-872 "PRIMARR2.spad" 1288211 1288223 1289434 1289439) (-871 "PRIMARR.spad" 1287266 1287276 1287436 1287463) (-870 "PREASSOC.spad" 1286648 1286660 1287256 1287261) (-869 "PR.spad" 1285166 1285178 1285865 1285992) (-868 "PPCURVE.spad" 1284303 1284311 1285156 1285161) (-867 "PORTNUM.spad" 1284094 1284102 1284293 1284298) (-866 "POLYROOT.spad" 1282943 1282965 1284050 1284055) (-865 "POLYLIFT.spad" 1282208 1282231 1282933 1282938) (-864 "POLYCATQ.spad" 1280334 1280356 1282198 1282203) (-863 "POLYCAT.spad" 1273836 1273857 1280202 1280329) (-862 "POLYCAT.spad" 1266858 1266881 1273226 1273231) (-861 "POLY2UP.spad" 1266310 1266324 1266848 1266853) (-860 "POLY2.spad" 1265907 1265919 1266300 1266305) (-859 "POLY.spad" 1263575 1263585 1264090 1264217) (-858 "POLUTIL.spad" 1262540 1262569 1263531 1263536) (-857 "POLTOPOL.spad" 1261288 1261303 1262530 1262535) (-856 "POINT.spad" 1260171 1260181 1260258 1260285) (-855 "PNTHEORY.spad" 1256873 1256881 1260161 1260166) (-854 "PMTOOLS.spad" 1255648 1255662 1256863 1256868) (-853 "PMSYM.spad" 1255197 1255207 1255638 1255643) (-852 "PMQFCAT.spad" 1254788 1254802 1255187 1255192) (-851 "PMPREDFS.spad" 1254250 1254272 1254778 1254783) (-850 "PMPRED.spad" 1253737 1253751 1254240 1254245) (-849 "PMPLCAT.spad" 1252814 1252832 1253666 1253671) (-848 "PMLSAGG.spad" 1252399 1252413 1252804 1252809) (-847 "PMKERNEL.spad" 1251978 1251990 1252389 1252394) (-846 "PMINS.spad" 1251558 1251568 1251968 1251973) (-845 "PMFS.spad" 1251135 1251153 1251548 1251553) (-844 "PMDOWN.spad" 1250425 1250439 1251125 1251130) (-843 "PMASSFS.spad" 1249400 1249416 1250415 1250420) (-842 "PMASS.spad" 1248418 1248426 1249390 1249395) (-841 "PLOTTOOL.spad" 1248198 1248206 1248408 1248413) (-840 "PLOT3D.spad" 1244662 1244670 1248188 1248193) (-839 "PLOT1.spad" 1243835 1243845 1244652 1244657) (-838 "PLOT.spad" 1238758 1238766 1243825 1243830) (-837 "PLEQN.spad" 1226160 1226187 1238748 1238753) (-836 "PINTERPA.spad" 1225944 1225960 1226150 1226155) (-835 "PINTERP.spad" 1225566 1225585 1225934 1225939) (-834 "PID.spad" 1224540 1224548 1225492 1225561) (-833 "PICOERCE.spad" 1224197 1224207 1224530 1224535) (-832 "PI.spad" 1223814 1223822 1224171 1224192) (-831 "PGROEB.spad" 1222423 1222437 1223804 1223809) (-830 "PGE.spad" 1214096 1214104 1222413 1222418) (-829 "PGCD.spad" 1213050 1213067 1214086 1214091) (-828 "PFRPAC.spad" 1212199 1212209 1213040 1213045) (-827 "PFR.spad" 1208902 1208912 1212101 1212194) (-826 "PFOTOOLS.spad" 1208160 1208176 1208892 1208897) (-825 "PFOQ.spad" 1207530 1207548 1208150 1208155) (-824 "PFO.spad" 1206949 1206976 1207520 1207525) (-823 "PFECAT.spad" 1204659 1204667 1206875 1206944) (-822 "PFECAT.spad" 1202397 1202407 1204615 1204620) (-821 "PFBRU.spad" 1200285 1200297 1202387 1202392) (-820 "PFBR.spad" 1197845 1197868 1200275 1200280) (-819 "PF.spad" 1197419 1197431 1197650 1197743) (-818 "PERMGRP.spad" 1192189 1192199 1197409 1197414) (-817 "PERMCAT.spad" 1190850 1190860 1192169 1192184) (-816 "PERMAN.spad" 1189406 1189420 1190840 1190845) (-815 "PERM.spad" 1185216 1185226 1189239 1189254) (-814 "PENDTREE.spad" 1184630 1184640 1184910 1184915) (-813 "PDSPC.spad" 1183443 1183453 1184620 1184625) (-812 "PDSPC.spad" 1182254 1182266 1183433 1183438) (-811 "PDRING.spad" 1182096 1182106 1182234 1182249) (-810 "PDMOD.spad" 1181912 1181924 1182064 1182091) (-809 "PDECOMP.spad" 1181382 1181399 1181902 1181907) (-808 "PDDOM.spad" 1180820 1180833 1181372 1181377) (-807 "PDDOM.spad" 1180256 1180271 1180810 1180815) (-806 "PCOMP.spad" 1180109 1180122 1180246 1180251) (-805 "PBWLB.spad" 1178707 1178724 1180099 1180104) (-804 "PATTERN2.spad" 1178445 1178457 1178697 1178702) (-803 "PATTERN1.spad" 1176789 1176805 1178435 1178440) (-802 "PATTERN.spad" 1171364 1171374 1176779 1176784) (-801 "PATRES2.spad" 1171036 1171050 1171354 1171359) (-800 "PATRES.spad" 1168619 1168631 1171026 1171031) (-799 "PATMATCH.spad" 1166860 1166891 1168371 1168376) (-798 "PATMAB.spad" 1166289 1166299 1166850 1166855) (-797 "PATLRES.spad" 1165375 1165389 1166279 1166284) (-796 "PATAB.spad" 1165139 1165149 1165365 1165370) (-795 "PARTPERM.spad" 1163195 1163203 1165129 1165134) (-794 "PARSURF.spad" 1162629 1162657 1163185 1163190) (-793 "PARSU2.spad" 1162426 1162442 1162619 1162624) (-792 "script-parser.spad" 1161946 1161954 1162416 1162421) (-791 "PARSCURV.spad" 1161380 1161408 1161936 1161941) (-790 "PARSC2.spad" 1161171 1161187 1161370 1161375) (-789 "PARPCURV.spad" 1160633 1160661 1161161 1161166) (-788 "PARPC2.spad" 1160424 1160440 1160623 1160628) (-787 "PARAMAST.spad" 1159552 1159560 1160414 1160419) (-786 "PAN2EXPR.spad" 1158964 1158972 1159542 1159547) (-785 "PALETTE.spad" 1158078 1158086 1158954 1158959) (-784 "PAIR.spad" 1157152 1157165 1157721 1157726) (-783 "PADICRC.spad" 1154557 1154575 1155720 1155813) (-782 "PADICRAT.spad" 1152617 1152629 1152830 1152923) (-781 "PADICCT.spad" 1151166 1151178 1152543 1152612) (-780 "PADIC.spad" 1150869 1150881 1151092 1151161) (-779 "PADEPAC.spad" 1149558 1149577 1150859 1150864) (-778 "PADE.spad" 1148310 1148326 1149548 1149553) (-777 "OWP.spad" 1147558 1147588 1148168 1148235) (-776 "OVERSET.spad" 1147131 1147139 1147548 1147553) (-775 "OVAR.spad" 1146912 1146935 1147121 1147126) (-774 "OUTFORM.spad" 1136320 1136328 1146902 1146907) (-773 "OUTBFILE.spad" 1135754 1135762 1136310 1136315) (-772 "OUTBCON.spad" 1134824 1134832 1135744 1135749) (-771 "OUTBCON.spad" 1133892 1133902 1134814 1134819) (-770 "OUT.spad" 1133010 1133018 1133882 1133887) (-769 "OSI.spad" 1132485 1132493 1133000 1133005) (-768 "OSGROUP.spad" 1132403 1132411 1132475 1132480) (-767 "ORTHPOL.spad" 1130914 1130924 1132346 1132351) (-766 "OREUP.spad" 1130408 1130436 1130635 1130674) (-765 "ORESUP.spad" 1129750 1129774 1130129 1130168) (-764 "OREPCTO.spad" 1127639 1127651 1129670 1129675) (-763 "OREPCAT.spad" 1121826 1121836 1127595 1127634) (-762 "OREPCAT.spad" 1115903 1115915 1121674 1121679) (-761 "ORDTYPE.spad" 1115140 1115148 1115893 1115898) (-760 "ORDTYPE.spad" 1114375 1114385 1115130 1115135) (-759 "ORDSTRCT.spad" 1114161 1114176 1114324 1114329) (-758 "ORDSET.spad" 1113861 1113869 1114151 1114156) (-757 "ORDRING.spad" 1113678 1113686 1113841 1113856) (-756 "ORDMON.spad" 1113533 1113541 1113668 1113673) (-755 "ORDFUNS.spad" 1112665 1112681 1113523 1113528) (-754 "ORDFIN.spad" 1112485 1112493 1112655 1112660) (-753 "ORDCOMP2.spad" 1111778 1111790 1112475 1112480) (-752 "ORDCOMP.spad" 1110304 1110314 1111386 1111415) (-751 "OPSIG.spad" 1109966 1109974 1110294 1110299) (-750 "OPQUERY.spad" 1109547 1109555 1109956 1109961) (-749 "OPERCAT.spad" 1109013 1109023 1109537 1109542) (-748 "OPERCAT.spad" 1108477 1108489 1109003 1109008) (-747 "OP.spad" 1108219 1108229 1108299 1108366) (-746 "ONECOMP2.spad" 1107643 1107655 1108209 1108214) (-745 "ONECOMP.spad" 1106449 1106459 1107251 1107280) (-744 "OMSAGG.spad" 1106237 1106247 1106405 1106444) (-743 "OMLO.spad" 1105670 1105682 1106123 1106162) (-742 "OINTDOM.spad" 1105433 1105441 1105596 1105665) (-741 "OFMONOID.spad" 1103572 1103582 1105389 1105394) (-740 "ODVAR.spad" 1102833 1102843 1103562 1103567) (-739 "ODR.spad" 1102477 1102503 1102645 1102794) (-738 "ODPOL.spad" 1100125 1100135 1100465 1100592) (-737 "ODP.spad" 1089762 1089782 1090135 1090232) (-736 "ODETOOLS.spad" 1088411 1088430 1089752 1089757) (-735 "ODESYS.spad" 1086105 1086122 1088401 1088406) (-734 "ODERTRIC.spad" 1082138 1082155 1086062 1086067) (-733 "ODERED.spad" 1081537 1081561 1082128 1082133) (-732 "ODERAT.spad" 1079170 1079187 1081527 1081532) (-731 "ODEPRRIC.spad" 1076263 1076285 1079160 1079165) (-730 "ODEPRIM.spad" 1073661 1073683 1076253 1076258) (-729 "ODEPAL.spad" 1073047 1073071 1073651 1073656) (-728 "ODEINT.spad" 1072482 1072498 1073037 1073042) (-727 "ODEEF.spad" 1067977 1067993 1072472 1072477) (-726 "ODECONST.spad" 1067522 1067540 1067967 1067972) (-725 "OCTCT2.spad" 1067163 1067181 1067512 1067517) (-724 "OCT.spad" 1065478 1065488 1066192 1066231) (-723 "OCAMON.spad" 1065326 1065334 1065468 1065473) (-722 "OC.spad" 1063122 1063132 1065282 1065321) (-721 "OC.spad" 1060657 1060669 1062819 1062824) (-720 "OASGP.spad" 1060472 1060480 1060647 1060652) (-719 "OAMONS.spad" 1059994 1060002 1060462 1060467) (-718 "OAMON.spad" 1059752 1059760 1059984 1059989) (-717 "OAMON.spad" 1059508 1059518 1059742 1059747) (-716 "OAGROUP.spad" 1059046 1059054 1059498 1059503) (-715 "OAGROUP.spad" 1058582 1058592 1059036 1059041) (-714 "NUMTUBE.spad" 1058173 1058189 1058572 1058577) (-713 "NUMQUAD.spad" 1046149 1046157 1058163 1058168) (-712 "NUMODE.spad" 1037501 1037509 1046139 1046144) (-711 "NUMFMT.spad" 1036341 1036349 1037491 1037496) (-710 "NUMERIC.spad" 1028456 1028466 1036147 1036152) (-709 "NTSCAT.spad" 1026964 1026980 1028424 1028451) (-708 "NTPOLFN.spad" 1026541 1026551 1026907 1026912) (-707 "NSUP2.spad" 1025933 1025945 1026531 1026536) (-706 "NSUP.spad" 1019370 1019380 1023790 1023943) (-705 "NSMP.spad" 1016282 1016301 1016574 1016701) (-704 "NREP.spad" 1014684 1014698 1016272 1016277) (-703 "NPCOEF.spad" 1013930 1013950 1014674 1014679) (-702 "NORMRETR.spad" 1013528 1013567 1013920 1013925) (-701 "NORMPK.spad" 1011470 1011489 1013518 1013523) (-700 "NORMMA.spad" 1011158 1011184 1011460 1011465) (-699 "NONE1.spad" 1010834 1010844 1011148 1011153) (-698 "NONE.spad" 1010575 1010583 1010824 1010829) (-697 "NODE1.spad" 1010062 1010078 1010565 1010570) (-696 "NNI.spad" 1008957 1008965 1010036 1010057) (-695 "NLINSOL.spad" 1007583 1007593 1008947 1008952) (-694 "NFINTBAS.spad" 1005143 1005160 1007573 1007578) (-693 "NETCLT.spad" 1005117 1005128 1005133 1005138) (-692 "NCODIV.spad" 1003341 1003357 1005107 1005112) (-691 "NCNTFRAC.spad" 1002983 1002997 1003331 1003336) (-690 "NCEP.spad" 1001149 1001163 1002973 1002978) (-689 "NASRING.spad" 1000753 1000761 1001139 1001144) (-688 "NASRING.spad" 1000355 1000365 1000743 1000748) (-687 "NARNG.spad" 999755 999763 1000345 1000350) (-686 "NARNG.spad" 999153 999163 999745 999750) (-685 "NAALG.spad" 998718 998728 999121 999148) (-684 "NAALG.spad" 998303 998315 998708 998713) (-683 "MULTSQFR.spad" 995261 995278 998293 998298) (-682 "MULTFACT.spad" 994644 994661 995251 995256) (-681 "MTSCAT.spad" 992738 992759 994542 994639) (-680 "MTHING.spad" 992397 992407 992728 992733) (-679 "MSYSCMD.spad" 991831 991839 992387 992392) (-678 "MSETAGG.spad" 991676 991686 991799 991826) (-677 "MSET.spad" 989622 989632 991370 991409) (-676 "MRING.spad" 986599 986611 989330 989397) (-675 "MRF2.spad" 986161 986175 986589 986594) (-674 "MRATFAC.spad" 985707 985724 986151 986156) (-673 "MPRFF.spad" 983747 983766 985697 985702) (-672 "MPOLY.spad" 981551 981566 981910 982037) (-671 "MPCPF.spad" 980815 980834 981541 981546) (-670 "MPC3.spad" 980632 980672 980805 980810) (-669 "MPC2.spad" 980286 980319 980622 980627) (-668 "MONOTOOL.spad" 978637 978654 980276 980281) (-667 "catdef.spad" 978070 978081 978291 978632) (-666 "catdef.spad" 977468 977479 977724 978065) (-665 "MONOID.spad" 976789 976797 977458 977463) (-664 "MONOID.spad" 976108 976118 976779 976784) (-663 "MONOGEN.spad" 974856 974869 975968 976103) (-662 "MONOGEN.spad" 973626 973641 974740 974745) (-661 "MONADWU.spad" 971706 971714 973616 973621) (-660 "MONADWU.spad" 969784 969794 971696 971701) (-659 "MONAD.spad" 968944 968952 969774 969779) (-658 "MONAD.spad" 968102 968112 968934 968939) (-657 "MOEBIUS.spad" 966838 966852 968082 968097) (-656 "MODULE.spad" 966708 966718 966806 966833) (-655 "MODULE.spad" 966598 966610 966698 966703) (-654 "MODRING.spad" 965933 965972 966578 966593) (-653 "MODOP.spad" 964590 964602 965755 965822) (-652 "MODMONOM.spad" 964321 964339 964580 964585) (-651 "MODMON.spad" 961391 961403 962106 962259) (-650 "MODFIELD.spad" 960753 960792 961293 961386) (-649 "MMLFORM.spad" 959613 959621 960743 960748) (-648 "MMAP.spad" 959355 959389 959603 959608) (-647 "MLO.spad" 957814 957824 959311 959350) (-646 "MLIFT.spad" 956426 956443 957804 957809) (-645 "MKUCFUNC.spad" 955961 955979 956416 956421) (-644 "MKRECORD.spad" 955549 955562 955951 955956) (-643 "MKFUNC.spad" 954956 954966 955539 955544) (-642 "MKFLCFN.spad" 953924 953934 954946 954951) (-641 "MKBCFUNC.spad" 953419 953437 953914 953919) (-640 "MHROWRED.spad" 951930 951940 953409 953414) (-639 "MFINFACT.spad" 951330 951352 951920 951925) (-638 "MESH.spad" 949125 949133 951320 951325) (-637 "MDDFACT.spad" 947344 947354 949115 949120) (-636 "MDAGG.spad" 946635 946645 947324 947339) (-635 "MCDEN.spad" 945845 945857 946625 946630) (-634 "MAYBE.spad" 945145 945156 945835 945840) (-633 "MATSTOR.spad" 942461 942471 945135 945140) (-632 "MATRIX.spad" 941240 941250 941724 941751) (-631 "MATLIN.spad" 938608 938632 941124 941129) (-630 "MATCAT2.spad" 937890 937938 938598 938603) (-629 "MATCAT.spad" 929452 929474 937858 937885) (-628 "MATCAT.spad" 920886 920910 929294 929299) (-627 "MAPPKG3.spad" 919801 919815 920876 920881) (-626 "MAPPKG2.spad" 919139 919151 919791 919796) (-625 "MAPPKG1.spad" 917967 917977 919129 919134) (-624 "MAPPAST.spad" 917306 917314 917957 917962) (-623 "MAPHACK3.spad" 917118 917132 917296 917301) (-622 "MAPHACK2.spad" 916887 916899 917108 917113) (-621 "MAPHACK1.spad" 916531 916541 916877 916882) (-620 "MAGMA.spad" 914337 914354 916521 916526) (-619 "MACROAST.spad" 913932 913940 914327 914332) (-618 "LZSTAGG.spad" 911186 911196 913922 913927) (-617 "LZSTAGG.spad" 908438 908450 911176 911181) (-616 "LWORD.spad" 905183 905200 908428 908433) (-615 "LSTAST.spad" 904967 904975 905173 905178) (-614 "LSQM.spad" 903245 903259 903639 903690) (-613 "LSPP.spad" 902780 902797 903235 903240) (-612 "LSMP1.spad" 900623 900637 902770 902775) (-611 "LSMP.spad" 899480 899508 900613 900618) (-610 "LSAGG.spad" 899149 899159 899448 899475) (-609 "LSAGG.spad" 898838 898850 899139 899144) (-608 "LPOLY.spad" 897800 897819 898694 898763) (-607 "LPEFRAC.spad" 897071 897081 897790 897795) (-606 "LOGIC.spad" 896673 896681 897061 897066) (-605 "LOGIC.spad" 896273 896283 896663 896668) (-604 "LODOOPS.spad" 895203 895215 896263 896268) (-603 "LODOF.spad" 894249 894266 895160 895165) (-602 "LODOCAT.spad" 892915 892925 894205 894244) (-601 "LODOCAT.spad" 891579 891591 892871 892876) (-600 "LODO2.spad" 890893 890905 891300 891339) (-599 "LODO1.spad" 890334 890344 890614 890653) (-598 "LODO.spad" 889759 889775 890055 890094) (-597 "LODEEF.spad" 888561 888579 889749 889754) (-596 "LO.spad" 887962 887976 888495 888522) (-595 "LNAGG.spad" 884149 884159 887952 887957) (-594 "LNAGG.spad" 880300 880312 884105 884110) (-593 "LMOPS.spad" 877068 877085 880290 880295) (-592 "LMODULE.spad" 876852 876862 877058 877063) (-591 "LMDICT.spad" 876233 876243 876481 876508) (-590 "LLINSET.spad" 875940 875950 876223 876228) (-589 "LITERAL.spad" 875846 875857 875930 875935) (-588 "LIST3.spad" 875157 875171 875836 875841) (-587 "LIST2MAP.spad" 872084 872096 875147 875152) (-586 "LIST2.spad" 870786 870798 872074 872079) (-585 "LIST.spad" 868668 868678 870011 870038) (-584 "LINSET.spad" 868447 868457 868658 868663) (-583 "LINFORM.spad" 867910 867922 868415 868442) (-582 "LINEXP.spad" 866653 866663 867900 867905) (-581 "LINELT.spad" 866024 866036 866536 866563) (-580 "LINDEP.spad" 864873 864885 865936 865941) (-579 "LINBASIS.spad" 864509 864524 864863 864868) (-578 "LIMITRF.spad" 862456 862466 864499 864504) (-577 "LIMITPS.spad" 861366 861379 862446 862451) (-576 "LIECAT.spad" 860850 860860 861292 861361) (-575 "LIECAT.spad" 860362 860374 860806 860811) (-574 "LIE.spad" 858366 858378 859640 859782) (-573 "LIB.spad" 856537 856545 856983 856998) (-572 "LGROBP.spad" 853890 853909 856527 856532) (-571 "LFCAT.spad" 852949 852957 853880 853885) (-570 "LF.spad" 851904 851920 852939 852944) (-569 "LEXTRIPK.spad" 847527 847542 851894 851899) (-568 "LEXP.spad" 845546 845573 847507 847522) (-567 "LETAST.spad" 845245 845253 845536 845541) (-566 "LEADCDET.spad" 843651 843668 845235 845240) (-565 "LAZM3PK.spad" 842395 842417 843641 843646) (-564 "LAUPOL.spad" 841062 841075 841962 842031) (-563 "LAPLACE.spad" 840645 840661 841052 841057) (-562 "LALG.spad" 840421 840431 840625 840640) (-561 "LALG.spad" 840205 840217 840411 840416) (-560 "LA.spad" 839645 839659 840127 840166) (-559 "KVTFROM.spad" 839388 839398 839635 839640) (-558 "KTVLOGIC.spad" 838932 838940 839378 839383) (-557 "KRCFROM.spad" 838678 838688 838922 838927) (-556 "KOVACIC.spad" 837409 837426 838668 838673) (-555 "KONVERT.spad" 837131 837141 837399 837404) (-554 "KOERCE.spad" 836868 836878 837121 837126) (-553 "KERNEL2.spad" 836571 836583 836858 836863) (-552 "KERNEL.spad" 835291 835301 836420 836425) (-551 "KDAGG.spad" 834400 834422 835271 835286) (-550 "KDAGG.spad" 833517 833541 834390 834395) (-549 "KAFILE.spad" 832407 832423 832642 832669) (-548 "JVMOP.spad" 832320 832328 832397 832402) (-547 "JVMMDACC.spad" 831374 831382 832310 832315) (-546 "JVMFDACC.spad" 830690 830698 831364 831369) (-545 "JVMCSTTG.spad" 829419 829427 830680 830685) (-544 "JVMCFACC.spad" 828865 828873 829409 829414) (-543 "JVMBCODE.spad" 828776 828784 828855 828860) (-542 "JORDAN.spad" 826593 826605 828054 828196) (-541 "JOINAST.spad" 826295 826303 826583 826588) (-540 "IXAGG.spad" 824428 824452 826285 826290) (-539 "IXAGG.spad" 822416 822442 824275 824280) (-538 "IVECTOR.spad" 821231 821246 821386 821413) (-537 "ITUPLE.spad" 820407 820417 821221 821226) (-536 "ITRIGMNP.spad" 819254 819273 820397 820402) (-535 "ITFUN3.spad" 818760 818774 819244 819249) (-534 "ITFUN2.spad" 818504 818516 818750 818755) (-533 "ITFORM.spad" 817859 817867 818494 818499) (-532 "ITAYLOR.spad" 815853 815868 817723 817820) (-531 "ISUPS.spad" 808302 808317 814839 814936) (-530 "ISUMP.spad" 807803 807819 808292 808297) (-529 "ISAST.spad" 807522 807530 807793 807798) (-528 "IRURPK.spad" 806239 806258 807512 807517) (-527 "IRSN.spad" 804243 804251 806229 806234) (-526 "IRRF2F.spad" 802736 802746 804199 804204) (-525 "IRREDFFX.spad" 802337 802348 802726 802731) (-524 "IROOT.spad" 800676 800686 802327 802332) (-523 "IRFORM.spad" 800000 800008 800666 800671) (-522 "IR2F.spad" 799214 799230 799990 799995) (-521 "IR2.spad" 798242 798258 799204 799209) (-520 "IR.spad" 796078 796092 798124 798151) (-519 "IPRNTPK.spad" 795838 795846 796068 796073) (-518 "IPF.spad" 795403 795415 795643 795736) (-517 "IPADIC.spad" 795172 795198 795329 795398) (-516 "IP4ADDR.spad" 794729 794737 795162 795167) (-515 "IOMODE.spad" 794251 794259 794719 794724) (-514 "IOBFILE.spad" 793636 793644 794241 794246) (-513 "IOBCON.spad" 793501 793509 793626 793631) (-512 "INVLAPLA.spad" 793150 793166 793491 793496) (-511 "INTTR.spad" 786544 786561 793140 793145) (-510 "INTTOOLS.spad" 784352 784368 786171 786176) (-509 "INTSLPE.spad" 783680 783688 784342 784347) (-508 "INTRVL.spad" 783246 783256 783594 783675) (-507 "INTRF.spad" 781678 781692 783236 783241) (-506 "INTRET.spad" 781110 781120 781668 781673) (-505 "INTRAT.spad" 779845 779862 781100 781105) (-504 "INTPM.spad" 778308 778324 779566 779571) (-503 "INTPAF.spad" 776184 776202 778237 778242) (-502 "INTHERTR.spad" 775458 775475 776174 776179) (-501 "INTHERAL.spad" 775128 775152 775448 775453) (-500 "INTHEORY.spad" 771567 771575 775118 775123) (-499 "INTG0.spad" 765331 765349 771496 771501) (-498 "INTFACT.spad" 764398 764408 765321 765326) (-497 "INTEF.spad" 762809 762825 764388 764393) (-496 "INTDOM.spad" 761432 761440 762735 762804) (-495 "INTDOM.spad" 760117 760127 761422 761427) (-494 "INTCAT.spad" 758384 758394 760031 760112) (-493 "INTBIT.spad" 757891 757899 758374 758379) (-492 "INTALG.spad" 757079 757106 757881 757886) (-491 "INTAF.spad" 756579 756595 757069 757074) (-490 "INTABL.spad" 754961 754992 755124 755151) (-489 "INT8.spad" 754841 754849 754951 754956) (-488 "INT64.spad" 754720 754728 754831 754836) (-487 "INT32.spad" 754599 754607 754710 754715) (-486 "INT16.spad" 754478 754486 754589 754594) (-485 "INT.spad" 754004 754012 754344 754473) (-484 "INS.spad" 751507 751515 753906 753999) (-483 "INS.spad" 749096 749106 751497 751502) (-482 "INPSIGN.spad" 748566 748579 749086 749091) (-481 "INPRODPF.spad" 747662 747681 748556 748561) (-480 "INPRODFF.spad" 746750 746774 747652 747657) (-479 "INNMFACT.spad" 745725 745742 746740 746745) (-478 "INMODGCD.spad" 745229 745259 745715 745720) (-477 "INFSP.spad" 743526 743548 745219 745224) (-476 "INFPROD0.spad" 742606 742625 743516 743521) (-475 "INFORM1.spad" 742231 742241 742596 742601) (-474 "INFORM.spad" 739442 739450 742221 742226) (-473 "INFINITY.spad" 738994 739002 739432 739437) (-472 "INETCLTS.spad" 738971 738979 738984 738989) (-471 "INEP.spad" 737517 737539 738961 738966) (-470 "INDE.spad" 737166 737183 737427 737432) (-469 "INCRMAPS.spad" 736603 736613 737156 737161) (-468 "INBFILE.spad" 735699 735707 736593 736598) (-467 "INBFF.spad" 731549 731560 735689 735694) (-466 "INBCON.spad" 729815 729823 731539 731544) (-465 "INBCON.spad" 728079 728089 729805 729810) (-464 "INAST.spad" 727740 727748 728069 728074) (-463 "IMPTAST.spad" 727448 727456 727730 727735) (-462 "IMATRIX.spad" 726458 726484 726970 726997) (-461 "IMATQF.spad" 725552 725596 726414 726419) (-460 "IMATLIN.spad" 724173 724197 725508 725513) (-459 "IIARRAY2.spad" 723642 723680 723845 723872) (-458 "IFF.spad" 723055 723071 723326 723419) (-457 "IFAST.spad" 722669 722677 723045 723050) (-456 "IFARRAY.spad" 720196 720211 721894 721921) (-455 "IFAMON.spad" 720058 720075 720152 720157) (-454 "IEVALAB.spad" 719471 719483 720048 720053) (-453 "IEVALAB.spad" 718882 718896 719461 719466) (-452 "indexedp.spad" 718438 718450 718872 718877) (-451 "IDPOAMS.spad" 718116 718128 718350 718355) (-450 "IDPOAM.spad" 717758 717770 718028 718033) (-449 "IDPO.spad" 717172 717184 717670 717675) (-448 "IDPC.spad" 715887 715899 717162 717167) (-447 "IDPAM.spad" 715554 715566 715799 715804) (-446 "IDPAG.spad" 715223 715235 715466 715471) (-445 "IDENT.spad" 714875 714883 715213 715218) (-444 "catdef.spad" 714646 714657 714758 714870) (-443 "IDECOMP.spad" 711885 711903 714636 714641) (-442 "IDEAL.spad" 706847 706886 711833 711838) (-441 "ICDEN.spad" 706060 706076 706837 706842) (-440 "ICARD.spad" 705453 705461 706050 706055) (-439 "IBPTOOLS.spad" 704060 704077 705443 705448) (-438 "IBITS.spad" 703573 703586 703706 703733) (-437 "IBATOOL.spad" 700558 700577 703563 703568) (-436 "IBACHIN.spad" 699065 699080 700548 700553) (-435 "IARRAY2.spad" 698126 698152 698737 698764) (-434 "IARRAY1.spad" 697205 697220 697351 697378) (-433 "IAN.spad" 695587 695595 697036 697129) (-432 "IALGFACT.spad" 695198 695231 695577 695582) (-431 "HYPCAT.spad" 694622 694630 695188 695193) (-430 "HYPCAT.spad" 694044 694054 694612 694617) (-429 "HOSTNAME.spad" 693860 693868 694034 694039) (-428 "HOMOTOP.spad" 693603 693613 693850 693855) (-427 "HOAGG.spad" 690885 690895 693593 693598) (-426 "HOAGG.spad" 687917 687929 690627 690632) (-425 "HEXADEC.spad" 686142 686150 686507 686600) (-424 "HEUGCD.spad" 685233 685244 686132 686137) (-423 "HELLFDIV.spad" 684839 684863 685223 685228) (-422 "HEAP.spad" 684296 684306 684511 684538) (-421 "HEADAST.spad" 683837 683845 684286 684291) (-420 "HDP.spad" 673470 673486 673847 673944) (-419 "HDMP.spad" 671017 671032 671633 671760) (-418 "HB.spad" 669292 669300 671007 671012) (-417 "HASHTBL.spad" 667626 667657 667837 667864) (-416 "HASAST.spad" 667342 667350 667616 667621) (-415 "HACKPI.spad" 666833 666841 667244 667337) (-414 "GTSET.spad" 665760 665776 666467 666494) (-413 "GSTBL.spad" 664143 664178 664317 664332) (-412 "GSERIES.spad" 661515 661542 662334 662483) (-411 "GROUP.spad" 660788 660796 661495 661510) (-410 "GROUP.spad" 660069 660079 660778 660783) (-409 "GROEBSOL.spad" 658563 658584 660059 660064) (-408 "GRMOD.spad" 657144 657156 658553 658558) (-407 "GRMOD.spad" 655723 655737 657134 657139) (-406 "GRIMAGE.spad" 648636 648644 655713 655718) (-405 "GRDEF.spad" 647015 647023 648626 648631) (-404 "GRAY.spad" 645486 645494 647005 647010) (-403 "GRALG.spad" 644581 644593 645476 645481) (-402 "GRALG.spad" 643674 643688 644571 644576) (-401 "GPOLSET.spad" 643132 643155 643344 643371) (-400 "GOSPER.spad" 642409 642427 643122 643127) (-399 "GMODPOL.spad" 641557 641584 642377 642404) (-398 "GHENSEL.spad" 640640 640654 641547 641552) (-397 "GENUPS.spad" 636933 636946 640630 640635) (-396 "GENUFACT.spad" 636510 636520 636923 636928) (-395 "GENPGCD.spad" 636112 636129 636500 636505) (-394 "GENMFACT.spad" 635564 635583 636102 636107) (-393 "GENEEZ.spad" 633523 633536 635554 635559) (-392 "GDMP.spad" 630912 630929 631686 631813) (-391 "GCNAALG.spad" 624835 624862 630706 630773) (-390 "GCDDOM.spad" 624027 624035 624761 624830) (-389 "GCDDOM.spad" 623281 623291 624017 624022) (-388 "GBINTERN.spad" 619301 619339 623271 623276) (-387 "GBF.spad" 615084 615122 619291 619296) (-386 "GBEUCLID.spad" 612966 613004 615074 615079) (-385 "GB.spad" 610492 610530 612922 612927) (-384 "GAUSSFAC.spad" 609805 609813 610482 610487) (-383 "GALUTIL.spad" 608131 608141 609761 609766) (-382 "GALPOLYU.spad" 606585 606598 608121 608126) (-381 "GALFACTU.spad" 604798 604817 606575 606580) (-380 "GALFACT.spad" 595011 595022 604788 604793) (-379 "FUNDESC.spad" 594689 594697 595001 595006) (-378 "FUNCTION.spad" 594538 594550 594679 594684) (-377 "FT.spad" 592838 592846 594528 594533) (-376 "FSUPFACT.spad" 591752 591771 592788 592793) (-375 "FST.spad" 589838 589846 591742 591747) (-374 "FSRED.spad" 589318 589334 589828 589833) (-373 "FSPRMELT.spad" 588184 588200 589275 589280) (-372 "FSPECF.spad" 586275 586291 588174 588179) (-371 "FSINT.spad" 585935 585951 586265 586270) (-370 "FSERIES.spad" 585126 585138 585755 585854) (-369 "FSCINT.spad" 584443 584459 585116 585121) (-368 "FSAGG2.spad" 583178 583194 584433 584438) (-367 "FSAGG.spad" 582295 582305 583134 583173) (-366 "FSAGG.spad" 581374 581386 582215 582220) (-365 "FS2UPS.spad" 575889 575923 581364 581369) (-364 "FS2EXPXP.spad" 575030 575053 575879 575884) (-363 "FS2.spad" 574685 574701 575020 575025) (-362 "FS.spad" 568957 568967 574464 574680) (-361 "FS.spad" 563031 563043 568540 568545) (-360 "FRUTIL.spad" 561985 561995 563021 563026) (-359 "FRNAALG.spad" 557262 557272 561927 561980) (-358 "FRNAALG.spad" 552551 552563 557218 557223) (-357 "FRNAAF2.spad" 551999 552017 552541 552546) (-356 "FRMOD.spad" 551407 551437 551928 551933) (-355 "FRIDEAL2.spad" 551011 551043 551397 551402) (-354 "FRIDEAL.spad" 550236 550257 550991 551006) (-353 "FRETRCT.spad" 549755 549765 550226 550231) (-352 "FRETRCT.spad" 549181 549193 549654 549659) (-351 "FRAMALG.spad" 547561 547574 549137 549176) (-350 "FRAMALG.spad" 545973 545988 547551 547556) (-349 "FRAC2.spad" 545578 545590 545963 545968) (-348 "FRAC.spad" 543565 543575 543952 544125) (-347 "FR2.spad" 542901 542913 543555 543560) (-346 "FR.spad" 536689 536699 541962 542031) (-345 "FPS.spad" 533528 533536 536579 536684) (-344 "FPS.spad" 530395 530405 533448 533453) (-343 "FPC.spad" 529441 529449 530297 530390) (-342 "FPC.spad" 528573 528583 529431 529436) (-341 "FPATMAB.spad" 528335 528345 528563 528568) (-340 "FPARFRAC.spad" 527177 527194 528325 528330) (-339 "FORDER.spad" 526868 526892 527167 527172) (-338 "FNLA.spad" 526292 526314 526836 526863) (-337 "FNCAT.spad" 524887 524895 526282 526287) (-336 "FNAME.spad" 524779 524787 524877 524882) (-335 "FMONOID.spad" 524460 524470 524735 524740) (-334 "FMONCAT.spad" 521629 521639 524450 524455) (-333 "FMCAT.spad" 519305 519323 521597 521624) (-332 "FM1.spad" 518670 518682 519239 519266) (-331 "FM.spad" 518285 518297 518524 518551) (-330 "FLOATRP.spad" 516028 516042 518275 518280) (-329 "FLOATCP.spad" 513467 513481 516018 516023) (-328 "FLOAT.spad" 510558 510566 513333 513462) (-327 "FLINEXP.spad" 510280 510290 510548 510553) (-326 "FLINEXP.spad" 509959 509971 510229 510234) (-325 "FLASORT.spad" 509285 509297 509949 509954) (-324 "FLALG.spad" 506955 506974 509211 509280) (-323 "FLAGG2.spad" 505672 505688 506945 506950) (-322 "FLAGG.spad" 502738 502748 505652 505667) (-321 "FLAGG.spad" 499705 499717 502621 502626) (-320 "FINRALG.spad" 497790 497803 499661 499700) (-319 "FINRALG.spad" 495801 495816 497674 497679) (-318 "FINITE.spad" 494953 494961 495791 495796) (-317 "FINITE.spad" 494103 494113 494943 494948) (-316 "FINAALG.spad" 483288 483298 494045 494098) (-315 "FINAALG.spad" 472485 472497 483244 483249) (-314 "FILECAT.spad" 471019 471036 472475 472480) (-313 "FILE.spad" 470602 470612 471009 471014) (-312 "FIELD.spad" 470008 470016 470504 470597) (-311 "FIELD.spad" 469500 469510 469998 470003) (-310 "FGROUP.spad" 468163 468173 469480 469495) (-309 "FGLMICPK.spad" 466958 466973 468153 468158) (-308 "FFX.spad" 466344 466359 466677 466770) (-307 "FFSLPE.spad" 465855 465876 466334 466339) (-306 "FFPOLY2.spad" 464915 464932 465845 465850) (-305 "FFPOLY.spad" 456257 456268 464905 464910) (-304 "FFP.spad" 455665 455685 455976 456069) (-303 "FFNBX.spad" 454188 454208 455384 455477) (-302 "FFNBP.spad" 452712 452729 453907 454000) (-301 "FFNB.spad" 451180 451201 452396 452489) (-300 "FFINTBAS.spad" 448694 448713 451170 451175) (-299 "FFIELDC.spad" 446279 446287 448596 448689) (-298 "FFIELDC.spad" 443950 443960 446269 446274) (-297 "FFHOM.spad" 442722 442739 443940 443945) (-296 "FFF.spad" 440165 440176 442712 442717) (-295 "FFCGX.spad" 439023 439043 439884 439977) (-294 "FFCGP.spad" 437923 437943 438742 438835) (-293 "FFCG.spad" 436718 436739 437607 437700) (-292 "FFCAT2.spad" 436465 436505 436708 436713) (-291 "FFCAT.spad" 429630 429652 436304 436460) (-290 "FFCAT.spad" 422874 422898 429550 429555) (-289 "FF.spad" 422325 422341 422558 422651) (-288 "FEVALAB.spad" 422033 422043 422315 422320) (-287 "FEVALAB.spad" 421517 421529 421801 421806) (-286 "FDIVCAT.spad" 419613 419637 421507 421512) (-285 "FDIVCAT.spad" 417707 417733 419603 419608) (-284 "FDIV2.spad" 417363 417403 417697 417702) (-283 "FDIV.spad" 416821 416845 417353 417358) (-282 "FCTRDATA.spad" 415829 415837 416811 416816) (-281 "FCOMP.spad" 415208 415218 415819 415824) (-280 "FAXF.spad" 408243 408257 415110 415203) (-279 "FAXF.spad" 401330 401346 408199 408204) (-278 "FARRAY.spad" 399522 399532 400555 400582) (-277 "FAMR.spad" 397666 397678 399420 399517) (-276 "FAMR.spad" 395794 395808 397550 397555) (-275 "FAMONOID.spad" 395478 395488 395748 395753) (-274 "FAMONC.spad" 393798 393810 395468 395473) (-273 "FAGROUP.spad" 393438 393448 393694 393721) (-272 "FACUTIL.spad" 391650 391667 393428 393433) (-271 "FACTFUNC.spad" 390852 390862 391640 391645) (-270 "EXPUPXS.spad" 387744 387767 389043 389192) (-269 "EXPRTUBE.spad" 385032 385040 387734 387739) (-268 "EXPRODE.spad" 382200 382216 385022 385027) (-267 "EXPR2UPS.spad" 378322 378335 382190 382195) (-266 "EXPR2.spad" 378027 378039 378312 378317) (-265 "EXPR.spad" 373672 373682 374386 374673) (-264 "EXPEXPAN.spad" 370617 370642 371249 371342) (-263 "EXITAST.spad" 370353 370361 370607 370612) (-262 "EXIT.spad" 370024 370032 370343 370348) (-261 "EVALCYC.spad" 369484 369498 370014 370019) (-260 "EVALAB.spad" 369064 369074 369474 369479) (-259 "EVALAB.spad" 368642 368654 369054 369059) (-258 "EUCDOM.spad" 366232 366240 368568 368637) (-257 "EUCDOM.spad" 363884 363894 366222 366227) (-256 "ES2.spad" 363397 363413 363874 363879) (-255 "ES1.spad" 362967 362983 363387 363392) (-254 "ES.spad" 355838 355846 362957 362962) (-253 "ES.spad" 348630 348640 355751 355756) (-252 "ERROR.spad" 345957 345965 348620 348625) (-251 "EQTBL.spad" 344293 344315 344502 344529) (-250 "EQ2.spad" 344011 344023 344283 344288) (-249 "EQ.spad" 338917 338927 341712 341818) (-248 "EP.spad" 335243 335253 338907 338912) (-247 "ENV.spad" 333921 333929 335233 335238) (-246 "ENTIRER.spad" 333589 333597 333865 333916) (-245 "ENTIRER.spad" 333301 333311 333579 333584) (-244 "EMR.spad" 332589 332630 333227 333296) (-243 "ELTAGG.spad" 330843 330862 332579 332584) (-242 "ELTAGG.spad" 329061 329082 330799 330804) (-241 "ELTAB.spad" 328536 328549 329051 329056) (-240 "ELFUTS.spad" 327971 327990 328526 328531) (-239 "ELEMFUN.spad" 327660 327668 327961 327966) (-238 "ELEMFUN.spad" 327347 327357 327650 327655) (-237 "ELAGG.spad" 325318 325328 327327 327342) (-236 "ELAGG.spad" 323226 323238 325237 325242) (-235 "ELABOR.spad" 322572 322580 323216 323221) (-234 "ELABEXPR.spad" 321504 321512 322562 322567) (-233 "EFUPXS.spad" 318280 318310 321460 321465) (-232 "EFULS.spad" 315116 315139 318236 318241) (-231 "EFSTRUC.spad" 313131 313147 315106 315111) (-230 "EF.spad" 307907 307923 313121 313126) (-229 "EAB.spad" 306207 306215 307897 307902) (-228 "DVARCAT.spad" 303213 303223 306197 306202) (-227 "DVARCAT.spad" 300217 300229 303203 303208) (-226 "DSMP.spad" 297950 297964 298255 298382) (-225 "DSEXT.spad" 297252 297262 297940 297945) (-224 "DSEXT.spad" 296474 296486 297164 297169) (-223 "DROPT1.spad" 296139 296149 296464 296469) (-222 "DROPT0.spad" 291004 291012 296129 296134) (-221 "DROPT.spad" 284963 284971 290994 290999) (-220 "DRAWPT.spad" 283136 283144 284953 284958) (-219 "DRAWHACK.spad" 282444 282454 283126 283131) (-218 "DRAWCX.spad" 279922 279930 282434 282439) (-217 "DRAWCURV.spad" 279469 279484 279912 279917) (-216 "DRAWCFUN.spad" 269001 269009 279459 279464) (-215 "DRAW.spad" 261877 261890 268991 268996) (-214 "DQAGG.spad" 260055 260065 261845 261872) (-213 "DPOLCAT.spad" 255412 255428 259923 260050) (-212 "DPOLCAT.spad" 250855 250873 255368 255373) (-211 "DPMO.spad" 243558 243574 243696 243902) (-210 "DPMM.spad" 236274 236292 236399 236605) (-209 "DOMTMPLT.spad" 236045 236053 236264 236269) (-208 "DOMCTOR.spad" 235800 235808 236035 236040) (-207 "DOMAIN.spad" 234911 234919 235790 235795) (-206 "DMP.spad" 232504 232519 233074 233201) (-205 "DMEXT.spad" 232371 232381 232472 232499) (-204 "DLP.spad" 231731 231741 232361 232366) (-203 "DLIST.spad" 230352 230362 230956 230983) (-202 "DLAGG.spad" 228769 228779 230342 230347) (-201 "DIVRING.spad" 228311 228319 228713 228764) (-200 "DIVRING.spad" 227897 227907 228301 228306) (-199 "DISPLAY.spad" 226087 226095 227887 227892) (-198 "DIRPROD2.spad" 224905 224923 226077 226082) (-197 "DIRPROD.spad" 214275 214291 214915 215012) (-196 "DIRPCAT.spad" 213470 213486 214173 214270) (-195 "DIRPCAT.spad" 212291 212309 212996 213001) (-194 "DIOSP.spad" 211116 211124 212281 212286) (-193 "DIOPS.spad" 210112 210122 211096 211111) (-192 "DIOPS.spad" 209082 209094 210068 210073) (-191 "catdef.spad" 208940 208948 209072 209077) (-190 "DIFRING.spad" 208778 208786 208920 208935) (-189 "DIFFSPC.spad" 208357 208365 208768 208773) (-188 "DIFFSPC.spad" 207934 207944 208347 208352) (-187 "DIFFMOD.spad" 207423 207433 207902 207929) (-186 "DIFFDOM.spad" 206588 206599 207413 207418) (-185 "DIFFDOM.spad" 205751 205764 206578 206583) (-184 "DIFEXT.spad" 205570 205580 205731 205746) (-183 "DIAGG.spad" 205200 205210 205550 205565) (-182 "DIAGG.spad" 204838 204850 205190 205195) (-181 "DHMATRIX.spad" 203215 203225 204360 204387) (-180 "DFSFUN.spad" 196855 196863 203205 203210) (-179 "DFLOAT.spad" 193462 193470 196745 196850) (-178 "DFINTTLS.spad" 191693 191709 193452 193457) (-177 "DERHAM.spad" 189607 189639 191673 191688) (-176 "DEQUEUE.spad" 188996 189006 189279 189306) (-175 "DEGRED.spad" 188613 188627 188986 188991) (-174 "DEFINTRF.spad" 186195 186205 188603 188608) (-173 "DEFINTEF.spad" 184733 184749 186185 186190) (-172 "DEFAST.spad" 184117 184125 184723 184728) (-171 "DECIMAL.spad" 182346 182354 182707 182800) (-170 "DDFACT.spad" 180167 180184 182336 182341) (-169 "DBLRESP.spad" 179767 179791 180157 180162) (-168 "DBASIS.spad" 179393 179408 179757 179762) (-167 "DBASE.spad" 178057 178067 179383 179388) (-166 "DATAARY.spad" 177543 177556 178047 178052) (-165 "CYCLOTOM.spad" 177049 177057 177533 177538) (-164 "CYCLES.spad" 173841 173849 177039 177044) (-163 "CVMP.spad" 173258 173268 173831 173836) (-162 "CTRIGMNP.spad" 171758 171774 173248 173253) (-161 "CTORKIND.spad" 171361 171369 171748 171753) (-160 "CTORCAT.spad" 170602 170610 171351 171356) (-159 "CTORCAT.spad" 169841 169851 170592 170597) (-158 "CTORCALL.spad" 169430 169440 169831 169836) (-157 "CTOR.spad" 169121 169129 169420 169425) (-156 "CSTTOOLS.spad" 168366 168379 169111 169116) (-155 "CRFP.spad" 162138 162151 168356 168361) (-154 "CRCEAST.spad" 161858 161866 162128 162133) (-153 "CRAPACK.spad" 160925 160935 161848 161853) (-152 "CPMATCH.spad" 160426 160441 160847 160852) (-151 "CPIMA.spad" 160131 160150 160416 160421) (-150 "COORDSYS.spad" 155140 155150 160121 160126) (-149 "CONTOUR.spad" 154567 154575 155130 155135) (-148 "CONTFRAC.spad" 150317 150327 154469 154562) (-147 "CONDUIT.spad" 150075 150083 150307 150312) (-146 "COMRING.spad" 149749 149757 150013 150070) (-145 "COMPPROP.spad" 149267 149275 149739 149744) (-144 "COMPLPAT.spad" 149034 149049 149257 149262) (-143 "COMPLEX2.spad" 148749 148761 149024 149029) (-142 "COMPLEX.spad" 144455 144465 144699 144957) (-141 "COMPILER.spad" 144004 144012 144445 144450) (-140 "COMPFACT.spad" 143606 143620 143994 143999) (-139 "COMPCAT.spad" 141681 141691 143343 143601) (-138 "COMPCAT.spad" 139497 139509 141161 141166) (-137 "COMMUPC.spad" 139245 139263 139487 139492) (-136 "COMMONOP.spad" 138778 138786 139235 139240) (-135 "COMMAAST.spad" 138541 138549 138768 138773) (-134 "COMM.spad" 138352 138360 138531 138536) (-133 "COMBOPC.spad" 137275 137283 138342 138347) (-132 "COMBINAT.spad" 136042 136052 137265 137270) (-131 "COMBF.spad" 133464 133480 136032 136037) (-130 "COLOR.spad" 132301 132309 133454 133459) (-129 "COLONAST.spad" 131967 131975 132291 132296) (-128 "CMPLXRT.spad" 131678 131695 131957 131962) (-127 "CLLCTAST.spad" 131340 131348 131668 131673) (-126 "CLIP.spad" 127448 127456 131330 131335) (-125 "CLIF.spad" 126103 126119 127404 127443) (-124 "CLAGG.spad" 122640 122650 126093 126098) (-123 "CLAGG.spad" 119061 119073 122516 122521) (-122 "CINTSLPE.spad" 118416 118429 119051 119056) (-121 "CHVAR.spad" 116554 116576 118406 118411) (-120 "CHARZ.spad" 116469 116477 116534 116549) (-119 "CHARPOL.spad" 115995 116005 116459 116464) (-118 "CHARNZ.spad" 115757 115765 115975 115990) (-117 "CHAR.spad" 113125 113133 115747 115752) (-116 "CFCAT.spad" 112453 112461 113115 113120) (-115 "CDEN.spad" 111673 111687 112443 112448) (-114 "CCLASS.spad" 109853 109861 111115 111154) (-113 "CATEGORY.spad" 108927 108935 109843 109848) (-112 "CATCTOR.spad" 108818 108826 108917 108922) (-111 "CATAST.spad" 108444 108452 108808 108813) (-110 "CASEAST.spad" 108158 108166 108434 108439) (-109 "CARTEN2.spad" 107548 107575 108148 108153) (-108 "CARTEN.spad" 103300 103324 107538 107543) (-107 "CARD.spad" 100595 100603 103274 103295) (-106 "CAPSLAST.spad" 100377 100385 100585 100590) (-105 "CACHSET.spad" 100001 100009 100367 100372) (-104 "CABMON.spad" 99556 99564 99991 99996) (-103 "BYTEORD.spad" 99231 99239 99546 99551) (-102 "BYTEBUF.spad" 97198 97206 98484 98511) (-101 "BYTE.spad" 96673 96681 97188 97193) (-100 "BTREE.spad" 95811 95821 96345 96372) (-99 "BTOURN.spad" 94882 94891 95483 95510) (-98 "BTCAT.spad" 94275 94284 94850 94877) (-97 "BTCAT.spad" 93688 93699 94265 94270) (-96 "BTAGG.spad" 93155 93162 93656 93683) (-95 "BTAGG.spad" 92642 92651 93145 93150) (-94 "BSTREE.spad" 91449 91458 92314 92341) (-93 "BRILL.spad" 89655 89665 91439 91444) (-92 "BRAGG.spad" 88612 88621 89645 89650) (-91 "BRAGG.spad" 87533 87544 88568 88573) (-90 "BPADICRT.spad" 85593 85604 85839 85932) (-89 "BPADIC.spad" 85266 85277 85519 85588) (-88 "BOUNDZRO.spad" 84923 84939 85256 85261) (-87 "BOP1.spad" 82382 82391 84913 84918) (-86 "BOP.spad" 77525 77532 82372 82377) (-85 "BOOLEAN.spad" 77074 77081 77515 77520) (-84 "BOOLE.spad" 76725 76732 77064 77069) (-83 "BOOLE.spad" 76374 76383 76715 76720) (-82 "BMODULE.spad" 76087 76098 76342 76369) (-81 "BITS.spad" 75519 75526 75733 75760) (-80 "catdef.spad" 75402 75412 75509 75514) (-79 "catdef.spad" 75153 75163 75392 75397) (-78 "BINDING.spad" 74575 74582 75143 75148) (-77 "BINARY.spad" 72810 72817 73165 73258) (-76 "BGAGG.spad" 72016 72025 72790 72805) (-75 "BGAGG.spad" 71230 71241 72006 72011) (-74 "BEZOUT.spad" 70371 70397 71180 71185) (-73 "BBTREE.spad" 67314 67323 70043 70070) (-72 "BASTYPE.spad" 66814 66821 67304 67309) (-71 "BASTYPE.spad" 66312 66321 66804 66809) (-70 "BALFACT.spad" 65772 65784 66302 66307) (-69 "AUTOMOR.spad" 65223 65232 65752 65767) (-68 "ATTREG.spad" 61946 61953 64975 65218) (-67 "ATTRAST.spad" 61663 61670 61936 61941) (-66 "ATRIG.spad" 61133 61140 61653 61658) (-65 "ATRIG.spad" 60601 60610 61123 61128) (-64 "ASTCAT.spad" 60505 60512 60591 60596) (-63 "ASTCAT.spad" 60407 60416 60495 60500) (-62 "ASTACK.spad" 59811 59820 60079 60106) (-61 "ASSOCEQ.spad" 58645 58656 59767 59772) (-60 "ARRAY2.spad" 58078 58087 58317 58344) (-59 "ARRAY12.spad" 56791 56802 58068 58073) (-58 "ARRAY1.spad" 55670 55679 56016 56043) (-57 "ARR2CAT.spad" 51452 51473 55638 55665) (-56 "ARR2CAT.spad" 47254 47277 51442 51447) (-55 "ARITY.spad" 46626 46633 47244 47249) (-54 "APPRULE.spad" 45910 45932 46616 46621) (-53 "APPLYORE.spad" 45529 45542 45900 45905) (-52 "ANY1.spad" 44600 44609 45519 45524) (-51 "ANY.spad" 43451 43458 44590 44595) (-50 "ANTISYM.spad" 41896 41912 43431 43446) (-49 "ANON.spad" 41605 41612 41886 41891) (-48 "AN.spad" 40073 40080 41436 41529) (-47 "AMR.spad" 38258 38269 39971 40068) (-46 "AMR.spad" 36306 36319 38021 38026) (-45 "ALIST.spad" 33544 33565 33894 33921) (-44 "ALGSC.spad" 32679 32705 33416 33469) (-43 "ALGPKG.spad" 28462 28473 32635 32640) (-42 "ALGMFACT.spad" 27655 27669 28452 28457) (-41 "ALGMANIP.spad" 25156 25171 27499 27504) (-40 "ALGFF.spad" 22974 23001 23191 23347) (-39 "ALGFACT.spad" 22093 22103 22964 22969) (-38 "ALGEBRA.spad" 21926 21935 22049 22088) (-37 "ALGEBRA.spad" 21791 21802 21916 21921) (-36 "ALAGG.spad" 21303 21324 21759 21786) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index c54e7356..81203204 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,279 +1,279 @@ -(199610 . 3577105538) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-347 |#2|) |#3|) . T)) -((((-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) (((-484)) |has| (-347 |#2|) (-951 (-484))) (((-347 |#2|)) . T)) -((((-347 |#2|)) . T)) -((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T)) -((((-347 |#2|)) . T)) -((((-347 |#2|) |#3|) . T)) -(|has| (-347 |#2|) (-120)) -((((-347 |#2|) |#3|) . T)) -(|has| (-347 |#2|) (-118)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -(|has| (-347 |#2|) (-190)) -((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))) -(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))) -((((-347 |#2|)) . T)) -((($ (-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089))))) -((((-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089))))) -((((-1089)) |has| (-347 |#2|) (-810 (-1089)))) -((((-347 |#2|)) . T)) +(199610 . 3577141755) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-348 |#2|) |#3|) . T)) +((((-348 (-485))) |has| (-348 |#2|) (-952 (-348 (-485)))) (((-485)) |has| (-348 |#2|) (-952 (-485))) (((-348 |#2|)) . T)) +((((-348 |#2|)) . T)) +((((-485)) |has| (-348 |#2|) (-582 (-485))) (((-348 |#2|)) . T)) +((((-348 |#2|)) . T)) +((((-348 |#2|) |#3|) . T)) +(|has| (-348 |#2|) (-120)) +((((-348 |#2|) |#3|) . T)) +(|has| (-348 |#2|) (-118)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +(|has| (-348 |#2|) (-190)) +((($) OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189)))) +(OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189))) +((((-348 |#2|)) . T)) +((($ (-1091)) OR (|has| (-348 |#2|) (-811 (-1091))) (|has| (-348 |#2|) (-813 (-1091))))) +((((-1091)) OR (|has| (-348 |#2|) (-811 (-1091))) (|has| (-348 |#2|) (-813 (-1091))))) +((((-1091)) |has| (-348 |#2|) (-811 (-1091)))) +((((-348 |#2|)) . T)) (((|#3|) . T)) -((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +((((-348 |#2|) (-348 |#2|)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-485)) |has| (-348 |#2|) (-582 (-485))) (((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3|) . T)) -((((-484) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1055 |#2| |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-1055 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T)) +((((-1057 |#2| |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-1057 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-773)) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-774)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) (((-1145 (-484)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -((((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) (((-1147 (-485)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-551 $) $) . T)) -((((-347 (-484))) . T) (((-484)) . T) (((-551 $)) . T)) -((((-1038 (-484) (-551 $))) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T) (((-551 $)) . T)) -((((-773)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((((-142 (-328))) . T) (((-179)) . T) (((-328)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-552 $) $) . T)) +((((-348 (-485))) . T) (((-485)) . T) (((-552 $)) . T)) +((((-1040 (-485) (-552 $))) . T) (($) . T) (((-485)) . T) (((-348 (-485))) . T) (((-552 $)) . T)) +((((-774)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-695)) . T)) -((((-695)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-696)) . T)) +((((-696)) . T)) +((((-774)) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1| |#1|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-918 2)) . T) (((-347 (-484))) . T) (((-773)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((($) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-919 2)) . T) (((-348 (-485))) . T) (((-774)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((($) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T) (((-1145 (-484)) $) . T)) -((((-473)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) +((((-474)) . T)) ((((-85)) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-473)) . T)) -((((-773)) . T)) -((((-1089)) . T)) -((((-773)) . T)) +((((-474)) . T)) +((((-774)) . T)) +((((-1091)) . T)) +((((-774)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) +((((-485)) . T) (($) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-347 (-484))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-89 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) +((((-89 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-89 |#1|)) . T) (((-348 (-485))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-89 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) ((((-89 |#1|)) . T)) -((((-1089) (-89 |#1|)) |has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|)))) -((((-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|)))) +((((-1091) (-89 |#1|)) |has| (-89 |#1|) (-454 (-1091) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) +((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) ((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-347 (-484))) . T)) +((($) . T) (((-89 |#1|)) . T) (((-348 (-485))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) +((((-485)) . T) (((-89 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-1072)) . T) (((-870 (-101))) . T) (((-773)) . T)) +((((-1074)) . T) (((-871 (-101))) . T) (((-774)) . T)) ((((-101)) . T)) -((((-484) (-101)) . T)) -((((-1145 (-484)) $) . T) (((-484) (-101)) . T)) -((((-484) (-101)) . T)) +((((-485) (-101)) . T)) +((((-1147 (-485)) $) . T) (((-485) (-101)) . T)) +((((-485) (-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-695)) . T)) -((((-695)) . T)) -((((-773)) . T)) -((((-484) |#3|) . T)) -((((-484) (-695)) . T) ((|#3| (-695)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-696)) . T)) +((((-696)) . T)) +((((-774)) . T)) +((((-485) |#3|) . T)) +((((-485) (-696)) . T) ((|#3| (-696)) . T)) +((((-774)) . T)) (((|#3|) . T)) -((((-584 $)) . T) (((-584 |#3|)) . T) (((-1055 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-695)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-444)) . T)) -((((-157)) . T) (((-773)) . T)) -((((-773)) . T)) +((((-585 $)) . T) (((-585 |#3|)) . T) (((-1057 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-696)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-445)) . T)) +((((-157)) . T) (((-774)) . T)) +((((-774)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) @@ -281,9 +281,9 @@ ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-584 (-117))) . T) (((-1072)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-585 (-117))) . T) (((-1074)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -291,1350 +291,1350 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-484)) . T)) +(((|#2|) . T) (((-485)) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-298))) -((((-773)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-299))) +((((-774)) . T)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1089)) |has| |#1| (-810 (-1089)))) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -(((|#1|) . T)) -(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298))) -((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298)))) -(OR (|has| |#1| (-190)) (|has| |#1| (-298))) -(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) -(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) -(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(((|#1|) . T)) -((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) -(((|#1|) |has| |#1| (-259 |#1|))) +((((-1091)) |has| |#1| (-811 (-1091)))) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +(((|#1|) . T)) +(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))) +((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))) +(OR (|has| |#1| (-190)) (|has| |#1| (-299))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(((|#1|) . T)) +((((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T)) -((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327)))) -(((|#1|) . T)) -((((-484)) . T) (($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-1084 |#1|)) . T)) -(((|#1| (-1084 |#1|)) . T)) -((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -(((|#1| (-1084 |#1|)) . T)) -(|has| |#1| (-298)) -(|has| |#1| (-298)) -(|has| |#1| (-298)) -(OR (|has| |#1| (-317)) (|has| |#1| (-298))) -(((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-934)) (((-142 (-327))) |has| |#1| (-934)) (((-473)) |has| |#1| (-554 (-473))) (((-1084 |#1|)) . T) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327))))) -(-12 (|has| |#1| (-257)) (|has| |#1| (-822))) -(-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) -(|has| |#1| (-1114)) -(|has| |#1| (-1114)) -(|has| |#1| (-1114)) -(|has| |#1| (-1114)) -(|has| |#1| (-1114)) -(|has| |#1| (-1114)) -(((|#1|) . T)) -((((-773)) . T)) -((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) -((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T) (((-347 |#1|) (-347 |#1|)) . T) ((|#1| |#1|) . T)) -((((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T)) -((((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-484)) . T)) -((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-444)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 |#1|)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-918 10)) . T) (((-347 (-484))) . T) (((-773)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((($) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-264 |#1|)) . T)) -((((-773)) . T)) -((((-264 |#1|)) . T) (((-484)) . T) (($) . T)) -((((-264 |#1|)) . T) (($) . T)) -((((-264 |#1|)) . T) (((-484)) . T)) -((((-264 |#1|)) . T)) -((($) . T)) -((((-484)) . T) (((-347 (-484))) . T)) -((((-327)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-473)) . T) (((-179)) . T) (((-327)) . T) (((-801 (-327))) . T)) -((((-773)) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T) (((-484)) . T)) -(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) -(((|#1|) . T)) -(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) -((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) -(|has| |#2| (-317)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(((|#2|) |has| |#2| (-311))) +((($) . T) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T)) +((((-485)) |has| |#1| (-798 (-485))) (((-328)) |has| |#1| (-798 (-328)))) +(((|#1|) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-348 (-485))))) ((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-1086 |#1|)) . T)) +(((|#1| (-1086 |#1|)) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +(((|#1| (-1086 |#1|)) . T)) +(|has| |#1| (-299)) +(|has| |#1| (-299)) +(|has| |#1| (-299)) +(OR (|has| |#1| (-318)) (|has| |#1| (-299))) +(((|#1|) . T)) +((((-142 (-179))) |has| |#1| (-935)) (((-142 (-328))) |has| |#1| (-935)) (((-474)) |has| |#1| (-555 (-474))) (((-1086 |#1|)) . T) (((-802 (-485))) |has| |#1| (-555 (-802 (-485)))) (((-802 (-328))) |has| |#1| (-555 (-802 (-328))))) +(-12 (|has| |#1| (-258)) (|has| |#1| (-823))) +(-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(((|#1|) . T)) +((((-774)) . T)) +((((-348 (-485))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) +((((-348 (-485))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-348 (-485))) . T) (((-348 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-348 (-485))) . T) (((-348 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T) (((-348 |#1|) (-348 |#1|)) . T) ((|#1| |#1|) . T)) +((((-348 (-485))) . T) (((-348 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T)) +((((-348 (-485))) . T) (((-348 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T) (((-485)) . T)) +((((-348 (-485))) . T) (($) . T) (((-348 |#1|)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-445)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 |#1|)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-919 10)) . T) (((-348 (-485))) . T) (((-774)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((($) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-265 |#1|)) . T)) +((((-774)) . T)) +((((-265 |#1|)) . T) (((-485)) . T) (($) . T)) +((((-265 |#1|)) . T) (($) . T)) +((((-265 |#1|)) . T) (((-485)) . T)) +((((-265 |#1|)) . T)) +((($) . T)) +((((-485)) . T) (((-348 (-485))) . T)) +((((-328)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-474)) . T) (((-179)) . T) (((-328)) . T) (((-802 (-328))) . T)) +((((-774)) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1091)) -12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963)))) +((((-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +((($ (-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) +(|has| |#2| (-318)) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-485)) OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-485)) -12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +((((-485) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-584 |#1|)) . T)) -((((-584 |#1|)) . T)) +((((-585 |#1|)) . T)) +((((-585 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-585 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484))))) +((((-474)) |has| |#2| (-555 (-474))) (((-802 (-328))) |has| |#2| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#2| (-555 (-802 (-485))))) ((($) . T)) -(((|#2| (-197 (-3954 |#1|) (-695))) . T)) +(((|#2| (-197 (-3958 |#1|) (-696))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(((|#2| (-197 (-3954 |#1|) (-695))) . T)) -(((|#2|) . T)) -((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-197 (-3954 |#1|) (-695)) (-774 |#1|)) . T)) -((((-773)) . T)) -((((-444)) . T)) -((((-157)) . T) (((-773)) . T)) -((((-695) (-1094)) . T)) -((((-773)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962)))) -((((-773)) . T) (((-1178 |#4|)) . T)) -(((|#4|) |has| |#4| (-962))) -((((-1089)) -12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962)))) -((((-1089)) OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962))))) -((($ (-1089)) OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962))))) -(((|#4|) |has| |#4| (-962))) -(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) -((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(|has| |#4| (-962)) -(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-962))) -(|has| |#4| (-317)) -(((|#4|) |has| |#4| (-962))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-484)) -12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962)))) -(((|#4|) |has| |#4| (-962)) (((-484)) -12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962)))) -(((|#4|) |has| |#4| (-1013))) -((((-484)) OR (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1013)) (((-347 (-484))) -12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013)))) -(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (((-347 (-484))) -12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013)))) -((((-484) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(((|#2| (-197 (-3958 |#1|) (-696))) . T)) +(((|#2|) . T)) +((($) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-348 (-485))) |has| |#2| (-952 (-348 (-485)))) (((-485)) |has| |#2| (-952 (-485))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-197 (-3958 |#1|) (-696)) (-775 |#1|)) . T)) +((((-774)) . T)) +((((-445)) . T)) +((((-157)) . T) (((-774)) . T)) +((((-696) (-1096)) . T)) +((((-774)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963)))) +((((-774)) . T) (((-1180 |#4|)) . T)) +(((|#4|) |has| |#4| (-963))) +((((-1091)) -12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963)))) +((((-1091)) OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963))))) +((($ (-1091)) OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963))))) +(((|#4|) |has| |#4| (-963))) +(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) +((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963))))) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(|has| |#4| (-963)) +(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)) (|has| |#4| (-963))) (($) |has| |#4| (-963))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-963))) +(|has| |#4| (-318)) +(((|#4|) |has| |#4| (-963))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-963))) (($) |has| |#4| (-963)) (((-485)) -12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963)))) +(((|#4|) |has| |#4| (-963)) (((-485)) -12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963)))) +(((|#4|) |has| |#4| (-1015))) +((((-485)) OR (-12 (|has| |#4| (-952 (-485))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ((|#4|) |has| |#4| (-1015)) (((-348 (-485))) -12 (|has| |#4| (-952 (-348 (-485)))) (|has| |#4| (-1015)))) +(((|#4|) |has| |#4| (-1015)) (((-485)) -12 (|has| |#4| (-952 (-485))) (|has| |#4| (-1015))) (((-348 (-485))) -12 (|has| |#4| (-952 (-348 (-485)))) (|has| |#4| (-1015)))) +((((-485) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-484) |#4|) . T)) -((((-484) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)))) -(|has| |#4| (-718)) -(|has| |#4| (-718)) -(OR (|has| |#4| (-718)) (|has| |#4| (-757))) -(OR (|has| |#4| (-718)) (|has| |#4| (-757))) -(|has| |#4| (-718)) -(|has| |#4| (-718)) -(((|#4|) |has| |#4| (-311))) +((((-485) |#4|) . T)) +((((-485) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-665)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)))) +(|has| |#4| (-719)) +(|has| |#4| (-719)) +(OR (|has| |#4| (-719)) (|has| |#4| (-758))) +(OR (|has| |#4| (-719)) (|has| |#4| (-758))) +(|has| |#4| (-719)) +(|has| |#4| (-719)) +(((|#4|) |has| |#4| (-312))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962)))) -((((-773)) . T) (((-1178 |#3|)) . T)) -(((|#3|) |has| |#3| (-962))) -((((-1089)) -12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962)))) -((((-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))))) -((($ (-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))))) -(((|#3|) |has| |#3| (-962))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) -(|has| |#3| (-317)) -(((|#3|) |has| |#3| (-962))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-1013))) -((((-484)) OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1013)) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013)))) -(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013)))) -((((-484) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) -(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +((((-774)) . T) (((-1180 |#3|)) . T)) +(((|#3|) |has| |#3| (-963))) +((((-1091)) -12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963)))) +((((-1091)) OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))))) +((($ (-1091)) OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))))) +(((|#3|) |has| |#3| (-963))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) +(|has| |#3| (-318)) +(((|#3|) |has| |#3| (-963))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-485)) -12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-963)) (((-485)) -12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-1015))) +((((-485)) OR (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-348 (-485))) -12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015)))) +(((|#3|) |has| |#3| (-1015)) (((-485)) -12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (((-348 (-485))) -12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015)))) +((((-485) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) (((|#3|) . T)) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(((|#3|) |has| |#3| (-311))) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 |#3|) |#3|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) (((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327))))) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) ((|#3|) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ |#3|) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) ((|#3|) . T)) +(((|#1| (-470 |#3|) |#3|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#3| (-798 (-485)))) (((-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#3| (-798 (-328))))) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) ((|#3|) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ |#3|) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-469 |#3|)) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) +(((|#1| (-470 |#3|)) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -(((|#1| (-469 |#3|)) . T)) -((((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) (((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473))))) -((((-1038 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#2|) . T)) -((((-1038 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-469 |#3|)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +(((|#1| (-470 |#3|)) . T)) +((((-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#3| (-555 (-802 (-485))))) (((-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#3| (-555 (-802 (-328))))) (((-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#3| (-555 (-474))))) +((((-1040 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#2|) . T)) +((((-1040 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-470 |#3|)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-484)) . T)) -((($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-311))) -((((-1089)) |has| |#1| (-810 (-1089)))) -((($ (-1089)) |has| |#1| (-810 (-1089)))) -((((-1089)) |has| |#1| (-810 (-1089)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962)))) -(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962)))) -((((-484)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))) -(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(|has| |#1| (-410)) -(OR (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) -((((-85)) |has| |#1| (-1013)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) -((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|))) +((($) . T) (((-485)) . T)) +((($) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-312))) +((((-1091)) |has| |#1| (-811 (-1091)))) +((($ (-1091)) |has| |#1| (-811 (-1091)))) +((((-1091)) |has| |#1| (-811 (-1091)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963)))) +((((-485)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)))) +(OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(|has| |#1| (-411)) +(OR (|has| |#1| (-411)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-411)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) +((((-85)) |has| |#1| (-1015)) (((-774)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-411)) (|has| |#1| (-665)) (|has| |#1| (-811 (-1091))) (|has| |#1| (-963)) (|has| |#1| (-1027)) (|has| |#1| (-1015))) +((((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|))) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -(|has| (-1165 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1165 |#1| |#2| |#3| |#4|) (-120)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1089) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) (((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|)))) -((((-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|)))) -((((-1165 |#1| |#2| |#3| |#4|) $) |has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)))) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1159 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-1159 |#2| |#3| |#4|)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T)) -((((-1165 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-495))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -((((-773)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-495)) (|has| |#1| (-962)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-495)) (|has| |#1| (-962)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +(|has| (-1167 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1167 |#1| |#2| |#3| |#4|) (-120)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-348 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1091) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-454 (-1091) (-1167 |#1| |#2| |#3| |#4|))) (((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|) $) |has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-348 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-496))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +((((-774)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-411)) (|has| |#1| (-496)) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-411)) (|has| |#1| (-496)) (|has| |#1| (-963)) (|has| |#1| (-1027))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-551 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495))) -((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-347 (-484))) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495))) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) -(((|#1| |#1|) |has| |#1| (-146)) (((-347 (-484)) (-347 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495))) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-962))) -((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-347 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) -(((|#1|) |has| |#1| (-962)) (((-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) -(((|#1|) . T)) -((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327)))) -(((|#1|) . T)) -(|has| |#1| (-410)) -((((-1089)) |has| |#1| (-962))) -((($ (-1089)) |has| |#1| (-962))) -((((-1089)) |has| |#1| (-962))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327))))) -((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (((-551 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-347 (-858 |#1|))) |has| |#1| (-495)) (((-858 |#1|)) |has| |#1| (-962)) (((-1089)) . T)) -((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-951 (-484))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-495)) (((-347 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-951 (-347 (-484))))) (((-347 (-858 |#1|))) |has| |#1| (-495)) (((-858 |#1|)) |has| |#1| (-962)) (((-1089)) . T)) -(((|#1|) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -((((-773)) . T)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-347 (-484))) . T)) -(((|#1| (-347 (-484))) . T)) +((((-552 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-348 (-485))) |has| |#1| (-496))) +((((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-348 (-485))) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-348 (-485))) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-348 (-485))) |has| |#1| (-496))) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) +(((|#1| |#1|) |has| |#1| (-146)) (((-348 (-485)) (-348 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496))) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-963))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-963))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-963))) (((-348 (-485))) |has| |#1| (-496)) (((-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) +(((|#1|) |has| |#1| (-963)) (((-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) +(((|#1|) . T)) +((((-485)) |has| |#1| (-798 (-485))) (((-328)) |has| |#1| (-798 (-328)))) +(((|#1|) . T)) +(|has| |#1| (-411)) +((((-1091)) |has| |#1| (-963))) +((($ (-1091)) |has| |#1| (-963))) +((((-1091)) |has| |#1| (-963))) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474))) (((-802 (-485))) |has| |#1| (-555 (-802 (-485)))) (((-802 (-328))) |has| |#1| (-555 (-802 (-328))))) +((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) (((-552 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) OR (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-348 (-859 |#1|))) |has| |#1| (-496)) (((-859 |#1|)) |has| |#1| (-963)) (((-1091)) . T)) +((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) (((-485)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-952 (-485))) (|has| |#1| (-963))) ((|#1|) . T) (((-552 $)) . T) (($) |has| |#1| (-496)) (((-348 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-952 (-348 (-485))))) (((-348 (-859 |#1|))) |has| |#1| (-496)) (((-859 |#1|)) |has| |#1| (-963)) (((-1091)) . T)) +(((|#1|) . T)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +((((-774)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-348 (-485))) . T)) +(((|#1| (-348 (-485))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-347 (-484)) (-994)) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-347 (-484)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484)) . T)) -((((-484) (-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-773)) . T)) -((((-484)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-484)) . T)) -((((-773)) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-348 (-485)) (-996)) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-348 (-485)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-485)) . T)) +((((-485) (-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-774)) . T)) +((((-485)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-485)) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) +((((-819 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) -(((|#1|) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) +(((|#1|) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-819 |#1|) (-819 |#1|)) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-819 |#1|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-818 |#1|)) . T)) +((((-819 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(OR (|has| |#1| (-118)) (|has| |#1| (-317))) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(OR (|has| |#1| (-118)) (|has| |#1| (-318))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -(|has| |#1| (-317)) -((($) |has| |#1| (-317))) -(|has| |#1| (-317)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +(|has| |#1| (-318)) +((($) |has| |#1| (-318))) +(|has| |#1| (-318)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-335) |#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-336) |#1|) . T)) ((((-179)) . T)) ((($) . T)) -((((-484)) . T) (((-347 (-484))) . T)) -((((-327)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-473)) . T) (((-1072)) . T) (((-179)) . T) (((-327)) . T) (((-801 (-327))) . T)) -((((-179)) . T) (((-773)) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T) (((-484)) . T)) +((((-485)) . T) (((-348 (-485))) . T)) +((((-328)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-474)) . T) (((-1074)) . T) (((-179)) . T) (((-328)) . T) (((-802 (-328))) . T)) +((((-179)) . T) (((-774)) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-584 (-451 |#1| |#2|))) . T)) +((((-585 (-452 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-484)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-485)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +((((-774)) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1072)) . T)) -((((-1072)) . T)) -((((-1072)) . T) (((-773)) . T)) +((((-1074)) . T)) +((((-1074)) . T)) +((((-1074)) . T) (((-774)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-773)) . T)) -(((|#3|) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#3|) . T) (((-485)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-347 |#2|)) . T)) +((((-348 |#2|)) . T)) ((($) . T)) -((((-773)) . T)) -(|has| |#1| (-1133)) -((((-473)) |has| |#1| (-554 (-473))) (((-179)) |has| |#1| (-934)) (((-327)) |has| |#1| (-934))) -(|has| |#1| (-934)) -(OR (|has| |#1| (-389)) (|has| |#1| (-1133))) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) +((((-774)) . T)) +(|has| |#1| (-1135)) +((((-474)) |has| |#1| (-555 (-474))) (((-179)) |has| |#1| (-935)) (((-328)) |has| |#1| (-935))) +(|has| |#1| (-935)) +(OR (|has| |#1| (-390)) (|has| |#1| (-1135))) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((($) |has| |#1| (-259 $)) ((|#1|) |has| |#1| (-259 |#1|))) -((((-1089) $) |has| |#1| (-453 (-1089) $)) (($ $) |has| |#1| (-259 $)) ((|#1| |#1|) |has| |#1| (-259 |#1|)) (((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|))) +((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|))) +((((-1091) $) |has| |#1| (-454 (-1091) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|))) (((|#1|) . T)) (|has| |#1| (-190)) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -((((-1089)) |has| |#1| (-810 (-1089)))) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +((((-1091)) |has| |#1| (-811 (-1091)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T)) -((((-773)) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T)) +((((-774)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1089)) |has| |#1| (-810 (-1089)))) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) +((((-1091)) |has| |#1| (-811 (-1091)))) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) -(((|#1|) |has| |#1| (-259 |#1|))) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-347 (-484))) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) +((($) . T) ((|#1|) . T) (((-348 (-485))) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) (((|#1|) . T)) -((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327)))) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(OR (|has| |#1| (-741)) (|has| |#1| (-757))) -(OR (|has| |#1| (-741)) (|has| |#1| (-757))) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) +((((-485)) |has| |#1| (-798 (-485))) (((-328)) |has| |#1| (-798 (-328)))) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(OR (|has| |#1| (-742)) (|has| |#1| (-758))) +(OR (|has| |#1| (-742)) (|has| |#1| (-758))) +(|has| |#1| (-742)) +(|has| |#1| (-742)) +(|has| |#1| (-742)) (((|#1|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-934)) -((((-473)) |has| |#1| (-554 (-473))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-327)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934))) -((((-484)) . T) ((|#1|) . T) (($) . T) (((-347 (-484))) . T) (((-1089)) |has| |#1| (-951 (-1089)))) -((((-347 (-484))) |has| |#1| (-951 (-484))) (((-484)) |has| |#1| (-951 (-484))) (((-1089)) |has| |#1| (-951 (-1089))) ((|#1|) . T)) -(|has| |#1| (-1065)) +(|has| |#1| (-823)) +(|has| |#1| (-935)) +((((-474)) |has| |#1| (-555 (-474))) (((-802 (-485))) |has| |#1| (-555 (-802 (-485)))) (((-802 (-328))) |has| |#1| (-555 (-802 (-328)))) (((-328)) |has| |#1| (-935)) (((-179)) |has| |#1| (-935))) +((((-485)) . T) ((|#1|) . T) (($) . T) (((-348 (-485))) . T) (((-1091)) |has| |#1| (-952 (-1091)))) +((((-348 (-485))) |has| |#1| (-952 (-485))) (((-485)) |has| |#1| (-952 (-485))) (((-1091)) |has| |#1| (-952 (-1091))) ((|#1|) . T)) +(|has| |#1| (-1067)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-484) (-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-1055 |#2| (-347 (-858 |#1|)))) . T) (((-347 (-858 |#1|))) . T)) -((((-773)) . T)) -((((-1055 |#2| (-347 (-858 |#1|)))) . T) (((-347 (-858 |#1|))) . T) (((-484)) . T)) -((((-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|)) (-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-347 (-858 |#1|))) . T)) -((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484))))) +(((|#1|) . T) (((-485)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-485) (-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-1057 |#2| (-348 (-859 |#1|)))) . T) (((-348 (-859 |#1|))) . T)) +((((-774)) . T)) +((((-1057 |#2| (-348 (-859 |#1|)))) . T) (((-348 (-859 |#1|))) . T) (((-485)) . T)) +((((-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|)) (-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-348 (-859 |#1|))) . T)) +((((-474)) |has| |#2| (-555 (-474))) (((-802 (-328))) |has| |#2| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#2| (-555 (-802 (-485))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| |#3| (-774 |#1|)) . T)) +((($) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-348 (-485))) |has| |#2| (-952 (-348 (-485)))) (((-485)) |has| |#2| (-952 (-485))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| |#3| (-775 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-773)) . T)) -(((|#2|) . T) (((-484)) . T) ((|#6|) . T)) +((((-774)) . T)) +(((|#2|) . T) (((-485)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-584 |#4|)) . T) (((-773)) . T)) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +((((-585 |#4|)) . T) (((-774)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-473)) |has| |#4| (-554 (-473)))) +((((-474)) |has| |#4| (-555 (-474)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-773)) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -((((-773)) . T)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-347 (-484))) . T)) -(((|#1| (-347 (-484))) . T)) +((((-774)) . T)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +((((-774)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-348 (-485))) . T)) +(((|#1| (-348 (-485))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-347 (-484)) (-994)) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-347 (-484)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-348 (-485)) (-996)) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-348 (-485)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-473)) |has| |#4| (-554 (-473)))) +((((-474)) |has| |#4| (-555 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-473)) . T) (((-347 (-1084 (-484)))) . T) (((-179)) . T) (((-327)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((((-327)) . T) (((-179)) . T) (((-773)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((((-474)) . T) (((-348 (-1086 (-485)))) . T) (((-179)) . T) (((-328)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((((-328)) . T) (((-179)) . T) (((-774)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484))))) +((((-474)) |has| |#2| (-555 (-474))) (((-802 (-328))) |has| |#2| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#2| (-555 (-802 (-485))))) ((($) . T)) -(((|#2| (-419 (-3954 |#1|) (-695))) . T)) +(((|#2| (-420 (-3958 |#1|) (-696))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(((|#2| (-419 (-3954 |#1|) (-695))) . T)) -(((|#2|) . T)) -((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-419 (-3954 |#1|) (-695)) (-774 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) -((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) -(|has| |#2| (-317)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(((|#2|) |has| |#2| (-311))) +(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(((|#2| (-420 (-3958 |#1|) (-696))) . T)) +(((|#2|) . T)) +((($) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-348 (-485))) |has| |#2| (-952 (-348 (-485)))) (((-485)) |has| |#2| (-952 (-485))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-420 (-3958 |#1|) (-696)) (-775 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1091)) -12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963)))) +((((-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +((($ (-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) +(|has| |#2| (-318)) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-485)) OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-485)) -12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +((((-485) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) -((((-484)) . T)) -((((-773)) . T)) +((((-485)) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-918 16)) . T) (((-347 (-484))) . T) (((-773)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((($) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T)) -((((-1072)) . T) (((-773)) . T)) -((($) . T)) -((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-551 $) $) . T)) -((((-347 (-484))) . T) (((-484)) . T) (((-551 $)) . T)) -((((-1038 (-484) (-551 $))) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T) (((-551 $)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) . T)) +((((-919 16)) . T) (((-348 (-485))) . T) (((-774)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((($) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T)) +((((-1074)) . T) (((-774)) . T)) +((($) . T)) +((((-142 (-328))) . T) (((-179)) . T) (((-328)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-552 $) $) . T)) +((((-348 (-485))) . T) (((-485)) . T) (((-552 $)) . T)) +((((-1040 (-485) (-552 $))) . T) (($) . T) (((-485)) . T) (((-348 (-485))) . T) (((-552 $)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1| (-434 |#1| |#3|) (-434 |#1| |#2|)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T) (((-1145 (-484)) $) . T)) -((((-473)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) +((((-474)) . T)) ((((-85)) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-1072)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 (-451 |#1| |#2|))) . T)) +((((-1074)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 (-452 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-484)) . T)) -((((-584 (-451 |#1| |#2|))) . T)) +((((-774)) . T)) +((((-485)) . T)) +((((-585 (-452 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-584 (-451 |#1| |#2|))) . T)) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -((((-773)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) +((((-774)) . T)) +((((-585 (-452 |#1| |#2|))) . T)) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +((((-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) (((|#1| |#2|) . T)) -((((-584 (-451 |#1| |#2|))) . T)) +((((-585 (-452 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-584 (-451 |#1| |#2|))) . T)) +((((-774)) . T)) +((((-585 (-452 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -((((-783 |#2| |#1|)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-784 |#2| |#1|)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-517 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-517 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-518 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-518 |#1|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-518 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-517 |#1|)) . T)) +((((-518 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1| |#4| |#5|) . T)) -(((|#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) -(((|#1|) . T)) -(((|#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((((-584 (-451 (-695) |#1|))) . T)) -((((-695) |#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-515)) . T)) -((((-1015)) . T)) -((((-584 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-773)) . T)) -((((-484) $) . T) (((-584 (-484)) $) . T)) -((((-773)) . T)) -((((-1072) (-1089) (-484) (-179) (-773)) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +(((|#1| (-538 |#1| |#3|) (-538 |#1| |#2|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| (-538 |#1| |#3|) (-538 |#1| |#2|)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((((-585 (-452 (-696) |#1|))) . T)) +((((-696) |#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-516)) . T)) +((((-1017)) . T)) +((((-585 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-774)) . T)) +((((-485) $) . T) (((-585 (-485)) $) . T)) +((((-774)) . T)) +((((-1074) (-1091) (-485) (-179) (-774)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1642,215 +1642,215 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((((-484)) . T) (($) . T)) +((((-774)) . T)) +((((-485)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) +((((-485)) . T) (($) . T)) (((|#1|) . T)) -((((-484)) . T)) +((((-485)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-773)) . T)) -((($) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T)) -((((-347 (-484))) . T)) -((((-773)) . T)) -((((-484)) . T) (((-347 (-484))) . T)) -((((-347 (-484))) . T)) -((((-347 (-484))) . T)) -((((-347 (-484))) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T) (((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(|has| |#1| (-15 * (|#1| (-484) |#1|))) -((((-773)) . T)) -((($) |has| |#1| (-15 * (|#1| (-484) |#1|)))) -(|has| |#1| (-15 * (|#1| (-484) |#1|))) -((($ $) . T) (((-484) |#1|) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(((|#1| (-484) (-994)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) +((((-774)) . T)) +((($) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T)) +((((-348 (-485))) . T)) +((((-774)) . T)) +((((-485)) . T) (((-348 (-485))) . T)) +((((-348 (-485))) . T)) +((((-348 (-485))) . T)) +((((-348 (-485))) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(|has| |#1| (-15 * (|#1| (-485) |#1|))) +((((-774)) . T)) +((($) |has| |#1| (-15 * (|#1| (-485) |#1|)))) +(|has| |#1| (-15 * (|#1| (-485) |#1|))) +((($ $) . T) (((-485) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(((|#1| (-485) (-996)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -((($) |has| |#1| (-495))) -((($) |has| |#1| (-495))) -((($) |has| |#1| (-495))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((($) |has| |#1| (-495)) ((|#1|) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T)) -((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-495)) (((-484)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +((($) |has| |#1| (-496))) +((($) |has| |#1| (-496))) +((($) |has| |#1| (-496))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((($) |has| |#1| (-496)) ((|#1|) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T)) +((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-496)) (((-485)) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T) (((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-774)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T) (((-1145 (-484)) $) . T)) -((((-473)) |has| |#1| (-554 (-473)))) +((((-485) |#1|) . T)) +((((-485) |#1|) . T)) +((((-485) |#1|) . T) (((-1147 (-485)) $) . T)) +((((-474)) |has| |#1| (-555 (-474)))) (((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) -((((-1094)) . T)) -((((-1129)) . T) (((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-484) |#1|) |has| |#2| (-358 |#1|))) -(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|)))) -(((|#1|) |has| |#2| (-358 |#1|))) +((((-1096)) . T)) +((((-1131)) . T) (((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-485) |#1|) |has| |#2| (-359 |#1|))) +(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-359 |#1|)))) +(((|#1|) |has| |#2| (-359 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-773)) . T)) -(((|#1|) . T) (((-484)) . T)) +(((|#2|) . T) (((-774)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-101)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-101)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-101)) . T) (((-542)) . T)) -((((-101)) . T) (((-542)) . T)) -((((-101)) . T) (((-542)) . T) (((-773)) . T)) -((((-1072) |#1|) . T)) -((((-1072) |#1|) . T)) -((((-1072) |#1|) . T)) -((((-1072) |#1|) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-1072) |#1|) . T)) -((((-773)) . T)) -((((-335) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-473)) |has| |#1| (-554 (-473))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484))))) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-773)) . T)) +((((-101)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-101)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-101)) . T) (((-543)) . T)) +((((-101)) . T) (((-543)) . T)) +((((-101)) . T) (((-543)) . T) (((-774)) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-1074) |#1|) . T)) +((((-774)) . T)) +((((-336) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-474)) |has| |#1| (-555 (-474))) (((-802 (-328))) |has| |#1| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#1| (-555 (-802 (-485))))) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-774)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-484)) . T) (($) . T)) +(((|#2|) . T) (((-485)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-484)) . T)) +(((|#2|) . T) (((-485)) . T)) (((|#2|) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#2|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) +(((|#2|) . T) (((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) (((|#1|) . T)) -((((-347 |#2|)) . T)) +((((-348 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) @@ -1858,290 +1858,290 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-190)) -(((|#2|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T)) +(((|#2|) . T) (((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) -((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) -((((-1089)) |has| |#2| (-810 (-1089)))) -(((|#2|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((((-1072) (-51)) . T)) -((((-773)) . T)) -((((-1089) (-51)) . T) (((-1072) (-51)) . T)) -((((-1072) (-51)) . T)) -((((-1072) (-51)) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))))) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))))) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) . T)) -((((-1072) (-51)) . T)) -((((-484) |#1|) |has| |#2| (-358 |#1|))) -(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|)))) -(((|#1|) |has| |#2| (-358 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-773)) . T)) -(((|#1|) . T) (((-484)) . T)) +((($ (-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) +((((-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) +((((-1091)) |has| |#2| (-811 (-1091)))) +(((|#2|) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((((-1074) (-51)) . T)) +((((-774)) . T)) +((((-1091) (-51)) . T) (((-1074) (-51)) . T)) +((((-1074) (-51)) . T)) +((((-1074) (-51)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-1074) (-51)) . T)) +((((-485) |#1|) |has| |#2| (-359 |#1|))) +(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-359 |#1|)))) +(((|#1|) |has| |#2| (-359 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-774)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-774 |#1|)) . T)) -((((-773)) . T)) -((((-584 (-451 |#1| (-578 |#2|)))) . T)) -(((|#1| (-578 |#2|)) . T)) -((((-578 |#2|)) . T)) +((((-775 |#1|)) . T)) +((((-774)) . T)) +((((-585 (-452 |#1| (-579 |#2|)))) . T)) +(((|#1| (-579 |#2|)) . T)) +((((-579 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-580 |#1| |#2|) |#1|) . T)) +((((-581 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1094)) . T)) -(((|#1|) . T) (((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((((-1096)) . T)) +(((|#1|) . T) (((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) +((((-474)) |has| |#1| (-555 (-474)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) -(|has| |#1| (-715)) +((((-774)) . T)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) +(|has| |#1| (-716)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((((-484)) . T) ((|#2|) . T)) +((((-774)) . T)) +((((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-615 |#1|)) . T)) -((((-615 |#1|)) . T)) -(((|#2| (-615 |#1|)) . T)) +((((-616 |#1|)) . T)) +((((-616 |#1|)) . T)) +(((|#2| (-616 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((((-484)) . T) ((|#2|) . T)) +((((-774)) . T)) +((((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-484) |#2|) . T)) +((((-485) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3994 "*")))) +(((|#2|) |has| |#2| (-6 (-3998 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-631 |#2|)) . T) (((-773)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-632 |#2|)) . T) (((-774)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1089)) |has| |#2| (-810 (-1089)))) -((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) +((((-1091)) |has| |#2| (-811 (-1091)))) +((((-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) +((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) (((|#2|) . T)) -((((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) +((((-485)) . T) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-952 (-485))) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-1129)) . T) (((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) -(((|#1|) . T)) -(((|#1| (-1178 |#1|) (-1178 |#1|)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(|has| |#1| (-317)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-773)) . T)) -((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(|has| |#1| (-311)) -(((|#1| (-695) (-994)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T)) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-1131)) . T) (((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(|has| |#1| (-318)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-774)) . T)) +((((-348 $) (-348 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(|has| |#1| (-312)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (((-996)) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ (-996)) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) (((-996)) . T)) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484)))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-695)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1065)) -(((|#1|) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T)) -((((-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) . T) (((-773)) . T)) +(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +((((-996)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1067)) +(((|#1|) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T)) +((((-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) . T) (((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2152,52 +2152,52 @@ (|has| |#1| (-120)) (((|#2| |#2|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-484)) . T)) +((((-86)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) -((((-484)) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) -((((-773)) . T)) -((((-1022 |#1|)) . T) (((-773)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) +((((-774)) . T)) +((((-1024 |#1|)) . T) (((-774)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484))))) +((((-474)) |has| |#2| (-555 (-474))) (((-802 (-328))) |has| |#2| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#2| (-555 (-802 (-485))))) ((($) . T)) -(((|#2| (-469 (-774 |#1|))) . T)) +(((|#2| (-470 (-775 |#1|))) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))) -(((|#2| (-469 (-774 |#1|))) . T)) -(((|#2|) . T)) -((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(OR (|has| |#2| (-389)) (|has| |#2| (-822))) -((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) -((((-774 |#1|)) . T)) -((($ (-774 |#1|)) . T)) -((((-774 |#1|)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) -(((|#2| (-469 (-774 |#1|)) (-774 |#1|)) . T)) -(-12 (|has| |#1| (-317)) (|has| |#2| (-317))) +(OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +((((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823)))) +(((|#2| (-470 (-775 |#1|))) . T)) +(((|#2|) . T)) +((($) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(OR (|has| |#2| (-390)) (|has| |#2| (-823))) +((($ $) . T) (((-775 |#1|) $) . T) (((-775 |#1|) |#2|) . T)) +((((-775 |#1|)) . T)) +((($ (-775 |#1|)) . T)) +((((-775 |#1|)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-348 (-485))) |has| |#2| (-952 (-348 (-485)))) (((-485)) |has| |#2| (-952 (-485))) ((|#2|) . T) (((-775 |#1|)) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) (((-775 |#1|)) . T)) +(((|#2| (-470 (-775 |#1|)) (-775 |#1|)) . T)) +(-12 (|has| |#1| (-318)) (|has| |#2| (-318))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2207,227 +2207,227 @@ (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-484)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) +((((-774)) . T)) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) +((((-474)) |has| |#1| (-555 (-474)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) (((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327))))) +((((-774)) . T)) +((((-774)) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#2| (-798 (-485)))) (((-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#2| (-798 (-328))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-469 |#2|)) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) +(((|#1| (-470 |#2|)) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-1038 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1089))) (((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T)) -((((-1038 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T)) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -((((-1038 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-469 |#2|)) . T)) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-1040 |#1| |#2|)) . T) (((-859 |#1|)) |has| |#2| (-555 (-1091))) (((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (($) . T)) +((((-1040 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-485)) . T)) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +((((-1040 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-470 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-858 |#1|)) |has| |#2| (-554 (-1089))) (((-1072)) -12 (|has| |#1| (-951 (-484))) (|has| |#2| (-554 (-1089)))) (((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) (((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473))))) -(((|#1| (-469 |#2|) |#2|) . T)) +((((-859 |#1|)) |has| |#2| (-555 (-1091))) (((-1074)) -12 (|has| |#1| (-952 (-485))) (|has| |#2| (-555 (-1091)))) (((-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) (((-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) (((-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#2| (-555 (-474))))) +(((|#1| (-470 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1084 |#1|)) . T) (((-773)) . T)) -((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(|has| |#1| (-311)) -(((|#1| (-695) (-994)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T)) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) +((((-1086 |#1|)) . T) (((-774)) . T)) +((((-348 $) (-348 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(|has| |#1| (-312)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (((-996)) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ (-996)) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) (((-996)) . T)) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-695)) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-1084 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484)))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) +((((-1086 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) (((|#1|) . T)) -((((-1084 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-695)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +((((-1086 |#1|)) . T) (((-996)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1065)) +(|has| |#1| (-1067)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-473)) |has| |#1| (-554 (-473)))) -(|has| |#1| (-317)) +((((-474)) |has| |#1| (-555 (-474)))) +(|has| |#1| (-318)) (((|#1|) . T)) -((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) -(((|#1|) |has| |#1| (-259 |#1|))) +((((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((((-910 |#1|)) . T) ((|#1|) . T)) -((((-910 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| (-910 |#1|) (-951 (-347 (-484)))))) -((((-910 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-951 (-484))) (|has| (-910 |#1|) (-951 (-484)))) (((-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| (-910 |#1|) (-951 (-347 (-484)))))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))) -((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T)) -(((|#2|) |has| |#2| (-962))) -((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) -((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))))) -(((|#2|) |has| |#2| (-962))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -(|has| |#2| (-962)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) -(|has| |#2| (-317)) -(((|#2|) |has| |#2| (-962))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(OR (|has| |#2| (-718)) (|has| |#2| (-757))) -(|has| |#2| (-718)) -(|has| |#2| (-718)) -(((|#2|) |has| |#2| (-311))) +((((-911 |#1|)) . T) ((|#1|) . T)) +((((-911 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| (-911 |#1|) (-952 (-348 (-485)))))) +((((-911 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-952 (-485))) (|has| (-911 |#1|) (-952 (-485)))) (((-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| (-911 |#1|) (-952 (-348 (-485)))))) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-719)) (|has| |#2| (-963))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963)))) +((((-774)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-554 (-774))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-318)) (|has| |#2| (-665)) (|has| |#2| (-719)) (|has| |#2| (-758)) (|has| |#2| (-963)) (|has| |#2| (-1015))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-963))) +((((-1091)) -12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963)))) +((((-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +((($ (-1091)) OR (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))))) +(((|#2|) |has| |#2| (-963))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-963))) (-12 (|has| |#2| (-189)) (|has| |#2| (-963))))) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +(|has| |#2| (-963)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)) (|has| |#2| (-963))) (($) |has| |#2| (-963))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-963))) +(|has| |#2| (-318)) +(((|#2|) |has| |#2| (-963))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-963))) (($) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-963)) (((-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963)))) +(((|#2|) |has| |#2| (-1015))) +((((-485)) OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ((|#2|) |has| |#2| (-1015)) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +(((|#2|) |has| |#2| (-1015)) (((-485)) -12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (((-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015)))) +((((-485) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-665)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(OR (|has| |#2| (-719)) (|has| |#2| (-758))) +(|has| |#2| (-719)) +(|has| |#2| (-719)) +(((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 (-739 (-1089))) (-739 (-1089))) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-739 (-1089))) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-739 (-1089))) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) (((-739 (-1089))) . T)) -((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-739 (-1089)) |#1|) . T) (((-739 (-1089)) $) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-469 (-739 (-1089)))) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) +(((|#1| (-470 (-740 (-1091))) (-740 (-1091))) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (((-740 (-1091))) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ (-740 (-1091))) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) (((-740 (-1091))) . T)) +((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-740 (-1091)) |#1|) . T) (((-740 (-1091)) $) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-470 (-740 (-1091)))) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) (((|#1|) . T)) -(((|#1| (-469 (-739 (-1089)))) . T)) -((((-1038 |#1| (-1089))) . T) (((-739 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-1089)) . T)) -((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-739 (-1089))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-1089)) . T)) -(((|#1| (-1089) (-739 (-1089)) (-469 (-739 (-1089)))) . T)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311))) -((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311))) -((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311))) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) -(|has| |#2| (-311)) +(((|#1| (-470 (-740 (-1091)))) . T)) +((((-1040 |#1| (-1091))) . T) (((-740 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-1091)) . T)) +((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-740 (-1091))) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-1091)) . T)) +(((|#1| (-1091) (-740 (-1091)) (-470 (-740 (-1091)))) . T)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +((((-348 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-348 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-348 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) +(|has| |#2| (-312)) (((|#2|) . T)) ((($) . T)) -((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311)) ((|#2|) . T) (((-484)) . T)) -((((-347 (-484))) |has| |#2| (-311)) (($) . T)) -(((|#2|) . T) (((-773)) . T)) -((((-347 (-484))) |has| |#2| (-311)) (($) . T) (((-484)) . T)) -((((-347 (-484))) |has| |#2| (-311)) (($) . T)) -((((-347 (-484))) |has| |#2| (-311)) (($) . T)) -((((-347 (-484)) (-347 (-484))) |has| |#2| (-311)) (($ $) . T)) +((((-348 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-485)) . T)) +((((-348 (-485))) |has| |#2| (-312)) (($) . T)) +(((|#2|) . T) (((-774)) . T)) +((((-348 (-485))) |has| |#2| (-312)) (($) . T) (((-485)) . T)) +((((-348 (-485))) |has| |#2| (-312)) (($) . T)) +((((-348 (-485))) |has| |#2| (-312)) (($) . T)) +((((-348 (-485)) (-348 (-485))) |has| |#2| (-312)) (($ $) . T)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2438,35 +2438,35 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-484)) . T) ((|#2|) |has| |#2| (-146))) -(((|#2|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -((($) |has| |#1| (-756))) -(|has| |#1| (-756)) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((($) |has| |#1| (-756)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) +((((-485)) . T) ((|#2|) |has| |#2| (-146))) +(((|#2|) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +((($) |has| |#1| (-757))) +(|has| |#1| (-757)) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((($) |has| |#1| (-757)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-485)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2477,450 +2477,450 @@ (|has| |#1| (-120)) (((|#1| |#1|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-484)) . T)) +((((-86)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) -((((-773)) . T)) -((((-444)) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -((($) |has| |#1| (-756))) -(|has| |#1| (-756)) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((($) |has| |#1| (-756)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-756))) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T)) +((((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-774)) . T)) +((((-445)) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +((($) |has| |#1| (-757))) +(|has| |#1| (-757)) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((($) |has| |#1| (-757)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-757)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-757))) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) OR (|has| |#1| (-757)) (|has| |#1| (-952 (-485)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) |has| |#1| (-554 (-774))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-484)) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) +((((-485)) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -((((-1175 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) +((((-1177 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-952 (-485))) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) (((|#2|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-801 (-484))) . T) (((-801 (-327))) . T) (((-473)) . T) (((-1089)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-802 (-485))) . T) (((-802 (-328))) . T) (((-474)) . T) (((-1091)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-858 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-484)) . T)) +((((-859 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-859 |#1|)) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-858 |#1|)) . T) (((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-859 |#1|)) . T) (((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) ((($) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-779 |#1|)) . T) (((-347 (-484))) . T)) -((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-779 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-779 |#1|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-779 |#1|) (-779 |#1|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-779 |#1|)) . T)) -((((-1089) (-779 |#1|)) |has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|)))) -((((-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|)))) -((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|)))) -((((-779 |#1|)) . T)) -((($) . T) (((-779 |#1|)) . T) (((-347 (-484))) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-484)) . T) (((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T)) -((((-779 |#1|)) . T)) -((((-779 |#1|)) . T)) -((((-773)) . T)) +((((-485)) . T) (($) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-780 |#1|)) . T) (((-348 (-485))) . T)) +((((-780 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-780 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-780 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-780 |#1|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-780 |#1|) (-780 |#1|)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-780 |#1|)) . T)) +((((-1091) (-780 |#1|)) |has| (-780 |#1|) (-454 (-1091) (-780 |#1|))) (((-780 |#1|) (-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) +((((-780 |#1|)) |has| (-780 |#1|) (-260 (-780 |#1|)))) +((((-780 |#1|) $) |has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|)))) +((((-780 |#1|)) . T)) +((($) . T) (((-780 |#1|)) . T) (((-348 (-485))) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-485)) . T) (((-780 |#1|)) . T) (($) . T) (((-348 (-485))) . T)) +((((-780 |#1|)) . T)) +((((-780 |#1|)) . T)) +((((-774)) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) (((|#2|) . T)) -((((-1089)) |has| |#2| (-810 (-1089)))) -((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) +((((-1091)) |has| |#2| (-811 (-1091)))) +((((-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T) (((-347 (-484))) . T)) -(((|#2|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#2|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#2|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#2|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1089) |#2|) |has| |#2| (-453 (-1089) |#2|)) ((|#2| |#2|) |has| |#2| (-259 |#2|))) -(((|#2|) |has| |#2| (-259 |#2|))) +(((|#2|) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T) (((-348 (-485))) . T)) +(((|#2|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#2|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#2|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#2|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1091) |#2|) |has| |#2| (-454 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) +(((|#2|) |has| |#2| (-260 |#2|))) (((|#2| $) |has| |#2| (-241 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-347 (-484))) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T)) -((((-484)) |has| |#2| (-797 (-484))) (((-327)) |has| |#2| (-797 (-327)))) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(OR (|has| |#2| (-741)) (|has| |#2| (-757))) -(OR (|has| |#2| (-741)) (|has| |#2| (-757))) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(|has| |#2| (-741)) -(((|#2|) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-934)) -((((-473)) |has| |#2| (-554 (-473))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-327)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934))) -((((-484)) . T) ((|#2|) . T) (($) . T) (((-347 (-484))) . T) (((-1089)) |has| |#2| (-951 (-1089)))) -((((-347 (-484))) |has| |#2| (-951 (-484))) (((-484)) |has| |#2| (-951 (-484))) (((-1089)) |has| |#2| (-951 (-1089))) ((|#2|) . T)) -(|has| |#2| (-1065)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) +((($) . T) ((|#2|) . T) (((-348 (-485))) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T)) +((((-485)) |has| |#2| (-798 (-485))) (((-328)) |has| |#2| (-798 (-328)))) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(OR (|has| |#2| (-742)) (|has| |#2| (-758))) +(OR (|has| |#2| (-742)) (|has| |#2| (-758))) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(|has| |#2| (-742)) +(((|#2|) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-935)) +((((-474)) |has| |#2| (-555 (-474))) (((-802 (-485))) |has| |#2| (-555 (-802 (-485)))) (((-802 (-328))) |has| |#2| (-555 (-802 (-328)))) (((-328)) |has| |#2| (-935)) (((-179)) |has| |#2| (-935))) +((((-485)) . T) ((|#2|) . T) (($) . T) (((-348 (-485))) . T) (((-1091)) |has| |#2| (-952 (-1091)))) +((((-348 (-485))) |has| |#2| (-952 (-485))) (((-485)) |has| |#2| (-952 (-485))) (((-1091)) |has| |#2| (-952 (-1091))) ((|#2|) . T)) +(|has| |#2| (-1067)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +(-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) +((((-774)) OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))))) ((((-130)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1089)) . T) ((|#1|) . T)) -((((-1089)) . T) ((|#1|) . T)) -((((-773)) . T)) -((((-615 |#1|)) . T)) -((((-615 |#1|)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-1115 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1091)) . T) ((|#1|) . T)) +((((-1091)) . T) ((|#1|) . T)) +((((-774)) . T)) +((((-616 |#1|)) . T)) +((((-616 |#1|)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-1117 |#1|)) . T) (((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-773)) . T)) -(OR (|has| |#1| (-317)) (|has| |#1| (-757))) -(OR (|has| |#1| (-317)) (|has| |#1| (-757))) +((((-774)) . T)) +(OR (|has| |#1| (-318)) (|has| |#1| (-758))) +(OR (|has| |#1| (-318)) (|has| |#1| (-758))) (((|#1|) . T)) -((((-773)) . T)) -((((-484)) . T)) +((((-774)) . T)) +((((-485)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-773)) . T)) -((($) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($) . T) (((-347 (-484))) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-584 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484))))) -((($) . T)) -(((|#1| (-469 (-1089))) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) +((((-774)) . T)) +((($) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($) . T) (((-348 (-485))) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-348 (-485)) (-348 (-485))) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-585 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-474)) |has| |#1| (-555 (-474))) (((-802 (-328))) |has| |#1| (-555 (-802 (-328)))) (((-802 (-485))) |has| |#1| (-555 (-802 (-485))))) +((($) . T)) +(((|#1| (-470 (-1091))) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -(((|#1| (-469 (-1089))) . T)) -(((|#1|) . T)) -((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) -((($ $) . T) (((-1089) $) . T) (((-1089) |#1|) . T)) -((((-1089)) . T)) -((($ (-1089)) . T)) -((((-1089)) . T)) -((((-327)) |has| |#1| (-797 (-327))) (((-484)) |has| |#1| (-797 (-484)))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T) (((-1089)) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-1089)) . T)) -(((|#1| (-469 (-1089)) (-1089)) . T)) -((((-1033)) . T) (((-773)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +(((|#1| (-470 (-1091))) . T)) +(((|#1|) . T)) +((($) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) +((($ $) . T) (((-1091) $) . T) (((-1091) |#1|) . T)) +((((-1091)) . T)) +((($ (-1091)) . T)) +((((-1091)) . T)) +((((-328)) |has| |#1| (-798 (-328))) (((-485)) |has| |#1| (-798 (-485)))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T) (((-1091)) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (((-1091)) . T)) +(((|#1| (-470 (-1091)) (-1091)) . T)) +((((-1035)) . T) (((-774)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-485)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) -((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) +(OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +(-12 (|has| |#1| (-719)) (|has| |#2| (-719))) +((((-485)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-410)) (|has| |#2| (-410))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) -(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) -(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) -(-12 (|has| |#1| (-317)) (|has| |#2| (-317))) -((((-773)) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-584 (-831))) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +(-12 (|has| |#1| (-411)) (|has| |#2| (-411))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) +(OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) +(OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) +(-12 (|has| |#1| (-318)) (|has| |#2| (-318))) +((((-774)) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-585 (-832))) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) ((((-197 |#1| |#2|) |#2|) . T)) -((((-773)) . T)) -((((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-473)) |has| |#1| (-554 (-473)))) +((((-474)) |has| |#1| (-555 (-474)))) (((|#1|) . T)) -((((-1089)) |has| |#1| (-810 (-1089)))) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089))))) +((((-1091)) |has| |#1| (-811 (-1091)))) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-245)) (|has| |#1| (-311))) -((((-484)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484)))))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311))) -((($) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-311))) -(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484))) |has| |#1| (-311))) -(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484))) |has| |#1| (-311))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484)) (-347 (-484))) |has| |#1| (-311))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311))) -(((|#1|) . T)) -((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|))) -(((|#1|) |has| |#1| (-259 |#1|))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-246)) (|has| |#1| (-312))) +((((-485)) . T) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485)))))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-312))) +((($) . T) (((-485)) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-485))) |has| |#1| (-312))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-348 (-485)) (-348 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-312))) +(((|#1|) . T)) +((((-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-347 |#2|) |#3|) . T)) -((((-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) (((-484)) |has| (-347 |#2|) (-951 (-484))) (((-347 |#2|)) . T)) -((((-347 |#2|)) . T)) -((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T)) -((((-347 |#2|)) . T)) -((((-347 |#2|) |#3|) . T)) -(|has| (-347 |#2|) (-120)) -((((-347 |#2|) |#3|) . T)) -(|has| (-347 |#2|) (-118)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -(|has| (-347 |#2|) (-190)) -((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))) -(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))) -((((-347 |#2|)) . T)) -((($ (-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089))))) -((((-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089))))) -((((-1089)) |has| (-347 |#2|) (-810 (-1089)))) -((((-347 |#2|)) . T)) +((($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-312)) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-348 |#2|) |#3|) . T)) +((((-348 (-485))) |has| (-348 |#2|) (-952 (-348 (-485)))) (((-485)) |has| (-348 |#2|) (-952 (-485))) (((-348 |#2|)) . T)) +((((-348 |#2|)) . T)) +((((-485)) |has| (-348 |#2|) (-582 (-485))) (((-348 |#2|)) . T)) +((((-348 |#2|)) . T)) +((((-348 |#2|) |#3|) . T)) +(|has| (-348 |#2|) (-120)) +((((-348 |#2|) |#3|) . T)) +(|has| (-348 |#2|) (-118)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +(|has| (-348 |#2|) (-190)) +((($) OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189)))) +(OR (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-189))) +((((-348 |#2|)) . T)) +((($ (-1091)) OR (|has| (-348 |#2|) (-811 (-1091))) (|has| (-348 |#2|) (-813 (-1091))))) +((((-1091)) OR (|has| (-348 |#2|) (-811 (-1091))) (|has| (-348 |#2|) (-813 (-1091))))) +((((-1091)) |has| (-348 |#2|) (-811 (-1091)))) +((((-348 |#2|)) . T)) (((|#3|) . T)) -((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-773)) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T)) -((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T)) +((((-348 |#2|) (-348 |#2|)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-774)) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +((((-485)) |has| (-348 |#2|) (-582 (-485))) (((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T)) +((((-348 |#2|)) . T) (((-348 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3|) . T)) -((((-347 (-484))) . T) (((-773)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((($) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484)) . T) (((-347 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-347 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-347 (-484))) . T)) -((((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-347 (-484))) . T) (((-484)) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) . T) (((-484) (-484)) . T) (($ $) . T)) -(((|#1|) . T) (((-484)) . T) (((-347 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) . T)) -(((|#1|) . T) (((-484)) OR (|has| |#1| (-951 (-484))) (|has| (-347 (-484)) (-951 (-484)))) (((-347 (-484))) . T)) -((((-773)) . T)) +((((-348 (-485))) . T) (((-774)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((($) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485)) . T) (((-348 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-348 (-485)) (-348 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-348 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-348 (-485))) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-348 (-485))) . T) (((-485)) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) . T) (((-485) (-485)) . T) (($ $) . T)) +(((|#1|) . T) (((-485)) . T) (((-348 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) . T)) +(((|#1|) . T) (((-485)) OR (|has| |#1| (-952 (-485))) (|has| (-348 (-485)) (-952 (-485)))) (((-348 (-485))) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-584 |#4|)) . T) (((-773)) . T)) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +((((-585 |#4|)) . T) (((-774)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-473)) |has| |#4| (-554 (-473)))) +((((-474)) |has| |#4| (-555 (-474)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2929,44 +2929,44 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((((-774)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -((((-704 |#1| (-774 |#2|))) . T)) -((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T)) -((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|))))) -((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|))))) -((((-704 |#1| (-774 |#2|))) . T)) -((((-473)) |has| (-704 |#1| (-774 |#2|)) (-554 (-473)))) -(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) -((((-473)) |has| |#3| (-554 (-473)))) -(((|#3|) |has| |#3| (-311))) +(((|#1|) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +((((-705 |#1| (-775 |#2|))) . T)) +((((-585 (-705 |#1| (-775 |#2|)))) . T) (((-774)) . T)) +((((-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) +((((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) |has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|))))) +((((-705 |#1| (-775 |#2|))) . T)) +((((-474)) |has| (-705 |#1| (-775 |#2|)) (-555 (-474)))) +(((|#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +(((|#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) . T)) +((((-474)) |has| |#3| (-555 (-474)))) +(((|#3|) |has| |#3| (-312))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-631 |#3|)) . T) (((-773)) . T)) -((((-484)) . T) ((|#3|) . T)) +((((-632 |#3|)) . T) (((-774)) . T)) +((((-485)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) -(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) -(|has| |#1| (-1013)) -((((-773)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) -((((-773)) . T)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) +((((-774)) . T)) (((|#1| |#2|) . T)) -((((-1089)) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-1091)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -2974,204 +2974,204 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-248 |#3|)) . T)) -((((-248 |#3|)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-249 |#3|)) . T)) +((((-249 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#3| |#3|) . T)) -((((-773)) . T)) -((((-773)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-311))) -((((-1089)) -12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))))) -((($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))))) -(((|#1|) |has| |#1| (-311))) -(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) -((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298)))) -(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-311)) (|has| |#1| (-298))) -(OR (|has| |#1| (-317)) (|has| |#1| (-298))) -(|has| |#1| (-298)) -(|has| |#1| (-298)) -(OR (|has| |#1| (-118)) (|has| |#1| (-298))) -(|has| |#1| (-298)) +((((-774)) . T)) +((((-774)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-312))) +((((-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))))) +((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))))) +(((|#1|) |has| |#1| (-312))) +(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) +((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))) +(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (|has| |#1| (-318)) (|has| |#1| (-299))) +(|has| |#1| (-299)) +(|has| |#1| (-299)) +(OR (|has| |#1| (-118)) (|has| |#1| (-299))) +(|has| |#1| (-299)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($ $) . T) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T)) -((((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-952 (-348 (-485))))) ((|#1|) . T)) (|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) +((($) . T) (((-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) (((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) (((|#1| |#2|) . T)) -((((-1089)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((((-1091)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-773)) . T)) +((((-774)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 (-1000 (-1089))) (-1000 (-1089))) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-1000 (-1089))) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-1000 (-1089))) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) (((-1000 (-1089))) . T)) -((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-1000 (-1089)) |#1|) . T) (((-1000 (-1089)) $) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-469 (-1000 (-1089)))) . T)) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) +(((|#1| (-470 (-1002 (-1091))) (-1002 (-1091))) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (((-1002 (-1091))) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ (-1002 (-1091))) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) (((-1002 (-1091))) . T)) +((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-1002 (-1091)) |#1|) . T) (((-1002 (-1091)) $) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-470 (-1002 (-1091)))) . T)) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) (((|#1|) . T)) -(((|#1| (-469 (-1000 (-1089)))) . T)) -((((-1038 |#1| (-1089))) . T) (((-1000 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-1089)) . T)) -((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-1000 (-1089))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-1089)) . T)) -(((|#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) . T)) +(((|#1| (-470 (-1002 (-1091)))) . T)) +((((-1040 |#1| (-1091))) . T) (((-1002 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-1091)) . T)) +((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-1002 (-1091))) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-1091)) . T)) +(((|#1| (-1091) (-1002 (-1091)) (-470 (-1002 (-1091)))) . T)) ((($) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-584 |#1|)) |has| |#1| (-756))) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-773)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) +(((|#1| (-585 |#1|)) |has| |#1| (-757))) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -(|has| (-1001 |#1|) (-1013)) -((((-773)) |has| (-1001 |#1|) (-1013))) -(|has| (-1001 |#1|) (-1013)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(|has| (-1003 |#1|) (-1015)) +((((-774)) |has| (-1003 |#1|) (-1015))) +(|has| (-1003 |#1|) (-1015)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) +((((-774)) . T)) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) +((((-474)) |has| |#1| (-555 (-474)))) (((|#1|) . T)) -(|has| |#1| (-317)) +(|has| |#1| (-318)) (((|#1|) . T)) (((|#1|) . T)) -((((-773)) . T)) -((((-584 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-773)) . T)) -((((-484) $) . T) (((-584 (-484)) $) . T)) -((((-773)) . T)) -((((-1072) (-1089) (-484) (-179) (-773)) . T)) -((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-484) $) . T) (((-584 (-484)) $) . T)) -((((-773)) . T)) +((((-774)) . T)) +((((-585 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-774)) . T)) +((((-485) $) . T) (((-585 (-485)) $) . T)) +((((-774)) . T)) +((((-1074) (-1091) (-485) (-179) (-774)) . T)) +((((-585 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-485) $) . T) (((-585 (-485)) $) . T)) +((((-774)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962))) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962)))) -((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013))) (((-1178 |#3|)) . T)) -(((|#3|) |has| |#3| (-962))) -((((-1089)) -12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962)))) -((((-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))))) -((($ (-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))))) -(((|#3|) |has| |#3| (-962))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -(|has| |#3| (-962)) -((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) -(|has| |#3| (-317)) -(((|#3|) |has| |#3| (-962))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962)))) -(((|#3|) |has| |#3| (-1013))) -((((-484)) OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1013)) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013)))) -(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013)))) -((((-484) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) -(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013)))) +(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-719)) (|has| |#3| (-963))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963)))) +((((-774)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-554 (-774))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-318)) (|has| |#3| (-665)) (|has| |#3| (-719)) (|has| |#3| (-758)) (|has| |#3| (-963)) (|has| |#3| (-1015))) (((-1180 |#3|)) . T)) +(((|#3|) |has| |#3| (-963))) +((((-1091)) -12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963)))) +((((-1091)) OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))))) +((($ (-1091)) OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))))) +(((|#3|) |has| |#3| (-963))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963))))) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +(|has| |#3| (-963)) +((((-485)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)) (|has| |#3| (-963))) (($) |has| |#3| (-963))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-963))) +(|has| |#3| (-318)) +(((|#3|) |has| |#3| (-963))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-963))) (($) |has| |#3| (-963)) (((-485)) -12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-963)) (((-485)) -12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963)))) +(((|#3|) |has| |#3| (-1015))) +((((-485)) OR (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ((|#3|) |has| |#3| (-1015)) (((-348 (-485))) -12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015)))) +(((|#3|) |has| |#3| (-1015)) (((-485)) -12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (((-348 (-485))) -12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015)))) +((((-485) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015)))) (((|#3|) . T)) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(OR (|has| |#3| (-718)) (|has| |#3| (-757))) -(|has| |#3| (-718)) -(|has| |#3| (-718)) -(((|#3|) |has| |#3| (-311))) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-665)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(OR (|has| |#3| (-719)) (|has| |#3| (-758))) +(|has| |#3| (-719)) +(|has| |#3| (-719)) +(((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3179,775 +3179,775 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) (((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484)))))) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-802 (-485))) . T) (((-328)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#2| (-555 (-474)))) (((-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) (((-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485)))))) ((($) . T)) -(((|#1| (-469 |#2|)) . T)) +(((|#1| (-470 |#2|)) . T)) (((|#1|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))) -(((|#1| (-469 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484)))) -(OR (|has| |#1| (-389)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823)))) +(((|#1| (-470 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-582 (-485)))) +(OR (|has| |#1| (-390)) (|has| |#1| (-823))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) (((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484))))) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T) ((|#2|) . T)) -((((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#2|) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) +((((-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#2| (-798 (-328)))) (((-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#2| (-798 (-485))))) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-348 (-485))) |has| |#1| (-952 (-348 (-485)))) (((-485)) |has| |#1| (-952 (-485))) ((|#1|) . T) ((|#2|) . T)) +((((-485)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#2|) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-469 |#2|)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-470 |#2|)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) (((|#1| |#2|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-1053 |#1| |#2|)) . T)) -((((-1053 |#1| |#2|) (-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|)))) -((((-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|)))) -((((-773)) . T)) -((((-1053 |#1| |#2|)) . T)) -((((-473)) |has| |#2| (-554 (-473)))) -(((|#2|) |has| |#2| (-6 (-3994 "*")))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-1055 |#1| |#2|)) . T)) +((((-1055 |#1| |#2|) (-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) +((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) +((((-774)) . T)) +((((-1055 |#1| |#2|)) . T)) +((((-474)) |has| |#2| (-555 (-474)))) +(((|#2|) |has| |#2| (-6 (-3998 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-631 |#2|)) . T) (((-773)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3994 "*"))) (|has| |#2| (-146)))) -(((|#2|) OR (|has| |#2| (-6 (-3994 "*"))) (|has| |#2| (-146)))) +((((-632 |#2|)) . T) (((-774)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146)))) +(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1089)) |has| |#2| (-810 (-1089)))) -((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) -((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089))))) +((((-1091)) |has| |#2| (-811 (-1091)))) +((((-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484)))) +((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-582 (-485)))) (((|#2|) . T)) -((((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) +((((-485)) . T) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-952 (-485))) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-473)) |has| |#4| (-554 (-473)))) +((((-474)) |has| |#4| (-555 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-584 |#1|)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-585 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(|has| |#1| (-1015)) (((|#1|) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -((((-484) |#1|) . T)) -((((-1145 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-484) (-117)) . T)) -((((-484) (-117)) . T)) -((((-484) (-117)) . T) (((-1145 (-484)) $) . T)) +((((-485) (-117)) . T)) +((((-485) (-117)) . T)) +((((-485) (-117)) . T) (((-1147 (-485)) $) . T)) ((((-117)) . T)) -((((-773)) . T)) +((((-774)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-1072) |#1|) . T)) -((((-773)) . T)) -((((-1072) |#1|) . T)) -((((-1072) |#1|) . T)) -((((-1072) |#1|) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) . T)) -((((-1072) |#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1088 |#1| |#2| |#3|)) . T)) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))))) -((((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|)))) (((-1089) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|))))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -((((-1088 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((((-1088 |#1| |#2| |#3|)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-1088 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-773)) . T)) -((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) -(|has| |#1| (-311)) -(((|#1| (-695) (-994)) . T)) -(|has| |#1| (-822)) -(|has| |#1| (-822)) -((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T)) -((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T)) -((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T)) -((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-695)) . T)) +((((-1074) |#1|) . T)) +((((-774)) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-1074) |#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) . T)) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))))) +((((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|)))) (((-1091) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-454 (-1091) (-1090 |#1| |#2| |#3|))))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-118)))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1090 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-996)) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1090 |#1| |#2| |#3|)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-1090 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-774)) . T)) +((((-348 $) (-348 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-823))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) +(|has| |#1| (-312)) +(((|#1| (-696) (-996)) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-823)) +((((-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (((-996)) . T)) +((($ (-1091)) OR (|has| |#1| (-811 (-1091))) (|has| |#1| (-813 (-1091)))) (($ (-996)) . T)) +((((-1091)) |has| |#1| (-811 (-1091))) (((-996)) . T)) +((((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-696)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484)))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-695)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1065)) -(((|#1|) . T)) -((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($ $) . T) (((-347 (-484)) |#1|) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -(((|#1| (-347 (-484)) (-994)) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) (((-996)) . T) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#1| (-582 (-485))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-390)) (|has| |#1| (-496)) (|has| |#1| (-823))) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +((((-996)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-696)) . T)) +((((-996) |#1|) . T) (((-996) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1067)) +(((|#1|) . T)) +((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($ $) . T) (((-348 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +(((|#1| (-348 (-485)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-347 (-484))) . T)) -(((|#1| (-347 (-484))) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -((((-1175 |#2|)) . T) (((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(((|#1| (-1081 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-695)) . T)) -(((|#1| (-695)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +(((|#1| (-348 (-485))) . T)) +(((|#1| (-348 (-485))) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) . T)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +((((-1177 |#2|)) . T) (((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(((|#1| (-1083 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-696)) . T)) +(((|#1| (-696)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1| (-695) (-994)) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-695) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -(((|#1|) . T)) -((((-327)) . T) (((-484)) . T)) -((((-444)) . T)) -((((-444)) . T) (((-1072)) . T)) -((((-801 (-327))) . T) (((-801 (-484))) . T) (((-1089)) . T) (((-473)) . T)) -((((-773)) . T)) -(((|#1| (-885)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1| (-696) (-996)) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-696) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +(((|#1|) . T)) +((((-328)) . T) (((-485)) . T)) +((((-445)) . T)) +((((-445)) . T) (((-1074)) . T)) +((((-802 (-328))) . T) (((-802 (-485))) . T) (((-1091)) . T) (((-474)) . T)) +((((-774)) . T)) +(((|#1| (-886)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((((-773)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484))))) -(((|#1| (-885)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1072)) . T) (((-444)) . T) (((-179)) . T) (((-484)) . T)) -((((-1072)) . T) (((-444)) . T) (((-179)) . T) (((-484)) . T)) -((((-473)) . T) (((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((((-774)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) (((-485)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-952 (-485))) (((-348 (-485))) |has| |#1| (-952 (-348 (-485))))) +(((|#1| (-886)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1074)) . T) (((-445)) . T) (((-179)) . T) (((-485)) . T)) +((((-1074)) . T) (((-445)) . T) (((-179)) . T) (((-485)) . T)) +((((-474)) . T) (((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) +((((-774)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-773)) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-335) (-1072)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1089) $) . T)) -((((-1089)) . T)) -((((-773)) . T)) -((($ (-1089)) . T)) -((((-1089)) . T)) -(((|#1| (-469 (-1089)) (-1089)) . T)) -((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) -((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T)) +((((-774)) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-336) (-1074)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1015)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1015))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1091) $) . T)) +((((-1091)) . T)) +((((-774)) . T)) +((($ (-1091)) . T)) +((((-1091)) . T)) +(((|#1| (-470 (-1091)) (-1091)) . T)) +((($) . T) (((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) +((($) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-469 (-1089))) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-1089)) . T)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-870 |#1|)) . T)) -((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T)) -((((-870 |#1|)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1168 |#1| |#2| |#3|)) . T)) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((((-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))))) -((((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|)))) (((-1089) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|))))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -((((-1168 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((((-1168 |#1| |#2| |#3|)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-1168 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-311))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-1065))) -(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) (((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) (((-347 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484))))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-934))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-822))) -(((|#2|) |has| |#1| (-311))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) (-12 (|has| |#1| (-311)) (|has| |#2| (-757)))) -(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) (-12 (|has| |#1| (-311)) (|has| |#2| (-757)))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -(-12 (|has| |#1| (-311)) (|has| |#2| (-741))) -((((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) (((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484))))) -(((|#2|) |has| |#1| (-311))) -((((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((|#2|) |has| |#1| (-311))) -(((|#2|) |has| |#1| (-311))) -(((|#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) (((-1089) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|)))) -(((|#2|) |has| |#1| (-311))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -(((|#2|) |has| |#1| (-311))) -((($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -(((|#2|) |has| |#1| (-311))) -((((-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-801 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) (((-801 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) (((-473)) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473))))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| |#2| (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) -((((-773)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2| |#2|) |has| |#1| (-311)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (($) . T) ((|#1|) . T)) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-470 (-1091))) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-1091)) . T)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-871 |#1|)) . T)) +((((-774)) |has| |#1| (-554 (-774))) (((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) . T)) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))))) +((((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|)))) (((-1091) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-454 (-1091) (-1170 |#1| |#2| |#3|))))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-118)))) +((((-774)) . T)) +(((|#1|) . T)) +((((-1170 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-996)) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1170 |#1| |#2| |#3|)) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-1170 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-312))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) +(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) (((-348 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-935))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-823))) +(((|#2|) |has| |#1| (-312))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) (-12 (|has| |#1| (-312)) (|has| |#2| (-758)))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-742))) +((((-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-328)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-485))))) +(((|#2|) |has| |#1| (-312))) +((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ((|#2|) |has| |#1| (-312))) +(((|#2|) |has| |#1| (-312))) +(((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1091) |#2|)))) +(((|#2|) |has| |#1| (-312))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +(((|#2|) |has| |#1| (-312))) +((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091)))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +(((|#2|) |has| |#1| (-312))) +((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) (((-802 (-328))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-328))))) (((-802 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-485))))) (((-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-474))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) +((((-774)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-996)) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) (((|#1| |#2|) . T)) -(((|#1| (-1068 |#1|)) |has| |#1| (-756))) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-773)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((($) . T)) -((((-773)) . T)) -((((-347 $) (-347 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-311)) -(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-822))) -(OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) -(|has| |#2| (-311)) -(((|#2| (-695) (-994)) . T)) -(|has| |#2| (-822)) -(|has| |#2| (-822)) -((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))) (((-994)) . T)) -((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))) (($ (-994)) . T)) -((((-1089)) |has| |#2| (-810 (-1089))) (((-994)) . T)) -((((-484)) |has| |#2| (-581 (-484))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-695)) . T)) +(((|#1| (-1070 |#1|)) |has| |#1| (-757))) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +(|has| |#1| (-1015)) +((((-774)) |has| |#1| (-1015))) +(|has| |#1| (-1015)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((($) . T)) +((((-774)) . T)) +((((-348 $) (-348 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-312)) +(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-823))) +(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) +(|has| |#2| (-312)) +(((|#2| (-696) (-996)) . T)) +(|has| |#2| (-823)) +(|has| |#2| (-823)) +((((-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091)))) (((-996)) . T)) +((($ (-1091)) OR (|has| |#2| (-811 (-1091))) (|has| |#2| (-813 (-1091)))) (($ (-996)) . T)) +((((-1091)) |has| |#2| (-811 (-1091))) (((-996)) . T)) +((((-485)) |has| |#2| (-582 (-485))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-696)) . T)) (|has| |#2| (-120)) (|has| |#2| (-118)) -((((-1175 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-994)) . T) ((|#2|) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484)))))) -((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($) . T) (((-484)) |has| |#2| (-581 (-484))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((((-484)) . T) (($) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484))))) -(((|#2|) . T)) -((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484))))) -(((|#2| (-695)) . T)) -((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1065)) -(((|#2|) . T)) -((((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($ $) . T) (((-347 (-484)) |#1|) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -(((|#1| (-347 (-484)) (-994)) . T)) +((((-1177 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) (((-996)) . T) ((|#2|) . T) (((-348 (-485))) OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485)))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($) . T) (((-485)) |has| |#2| (-582 (-485))) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((((-485)) . T) (($) . T) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2|) . T) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2| |#2|) . T) (((-348 (-485)) (-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-390)) (|has| |#2| (-496)) (|has| |#2| (-823))) ((|#2|) |has| |#2| (-146)) (((-348 (-485))) |has| |#2| (-38 (-348 (-485))))) +(((|#2|) . T)) +((((-996)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-952 (-485))) (((-348 (-485))) |has| |#2| (-952 (-348 (-485))))) +(((|#2| (-696)) . T)) +((((-996) |#2|) . T) (((-996) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1067)) +(((|#2|) . T)) +((((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($ $) . T) (((-348 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +(((|#1| (-348 (-485)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-347 (-484))) . T)) -(((|#1| (-347 (-484))) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -((((-1175 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(((|#1| (-1138 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) -((($ $) . T) (((-347 (-484)) |#1|) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))) -(((|#1| (-347 (-484)) (-994)) . T)) +(((|#1| (-348 (-485))) . T)) +(((|#1| (-348 (-485))) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) . T)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +((((-1177 |#2|)) . T) (((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(((|#1| (-1140 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) +((($ $) . T) (((-348 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))))) +(((|#1| (-348 (-485)) (-996)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-347 (-484))) . T)) -(((|#1| (-347 (-484))) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-311)) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -((((-773)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311)))) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) -(OR (|has| |#1| (-311)) (|has| |#1| (-495))) -(|has| |#1| (-311)) -(|has| |#1| (-311)) -(|has| |#1| (-311)) +(((|#1| (-348 (-485))) . T)) +(((|#1| (-348 (-485))) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-312)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-774)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-348 (-485)) (-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) . T)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(|has| |#1| (-312)) +(|has| |#1| (-312)) +(|has| |#1| (-312)) (((|#1| |#2|) . T)) -((((-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T)) -(|has| (-1159 |#2| |#3| |#4|) (-120)) -(|has| (-1159 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((((-773)) . T)) -((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((($ $) . T) (((-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) . T) (((-347 (-484)) (-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -((((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (($) . T)) -((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (((-484)) . T)) -((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) -((((-1159 |#2| |#3| |#4|)) . T)) -((((-1159 |#2| |#3| |#4|)) . T)) -((((-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(|has| |#1| (-38 (-347 (-484)))) -(((|#1| (-695)) . T)) -(((|#1| (-695)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| (-1161 |#2| |#3| |#4|) (-120)) +(|has| (-1161 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((((-774)) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((($ $) . T) (((-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) . T) (((-348 (-485)) (-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((((-1161 |#2| |#3| |#4|)) . T) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485)))) (($) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485)))) (((-485)) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-348 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) +((((-1161 |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(|has| |#1| (-38 (-348 (-485)))) +(((|#1| (-696)) . T)) +(((|#1| (-696)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484))))) -(((|#1| (-695) (-994)) . T)) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) -((((-695) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) -((((-773)) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T)) -(|has| |#1| (-15 * (|#1| (-695) |#1|))) -(((|#1|) . T)) -((((-1089)) . T) (((-773)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T) (((-1145 (-484)) $) . T)) -((((-473)) |has| |#1| (-554 (-473)))) -(((|#1|) . T)) -(OR (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013)))) -((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(|has| |#1| (-757)) -(|has| |#1| (-757)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-773)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) -((((-1094)) . T)) -((((-773)) . T) (((-1094)) . T)) -((((-1094)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485))))) +(((|#1| (-696) (-996)) . T)) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|))))) +((((-696) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-696) |#1|)))) +((((-774)) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-348 (-485))) |has| |#1| (-38 (-348 (-485)))) (((-485)) . T)) +(|has| |#1| (-15 * (|#1| (-696) |#1|))) +(((|#1|) . T)) +((((-1091)) . T) (((-774)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-485) |#1|) . T)) +((((-485) |#1|) . T)) +((((-485) |#1|) . T) (((-1147 (-485)) $) . T)) +((((-474)) |has| |#1| (-555 (-474)))) +(((|#1|) . T)) +(OR (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015)))) +((((-774)) OR (|has| |#1| (-554 (-774))) (|has| |#1| (-758)) (|has| |#1| (-1015)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-758)) (|has| |#1| (-1015))) +(((|#1|) . T)) +(|has| |#1| (-758)) +(|has| |#1| (-758)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-774)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-774)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -3955,17 +3955,17 @@ (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-773)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +(((|#4|) . T) (((-774)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-473)) |has| |#4| (-554 (-473)))) +((((-474)) |has| |#4| (-555 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015)))) (((|#4|) . T)) -((((-773)) . T) (((-584 |#4|)) . T)) +((((-774)) . T) (((-585 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) @@ -3974,15 +3974,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-773)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-774)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-740 |#1|)) . T)) -(((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T)) -(((|#2| (-740 |#1|)) . T)) -(((|#2| (-804 |#1|)) . T)) +((((-741 |#1|)) . T)) +(((|#2|) . T) (((-485)) . T) (((-741 |#1|)) . T)) +(((|#2| (-741 |#1|)) . T)) +(((|#2| (-805 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -3992,12 +3992,12 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -((((-804 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T)) -((((-804 |#1|)) . T) (((-740 |#1|)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +((((-805 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-741 |#1|)) . T)) +((((-805 |#1|)) . T) (((-741 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1089) |#1|) . T)) +((((-1091) |#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -4006,11 +4006,11 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) -(((|#1|) . T) (((-484)) . T) (((-740 (-1089))) . T)) -((((-740 (-1089))) . T)) -((((-1089) |#1|) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (((-485)) . T) (((-741 (-1091))) . T)) +((((-741 (-1091))) . T)) +((((-1091) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-146))) @@ -4020,10 +4020,10 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-484)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) . T) (($) . T)) -((((-773)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) +((((-774)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4033,20 +4033,20 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-773)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -(((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T)) -((((-740 |#1|)) . T)) +((((-774)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +(((|#2|) . T) (((-485)) . T) (((-741 |#1|)) . T)) +((((-741 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T) (((-773)) . T)) -((((-484)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T) (((-774)) . T)) +((((-485)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-773)) . T)) -((((-484)) . T) (($) . T)) +((((-774)) . T)) +((((-485)) . T) (($) . T)) ((($) . T)) -((((-484)) . T)) -(((-1208 . -146) T) ((-1208 . -556) 199592) ((-1208 . -970) T) ((-1208 . -1025) T) ((-1208 . -1060) T) ((-1208 . -664) T) ((-1208 . -962) T) ((-1208 . -591) 199579) ((-1208 . -589) 199551) ((-1208 . -104) T) ((-1208 . -25) T) ((-1208 . -72) T) ((-1208 . -13) T) ((-1208 . -1128) T) ((-1208 . -553) 199533) ((-1208 . -1013) T) ((-1208 . -23) T) ((-1208 . -21) T) ((-1208 . -969) 199520) ((-1208 . -964) 199507) ((-1208 . -82) 199492) ((-1208 . -317) T) ((-1208 . -554) 199474) ((-1208 . -1065) T) ((-1204 . -1013) T) ((-1204 . -553) 199441) ((-1204 . -1128) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -427) 199423) ((-1204 . -556) 199405) ((-1203 . -1201) 199384) ((-1203 . -951) 199361) ((-1203 . -556) 199310) ((-1203 . -962) T) ((-1203 . -664) T) ((-1203 . -1060) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -589) 199269) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -553) 199251) ((-1203 . -1128) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -591) 199225) ((-1203 . -1193) 199209) ((-1203 . -655) 199179) ((-1203 . -583) 199149) ((-1203 . -969) 199133) ((-1203 . -964) 199117) ((-1203 . -82) 199096) ((-1203 . -38) 199066) ((-1203 . -1198) 199045) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1060) T) ((-1202 . -1025) T) ((-1202 . -970) T) ((-1202 . -21) T) ((-1202 . -589) 199004) ((-1202 . -23) T) ((-1202 . -1013) T) ((-1202 . -553) 198986) ((-1202 . -1128) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -591) 198960) ((-1202 . -556) 198916) ((-1202 . -1193) 198900) ((-1202 . -655) 198870) ((-1202 . -583) 198840) ((-1202 . -969) 198824) ((-1202 . -964) 198808) ((-1202 . -82) 198787) ((-1202 . -38) 198757) ((-1202 . -332) 198736) ((-1202 . -951) 198720) ((-1200 . -1201) 198696) ((-1200 . -951) 198670) ((-1200 . -556) 198616) ((-1200 . -962) T) ((-1200 . -664) T) ((-1200 . -1060) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -589) 198575) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -553) 198557) ((-1200 . -1128) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -591) 198531) ((-1200 . -1193) 198515) ((-1200 . -655) 198485) ((-1200 . -583) 198455) ((-1200 . -969) 198439) ((-1200 . -964) 198423) ((-1200 . -82) 198402) ((-1200 . -38) 198372) ((-1200 . -1198) 198348) ((-1199 . -1201) 198327) ((-1199 . -951) 198284) ((-1199 . -556) 198213) ((-1199 . -962) T) ((-1199 . -664) T) ((-1199 . -1060) T) ((-1199 . -1025) T) ((-1199 . -970) T) ((-1199 . -21) T) ((-1199 . -589) 198172) ((-1199 . -23) T) ((-1199 . -1013) T) ((-1199 . -553) 198154) ((-1199 . -1128) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -591) 198128) ((-1199 . -1193) 198112) ((-1199 . -655) 198082) ((-1199 . -583) 198052) ((-1199 . -969) 198036) ((-1199 . -964) 198020) ((-1199 . -82) 197999) ((-1199 . -38) 197969) ((-1199 . -1198) 197948) ((-1199 . -332) 197920) ((-1194 . -332) 197892) ((-1194 . -556) 197841) ((-1194 . -951) 197818) ((-1194 . -583) 197788) ((-1194 . -655) 197758) ((-1194 . -591) 197732) ((-1194 . -589) 197691) ((-1194 . -104) T) ((-1194 . -25) T) ((-1194 . -72) T) ((-1194 . -13) T) ((-1194 . -1128) T) ((-1194 . -553) 197673) ((-1194 . -1013) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -969) 197657) ((-1194 . -964) 197641) ((-1194 . -82) 197620) ((-1194 . -1201) 197599) ((-1194 . -962) T) ((-1194 . -664) T) ((-1194 . -1060) T) ((-1194 . -1025) T) ((-1194 . -970) T) ((-1194 . -1193) 197583) ((-1194 . -38) 197553) ((-1194 . -1198) 197532) ((-1192 . -1123) 197501) ((-1192 . -553) 197463) ((-1192 . -124) 197447) ((-1192 . -34) T) ((-1192 . -13) T) ((-1192 . -1128) T) ((-1192 . -72) T) ((-1192 . -259) 197385) ((-1192 . -453) 197318) ((-1192 . -1013) T) ((-1192 . -426) 197302) ((-1192 . -554) 197263) ((-1192 . -890) 197232) ((-1191 . -962) T) ((-1191 . -664) T) ((-1191 . -1060) T) ((-1191 . -1025) T) ((-1191 . -970) T) ((-1191 . -21) T) ((-1191 . -589) 197177) ((-1191 . -23) T) ((-1191 . -1013) T) ((-1191 . -553) 197146) ((-1191 . -1128) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -104) T) ((-1191 . -591) 197106) ((-1191 . -556) 197048) ((-1191 . -427) 197032) ((-1191 . -38) 197002) ((-1191 . -82) 196967) ((-1191 . -964) 196937) ((-1191 . -969) 196907) ((-1191 . -583) 196877) ((-1191 . -655) 196847) ((-1190 . -995) T) ((-1190 . -427) 196828) ((-1190 . -553) 196794) ((-1190 . -556) 196775) ((-1190 . -1013) T) ((-1190 . -1128) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1189 . -995) T) ((-1189 . -427) 196756) ((-1189 . -553) 196722) ((-1189 . -556) 196703) ((-1189 . -1013) T) ((-1189 . -1128) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1184 . -553) 196685) ((-1182 . -1013) T) ((-1182 . -553) 196667) ((-1182 . -1128) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1181 . -1013) T) ((-1181 . -553) 196649) ((-1181 . -1128) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1178 . -1177) 196633) ((-1178 . -321) 196617) ((-1178 . -760) 196596) ((-1178 . -757) 196575) ((-1178 . -124) 196559) ((-1178 . -34) T) ((-1178 . -13) T) ((-1178 . -1128) T) ((-1178 . -72) 196493) ((-1178 . -553) 196408) ((-1178 . -259) 196346) ((-1178 . -453) 196279) ((-1178 . -1013) 196232) ((-1178 . -426) 196216) ((-1178 . -554) 196177) ((-1178 . -241) 196129) ((-1178 . -539) 196106) ((-1178 . -243) 196083) ((-1178 . -594) 196067) ((-1178 . -19) 196051) ((-1175 . -1013) T) ((-1175 . -553) 196017) ((-1175 . -1128) T) ((-1175 . -13) T) ((-1175 . -72) T) ((-1168 . -1171) 196001) ((-1168 . -190) 195960) ((-1168 . -556) 195842) ((-1168 . -591) 195767) ((-1168 . -589) 195677) ((-1168 . -104) T) ((-1168 . -25) T) ((-1168 . -72) T) ((-1168 . -553) 195659) ((-1168 . -1013) T) ((-1168 . -23) T) ((-1168 . -21) T) ((-1168 . -970) T) ((-1168 . -1025) T) ((-1168 . -1060) T) ((-1168 . -664) T) ((-1168 . -962) T) ((-1168 . -186) 195612) ((-1168 . -13) T) ((-1168 . -1128) T) ((-1168 . -189) 195571) ((-1168 . -241) 195536) ((-1168 . -810) 195449) ((-1168 . -807) 195337) ((-1168 . -812) 195250) ((-1168 . -887) 195220) ((-1168 . -38) 195117) ((-1168 . -82) 194982) ((-1168 . -964) 194868) ((-1168 . -969) 194754) ((-1168 . -583) 194651) ((-1168 . -655) 194548) ((-1168 . -118) 194527) ((-1168 . -120) 194506) ((-1168 . -146) 194460) ((-1168 . -495) 194439) ((-1168 . -245) 194418) ((-1168 . -47) 194395) ((-1168 . -1157) 194372) ((-1168 . -35) 194338) ((-1168 . -66) 194304) ((-1168 . -239) 194270) ((-1168 . -430) 194236) ((-1168 . -1117) 194202) ((-1168 . -1114) 194168) ((-1168 . -916) 194134) ((-1165 . -276) 194078) ((-1165 . -951) 194044) ((-1165 . -352) 194010) ((-1165 . -38) 193867) ((-1165 . -556) 193741) ((-1165 . -591) 193630) ((-1165 . -589) 193504) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1060) T) ((-1165 . -664) T) ((-1165 . -962) T) ((-1165 . -82) 193354) ((-1165 . -964) 193243) ((-1165 . -969) 193132) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -553) 193114) ((-1165 . -1128) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -583) 192971) ((-1165 . -655) 192828) ((-1165 . -118) 192789) ((-1165 . -120) 192750) ((-1165 . -146) T) ((-1165 . -495) T) ((-1165 . -245) T) ((-1165 . -47) 192694) ((-1164 . -1163) 192673) ((-1164 . -311) 192652) ((-1164 . -1133) 192631) ((-1164 . -833) 192610) ((-1164 . -495) 192564) ((-1164 . -146) 192498) ((-1164 . -556) 192317) ((-1164 . -655) 192164) ((-1164 . -583) 192011) ((-1164 . -38) 191858) ((-1164 . -389) 191837) ((-1164 . -257) 191816) ((-1164 . -591) 191716) ((-1164 . -589) 191601) ((-1164 . -970) T) ((-1164 . -1025) T) ((-1164 . -1060) T) ((-1164 . -664) T) ((-1164 . -962) T) ((-1164 . -82) 191421) ((-1164 . -964) 191262) ((-1164 . -969) 191103) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1013) T) ((-1164 . -553) 191085) ((-1164 . -1128) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -245) 191039) ((-1164 . -201) 191018) ((-1164 . -916) 190984) ((-1164 . -1114) 190950) ((-1164 . -1117) 190916) ((-1164 . -430) 190882) ((-1164 . -239) 190848) ((-1164 . -66) 190814) ((-1164 . -35) 190780) ((-1164 . -1157) 190750) ((-1164 . -47) 190720) ((-1164 . -120) 190699) ((-1164 . -118) 190678) ((-1164 . -887) 190641) ((-1164 . -812) 190547) ((-1164 . -807) 190451) ((-1164 . -810) 190357) ((-1164 . -241) 190315) ((-1164 . -189) 190267) ((-1164 . -186) 190213) ((-1164 . -190) 190165) ((-1164 . -1161) 190149) ((-1164 . -951) 190133) ((-1159 . -1163) 190094) ((-1159 . -311) 190073) ((-1159 . -1133) 190052) ((-1159 . -833) 190031) ((-1159 . -495) 189985) ((-1159 . -146) 189919) ((-1159 . -556) 189668) ((-1159 . -655) 189515) ((-1159 . -583) 189362) ((-1159 . -38) 189209) ((-1159 . -389) 189188) ((-1159 . -257) 189167) ((-1159 . -591) 189067) ((-1159 . -589) 188952) ((-1159 . -970) T) ((-1159 . -1025) T) ((-1159 . -1060) T) ((-1159 . -664) T) ((-1159 . -962) T) ((-1159 . -82) 188772) ((-1159 . -964) 188613) ((-1159 . -969) 188454) ((-1159 . -21) T) ((-1159 . -23) T) ((-1159 . -1013) T) ((-1159 . -553) 188436) ((-1159 . -1128) T) ((-1159 . -13) T) ((-1159 . -72) T) ((-1159 . -25) T) ((-1159 . -104) T) ((-1159 . -245) 188390) ((-1159 . -201) 188369) ((-1159 . -916) 188335) ((-1159 . -1114) 188301) ((-1159 . -1117) 188267) ((-1159 . -430) 188233) ((-1159 . -239) 188199) ((-1159 . -66) 188165) ((-1159 . -35) 188131) ((-1159 . -1157) 188101) ((-1159 . -47) 188071) ((-1159 . -120) 188050) ((-1159 . -118) 188029) ((-1159 . -887) 187992) ((-1159 . -812) 187898) ((-1159 . -807) 187779) ((-1159 . -810) 187685) ((-1159 . -241) 187643) ((-1159 . -189) 187595) ((-1159 . -186) 187541) ((-1159 . -190) 187493) ((-1159 . -1161) 187477) ((-1159 . -951) 187412) ((-1147 . -1154) 187396) ((-1147 . -1065) 187374) ((-1147 . -554) NIL) ((-1147 . -259) 187361) ((-1147 . -453) 187309) ((-1147 . -276) 187286) ((-1147 . -951) 187169) ((-1147 . -352) 187153) ((-1147 . -38) 186985) ((-1147 . -82) 186790) ((-1147 . -964) 186616) ((-1147 . -969) 186442) ((-1147 . -589) 186352) ((-1147 . -591) 186241) ((-1147 . -583) 186073) ((-1147 . -655) 185905) ((-1147 . -556) 185661) ((-1147 . -118) 185640) ((-1147 . -120) 185619) ((-1147 . -47) 185596) ((-1147 . -326) 185580) ((-1147 . -581) 185528) ((-1147 . -810) 185472) ((-1147 . -807) 185379) ((-1147 . -812) 185290) ((-1147 . -797) NIL) ((-1147 . -822) 185269) ((-1147 . -1133) 185248) ((-1147 . -862) 185218) ((-1147 . -833) 185197) ((-1147 . -495) 185111) ((-1147 . -245) 185025) ((-1147 . -146) 184919) ((-1147 . -389) 184853) ((-1147 . -257) 184832) ((-1147 . -241) 184759) ((-1147 . -190) T) ((-1147 . -104) T) ((-1147 . -25) T) ((-1147 . -72) T) ((-1147 . -553) 184741) ((-1147 . -1013) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -970) T) ((-1147 . -1025) T) ((-1147 . -1060) T) ((-1147 . -664) T) ((-1147 . -962) T) ((-1147 . -186) 184728) ((-1147 . -13) T) ((-1147 . -1128) T) ((-1147 . -189) T) ((-1147 . -225) 184712) ((-1147 . -184) 184696) ((-1145 . -1006) 184680) ((-1145 . -558) 184664) ((-1145 . -1013) 184642) ((-1145 . -553) 184609) ((-1145 . -1128) 184587) ((-1145 . -13) 184565) ((-1145 . -72) 184543) ((-1145 . -1007) 184500) ((-1143 . -1142) 184479) ((-1143 . -916) 184445) ((-1143 . -1114) 184411) ((-1143 . -1117) 184377) ((-1143 . -430) 184343) ((-1143 . -239) 184309) ((-1143 . -66) 184275) ((-1143 . -35) 184241) ((-1143 . -1157) 184218) ((-1143 . -47) 184195) ((-1143 . -556) 183950) ((-1143 . -655) 183770) ((-1143 . -583) 183590) ((-1143 . -591) 183401) ((-1143 . -589) 183259) ((-1143 . -969) 183073) ((-1143 . -964) 182887) ((-1143 . -82) 182675) ((-1143 . -38) 182495) ((-1143 . -887) 182465) ((-1143 . -241) 182365) ((-1143 . -1140) 182349) ((-1143 . -970) T) ((-1143 . -1025) T) ((-1143 . -1060) T) ((-1143 . -664) T) ((-1143 . -962) T) ((-1143 . -21) T) ((-1143 . -23) T) ((-1143 . -1013) T) ((-1143 . -553) 182331) ((-1143 . -1128) T) ((-1143 . -13) T) ((-1143 . -72) T) ((-1143 . -25) T) ((-1143 . -104) T) ((-1143 . -118) 182259) ((-1143 . -120) 182187) ((-1143 . -554) 181860) ((-1143 . -184) 181830) ((-1143 . -810) 181684) ((-1143 . -812) 181484) ((-1143 . -807) 181282) ((-1143 . -225) 181252) ((-1143 . -189) 181114) ((-1143 . -186) 180970) ((-1143 . -190) 180878) ((-1143 . -311) 180857) ((-1143 . -1133) 180836) ((-1143 . -833) 180815) ((-1143 . -495) 180769) ((-1143 . -146) 180703) ((-1143 . -389) 180682) ((-1143 . -257) 180661) ((-1143 . -245) 180615) ((-1143 . -201) 180594) ((-1143 . -287) 180564) ((-1143 . -453) 180424) ((-1143 . -259) 180363) ((-1143 . -326) 180333) ((-1143 . -581) 180241) ((-1143 . -340) 180211) ((-1143 . -797) 180084) ((-1143 . -741) 180037) ((-1143 . -715) 179990) ((-1143 . -717) 179943) ((-1143 . -757) 179845) ((-1143 . -760) 179747) ((-1143 . -719) 179700) ((-1143 . -722) 179653) ((-1143 . -756) 179606) ((-1143 . -795) 179576) ((-1143 . -822) 179529) ((-1143 . -934) 179482) ((-1143 . -951) 179271) ((-1143 . -1065) 179223) ((-1143 . -905) 179193) ((-1138 . -1142) 179154) ((-1138 . -916) 179120) ((-1138 . -1114) 179086) ((-1138 . -1117) 179052) ((-1138 . -430) 179018) ((-1138 . -239) 178984) ((-1138 . -66) 178950) ((-1138 . -35) 178916) ((-1138 . -1157) 178893) ((-1138 . -47) 178870) ((-1138 . -556) 178671) ((-1138 . -655) 178473) ((-1138 . -583) 178275) ((-1138 . -591) 178130) ((-1138 . -589) 177970) ((-1138 . -969) 177766) ((-1138 . -964) 177562) ((-1138 . -82) 177314) ((-1138 . -38) 177116) ((-1138 . -887) 177086) ((-1138 . -241) 176914) ((-1138 . -1140) 176898) ((-1138 . -970) T) ((-1138 . -1025) T) ((-1138 . -1060) T) ((-1138 . -664) T) ((-1138 . -962) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1013) T) ((-1138 . -553) 176880) ((-1138 . -1128) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -25) T) ((-1138 . -104) T) ((-1138 . -118) 176790) ((-1138 . -120) 176700) ((-1138 . -554) NIL) ((-1138 . -184) 176652) ((-1138 . -810) 176488) ((-1138 . -812) 176252) ((-1138 . -807) 175991) ((-1138 . -225) 175943) ((-1138 . -189) 175769) ((-1138 . -186) 175589) ((-1138 . -190) 175479) ((-1138 . -311) 175458) ((-1138 . -1133) 175437) ((-1138 . -833) 175416) ((-1138 . -495) 175370) ((-1138 . -146) 175304) ((-1138 . -389) 175283) ((-1138 . -257) 175262) ((-1138 . -245) 175216) ((-1138 . -201) 175195) ((-1138 . -287) 175147) ((-1138 . -453) 174881) ((-1138 . -259) 174766) ((-1138 . -326) 174718) ((-1138 . -581) 174670) ((-1138 . -340) 174622) ((-1138 . -797) NIL) ((-1138 . -741) NIL) ((-1138 . -715) NIL) ((-1138 . -717) NIL) ((-1138 . -757) NIL) ((-1138 . -760) NIL) ((-1138 . -719) NIL) ((-1138 . -722) NIL) ((-1138 . -756) NIL) ((-1138 . -795) 174574) ((-1138 . -822) NIL) ((-1138 . -934) NIL) ((-1138 . -951) 174540) ((-1138 . -1065) NIL) ((-1138 . -905) 174492) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1013) T) ((-1137 . -553) 174474) ((-1137 . -1128) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -317) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1013) T) ((-1136 . -553) 174456) ((-1136 . -1128) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -317) T) ((-1136 . -605) T) ((-1135 . -753) T) ((-1135 . -760) T) ((-1135 . -757) T) ((-1135 . -1013) T) ((-1135 . -553) 174438) ((-1135 . -1128) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -317) T) ((-1135 . -605) T) ((-1134 . -753) T) ((-1134 . -760) T) ((-1134 . -757) T) ((-1134 . -1013) T) ((-1134 . -553) 174420) ((-1134 . -1128) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -317) T) ((-1134 . -605) T) ((-1129 . -995) T) ((-1129 . -427) 174401) ((-1129 . -553) 174367) ((-1129 . -556) 174348) ((-1129 . -1013) T) ((-1129 . -1128) T) ((-1129 . -13) T) ((-1129 . -72) T) ((-1129 . -64) T) ((-1126 . -427) 174325) ((-1126 . -553) 174266) ((-1126 . -556) 174243) ((-1126 . -1013) 174221) ((-1126 . -1128) 174199) ((-1126 . -13) 174177) ((-1126 . -72) 174155) ((-1121 . -680) 174131) ((-1121 . -35) 174097) ((-1121 . -66) 174063) ((-1121 . -239) 174029) ((-1121 . -430) 173995) ((-1121 . -1117) 173961) ((-1121 . -1114) 173927) ((-1121 . -916) 173893) ((-1121 . -47) 173862) ((-1121 . -38) 173759) ((-1121 . -583) 173656) ((-1121 . -655) 173553) ((-1121 . -556) 173435) ((-1121 . -245) 173414) ((-1121 . -495) 173393) ((-1121 . -82) 173258) ((-1121 . -964) 173144) ((-1121 . -969) 173030) ((-1121 . -146) 172984) ((-1121 . -120) 172963) ((-1121 . -118) 172942) ((-1121 . -591) 172867) ((-1121 . -589) 172777) ((-1121 . -887) 172738) ((-1121 . -812) 172719) ((-1121 . -1128) T) ((-1121 . -13) T) ((-1121 . -807) 172698) ((-1121 . -962) T) ((-1121 . -664) T) ((-1121 . -1060) T) ((-1121 . -1025) T) ((-1121 . -970) T) ((-1121 . -21) T) ((-1121 . -23) T) ((-1121 . -1013) T) ((-1121 . -553) 172680) ((-1121 . -72) T) ((-1121 . -25) T) ((-1121 . -104) T) ((-1121 . -810) 172661) ((-1121 . -453) 172628) ((-1121 . -259) 172615) ((-1115 . -924) 172599) ((-1115 . -34) T) ((-1115 . -13) T) ((-1115 . -1128) T) ((-1115 . -72) 172553) ((-1115 . -553) 172488) ((-1115 . -259) 172426) ((-1115 . -453) 172359) ((-1115 . -1013) 172337) ((-1115 . -426) 172321) ((-1110 . -313) 172295) ((-1110 . -72) T) ((-1110 . -13) T) ((-1110 . -1128) T) ((-1110 . -553) 172277) ((-1110 . -1013) T) ((-1108 . -1013) T) ((-1108 . -553) 172259) ((-1108 . -1128) T) ((-1108 . -13) T) ((-1108 . -72) T) ((-1108 . -556) 172241) ((-1103 . -748) 172225) ((-1103 . -72) T) ((-1103 . -13) T) ((-1103 . -1128) T) ((-1103 . -553) 172207) ((-1103 . -1013) T) ((-1101 . -1106) 172186) ((-1101 . -183) 172134) ((-1101 . -76) 172082) ((-1101 . -259) 171880) ((-1101 . -453) 171632) ((-1101 . -426) 171567) ((-1101 . -124) 171515) ((-1101 . -554) NIL) ((-1101 . -193) 171463) ((-1101 . -550) 171442) ((-1101 . -243) 171421) ((-1101 . -1128) T) ((-1101 . -13) T) ((-1101 . -241) 171400) ((-1101 . -1013) T) ((-1101 . -553) 171382) ((-1101 . -72) T) ((-1101 . -34) T) ((-1101 . -539) 171361) ((-1097 . -1013) T) ((-1097 . -553) 171343) ((-1097 . -1128) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1096 . -753) T) ((-1096 . -760) T) ((-1096 . -757) T) ((-1096 . -1013) T) ((-1096 . -553) 171325) ((-1096 . -1128) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -317) T) ((-1096 . -605) T) ((-1095 . -753) T) ((-1095 . -760) T) ((-1095 . -757) T) ((-1095 . -1013) T) ((-1095 . -553) 171307) ((-1095 . -1128) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -317) T) ((-1094 . -1174) T) ((-1094 . -1013) T) ((-1094 . -553) 171274) ((-1094 . -1128) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -951) 171210) ((-1094 . -556) 171146) ((-1093 . -553) 171128) ((-1092 . -553) 171110) ((-1091 . -276) 171087) ((-1091 . -951) 170985) ((-1091 . -352) 170969) ((-1091 . -38) 170866) ((-1091 . -556) 170723) ((-1091 . -591) 170648) ((-1091 . -589) 170558) ((-1091 . -970) T) ((-1091 . -1025) T) ((-1091 . -1060) T) ((-1091 . -664) T) ((-1091 . -962) T) ((-1091 . -82) 170423) ((-1091 . -964) 170309) ((-1091 . -969) 170195) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1013) T) ((-1091 . -553) 170177) ((-1091 . -1128) T) ((-1091 . -13) T) ((-1091 . -72) T) ((-1091 . -25) T) ((-1091 . -104) T) ((-1091 . -583) 170074) ((-1091 . -655) 169971) ((-1091 . -118) 169950) ((-1091 . -120) 169929) ((-1091 . -146) 169883) ((-1091 . -495) 169862) ((-1091 . -245) 169841) ((-1091 . -47) 169818) ((-1089 . -757) T) ((-1089 . -553) 169800) ((-1089 . -1013) T) ((-1089 . -72) T) ((-1089 . -13) T) ((-1089 . -1128) T) ((-1089 . -760) T) ((-1089 . -554) 169722) ((-1089 . -556) 169688) ((-1089 . -951) 169670) ((-1089 . -797) 169637) ((-1088 . -1171) 169621) ((-1088 . -190) 169580) ((-1088 . -556) 169462) ((-1088 . -591) 169387) ((-1088 . -589) 169297) ((-1088 . -104) T) ((-1088 . -25) T) ((-1088 . -72) T) ((-1088 . -553) 169279) ((-1088 . -1013) T) ((-1088 . -23) T) ((-1088 . -21) T) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1060) T) ((-1088 . -664) T) ((-1088 . -962) T) ((-1088 . -186) 169232) ((-1088 . -13) T) ((-1088 . -1128) T) ((-1088 . -189) 169191) ((-1088 . -241) 169156) ((-1088 . -810) 169069) ((-1088 . -807) 168957) ((-1088 . -812) 168870) ((-1088 . -887) 168840) ((-1088 . -38) 168737) ((-1088 . -82) 168602) ((-1088 . -964) 168488) ((-1088 . -969) 168374) ((-1088 . -583) 168271) ((-1088 . -655) 168168) ((-1088 . -118) 168147) ((-1088 . -120) 168126) ((-1088 . -146) 168080) ((-1088 . -495) 168059) ((-1088 . -245) 168038) ((-1088 . -47) 168015) ((-1088 . -1157) 167992) ((-1088 . -35) 167958) ((-1088 . -66) 167924) ((-1088 . -239) 167890) ((-1088 . -430) 167856) ((-1088 . -1117) 167822) ((-1088 . -1114) 167788) ((-1088 . -916) 167754) ((-1087 . -1163) 167715) ((-1087 . -311) 167694) ((-1087 . -1133) 167673) ((-1087 . -833) 167652) ((-1087 . -495) 167606) ((-1087 . -146) 167540) ((-1087 . -556) 167289) ((-1087 . -655) 167136) ((-1087 . -583) 166983) ((-1087 . -38) 166830) ((-1087 . -389) 166809) ((-1087 . -257) 166788) ((-1087 . -591) 166688) ((-1087 . -589) 166573) ((-1087 . -970) T) ((-1087 . -1025) T) ((-1087 . -1060) T) ((-1087 . -664) T) ((-1087 . -962) T) ((-1087 . -82) 166393) ((-1087 . -964) 166234) ((-1087 . -969) 166075) ((-1087 . -21) T) ((-1087 . -23) T) ((-1087 . -1013) T) ((-1087 . -553) 166057) ((-1087 . -1128) T) ((-1087 . -13) T) ((-1087 . -72) T) ((-1087 . -25) T) ((-1087 . -104) T) ((-1087 . -245) 166011) ((-1087 . -201) 165990) ((-1087 . -916) 165956) ((-1087 . -1114) 165922) ((-1087 . -1117) 165888) ((-1087 . -430) 165854) ((-1087 . -239) 165820) ((-1087 . -66) 165786) ((-1087 . -35) 165752) ((-1087 . -1157) 165722) ((-1087 . -47) 165692) ((-1087 . -120) 165671) ((-1087 . -118) 165650) ((-1087 . -887) 165613) ((-1087 . -812) 165519) ((-1087 . -807) 165400) ((-1087 . -810) 165306) ((-1087 . -241) 165264) ((-1087 . -189) 165216) ((-1087 . -186) 165162) ((-1087 . -190) 165114) ((-1087 . -1161) 165098) ((-1087 . -951) 165033) ((-1084 . -1154) 165017) ((-1084 . -1065) 164995) ((-1084 . -554) NIL) ((-1084 . -259) 164982) ((-1084 . -453) 164930) ((-1084 . -276) 164907) ((-1084 . -951) 164790) ((-1084 . -352) 164774) ((-1084 . -38) 164606) ((-1084 . -82) 164411) ((-1084 . -964) 164237) ((-1084 . -969) 164063) ((-1084 . -589) 163973) ((-1084 . -591) 163862) ((-1084 . -583) 163694) ((-1084 . -655) 163526) ((-1084 . -556) 163303) ((-1084 . -118) 163282) ((-1084 . -120) 163261) ((-1084 . -47) 163238) ((-1084 . -326) 163222) ((-1084 . -581) 163170) ((-1084 . -810) 163114) ((-1084 . -807) 163021) ((-1084 . -812) 162932) ((-1084 . -797) NIL) ((-1084 . -822) 162911) ((-1084 . -1133) 162890) ((-1084 . -862) 162860) ((-1084 . -833) 162839) ((-1084 . -495) 162753) ((-1084 . -245) 162667) ((-1084 . -146) 162561) ((-1084 . -389) 162495) ((-1084 . -257) 162474) ((-1084 . -241) 162401) ((-1084 . -190) T) ((-1084 . -104) T) ((-1084 . -25) T) ((-1084 . -72) T) ((-1084 . -553) 162383) ((-1084 . -1013) T) ((-1084 . -23) T) ((-1084 . -21) T) ((-1084 . -970) T) ((-1084 . -1025) T) ((-1084 . -1060) T) ((-1084 . -664) T) ((-1084 . -962) T) ((-1084 . -186) 162370) ((-1084 . -13) T) ((-1084 . -1128) T) ((-1084 . -189) T) ((-1084 . -225) 162354) ((-1084 . -184) 162338) ((-1081 . -1142) 162299) ((-1081 . -916) 162265) ((-1081 . -1114) 162231) ((-1081 . -1117) 162197) ((-1081 . -430) 162163) ((-1081 . -239) 162129) ((-1081 . -66) 162095) ((-1081 . -35) 162061) ((-1081 . -1157) 162038) ((-1081 . -47) 162015) ((-1081 . -556) 161816) ((-1081 . -655) 161618) ((-1081 . -583) 161420) ((-1081 . -591) 161275) ((-1081 . -589) 161115) ((-1081 . -969) 160911) ((-1081 . -964) 160707) ((-1081 . -82) 160459) ((-1081 . -38) 160261) ((-1081 . -887) 160231) ((-1081 . -241) 160059) ((-1081 . -1140) 160043) ((-1081 . -970) T) ((-1081 . -1025) T) ((-1081 . -1060) T) ((-1081 . -664) T) ((-1081 . -962) T) ((-1081 . -21) T) ((-1081 . -23) T) ((-1081 . -1013) T) ((-1081 . -553) 160025) ((-1081 . -1128) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -25) T) ((-1081 . -104) T) ((-1081 . -118) 159935) ((-1081 . -120) 159845) ((-1081 . -554) NIL) ((-1081 . -184) 159797) ((-1081 . -810) 159633) ((-1081 . -812) 159397) ((-1081 . -807) 159136) ((-1081 . -225) 159088) ((-1081 . -189) 158914) ((-1081 . -186) 158734) ((-1081 . -190) 158624) ((-1081 . -311) 158603) ((-1081 . -1133) 158582) ((-1081 . -833) 158561) ((-1081 . -495) 158515) ((-1081 . -146) 158449) ((-1081 . -389) 158428) ((-1081 . -257) 158407) ((-1081 . -245) 158361) ((-1081 . -201) 158340) ((-1081 . -287) 158292) ((-1081 . -453) 158026) ((-1081 . -259) 157911) ((-1081 . -326) 157863) ((-1081 . -581) 157815) ((-1081 . -340) 157767) ((-1081 . -797) NIL) ((-1081 . -741) NIL) ((-1081 . -715) NIL) ((-1081 . -717) NIL) ((-1081 . -757) NIL) ((-1081 . -760) NIL) ((-1081 . -719) NIL) ((-1081 . -722) NIL) ((-1081 . -756) NIL) ((-1081 . -795) 157719) ((-1081 . -822) NIL) ((-1081 . -934) NIL) ((-1081 . -951) 157685) ((-1081 . -1065) NIL) ((-1081 . -905) 157637) ((-1080 . -995) T) ((-1080 . -427) 157618) ((-1080 . -553) 157584) ((-1080 . -556) 157565) ((-1080 . -1013) T) ((-1080 . -1128) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -64) T) ((-1079 . -1013) T) ((-1079 . -553) 157547) ((-1079 . -1128) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1078 . -1013) T) ((-1078 . -553) 157529) ((-1078 . -1128) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1073 . -1106) 157505) ((-1073 . -183) 157450) ((-1073 . -76) 157395) ((-1073 . -259) 157184) ((-1073 . -453) 156924) ((-1073 . -426) 156856) ((-1073 . -124) 156801) ((-1073 . -554) NIL) ((-1073 . -193) 156746) ((-1073 . -550) 156722) ((-1073 . -243) 156698) ((-1073 . -1128) T) ((-1073 . -13) T) ((-1073 . -241) 156674) ((-1073 . -1013) T) ((-1073 . -553) 156656) ((-1073 . -72) T) ((-1073 . -34) T) ((-1073 . -539) 156632) ((-1072 . -1057) T) ((-1072 . -321) 156614) ((-1072 . -760) T) ((-1072 . -757) T) ((-1072 . -124) 156596) ((-1072 . -34) T) ((-1072 . -13) T) ((-1072 . -1128) T) ((-1072 . -72) T) ((-1072 . -553) 156578) ((-1072 . -259) NIL) ((-1072 . -453) NIL) ((-1072 . -1013) T) ((-1072 . -426) 156560) ((-1072 . -554) NIL) ((-1072 . -241) 156510) ((-1072 . -539) 156485) ((-1072 . -243) 156460) ((-1072 . -594) 156442) ((-1072 . -19) 156424) ((-1068 . -617) 156408) ((-1068 . -594) 156392) ((-1068 . -243) 156369) ((-1068 . -241) 156321) ((-1068 . -539) 156298) ((-1068 . -554) 156259) ((-1068 . -426) 156243) ((-1068 . -1013) 156221) ((-1068 . -453) 156154) ((-1068 . -259) 156092) ((-1068 . -553) 156027) ((-1068 . -72) 155981) ((-1068 . -1128) T) ((-1068 . -13) T) ((-1068 . -34) T) ((-1068 . -124) 155965) ((-1068 . -1167) 155949) ((-1068 . -924) 155933) ((-1068 . -1063) 155917) ((-1068 . -556) 155894) ((-1066 . -995) T) ((-1066 . -427) 155875) ((-1066 . -553) 155841) ((-1066 . -556) 155822) ((-1066 . -1013) T) ((-1066 . -1128) T) ((-1066 . -13) T) ((-1066 . -72) T) ((-1066 . -64) T) ((-1064 . -1106) 155801) ((-1064 . -183) 155749) ((-1064 . -76) 155697) ((-1064 . -259) 155495) ((-1064 . -453) 155247) ((-1064 . -426) 155182) ((-1064 . -124) 155130) ((-1064 . -554) NIL) ((-1064 . -193) 155078) ((-1064 . -550) 155057) ((-1064 . -243) 155036) ((-1064 . -1128) T) ((-1064 . -13) T) ((-1064 . -241) 155015) ((-1064 . -1013) T) ((-1064 . -553) 154997) ((-1064 . -72) T) ((-1064 . -34) T) ((-1064 . -539) 154976) ((-1061 . -1034) 154960) ((-1061 . -426) 154944) ((-1061 . -1013) 154922) ((-1061 . -453) 154855) ((-1061 . -259) 154793) ((-1061 . -553) 154728) ((-1061 . -72) 154682) ((-1061 . -1128) T) ((-1061 . -13) T) ((-1061 . -34) T) ((-1061 . -76) 154666) ((-1059 . -1020) 154635) ((-1059 . -1123) 154604) ((-1059 . -553) 154566) ((-1059 . -124) 154550) ((-1059 . -34) T) ((-1059 . -13) T) ((-1059 . -1128) T) ((-1059 . -72) T) ((-1059 . -259) 154488) ((-1059 . -453) 154421) ((-1059 . -1013) T) ((-1059 . -426) 154405) ((-1059 . -554) 154366) ((-1059 . -890) 154335) ((-1059 . -983) 154304) ((-1055 . -1036) 154249) ((-1055 . -426) 154233) ((-1055 . -453) 154166) ((-1055 . -259) 154104) ((-1055 . -34) T) ((-1055 . -966) 154044) ((-1055 . -951) 153942) ((-1055 . -556) 153861) ((-1055 . -352) 153845) ((-1055 . -581) 153793) ((-1055 . -591) 153731) ((-1055 . -326) 153715) ((-1055 . -190) 153694) ((-1055 . -186) 153642) ((-1055 . -189) 153596) ((-1055 . -225) 153580) ((-1055 . -807) 153504) ((-1055 . -812) 153430) ((-1055 . -810) 153389) ((-1055 . -184) 153373) ((-1055 . -655) 153308) ((-1055 . -583) 153243) ((-1055 . -589) 153202) ((-1055 . -104) T) ((-1055 . -25) T) ((-1055 . -72) T) ((-1055 . -13) T) ((-1055 . -1128) T) ((-1055 . -553) 153164) ((-1055 . -1013) T) ((-1055 . -23) T) ((-1055 . -21) T) ((-1055 . -969) 153148) ((-1055 . -964) 153132) ((-1055 . -82) 153111) ((-1055 . -962) T) ((-1055 . -664) T) ((-1055 . -1060) T) ((-1055 . -1025) T) ((-1055 . -970) T) ((-1055 . -38) 153071) ((-1055 . -554) 153032) ((-1054 . -924) 153003) ((-1054 . -34) T) ((-1054 . -13) T) ((-1054 . -1128) T) ((-1054 . -72) T) ((-1054 . -553) 152985) ((-1054 . -259) 152911) ((-1054 . -453) 152819) ((-1054 . -1013) T) ((-1054 . -426) 152790) ((-1053 . -1013) T) ((-1053 . -553) 152772) ((-1053 . -1128) T) ((-1053 . -13) T) ((-1053 . -72) T) ((-1048 . -1050) T) ((-1048 . -1174) T) ((-1048 . -64) T) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1128) T) ((-1048 . -553) 152738) ((-1048 . -1013) T) ((-1048 . -556) 152719) ((-1048 . -427) 152700) ((-1048 . -995) T) ((-1046 . -1047) 152684) ((-1046 . -72) T) ((-1046 . -13) T) ((-1046 . -1128) T) ((-1046 . -553) 152666) ((-1046 . -1013) T) ((-1039 . -680) 152645) ((-1039 . -35) 152611) ((-1039 . -66) 152577) ((-1039 . -239) 152543) ((-1039 . -430) 152509) ((-1039 . -1117) 152475) ((-1039 . -1114) 152441) ((-1039 . -916) 152407) ((-1039 . -47) 152379) ((-1039 . -38) 152276) ((-1039 . -583) 152173) ((-1039 . -655) 152070) ((-1039 . -556) 151952) ((-1039 . -245) 151931) ((-1039 . -495) 151910) ((-1039 . -82) 151775) ((-1039 . -964) 151661) ((-1039 . -969) 151547) ((-1039 . -146) 151501) ((-1039 . -120) 151480) ((-1039 . -118) 151459) ((-1039 . -591) 151384) ((-1039 . -589) 151294) ((-1039 . -887) 151261) ((-1039 . -812) 151245) ((-1039 . -1128) T) ((-1039 . -13) T) ((-1039 . -807) 151227) ((-1039 . -962) T) ((-1039 . -664) T) ((-1039 . -1060) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -21) T) ((-1039 . -23) T) ((-1039 . -1013) T) ((-1039 . -553) 151209) ((-1039 . -72) T) ((-1039 . -25) T) ((-1039 . -104) T) ((-1039 . -810) 151193) ((-1039 . -453) 151163) ((-1039 . -259) 151150) ((-1038 . -862) 151117) ((-1038 . -556) 150916) ((-1038 . -951) 150801) ((-1038 . -1133) 150780) ((-1038 . -822) 150759) ((-1038 . -797) 150618) ((-1038 . -812) 150602) ((-1038 . -807) 150584) ((-1038 . -810) 150568) ((-1038 . -453) 150520) ((-1038 . -389) 150474) ((-1038 . -581) 150422) ((-1038 . -591) 150311) ((-1038 . -326) 150295) ((-1038 . -47) 150267) ((-1038 . -38) 150119) ((-1038 . -583) 149971) ((-1038 . -655) 149823) ((-1038 . -245) 149757) ((-1038 . -495) 149691) ((-1038 . -82) 149516) ((-1038 . -964) 149362) ((-1038 . -969) 149208) ((-1038 . -146) 149122) ((-1038 . -120) 149101) ((-1038 . -118) 149080) ((-1038 . -589) 148990) ((-1038 . -104) T) ((-1038 . -25) T) ((-1038 . -72) T) ((-1038 . -13) T) ((-1038 . -1128) T) ((-1038 . -553) 148972) ((-1038 . -1013) T) ((-1038 . -23) T) ((-1038 . -21) T) ((-1038 . -962) T) ((-1038 . -664) T) ((-1038 . -1060) T) ((-1038 . -1025) T) ((-1038 . -970) T) ((-1038 . -352) 148956) ((-1038 . -276) 148928) ((-1038 . -259) 148915) ((-1038 . -554) 148663) ((-1033 . -483) T) ((-1033 . -1133) T) ((-1033 . -1065) T) ((-1033 . -951) 148645) ((-1033 . -554) 148560) ((-1033 . -934) T) ((-1033 . -797) 148542) ((-1033 . -756) T) ((-1033 . -722) T) ((-1033 . -719) T) ((-1033 . -760) T) ((-1033 . -757) T) ((-1033 . -717) T) ((-1033 . -715) T) ((-1033 . -741) T) ((-1033 . -591) 148514) ((-1033 . -581) 148496) ((-1033 . -833) T) ((-1033 . -495) T) ((-1033 . -245) T) ((-1033 . -146) T) ((-1033 . -556) 148468) ((-1033 . -655) 148455) ((-1033 . -583) 148442) ((-1033 . -969) 148429) ((-1033 . -964) 148416) ((-1033 . -82) 148401) ((-1033 . -38) 148388) ((-1033 . -389) T) ((-1033 . -257) T) ((-1033 . -189) T) ((-1033 . -186) 148375) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -962) T) ((-1033 . -664) T) ((-1033 . -1060) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -589) 148347) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -553) 148329) ((-1033 . -1128) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -753) T) ((-1033 . -317) T) ((-1033 . -84) T) ((-1033 . -605) T) ((-1029 . -995) T) ((-1029 . -427) 148310) ((-1029 . -553) 148276) ((-1029 . -556) 148257) ((-1029 . -1013) T) ((-1029 . -1128) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -553) 148239) ((-1028 . -1128) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 148218) ((-1026 . -1186) 148188) ((-1026 . -722) 148167) ((-1026 . -719) 148146) ((-1026 . -760) 148100) ((-1026 . -757) 148054) ((-1026 . -717) 148033) ((-1026 . -718) 148012) ((-1026 . -655) 147957) ((-1026 . -583) 147882) ((-1026 . -243) 147859) ((-1026 . -241) 147836) ((-1026 . -426) 147820) ((-1026 . -453) 147753) ((-1026 . -259) 147691) ((-1026 . -34) T) ((-1026 . -539) 147668) ((-1026 . -951) 147497) ((-1026 . -556) 147301) ((-1026 . -352) 147270) ((-1026 . -581) 147178) ((-1026 . -591) 147017) ((-1026 . -326) 146987) ((-1026 . -317) 146966) ((-1026 . -190) 146919) ((-1026 . -589) 146707) ((-1026 . -970) 146686) ((-1026 . -1025) 146665) ((-1026 . -1060) 146644) ((-1026 . -664) 146623) ((-1026 . -962) 146602) ((-1026 . -186) 146498) ((-1026 . -189) 146400) ((-1026 . -225) 146370) ((-1026 . -807) 146242) ((-1026 . -812) 146116) ((-1026 . -810) 146049) ((-1026 . -184) 146019) ((-1026 . -553) 145716) ((-1026 . -969) 145641) ((-1026 . -964) 145546) ((-1026 . -82) 145466) ((-1026 . -104) 145341) ((-1026 . -25) 145178) ((-1026 . -72) 144915) ((-1026 . -13) T) ((-1026 . -1128) T) ((-1026 . -1013) 144671) ((-1026 . -23) 144527) ((-1026 . -21) 144442) ((-1022 . -1023) 144426) ((-1022 . |MappingCategory|) 144400) ((-1022 . -1128) T) ((-1022 . -80) 144384) ((-1022 . -1013) T) ((-1022 . -553) 144366) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 144330) ((-1017 . -72) T) ((-1017 . -553) 144312) ((-1017 . -1013) T) ((-1017 . -241) 144268) ((-1017 . -1128) T) ((-1017 . -13) T) ((-1017 . -558) 144183) ((-1015 . -1016) 144135) ((-1015 . -72) T) ((-1015 . -553) 144117) ((-1015 . -1013) T) ((-1015 . -241) 144073) ((-1015 . -1128) T) ((-1015 . -13) T) ((-1015 . -558) 143976) ((-1014 . -317) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1128) T) ((-1014 . -553) 143958) ((-1014 . -1013) T) ((-1009 . -366) 143942) ((-1009 . -1011) 143926) ((-1009 . -317) 143905) ((-1009 . -193) 143889) ((-1009 . -554) 143850) ((-1009 . -124) 143834) ((-1009 . -426) 143818) ((-1009 . -1013) T) ((-1009 . -453) 143751) ((-1009 . -259) 143689) ((-1009 . -553) 143671) ((-1009 . -72) T) ((-1009 . -1128) T) ((-1009 . -13) T) ((-1009 . -34) T) ((-1009 . -76) 143655) ((-1009 . -183) 143639) ((-1008 . -995) T) ((-1008 . -427) 143620) ((-1008 . -553) 143586) ((-1008 . -556) 143567) ((-1008 . -1013) T) ((-1008 . -1128) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1128) T) ((-1004 . -13) T) ((-1004 . -1013) 143537) ((-1004 . -553) 143496) ((-1004 . -72) 143466) ((-1003 . -995) T) ((-1003 . -427) 143447) ((-1003 . -553) 143413) ((-1003 . -556) 143394) ((-1003 . -1013) T) ((-1003 . -1128) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 143378) ((-1001 . -558) 143362) ((-1001 . -1013) 143340) ((-1001 . -553) 143307) ((-1001 . -1128) 143285) ((-1001 . -13) 143263) ((-1001 . -72) 143241) ((-1001 . -1007) 143199) ((-1000 . -228) 143183) ((-1000 . -556) 143167) ((-1000 . -951) 143151) ((-1000 . -760) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -553) 143133) ((-1000 . -757) T) ((-1000 . -186) 143120) ((-1000 . -13) T) ((-1000 . -1128) T) ((-1000 . -189) T) ((-999 . -213) 143057) ((-999 . -556) 142800) ((-999 . -951) 142629) ((-999 . -554) NIL) ((-999 . -276) 142590) ((-999 . -352) 142574) ((-999 . -38) 142426) ((-999 . -82) 142251) ((-999 . -964) 142097) ((-999 . -969) 141943) ((-999 . -589) 141853) ((-999 . -591) 141742) ((-999 . -583) 141594) ((-999 . -655) 141446) ((-999 . -118) 141425) ((-999 . -120) 141404) ((-999 . -146) 141318) ((-999 . -495) 141252) ((-999 . -245) 141186) ((-999 . -47) 141147) ((-999 . -326) 141131) ((-999 . -581) 141079) ((-999 . -389) 141033) ((-999 . -453) 140896) ((-999 . -810) 140831) ((-999 . -807) 140729) ((-999 . -812) 140631) ((-999 . -797) NIL) ((-999 . -822) 140610) ((-999 . -1133) 140589) ((-999 . -862) 140534) ((-999 . -259) 140521) ((-999 . -190) 140500) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -553) 140482) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1060) T) ((-999 . -664) T) ((-999 . -962) T) ((-999 . -186) 140430) ((-999 . -13) T) ((-999 . -1128) T) ((-999 . -189) 140384) ((-999 . -225) 140368) ((-999 . -184) 140352) ((-997 . -553) 140334) ((-994 . -757) T) ((-994 . -553) 140316) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1128) T) ((-994 . -760) T) ((-994 . -554) 140297) ((-991 . -662) 140276) ((-991 . -951) 140174) ((-991 . -352) 140158) ((-991 . -581) 140106) ((-991 . -591) 139983) ((-991 . -326) 139967) ((-991 . -319) 139946) ((-991 . -120) 139925) ((-991 . -556) 139750) ((-991 . -655) 139624) ((-991 . -583) 139498) ((-991 . -589) 139396) ((-991 . -969) 139309) ((-991 . -964) 139222) ((-991 . -82) 139114) ((-991 . -38) 138988) ((-991 . -350) 138967) ((-991 . -342) 138946) ((-991 . -118) 138900) ((-991 . -1065) 138879) ((-991 . -298) 138858) ((-991 . -317) 138812) ((-991 . -201) 138766) ((-991 . -245) 138720) ((-991 . -257) 138674) ((-991 . -389) 138628) ((-991 . -495) 138582) ((-991 . -833) 138536) ((-991 . -1133) 138490) ((-991 . -311) 138444) ((-991 . -190) 138372) ((-991 . -186) 138248) ((-991 . -189) 138130) ((-991 . -225) 138100) ((-991 . -807) 137972) ((-991 . -812) 137846) ((-991 . -810) 137779) ((-991 . -184) 137749) ((-991 . -554) 137733) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -553) 137715) ((-991 . -1128) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -962) T) ((-991 . -664) T) ((-991 . -1060) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -553) 137697) ((-989 . -1128) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 137676) ((-988 . -1013) T) ((-988 . -553) 137658) ((-988 . -1128) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -553) 137640) ((-987 . -1128) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 137619) ((-987 . -951) 137596) ((-987 . -556) 137573) ((-986 . -1128) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -427) 137554) ((-985 . -553) 137520) ((-985 . -556) 137501) ((-985 . -1013) T) ((-985 . -1128) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -427) 137482) ((-978 . -553) 137448) ((-978 . -556) 137429) ((-978 . -1013) T) ((-978 . -1128) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1133) T) ((-975 . -1065) T) ((-975 . -951) 137411) ((-975 . -554) 137326) ((-975 . -934) T) ((-975 . -797) 137308) ((-975 . -756) T) ((-975 . -722) T) ((-975 . -719) T) ((-975 . -760) T) ((-975 . -757) T) ((-975 . -717) T) ((-975 . -715) T) ((-975 . -741) T) ((-975 . -591) 137280) ((-975 . -581) 137262) ((-975 . -833) T) ((-975 . -495) T) ((-975 . -245) T) ((-975 . -146) T) ((-975 . -556) 137234) ((-975 . -655) 137221) ((-975 . -583) 137208) ((-975 . -969) 137195) ((-975 . -964) 137182) ((-975 . -82) 137167) ((-975 . -38) 137154) ((-975 . -389) T) ((-975 . -257) T) ((-975 . -189) T) ((-975 . -186) 137141) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -962) T) ((-975 . -664) T) ((-975 . -1060) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -589) 137113) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -553) 137095) ((-975 . -1128) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -558) 137076) ((-974 . -980) 137055) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1128) T) ((-974 . -553) 137037) ((-974 . -1013) T) ((-971 . -1128) T) ((-971 . -13) T) ((-971 . -1013) 137015) ((-971 . -553) 136982) ((-971 . -72) 136960) ((-967 . -966) 136900) ((-967 . -583) 136845) ((-967 . -655) 136790) ((-967 . -34) T) ((-967 . -259) 136728) ((-967 . -453) 136661) ((-967 . -426) 136645) ((-967 . -591) 136629) ((-967 . -589) 136598) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1128) T) ((-967 . -553) 136560) ((-967 . -1013) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 136544) ((-967 . -964) 136528) ((-967 . -82) 136507) ((-967 . -1186) 136477) ((-967 . -554) 136438) ((-959 . -983) 136367) ((-959 . -890) 136296) ((-959 . -554) 136238) ((-959 . -426) 136203) ((-959 . -1013) T) ((-959 . -453) 136087) ((-959 . -259) 135995) ((-959 . -553) 135938) ((-959 . -72) T) ((-959 . -1128) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 135903) ((-959 . -1123) 135832) ((-949 . -995) T) ((-949 . -427) 135813) ((-949 . -553) 135779) ((-949 . -556) 135760) ((-949 . -1013) T) ((-949 . -1128) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 135729) ((-948 . -970) T) ((-948 . -1025) T) ((-948 . -1060) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 135703) ((-948 . -589) 135662) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1128) T) ((-948 . -553) 135644) ((-948 . -1013) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 135618) ((-948 . -964) 135592) ((-948 . -82) 135559) ((-948 . -38) 135543) ((-948 . -583) 135527) ((-948 . -655) 135511) ((-941 . -983) 135480) ((-941 . -890) 135449) ((-941 . -554) 135410) ((-941 . -426) 135394) ((-941 . -1013) T) ((-941 . -453) 135327) ((-941 . -259) 135265) ((-941 . -553) 135227) ((-941 . -72) T) ((-941 . -1128) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 135211) ((-941 . -1123) 135180) ((-940 . -1013) T) ((-940 . -553) 135162) ((-940 . -1128) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 135047) ((-938 . -352) 135009) ((-938 . -201) T) ((-938 . -245) T) ((-938 . -257) T) ((-938 . -389) T) ((-938 . -38) 134946) ((-938 . -583) 134883) ((-938 . -655) 134820) ((-938 . -556) 134757) ((-938 . -495) T) ((-938 . -833) T) ((-938 . -1133) T) ((-938 . -311) T) ((-938 . -82) 134666) ((-938 . -964) 134603) ((-938 . -969) 134540) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 134477) ((-938 . -589) 134414) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1128) T) ((-938 . -553) 134396) ((-938 . -1013) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1060) T) ((-938 . -1025) T) ((-938 . -970) T) ((-933 . -995) T) ((-933 . -427) 134377) ((-933 . -553) 134343) ((-933 . -556) 134324) ((-933 . -1013) T) ((-933 . -1128) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134306) ((-918 . -1065) T) ((-918 . -556) 134256) ((-918 . -951) 134216) ((-918 . -554) 134146) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 134128) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 134110) ((-918 . -340) 134092) ((-918 . -581) 134074) ((-918 . -326) 134056) ((-918 . -241) NIL) ((-918 . -259) NIL) ((-918 . -453) NIL) ((-918 . -287) 134038) ((-918 . -201) T) ((-918 . -82) 133965) ((-918 . -964) 133915) ((-918 . -969) 133865) ((-918 . -245) T) ((-918 . -655) 133815) ((-918 . -583) 133765) ((-918 . -591) 133715) ((-918 . -589) 133665) ((-918 . -38) 133615) ((-918 . -257) T) ((-918 . -389) T) ((-918 . -146) T) ((-918 . -495) T) ((-918 . -833) T) ((-918 . -1133) T) ((-918 . -311) T) ((-918 . -190) T) ((-918 . -186) 133602) ((-918 . -189) T) ((-918 . -225) 133584) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 133566) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1128) T) ((-918 . -553) 133526) ((-918 . -1013) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1060) T) ((-918 . -1025) T) ((-918 . -970) T) ((-917 . -290) 133500) ((-917 . -146) T) ((-917 . -556) 133430) ((-917 . -970) T) ((-917 . -1025) T) ((-917 . -1060) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133332) ((-917 . -589) 133262) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1128) T) ((-917 . -553) 133244) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 133189) ((-917 . -964) 133134) ((-917 . -82) 133051) ((-917 . -554) 133035) ((-917 . -184) 133012) ((-917 . -810) 132964) ((-917 . -812) 132876) ((-917 . -807) 132786) ((-917 . -225) 132763) ((-917 . -189) 132703) ((-917 . -186) 132637) ((-917 . -190) 132609) ((-917 . -311) T) ((-917 . -1133) T) ((-917 . -833) T) ((-917 . -495) T) ((-917 . -655) 132554) ((-917 . -583) 132499) ((-917 . -38) 132444) ((-917 . -389) T) ((-917 . -257) T) ((-917 . -245) T) ((-917 . -201) T) ((-917 . -317) NIL) ((-917 . -298) NIL) ((-917 . -1065) NIL) ((-917 . -118) 132416) ((-917 . -342) NIL) ((-917 . -350) 132388) ((-917 . -120) 132360) ((-917 . -319) 132332) ((-917 . -326) 132309) ((-917 . -581) 132243) ((-917 . -352) 132220) ((-917 . -951) 132097) ((-917 . -662) 132069) ((-914 . -909) 132053) ((-914 . -426) 132037) ((-914 . -1013) 132015) ((-914 . -453) 131948) ((-914 . -259) 131886) ((-914 . -553) 131821) ((-914 . -72) 131775) ((-914 . -1128) T) ((-914 . -13) T) ((-914 . -34) T) ((-914 . -76) 131759) ((-910 . -912) 131743) ((-910 . -760) 131722) ((-910 . -757) 131701) ((-910 . -951) 131599) ((-910 . -352) 131583) ((-910 . -581) 131531) ((-910 . -591) 131433) ((-910 . -326) 131417) ((-910 . -241) 131375) ((-910 . -259) 131340) ((-910 . -453) 131252) ((-910 . -287) 131236) ((-910 . -38) 131184) ((-910 . -82) 131062) ((-910 . -964) 130961) ((-910 . -969) 130860) ((-910 . -589) 130783) ((-910 . -583) 130731) ((-910 . -655) 130679) ((-910 . -556) 130573) ((-910 . -245) 130527) ((-910 . -201) 130506) ((-910 . -190) 130485) ((-910 . -186) 130433) ((-910 . -189) 130387) ((-910 . -225) 130371) ((-910 . -807) 130295) ((-910 . -812) 130221) ((-910 . -810) 130180) ((-910 . -184) 130164) ((-910 . -554) 130125) ((-910 . -120) 130104) ((-910 . -118) 130083) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1128) T) ((-910 . -553) 130065) ((-910 . -1013) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1060) T) ((-910 . -1025) T) ((-910 . -970) T) ((-908 . -995) T) ((-908 . -427) 130046) ((-908 . -553) 130012) ((-908 . -556) 129993) ((-908 . -1013) T) ((-908 . -1128) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 129975) ((-907 . -23) T) ((-907 . -1013) T) ((-907 . -553) 129957) ((-907 . -1128) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 129924) ((-903 . -553) 129906) ((-900 . -1013) T) ((-900 . -553) 129888) ((-900 . -1128) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1013) T) ((-885 . -553) 129848) ((-885 . -1128) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -995) T) ((-884 . -427) 129829) ((-884 . -553) 129795) ((-884 . -556) 129776) ((-884 . -1013) T) ((-884 . -1128) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 129758) ((-878 . -1013) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1128) T) ((-878 . -84) T) ((-878 . -556) 129742) ((-877 . -553) 129724) ((-876 . -1013) T) ((-876 . -553) 129706) ((-876 . -1128) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -317) 129659) ((-876 . -664) 129561) ((-876 . -1025) 129463) ((-876 . -23) 129277) ((-876 . -25) 129091) ((-876 . -104) 128949) ((-876 . -410) 128902) ((-876 . -21) 128857) ((-876 . -589) 128801) ((-876 . -718) 128754) ((-876 . -717) 128707) ((-876 . -757) 128609) ((-876 . -760) 128511) ((-876 . -719) 128464) ((-876 . -722) 128417) ((-870 . -19) 128401) ((-870 . -594) 128385) ((-870 . -243) 128362) ((-870 . -241) 128314) ((-870 . -539) 128291) ((-870 . -554) 128252) ((-870 . -426) 128236) ((-870 . -1013) 128189) ((-870 . -453) 128122) ((-870 . -259) 128060) ((-870 . -553) 127975) ((-870 . -72) 127909) ((-870 . -1128) T) ((-870 . -13) T) ((-870 . -34) T) ((-870 . -124) 127893) ((-870 . -757) 127872) ((-870 . -760) 127851) ((-870 . -321) 127835) ((-868 . -276) 127814) ((-868 . -951) 127712) ((-868 . -352) 127696) ((-868 . -38) 127593) ((-868 . -556) 127450) ((-868 . -591) 127375) ((-868 . -589) 127285) ((-868 . -970) T) ((-868 . -1025) T) ((-868 . -1060) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 127150) ((-868 . -964) 127036) ((-868 . -969) 126922) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1013) T) ((-868 . -553) 126904) ((-868 . -1128) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 126801) ((-868 . -655) 126698) ((-868 . -118) 126677) ((-868 . -120) 126656) ((-868 . -146) 126610) ((-868 . -495) 126589) ((-868 . -245) 126568) ((-868 . -47) 126547) ((-866 . -1013) T) ((-866 . -553) 126513) ((-866 . -1128) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 126474) ((-858 . -556) 126270) ((-858 . -951) 126152) ((-858 . -1133) 126131) ((-858 . -822) 126110) ((-858 . -797) 126035) ((-858 . -812) 126016) ((-858 . -807) 125995) ((-858 . -810) 125976) ((-858 . -453) 125922) ((-858 . -389) 125876) ((-858 . -581) 125824) ((-858 . -591) 125713) ((-858 . -326) 125697) ((-858 . -47) 125666) ((-858 . -38) 125518) ((-858 . -583) 125370) ((-858 . -655) 125222) ((-858 . -245) 125156) ((-858 . -495) 125090) ((-858 . -82) 124915) ((-858 . -964) 124761) ((-858 . -969) 124607) ((-858 . -146) 124521) ((-858 . -120) 124500) ((-858 . -118) 124479) ((-858 . -589) 124389) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1128) T) ((-858 . -553) 124371) ((-858 . -1013) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1060) T) ((-858 . -1025) T) ((-858 . -970) T) ((-858 . -352) 124355) ((-858 . -276) 124324) ((-858 . -259) 124311) ((-858 . -554) 124172) ((-855 . -894) 124156) ((-855 . -19) 124140) ((-855 . -594) 124124) ((-855 . -243) 124101) ((-855 . -241) 124053) ((-855 . -539) 124030) ((-855 . -554) 123991) ((-855 . -426) 123975) ((-855 . -1013) 123928) ((-855 . -453) 123861) ((-855 . -259) 123799) ((-855 . -553) 123714) ((-855 . -72) 123648) ((-855 . -1128) T) ((-855 . -13) T) ((-855 . -34) T) ((-855 . -124) 123632) ((-855 . -757) 123611) ((-855 . -760) 123590) ((-855 . -321) 123574) ((-855 . -1177) 123558) ((-855 . -558) 123535) ((-839 . -888) T) ((-839 . -553) 123517) ((-837 . -867) T) ((-837 . -553) 123499) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1013) T) ((-831 . -553) 123481) ((-831 . -1128) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1025) T) ((-826 . -311) T) ((-826 . -1133) T) ((-826 . -833) T) ((-826 . -495) T) ((-826 . -146) T) ((-826 . -556) 123418) ((-826 . -655) 123370) ((-826 . -583) 123322) ((-826 . -38) 123274) ((-826 . -389) T) ((-826 . -257) T) ((-826 . -591) 123226) ((-826 . -589) 123163) ((-826 . -970) T) ((-826 . -1025) T) ((-826 . -1060) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 123094) ((-826 . -964) 123046) ((-826 . -969) 122998) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1013) T) ((-826 . -553) 122980) ((-826 . -1128) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -245) T) ((-826 . -201) T) ((-818 . -298) T) ((-818 . -1065) T) ((-818 . -317) T) ((-818 . -118) T) ((-818 . -311) T) ((-818 . -1133) T) ((-818 . -833) T) ((-818 . -495) T) ((-818 . -146) T) ((-818 . -556) 122930) ((-818 . -655) 122895) ((-818 . -583) 122860) ((-818 . -38) 122825) ((-818 . -389) T) ((-818 . -257) T) ((-818 . -82) 122774) ((-818 . -964) 122739) ((-818 . -969) 122704) ((-818 . -589) 122654) ((-818 . -591) 122619) ((-818 . -245) T) ((-818 . -201) T) ((-818 . -342) T) ((-818 . -189) T) ((-818 . -1128) T) ((-818 . -13) T) ((-818 . -186) 122606) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1060) T) ((-818 . -1025) T) ((-818 . -970) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1013) T) ((-818 . -553) 122588) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -279) 122575) ((-818 . -120) 122557) ((-818 . -951) 122544) ((-818 . -1186) 122531) ((-818 . -1197) 122518) ((-818 . -554) 122500) ((-817 . -1013) T) ((-817 . -553) 122482) ((-817 . -1128) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 122466) ((-814 . -760) 122420) ((-814 . -757) 122374) ((-814 . -664) T) ((-814 . -1013) T) ((-814 . -553) 122356) ((-814 . -72) T) ((-814 . -1025) T) ((-814 . -410) T) ((-814 . -1128) T) ((-814 . -13) T) ((-814 . -241) 122335) ((-813 . -92) 122319) ((-813 . -426) 122303) ((-813 . -1013) 122281) ((-813 . -453) 122214) ((-813 . -259) 122152) ((-813 . -553) 122066) ((-813 . -72) 122020) ((-813 . -1128) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 122004) ((-804 . -757) T) ((-804 . -553) 121986) ((-804 . -1013) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1128) T) ((-804 . -760) T) ((-804 . -951) 121963) ((-804 . -556) 121940) ((-801 . -1013) T) ((-801 . -553) 121922) ((-801 . -1128) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 121890) ((-801 . -556) 121858) ((-799 . -1013) T) ((-799 . -553) 121840) ((-799 . -1128) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1013) T) ((-796 . -553) 121822) ((-796 . -1128) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -995) T) ((-786 . -427) 121803) ((-786 . -553) 121769) ((-786 . -556) 121750) ((-786 . -1013) T) ((-786 . -1128) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1174) T) ((-784 . -1013) T) ((-784 . -553) 121732) ((-784 . -1128) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 121714) ((-783 . -1128) T) ((-783 . -13) T) ((-783 . -553) 121589) ((-783 . -1013) 121540) ((-783 . -72) 121491) ((-782 . -905) 121475) ((-782 . -1065) 121453) ((-782 . -951) 121320) ((-782 . -556) 121219) ((-782 . -554) 121022) ((-782 . -934) 121001) ((-782 . -822) 120980) ((-782 . -795) 120964) ((-782 . -756) 120943) ((-782 . -722) 120922) ((-782 . -719) 120901) ((-782 . -760) 120855) ((-782 . -757) 120809) ((-782 . -717) 120788) ((-782 . -715) 120767) ((-782 . -741) 120746) ((-782 . -797) 120671) ((-782 . -340) 120655) ((-782 . -581) 120603) ((-782 . -591) 120519) ((-782 . -326) 120503) ((-782 . -241) 120461) ((-782 . -259) 120426) ((-782 . -453) 120338) ((-782 . -287) 120322) ((-782 . -201) T) ((-782 . -82) 120253) ((-782 . -964) 120205) ((-782 . -969) 120157) ((-782 . -245) T) ((-782 . -655) 120109) ((-782 . -583) 120061) ((-782 . -589) 119998) ((-782 . -38) 119950) ((-782 . -257) T) ((-782 . -389) T) ((-782 . -146) T) ((-782 . -495) T) ((-782 . -833) T) ((-782 . -1133) T) ((-782 . -311) T) ((-782 . -190) 119929) ((-782 . -186) 119877) ((-782 . -189) 119831) ((-782 . -225) 119815) ((-782 . -807) 119739) ((-782 . -812) 119665) ((-782 . -810) 119624) ((-782 . -184) 119608) ((-782 . -120) 119587) ((-782 . -118) 119566) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1128) T) ((-782 . -553) 119548) ((-782 . -1013) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1060) T) ((-782 . -1025) T) ((-782 . -970) T) ((-781 . -905) 119525) ((-781 . -1065) NIL) ((-781 . -951) 119502) ((-781 . -556) 119432) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119409) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -340) 119386) ((-781 . -581) 119363) ((-781 . -591) 119308) ((-781 . -326) 119285) ((-781 . -241) 119215) ((-781 . -259) 119159) ((-781 . -453) 119022) ((-781 . -287) 118999) ((-781 . -201) T) ((-781 . -82) 118916) ((-781 . -964) 118861) ((-781 . -969) 118806) ((-781 . -245) T) ((-781 . -655) 118751) ((-781 . -583) 118696) ((-781 . -589) 118626) ((-781 . -38) 118571) ((-781 . -257) T) ((-781 . -389) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -833) T) ((-781 . -1133) T) ((-781 . -311) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 118548) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 118525) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1128) T) ((-781 . -553) 118507) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1060) T) ((-781 . -1025) T) ((-781 . -970) T) ((-779 . -780) 118491) ((-779 . -833) T) ((-779 . -495) T) ((-779 . -245) T) ((-779 . -146) T) ((-779 . -556) 118463) ((-779 . -655) 118450) ((-779 . -583) 118437) ((-779 . -969) 118424) ((-779 . -964) 118411) ((-779 . -82) 118396) ((-779 . -38) 118383) ((-779 . -389) T) ((-779 . -257) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1060) T) ((-779 . -1025) T) ((-779 . -970) T) ((-779 . -21) T) ((-779 . -589) 118355) ((-779 . -23) T) ((-779 . -1013) T) ((-779 . -553) 118337) ((-779 . -1128) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 118324) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1060) T) ((-776 . -1025) T) ((-776 . -970) T) ((-776 . -21) T) ((-776 . -589) 118269) ((-776 . -23) T) ((-776 . -1013) T) ((-776 . -553) 118231) ((-776 . -1128) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 118191) ((-776 . -556) 118126) ((-776 . -427) 118103) ((-776 . -38) 118073) ((-776 . -82) 118038) ((-776 . -964) 118008) ((-776 . -969) 117978) ((-776 . -583) 117948) ((-776 . -655) 117918) ((-775 . -1013) T) ((-775 . -553) 117900) ((-775 . -1128) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1013) T) ((-774 . -553) 117882) ((-774 . -1128) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -317) T) ((-774 . -554) 117804) ((-773 . -1013) T) ((-773 . -553) 117786) ((-773 . -1128) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 117768) ((-768 . -757) T) ((-768 . -553) 117750) ((-768 . -1013) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1128) T) ((-768 . -760) T) ((-765 . -762) 117734) ((-765 . -951) 117632) ((-765 . -556) 117530) ((-765 . -352) 117514) ((-765 . -655) 117484) ((-765 . -583) 117454) ((-765 . -591) 117428) ((-765 . -589) 117387) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1128) T) ((-765 . -553) 117369) ((-765 . -1013) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117353) ((-765 . -964) 117337) ((-765 . -82) 117316) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1060) T) ((-765 . -1025) T) ((-765 . -970) T) ((-765 . -38) 117286) ((-764 . -762) 117270) ((-764 . -951) 117168) ((-764 . -556) 117087) ((-764 . -352) 117071) ((-764 . -655) 117041) ((-764 . -583) 117011) ((-764 . -591) 116985) ((-764 . -589) 116944) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1128) T) ((-764 . -553) 116926) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 116910) ((-764 . -964) 116894) ((-764 . -82) 116873) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1060) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 116843) ((-758 . -760) T) ((-758 . -1128) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -427) 116827) ((-758 . -553) 116775) ((-758 . -556) 116759) ((-751 . -1013) T) ((-751 . -553) 116741) ((-751 . -1128) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -352) 116725) ((-751 . -556) 116598) ((-751 . -951) 116496) ((-751 . -21) 116451) ((-751 . -589) 116371) ((-751 . -23) 116326) ((-751 . -25) 116281) ((-751 . -104) 116236) ((-751 . -756) 116215) ((-751 . -591) 116188) ((-751 . -970) 116167) ((-751 . -1060) 116146) ((-751 . -962) 116125) ((-751 . -722) 116104) ((-751 . -719) 116083) ((-751 . -760) 116062) ((-751 . -757) 116041) ((-751 . -717) 116020) ((-751 . -715) 115999) ((-751 . -1025) 115978) ((-751 . -664) 115957) ((-750 . -748) 115939) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1128) T) ((-750 . -553) 115921) ((-750 . -1013) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1060) T) ((-746 . -1025) T) ((-746 . -970) T) ((-746 . -21) T) ((-746 . -589) 115866) ((-746 . -23) T) ((-746 . -1013) T) ((-746 . -553) 115848) ((-746 . -1128) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 115808) ((-746 . -556) 115763) ((-746 . -951) 115733) ((-746 . -241) 115712) ((-746 . -120) 115691) ((-746 . -118) 115670) ((-746 . -38) 115640) ((-746 . -82) 115605) ((-746 . -964) 115575) ((-746 . -969) 115545) ((-746 . -583) 115515) ((-746 . -655) 115485) ((-744 . -1013) T) ((-744 . -553) 115467) ((-744 . -1128) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -352) 115451) ((-744 . -556) 115324) ((-744 . -951) 115222) ((-744 . -21) 115177) ((-744 . -589) 115097) ((-744 . -23) 115052) ((-744 . -25) 115007) ((-744 . -104) 114962) ((-744 . -756) 114941) ((-744 . -591) 114914) ((-744 . -970) 114893) ((-744 . -1060) 114872) ((-744 . -962) 114851) ((-744 . -722) 114830) ((-744 . -719) 114809) ((-744 . -760) 114788) ((-744 . -757) 114767) ((-744 . -717) 114746) ((-744 . -715) 114725) ((-744 . -1025) 114704) ((-744 . -664) 114683) ((-742 . -646) 114667) ((-742 . -556) 114622) ((-742 . -655) 114592) ((-742 . -583) 114562) ((-742 . -591) 114536) ((-742 . -589) 114495) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1128) T) ((-742 . -553) 114477) ((-742 . -1013) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114461) ((-742 . -964) 114445) ((-742 . -82) 114424) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1060) T) ((-742 . -1025) T) ((-742 . -970) T) ((-742 . -38) 114394) ((-742 . -190) 114373) ((-742 . -186) 114346) ((-742 . -189) 114325) ((-740 . -333) 114309) ((-740 . -556) 114293) ((-740 . -951) 114277) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1025) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1128) T) ((-740 . -553) 114259) ((-740 . -1013) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 114243) ((-739 . -556) 114227) ((-739 . -951) 114211) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1013) T) ((-739 . -553) 114193) ((-739 . -757) T) ((-739 . -186) 114180) ((-739 . -13) T) ((-739 . -1128) T) ((-739 . -189) T) ((-738 . -82) 114115) ((-738 . -964) 114066) ((-738 . -969) 114017) ((-738 . -21) T) ((-738 . -589) 113953) ((-738 . -23) T) ((-738 . -1013) T) ((-738 . -553) 113922) ((-738 . -1128) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 113873) ((-738 . -190) T) ((-738 . -556) 113782) ((-738 . -970) T) ((-738 . -1025) T) ((-738 . -1060) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 113769) ((-738 . -189) T) ((-738 . -427) 113753) ((-738 . -311) 113732) ((-738 . -1133) 113711) ((-738 . -833) 113690) ((-738 . -495) 113669) ((-738 . -146) 113648) ((-738 . -655) 113585) ((-738 . -583) 113522) ((-738 . -38) 113459) ((-738 . -389) 113438) ((-738 . -257) 113417) ((-738 . -245) 113396) ((-738 . -201) 113375) ((-737 . -213) 113314) ((-737 . -556) 113058) ((-737 . -951) 112888) ((-737 . -554) NIL) ((-737 . -276) 112850) ((-737 . -352) 112834) ((-737 . -38) 112686) ((-737 . -82) 112511) ((-737 . -964) 112357) ((-737 . -969) 112203) ((-737 . -589) 112113) ((-737 . -591) 112002) ((-737 . -583) 111854) ((-737 . -655) 111706) ((-737 . -118) 111685) ((-737 . -120) 111664) ((-737 . -146) 111578) ((-737 . -495) 111512) ((-737 . -245) 111446) ((-737 . -47) 111408) ((-737 . -326) 111392) ((-737 . -581) 111340) ((-737 . -389) 111294) ((-737 . -453) 111159) ((-737 . -810) 111095) ((-737 . -807) 110994) ((-737 . -812) 110897) ((-737 . -797) NIL) ((-737 . -822) 110876) ((-737 . -1133) 110855) ((-737 . -862) 110802) ((-737 . -259) 110789) ((-737 . -190) 110768) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 110750) ((-737 . -1013) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1060) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 110698) ((-737 . -13) T) ((-737 . -1128) T) ((-737 . -189) 110652) ((-737 . -225) 110636) ((-737 . -184) 110620) ((-736 . -196) 110599) ((-736 . -1186) 110569) ((-736 . -722) 110548) ((-736 . -719) 110527) ((-736 . -760) 110481) ((-736 . -757) 110435) ((-736 . -717) 110414) ((-736 . -718) 110393) ((-736 . -655) 110338) ((-736 . -583) 110263) ((-736 . -243) 110240) ((-736 . -241) 110217) ((-736 . -426) 110201) ((-736 . -453) 110134) ((-736 . -259) 110072) ((-736 . -34) T) ((-736 . -539) 110049) ((-736 . -951) 109878) ((-736 . -556) 109682) ((-736 . -352) 109651) ((-736 . -581) 109559) ((-736 . -591) 109398) ((-736 . -326) 109368) ((-736 . -317) 109347) ((-736 . -190) 109300) ((-736 . -589) 109088) ((-736 . -970) 109067) ((-736 . -1025) 109046) ((-736 . -1060) 109025) ((-736 . -664) 109004) ((-736 . -962) 108983) ((-736 . -186) 108879) ((-736 . -189) 108781) ((-736 . -225) 108751) ((-736 . -807) 108623) ((-736 . -812) 108497) ((-736 . -810) 108430) ((-736 . -184) 108400) ((-736 . -553) 108097) ((-736 . -969) 108022) ((-736 . -964) 107927) ((-736 . -82) 107847) ((-736 . -104) 107722) ((-736 . -25) 107559) ((-736 . -72) 107296) ((-736 . -13) T) ((-736 . -1128) T) ((-736 . -1013) 107052) ((-736 . -23) 106908) ((-736 . -21) 106823) ((-723 . -721) 106807) ((-723 . -760) 106786) ((-723 . -757) 106765) ((-723 . -951) 106558) ((-723 . -556) 106411) ((-723 . -352) 106375) ((-723 . -241) 106333) ((-723 . -259) 106298) ((-723 . -453) 106210) ((-723 . -287) 106194) ((-723 . -317) 106173) ((-723 . -554) 106134) ((-723 . -120) 106113) ((-723 . -118) 106092) ((-723 . -655) 106076) ((-723 . -583) 106060) ((-723 . -591) 106034) ((-723 . -589) 105993) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1128) T) ((-723 . -553) 105975) ((-723 . -1013) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 105959) ((-723 . -964) 105943) ((-723 . -82) 105922) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1060) T) ((-723 . -1025) T) ((-723 . -970) T) ((-723 . -38) 105906) ((-705 . -1154) 105890) ((-705 . -1065) 105868) ((-705 . -554) NIL) ((-705 . -259) 105855) ((-705 . -453) 105803) ((-705 . -276) 105780) ((-705 . -951) 105642) ((-705 . -352) 105626) ((-705 . -38) 105458) ((-705 . -82) 105263) ((-705 . -964) 105089) ((-705 . -969) 104915) ((-705 . -589) 104825) ((-705 . -591) 104714) ((-705 . -583) 104546) ((-705 . -655) 104378) ((-705 . -556) 104134) ((-705 . -118) 104113) ((-705 . -120) 104092) ((-705 . -47) 104069) ((-705 . -326) 104053) ((-705 . -581) 104001) ((-705 . -810) 103945) ((-705 . -807) 103852) ((-705 . -812) 103763) ((-705 . -797) NIL) ((-705 . -822) 103742) ((-705 . -1133) 103721) ((-705 . -862) 103691) ((-705 . -833) 103670) ((-705 . -495) 103584) ((-705 . -245) 103498) ((-705 . -146) 103392) ((-705 . -389) 103326) ((-705 . -257) 103305) ((-705 . -241) 103232) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 103193) ((-705 . -1013) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -970) T) ((-705 . -1025) T) ((-705 . -1060) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 103180) ((-705 . -13) T) ((-705 . -1128) T) ((-705 . -189) T) ((-705 . -225) 103164) ((-705 . -184) 103148) ((-704 . -977) 103115) ((-704 . -554) 102750) ((-704 . -259) 102737) ((-704 . -453) 102689) ((-704 . -276) 102661) ((-704 . -951) 102520) ((-704 . -352) 102504) ((-704 . -38) 102356) ((-704 . -556) 102129) ((-704 . -591) 102018) ((-704 . -589) 101928) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1060) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 101753) ((-704 . -964) 101599) ((-704 . -969) 101445) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1013) T) ((-704 . -553) 101359) ((-704 . -1128) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 101211) ((-704 . -655) 101063) ((-704 . -118) 101042) ((-704 . -120) 101021) ((-704 . -146) 100935) ((-704 . -495) 100869) ((-704 . -245) 100803) ((-704 . -47) 100775) ((-704 . -326) 100759) ((-704 . -581) 100707) ((-704 . -389) 100661) ((-704 . -810) 100645) ((-704 . -807) 100627) ((-704 . -812) 100611) ((-704 . -797) 100470) ((-704 . -822) 100449) ((-704 . -1133) 100428) ((-704 . -862) 100395) ((-697 . -1013) T) ((-697 . -553) 100377) ((-697 . -1128) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1128) T) ((-695 . -553) 100359) ((-695 . -1013) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1025) T) ((-676 . -677) 100343) ((-676 . -1011) 100327) ((-676 . -193) 100311) ((-676 . -554) 100272) ((-676 . -124) 100256) ((-676 . -426) 100240) ((-676 . -1013) T) ((-676 . -453) 100173) ((-676 . -259) 100111) ((-676 . -553) 100093) ((-676 . -72) T) ((-676 . -1128) T) ((-676 . -13) T) ((-676 . -34) T) ((-676 . -76) 100077) ((-676 . -635) 100061) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1060) T) ((-675 . -1025) T) ((-675 . -970) T) ((-675 . -21) T) ((-675 . -589) 100006) ((-675 . -23) T) ((-675 . -1013) T) ((-675 . -553) 99988) ((-675 . -1128) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 99948) ((-675 . -556) 99904) ((-675 . -951) 99875) ((-675 . -120) 99854) ((-675 . -118) 99833) ((-675 . -38) 99803) ((-675 . -82) 99768) ((-675 . -964) 99738) ((-675 . -969) 99708) ((-675 . -583) 99678) ((-675 . -655) 99648) ((-675 . -317) 99601) ((-671 . -862) 99554) ((-671 . -556) 99346) ((-671 . -951) 99224) ((-671 . -1133) 99203) ((-671 . -822) 99182) ((-671 . -797) NIL) ((-671 . -812) 99159) ((-671 . -807) 99134) ((-671 . -810) 99111) ((-671 . -453) 99049) ((-671 . -389) 99003) ((-671 . -581) 98951) ((-671 . -591) 98840) ((-671 . -326) 98824) ((-671 . -47) 98789) ((-671 . -38) 98641) ((-671 . -583) 98493) ((-671 . -655) 98345) ((-671 . -245) 98279) ((-671 . -495) 98213) ((-671 . -82) 98038) ((-671 . -964) 97884) ((-671 . -969) 97730) ((-671 . -146) 97644) ((-671 . -120) 97623) ((-671 . -118) 97602) ((-671 . -589) 97512) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1128) T) ((-671 . -553) 97494) ((-671 . -1013) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1060) T) ((-671 . -1025) T) ((-671 . -970) T) ((-671 . -352) 97478) ((-671 . -276) 97443) ((-671 . -259) 97430) ((-671 . -554) 97291) ((-665 . -666) 97275) ((-665 . -80) 97259) ((-665 . -1128) T) ((-665 . |MappingCategory|) 97233) ((-665 . -1023) 97217) ((-665 . -1013) T) ((-665 . -553) 97178) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -410) T) ((-656 . -1025) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1128) T) ((-656 . -553) 97160) ((-656 . -1013) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1060) T) ((-653 . -1025) T) ((-653 . -970) T) ((-653 . -21) T) ((-653 . -589) 97132) ((-653 . -23) T) ((-653 . -1013) T) ((-653 . -553) 97114) ((-653 . -1128) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 97101) ((-653 . -556) 97083) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1060) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -589) 97028) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -553) 97010) ((-652 . -1128) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 96970) ((-652 . -556) 96925) ((-652 . -951) 96895) ((-652 . -241) 96874) ((-652 . -120) 96853) ((-652 . -118) 96832) ((-652 . -38) 96802) ((-652 . -82) 96767) ((-652 . -964) 96737) ((-652 . -969) 96707) ((-652 . -583) 96677) ((-652 . -655) 96647) ((-651 . -757) T) ((-651 . -553) 96582) ((-651 . -1013) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1128) T) ((-651 . -760) T) ((-651 . -427) 96532) ((-651 . -556) 96482) ((-650 . -1154) 96466) ((-650 . -1065) 96444) ((-650 . -554) NIL) ((-650 . -259) 96431) ((-650 . -453) 96379) ((-650 . -276) 96356) ((-650 . -951) 96239) ((-650 . -352) 96223) ((-650 . -38) 96055) ((-650 . -82) 95860) ((-650 . -964) 95686) ((-650 . -969) 95512) ((-650 . -589) 95422) ((-650 . -591) 95311) ((-650 . -583) 95143) ((-650 . -655) 94975) ((-650 . -556) 94739) ((-650 . -118) 94718) ((-650 . -120) 94697) ((-650 . -47) 94674) ((-650 . -326) 94658) ((-650 . -581) 94606) ((-650 . -810) 94550) ((-650 . -807) 94457) ((-650 . -812) 94368) ((-650 . -797) NIL) ((-650 . -822) 94347) ((-650 . -1133) 94326) ((-650 . -862) 94296) ((-650 . -833) 94275) ((-650 . -495) 94189) ((-650 . -245) 94103) ((-650 . -146) 93997) ((-650 . -389) 93931) ((-650 . -257) 93910) ((-650 . -241) 93837) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 93819) ((-650 . -1013) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -970) T) ((-650 . -1025) T) ((-650 . -1060) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 93806) ((-650 . -13) T) ((-650 . -1128) T) ((-650 . -189) T) ((-650 . -225) 93790) ((-650 . -184) 93774) ((-650 . -317) 93753) ((-649 . -311) T) ((-649 . -1133) T) ((-649 . -833) T) ((-649 . -495) T) ((-649 . -146) T) ((-649 . -556) 93703) ((-649 . -655) 93668) ((-649 . -583) 93633) ((-649 . -38) 93598) ((-649 . -389) T) ((-649 . -257) T) ((-649 . -591) 93563) ((-649 . -589) 93513) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1060) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93462) ((-649 . -964) 93427) ((-649 . -969) 93392) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1013) T) ((-649 . -553) 93374) ((-649 . -1128) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -245) T) ((-649 . -201) T) ((-648 . -1013) T) ((-648 . -553) 93356) ((-648 . -1128) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1174) T) ((-633 . -951) 93340) ((-633 . -556) 93324) ((-633 . -553) 93306) ((-631 . -628) 93264) ((-631 . -426) 93248) ((-631 . -1013) 93226) ((-631 . -453) 93159) ((-631 . -259) 93097) ((-631 . -553) 93032) ((-631 . -72) 92986) ((-631 . -1128) T) ((-631 . -13) T) ((-631 . -34) T) ((-631 . -57) 92944) ((-631 . -554) 92905) ((-623 . -995) T) ((-623 . -427) 92886) ((-623 . -553) 92836) ((-623 . -556) 92817) ((-623 . -1013) T) ((-623 . -1128) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 92799) ((-619 . -1013) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1128) T) ((-619 . -760) T) ((-619 . -951) 92783) ((-619 . -556) 92767) ((-618 . -995) T) ((-618 . -427) 92748) ((-618 . -553) 92714) ((-618 . -556) 92695) ((-618 . -1013) T) ((-618 . -1128) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 92677) ((-615 . -1013) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1128) T) ((-615 . -760) T) ((-615 . -951) 92661) ((-615 . -556) 92645) ((-614 . -995) T) ((-614 . -427) 92626) ((-614 . -553) 92592) ((-614 . -556) 92573) ((-614 . -1013) T) ((-614 . -1128) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1036) 92518) ((-613 . -426) 92502) ((-613 . -453) 92435) ((-613 . -259) 92373) ((-613 . -34) T) ((-613 . -966) 92313) ((-613 . -951) 92211) ((-613 . -556) 92130) ((-613 . -352) 92114) ((-613 . -581) 92062) ((-613 . -591) 92000) ((-613 . -326) 91984) ((-613 . -190) 91963) ((-613 . -186) 91911) ((-613 . -189) 91865) ((-613 . -225) 91849) ((-613 . -807) 91773) ((-613 . -812) 91699) ((-613 . -810) 91658) ((-613 . -184) 91642) ((-613 . -655) 91626) ((-613 . -583) 91610) ((-613 . -589) 91569) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1128) T) ((-613 . -553) 91531) ((-613 . -1013) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91515) ((-613 . -964) 91499) ((-613 . -82) 91478) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1060) T) ((-613 . -1025) T) ((-613 . -970) T) ((-613 . -38) 91438) ((-613 . -358) 91422) ((-613 . -684) 91406) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -315) 91390) ((-613 . -241) 91367) ((-607 . -323) 91346) ((-607 . -655) 91330) ((-607 . -583) 91314) ((-607 . -591) 91298) ((-607 . -589) 91267) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1128) T) ((-607 . -553) 91249) ((-607 . -1013) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 91233) ((-607 . -964) 91217) ((-607 . -82) 91196) ((-607 . -575) 91180) ((-607 . -332) 91152) ((-607 . -556) 91129) ((-607 . -951) 91106) ((-599 . -601) 91090) ((-599 . -38) 91060) ((-599 . -556) 90979) ((-599 . -591) 90953) ((-599 . -589) 90912) ((-599 . -970) T) ((-599 . -1025) T) ((-599 . -1060) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 90891) ((-599 . -964) 90875) ((-599 . -969) 90859) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1013) T) ((-599 . -553) 90841) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 90811) ((-599 . -655) 90781) ((-599 . -352) 90765) ((-599 . -951) 90663) ((-599 . -762) 90647) ((-599 . -1128) T) ((-599 . -13) T) ((-599 . -241) 90608) ((-598 . -601) 90592) ((-598 . -38) 90562) ((-598 . -556) 90481) ((-598 . -591) 90455) ((-598 . -589) 90414) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1060) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 90393) ((-598 . -964) 90377) ((-598 . -969) 90361) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -553) 90343) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 90313) ((-598 . -655) 90283) ((-598 . -352) 90267) ((-598 . -951) 90165) ((-598 . -762) 90149) ((-598 . -1128) T) ((-598 . -13) T) ((-598 . -241) 90128) ((-597 . -601) 90112) ((-597 . -38) 90082) ((-597 . -556) 90001) ((-597 . -591) 89975) ((-597 . -589) 89934) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1060) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 89913) ((-597 . -964) 89897) ((-597 . -969) 89881) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -553) 89863) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 89833) ((-597 . -655) 89803) ((-597 . -352) 89787) ((-597 . -951) 89685) ((-597 . -762) 89669) ((-597 . -1128) T) ((-597 . -13) T) ((-597 . -241) 89648) ((-595 . -655) 89632) ((-595 . -583) 89616) ((-595 . -591) 89600) ((-595 . -589) 89569) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1128) T) ((-595 . -553) 89551) ((-595 . -1013) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89535) ((-595 . -964) 89519) ((-595 . -82) 89498) ((-595 . -715) 89477) ((-595 . -717) 89456) ((-595 . -757) 89435) ((-595 . -760) 89414) ((-595 . -719) 89393) ((-595 . -722) 89372) ((-592 . -1013) T) ((-592 . -553) 89354) ((-592 . -1128) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 89338) ((-592 . -556) 89322) ((-590 . -635) 89306) ((-590 . -76) 89290) ((-590 . -34) T) ((-590 . -13) T) ((-590 . -1128) T) ((-590 . -72) 89244) ((-590 . -553) 89179) ((-590 . -259) 89117) ((-590 . -453) 89050) ((-590 . -1013) 89028) ((-590 . -426) 89012) ((-590 . -124) 88996) ((-590 . -554) 88957) ((-590 . -193) 88941) ((-588 . -995) T) ((-588 . -427) 88922) ((-588 . -553) 88875) ((-588 . -556) 88856) ((-588 . -1013) T) ((-588 . -1128) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 88840) ((-584 . -1167) 88824) ((-584 . -924) 88808) ((-584 . -1063) 88792) ((-584 . -757) 88771) ((-584 . -760) 88750) ((-584 . -321) 88734) ((-584 . -594) 88718) ((-584 . -243) 88695) ((-584 . -241) 88647) ((-584 . -539) 88624) ((-584 . -554) 88585) ((-584 . -426) 88569) ((-584 . -1013) 88522) ((-584 . -453) 88455) ((-584 . -259) 88393) ((-584 . -553) 88308) ((-584 . -72) 88242) ((-584 . -1128) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 88226) ((-584 . -237) 88210) ((-582 . -1186) 88194) ((-582 . -82) 88173) ((-582 . -964) 88157) ((-582 . -969) 88141) ((-582 . -21) T) ((-582 . -589) 88110) ((-582 . -23) T) ((-582 . -1013) T) ((-582 . -553) 88092) ((-582 . -1128) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 88076) ((-582 . -583) 88060) ((-582 . -655) 88044) ((-582 . -241) 88011) ((-580 . -1186) 87995) ((-580 . -82) 87974) ((-580 . -964) 87958) ((-580 . -969) 87942) ((-580 . -21) T) ((-580 . -589) 87911) ((-580 . -23) T) ((-580 . -1013) T) ((-580 . -553) 87893) ((-580 . -1128) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 87877) ((-580 . -583) 87861) ((-580 . -655) 87845) ((-580 . -556) 87822) ((-580 . -447) 87794) ((-580 . -558) 87752) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1013) T) ((-578 . -553) 87734) ((-578 . -1128) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -317) T) ((-578 . -556) 87711) ((-573 . -684) 87695) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87674) ((-573 . -964) 87658) ((-573 . -969) 87642) ((-573 . -21) T) ((-573 . -589) 87611) ((-573 . -23) T) ((-573 . -1013) T) ((-573 . -553) 87580) ((-573 . -1128) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87564) ((-573 . -583) 87548) ((-573 . -655) 87532) ((-573 . -358) 87497) ((-573 . -315) 87432) ((-573 . -241) 87390) ((-572 . -1106) 87365) ((-572 . -183) 87309) ((-572 . -76) 87253) ((-572 . -259) 87098) ((-572 . -453) 86898) ((-572 . -426) 86828) ((-572 . -124) 86772) ((-572 . -554) NIL) ((-572 . -193) 86716) ((-572 . -550) 86691) ((-572 . -243) 86666) ((-572 . -1128) T) ((-572 . -13) T) ((-572 . -241) 86619) ((-572 . -1013) T) ((-572 . -553) 86601) ((-572 . -72) T) ((-572 . -34) T) ((-572 . -539) 86576) ((-567 . -410) T) ((-567 . -1025) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1128) T) ((-567 . -553) 86558) ((-567 . -1013) T) ((-567 . -664) T) ((-566 . -995) T) ((-566 . -427) 86539) ((-566 . -553) 86505) ((-566 . -556) 86486) ((-566 . -1013) T) ((-566 . -1128) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 86470) ((-563 . -810) 86429) ((-563 . -812) 86355) ((-563 . -807) 86279) ((-563 . -225) 86263) ((-563 . -189) 86217) ((-563 . -1128) T) ((-563 . -13) T) ((-563 . -186) 86165) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1060) T) ((-563 . -1025) T) ((-563 . -970) T) ((-563 . -21) T) ((-563 . -589) 86137) ((-563 . -23) T) ((-563 . -1013) T) ((-563 . -553) 86119) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 86106) ((-563 . -556) 86002) ((-563 . -190) 85981) ((-563 . -495) T) ((-563 . -245) T) ((-563 . -146) T) ((-563 . -655) 85968) ((-563 . -583) 85955) ((-563 . -969) 85942) ((-563 . -964) 85929) ((-563 . -82) 85914) ((-563 . -38) 85901) ((-563 . -554) 85878) ((-563 . -352) 85862) ((-563 . -951) 85747) ((-563 . -120) 85726) ((-563 . -118) 85705) ((-563 . -257) 85684) ((-563 . -389) 85663) ((-563 . -833) 85642) ((-559 . -38) 85626) ((-559 . -556) 85595) ((-559 . -591) 85569) ((-559 . -589) 85528) ((-559 . -970) T) ((-559 . -1025) T) ((-559 . -1060) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 85507) ((-559 . -964) 85491) ((-559 . -969) 85475) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1013) T) ((-559 . -553) 85457) ((-559 . -1128) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 85441) ((-559 . -655) 85425) ((-559 . -756) 85404) ((-559 . -722) 85383) ((-559 . -719) 85362) ((-559 . -760) 85341) ((-559 . -757) 85320) ((-559 . -717) 85299) ((-559 . -715) 85278) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 85260) ((-557 . -1013) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1128) T) ((-557 . -84) T) ((-557 . -317) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1128) T) ((-551 . -553) 85242) ((-551 . -1013) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 85226) ((-551 . -554) 85087) ((-548 . -313) 85025) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1128) T) ((-548 . -553) 85007) ((-548 . -1013) T) ((-548 . -1106) 84983) ((-548 . -183) 84928) ((-548 . -76) 84873) ((-548 . -259) 84662) ((-548 . -453) 84402) ((-548 . -426) 84334) ((-548 . -124) 84279) ((-548 . -554) NIL) ((-548 . -193) 84224) ((-548 . -550) 84200) ((-548 . -243) 84176) ((-548 . -241) 84152) ((-548 . -34) T) ((-548 . -539) 84128) ((-547 . -1013) T) ((-547 . -553) 84080) ((-547 . -1128) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -427) 84047) ((-547 . -556) 84014) ((-546 . -1013) T) ((-546 . -553) 83996) ((-546 . -1128) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1013) T) ((-545 . -553) 83978) ((-545 . -1128) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1013) T) ((-544 . -553) 83945) ((-544 . -1128) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1013) T) ((-543 . -553) 83927) ((-543 . -1128) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1013) T) ((-542 . -553) 83894) ((-542 . -1128) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -427) 83876) ((-542 . -556) 83858) ((-541 . -684) 83842) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83821) ((-541 . -964) 83805) ((-541 . -969) 83789) ((-541 . -21) T) ((-541 . -589) 83758) ((-541 . -23) T) ((-541 . -1013) T) ((-541 . -553) 83727) ((-541 . -1128) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83711) ((-541 . -583) 83695) ((-541 . -655) 83679) ((-541 . -358) 83644) ((-541 . -315) 83579) ((-541 . -241) 83537) ((-540 . -995) T) ((-540 . -427) 83518) ((-540 . -553) 83468) ((-540 . -556) 83449) ((-540 . -1013) T) ((-540 . -1128) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -1177) 83433) ((-537 . -321) 83417) ((-537 . -760) 83396) ((-537 . -757) 83375) ((-537 . -124) 83359) ((-537 . -34) T) ((-537 . -13) T) ((-537 . -1128) T) ((-537 . -72) 83293) ((-537 . -553) 83208) ((-537 . -259) 83146) ((-537 . -453) 83079) ((-537 . -1013) 83032) ((-537 . -426) 83016) ((-537 . -554) 82977) ((-537 . -241) 82929) ((-537 . -539) 82906) ((-537 . -243) 82883) ((-537 . -594) 82867) ((-537 . -19) 82851) ((-536 . -553) 82833) ((-532 . -1013) T) ((-532 . -553) 82799) ((-532 . -1128) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -427) 82780) ((-532 . -556) 82761) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1060) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -589) 82720) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -553) 82702) ((-531 . -1128) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -591) 82676) ((-531 . -556) 82634) ((-531 . -82) 82587) ((-531 . -964) 82547) ((-531 . -969) 82507) ((-531 . -495) 82486) ((-531 . -245) 82465) ((-531 . -146) 82444) ((-531 . -655) 82417) ((-531 . -583) 82390) ((-531 . -38) 82363) ((-530 . -1157) 82340) ((-530 . -47) 82317) ((-530 . -38) 82214) ((-530 . -583) 82111) ((-530 . -655) 82008) ((-530 . -556) 81890) ((-530 . -245) 81869) ((-530 . -495) 81848) ((-530 . -82) 81713) ((-530 . -964) 81599) ((-530 . -969) 81485) ((-530 . -146) 81439) ((-530 . -120) 81418) ((-530 . -118) 81397) ((-530 . -591) 81322) ((-530 . -589) 81232) ((-530 . -887) 81202) ((-530 . -812) 81115) ((-530 . -807) 81026) ((-530 . -810) 80939) ((-530 . -241) 80904) ((-530 . -189) 80863) ((-530 . -1128) T) ((-530 . -13) T) ((-530 . -186) 80816) ((-530 . -962) T) ((-530 . -664) T) ((-530 . -1060) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -553) 80798) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 80757) ((-528 . -995) T) ((-528 . -427) 80738) ((-528 . -553) 80704) ((-528 . -556) 80685) ((-528 . -1013) T) ((-528 . -1128) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -553) 80651) ((-522 . -1128) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -427) 80632) ((-522 . -556) 80613) ((-519 . -655) 80588) ((-519 . -583) 80563) ((-519 . -591) 80538) ((-519 . -589) 80498) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1128) T) ((-519 . -553) 80480) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -969) 80455) ((-519 . -964) 80430) ((-519 . -82) 80391) ((-519 . -951) 80375) ((-519 . -556) 80359) ((-517 . -298) T) ((-517 . -1065) T) ((-517 . -317) T) ((-517 . -118) T) ((-517 . -311) T) ((-517 . -1133) T) ((-517 . -833) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -556) 80309) ((-517 . -655) 80274) ((-517 . -583) 80239) ((-517 . -38) 80204) ((-517 . -389) T) ((-517 . -257) T) ((-517 . -82) 80153) ((-517 . -964) 80118) ((-517 . -969) 80083) ((-517 . -589) 80033) ((-517 . -591) 79998) ((-517 . -245) T) ((-517 . -201) T) ((-517 . -342) T) ((-517 . -189) T) ((-517 . -1128) T) ((-517 . -13) T) ((-517 . -186) 79985) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1060) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -553) 79967) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -279) 79954) ((-517 . -120) 79936) ((-517 . -951) 79923) ((-517 . -1186) 79910) ((-517 . -1197) 79897) ((-517 . -554) 79879) ((-516 . -780) 79863) ((-516 . -833) T) ((-516 . -495) T) ((-516 . -245) T) ((-516 . -146) T) ((-516 . -556) 79835) ((-516 . -655) 79822) ((-516 . -583) 79809) ((-516 . -969) 79796) ((-516 . -964) 79783) ((-516 . -82) 79768) ((-516 . -38) 79755) ((-516 . -389) T) ((-516 . -257) T) ((-516 . -962) T) ((-516 . -664) T) ((-516 . -1060) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -589) 79727) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -553) 79709) ((-516 . -1128) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -591) 79696) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -553) 79678) ((-515 . -1128) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -553) 79660) ((-514 . -1128) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -771) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -553) 79642) ((-507 . -493) 79626) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -430) T) ((-507 . -1117) T) ((-507 . -1114) T) ((-507 . -951) 79608) ((-507 . -916) T) ((-507 . -760) T) ((-507 . -757) T) ((-507 . -495) T) ((-507 . -245) T) ((-507 . -146) T) ((-507 . -556) 79580) ((-507 . -655) 79567) ((-507 . -583) 79554) ((-507 . -591) 79541) ((-507 . -589) 79513) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1128) T) ((-507 . -553) 79495) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -969) 79482) ((-507 . -964) 79469) ((-507 . -82) 79454) ((-507 . -962) T) ((-507 . -664) T) ((-507 . -1060) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 79441) ((-507 . -389) T) ((-489 . -1106) 79420) ((-489 . -183) 79368) ((-489 . -76) 79316) ((-489 . -259) 79114) ((-489 . -453) 78866) ((-489 . -426) 78801) ((-489 . -124) 78749) ((-489 . -554) NIL) ((-489 . -193) 78697) ((-489 . -550) 78676) ((-489 . -243) 78655) ((-489 . -1128) T) ((-489 . -13) T) ((-489 . -241) 78634) ((-489 . -1013) T) ((-489 . -553) 78616) ((-489 . -72) T) ((-489 . -34) T) ((-489 . -539) 78595) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1013) T) ((-488 . -553) 78577) ((-488 . -1128) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -317) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1013) T) ((-487 . -553) 78559) ((-487 . -1128) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -317) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1013) T) ((-486 . -553) 78541) ((-486 . -1128) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -317) T) ((-485 . -753) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -1013) T) ((-485 . -553) 78523) ((-485 . -1128) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -317) T) ((-484 . -483) T) ((-484 . -1133) T) ((-484 . -1065) T) ((-484 . -951) 78505) ((-484 . -554) 78420) ((-484 . -934) T) ((-484 . -797) 78402) ((-484 . -756) T) ((-484 . -722) T) ((-484 . -719) T) ((-484 . -760) T) ((-484 . -757) T) ((-484 . -717) T) ((-484 . -715) T) ((-484 . -741) T) ((-484 . -591) 78374) ((-484 . -581) 78356) ((-484 . -833) T) ((-484 . -495) T) ((-484 . -245) T) ((-484 . -146) T) ((-484 . -556) 78328) ((-484 . -655) 78315) ((-484 . -583) 78302) ((-484 . -969) 78289) ((-484 . -964) 78276) ((-484 . -82) 78261) ((-484 . -38) 78248) ((-484 . -389) T) ((-484 . -257) T) ((-484 . -189) T) ((-484 . -186) 78235) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -962) T) ((-484 . -664) T) ((-484 . -1060) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -589) 78207) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -553) 78189) ((-484 . -1128) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 78141) ((-473 . -72) T) ((-473 . -553) 78123) ((-473 . -1013) T) ((-473 . -241) 78079) ((-473 . -1128) T) ((-473 . -13) T) ((-473 . -558) 77982) ((-473 . -554) 77963) ((-471 . -692) 77945) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -771) T) ((-471 . -512) T) ((-471 . -553) 77927) ((-469 . -718) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1128) T) ((-469 . -553) 77909) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -717) T) ((-469 . -757) T) ((-469 . -760) T) ((-469 . -719) T) ((-469 . -722) T) ((-469 . -447) 77886) ((-469 . -558) 77849) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -553) 77831) ((-463 . -995) T) ((-463 . -427) 77812) ((-463 . -553) 77778) ((-463 . -556) 77759) ((-463 . -1013) T) ((-463 . -1128) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -427) 77740) ((-462 . -553) 77706) ((-462 . -556) 77687) ((-462 . -1013) T) ((-462 . -1128) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -628) 77637) ((-461 . -426) 77621) ((-461 . -1013) 77599) ((-461 . -453) 77532) ((-461 . -259) 77470) ((-461 . -553) 77405) ((-461 . -72) 77359) ((-461 . -1128) T) ((-461 . -13) T) ((-461 . -34) T) ((-461 . -57) 77309) ((-458 . -57) 77283) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1128) T) ((-458 . -72) 77237) ((-458 . -553) 77172) ((-458 . -259) 77110) ((-458 . -453) 77043) ((-458 . -1013) 77021) ((-458 . -426) 77005) ((-457 . -279) 76982) ((-457 . -190) T) ((-457 . -186) 76969) ((-457 . -189) T) ((-457 . -317) T) ((-457 . -1065) T) ((-457 . -298) T) ((-457 . -120) 76951) ((-457 . -556) 76881) ((-457 . -591) 76826) ((-457 . -589) 76756) ((-457 . -104) T) ((-457 . -25) T) ((-457 . -72) T) ((-457 . -13) T) ((-457 . -1128) T) ((-457 . -553) 76738) ((-457 . -1013) T) ((-457 . -23) T) ((-457 . -21) T) ((-457 . -970) T) ((-457 . -1025) T) ((-457 . -1060) T) ((-457 . -664) T) ((-457 . -962) T) ((-457 . -311) T) ((-457 . -1133) T) ((-457 . -833) T) ((-457 . -495) T) ((-457 . -146) T) ((-457 . -655) 76683) ((-457 . -583) 76628) ((-457 . -38) 76593) ((-457 . -389) T) ((-457 . -257) T) ((-457 . -82) 76510) ((-457 . -964) 76455) ((-457 . -969) 76400) ((-457 . -245) T) ((-457 . -201) T) ((-457 . -342) T) ((-457 . -118) T) ((-457 . -951) 76377) ((-457 . -1186) 76354) ((-457 . -1197) 76331) ((-456 . -995) T) ((-456 . -427) 76312) ((-456 . -553) 76278) ((-456 . -556) 76259) ((-456 . -1013) T) ((-456 . -1128) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -64) T) ((-455 . -19) 76243) ((-455 . -594) 76227) ((-455 . -243) 76204) ((-455 . -241) 76156) ((-455 . -539) 76133) ((-455 . -554) 76094) ((-455 . -426) 76078) ((-455 . -1013) 76031) ((-455 . -453) 75964) ((-455 . -259) 75902) ((-455 . -553) 75817) ((-455 . -72) 75751) ((-455 . -1128) T) ((-455 . -13) T) ((-455 . -34) T) ((-455 . -124) 75735) ((-455 . -757) 75714) ((-455 . -760) 75693) ((-455 . -321) 75677) ((-455 . -237) 75661) ((-454 . -273) 75640) ((-454 . -556) 75624) ((-454 . -951) 75608) ((-454 . -23) T) ((-454 . -1013) T) ((-454 . -553) 75590) ((-454 . -1128) T) ((-454 . -13) T) ((-454 . -72) T) ((-454 . -25) T) ((-454 . -104) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1128) T) ((-451 . -553) 75562) ((-450 . -718) T) ((-450 . -104) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1128) T) ((-450 . -553) 75544) ((-450 . -1013) T) ((-450 . -23) T) ((-450 . -717) T) ((-450 . -757) T) ((-450 . -760) T) ((-450 . -719) T) ((-450 . -722) T) ((-450 . -447) 75523) ((-450 . -558) 75488) ((-449 . -717) T) ((-449 . -757) T) ((-449 . -760) T) ((-449 . -719) T) ((-449 . -25) T) ((-449 . -72) T) ((-449 . -13) T) ((-449 . -1128) T) ((-449 . -553) 75470) ((-449 . -1013) T) ((-449 . -23) T) ((-449 . -447) 75449) ((-449 . -558) 75414) ((-448 . -447) 75393) ((-448 . -553) 75333) ((-448 . -1013) 75284) ((-448 . -558) 75249) ((-448 . -1128) T) ((-448 . -13) T) ((-448 . -72) T) ((-446 . -23) T) ((-446 . -1013) T) ((-446 . -553) 75231) ((-446 . -1128) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -447) 75210) ((-446 . -558) 75175) ((-445 . -21) T) ((-445 . -589) 75157) ((-445 . -23) T) ((-445 . -1013) T) ((-445 . -553) 75139) ((-445 . -1128) T) ((-445 . -13) T) ((-445 . -72) T) ((-445 . -25) T) ((-445 . -104) T) ((-445 . -447) 75118) ((-445 . -558) 75083) ((-444 . -1013) T) ((-444 . -553) 75065) ((-444 . -1128) T) ((-444 . -13) T) ((-444 . -72) T) ((-441 . -1013) T) ((-441 . -553) 75047) ((-441 . -1128) T) ((-441 . -13) T) ((-441 . -72) T) ((-439 . -757) T) ((-439 . -553) 75029) ((-439 . -1013) T) ((-439 . -72) T) ((-439 . -13) T) ((-439 . -1128) T) ((-439 . -760) T) ((-439 . -556) 75010) ((-437 . -96) T) ((-437 . -321) 74993) ((-437 . -760) T) ((-437 . -757) T) ((-437 . -124) 74976) ((-437 . -34) T) ((-437 . -72) T) ((-437 . -553) 74958) ((-437 . -259) NIL) ((-437 . -453) NIL) ((-437 . -1013) T) ((-437 . -426) 74941) ((-437 . -554) 74923) ((-437 . -241) 74874) ((-437 . -539) 74850) ((-437 . -243) 74826) ((-437 . -594) 74809) ((-437 . -19) 74792) ((-437 . -605) T) ((-437 . -13) T) ((-437 . -1128) T) ((-437 . -84) T) ((-434 . -57) 74742) ((-434 . -34) T) ((-434 . -13) T) ((-434 . -1128) T) ((-434 . -72) 74696) ((-434 . -553) 74631) ((-434 . -259) 74569) ((-434 . -453) 74502) ((-434 . -1013) 74480) ((-434 . -426) 74464) ((-433 . -19) 74448) ((-433 . -594) 74432) ((-433 . -243) 74409) ((-433 . -241) 74361) ((-433 . -539) 74338) ((-433 . -554) 74299) ((-433 . -426) 74283) ((-433 . -1013) 74236) ((-433 . -453) 74169) ((-433 . -259) 74107) ((-433 . -553) 74022) ((-433 . -72) 73956) ((-433 . -1128) T) ((-433 . -13) T) ((-433 . -34) T) ((-433 . -124) 73940) ((-433 . -757) 73919) ((-433 . -760) 73898) ((-433 . -321) 73882) ((-432 . -253) T) ((-432 . -72) T) ((-432 . -13) T) ((-432 . -1128) T) ((-432 . -553) 73864) ((-432 . -1013) T) ((-432 . -556) 73765) ((-432 . -951) 73708) ((-432 . -453) 73674) ((-432 . -259) 73661) ((-432 . -27) T) ((-432 . -916) T) ((-432 . -201) T) ((-432 . -82) 73610) ((-432 . -964) 73575) ((-432 . -969) 73540) ((-432 . -245) T) ((-432 . -655) 73505) ((-432 . -583) 73470) ((-432 . -591) 73420) ((-432 . -589) 73370) ((-432 . -104) T) ((-432 . -25) T) ((-432 . -23) T) ((-432 . -21) T) ((-432 . -962) T) ((-432 . -664) T) ((-432 . -1060) T) ((-432 . -1025) T) ((-432 . -970) T) ((-432 . -38) 73335) ((-432 . -257) T) ((-432 . -389) T) ((-432 . -146) T) ((-432 . -495) T) ((-432 . -833) T) ((-432 . -1133) T) ((-432 . -311) T) ((-432 . -581) 73295) ((-432 . -934) T) ((-432 . -554) 73240) ((-432 . -120) T) ((-432 . -190) T) ((-432 . -186) 73227) ((-432 . -189) T) ((-428 . -1013) T) ((-428 . -553) 73193) ((-428 . -1128) T) ((-428 . -13) T) ((-428 . -72) T) ((-424 . -905) 73175) ((-424 . -1065) T) ((-424 . -556) 73125) ((-424 . -951) 73085) ((-424 . -554) 73015) ((-424 . -934) T) ((-424 . -822) NIL) ((-424 . -795) 72997) ((-424 . -756) T) ((-424 . -722) T) ((-424 . -719) T) ((-424 . -760) T) ((-424 . -757) T) ((-424 . -717) T) ((-424 . -715) T) ((-424 . -741) T) ((-424 . -797) 72979) ((-424 . -340) 72961) ((-424 . -581) 72943) ((-424 . -326) 72925) ((-424 . -241) NIL) ((-424 . -259) NIL) ((-424 . -453) NIL) ((-424 . -287) 72907) ((-424 . -201) T) ((-424 . -82) 72834) ((-424 . -964) 72784) ((-424 . -969) 72734) ((-424 . -245) T) ((-424 . -655) 72684) ((-424 . -583) 72634) ((-424 . -591) 72584) ((-424 . -589) 72534) ((-424 . -38) 72484) ((-424 . -257) T) ((-424 . -389) T) ((-424 . -146) T) ((-424 . -495) T) ((-424 . -833) T) ((-424 . -1133) T) ((-424 . -311) T) ((-424 . -190) T) ((-424 . -186) 72471) ((-424 . -189) T) ((-424 . -225) 72453) ((-424 . -807) NIL) ((-424 . -812) NIL) ((-424 . -810) NIL) ((-424 . -184) 72435) ((-424 . -120) T) ((-424 . -118) NIL) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1128) T) ((-424 . -553) 72377) ((-424 . -1013) T) ((-424 . -23) T) ((-424 . -21) T) ((-424 . -962) T) ((-424 . -664) T) ((-424 . -1060) T) ((-424 . -1025) T) ((-424 . -970) T) ((-422 . -285) 72346) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1128) T) ((-422 . -553) 72328) ((-422 . -1013) T) ((-422 . -23) T) ((-422 . -589) 72310) ((-422 . -21) T) ((-421 . -882) 72294) ((-421 . -426) 72278) ((-421 . -1013) 72256) ((-421 . -453) 72189) ((-421 . -259) 72127) ((-421 . -553) 72062) ((-421 . -72) 72016) ((-421 . -1128) T) ((-421 . -13) T) ((-421 . -34) T) ((-421 . -76) 72000) ((-420 . -995) T) ((-420 . -427) 71981) ((-420 . -553) 71947) ((-420 . -556) 71928) ((-420 . -1013) T) ((-420 . -1128) T) ((-420 . -13) T) ((-420 . -72) T) ((-420 . -64) T) ((-419 . -196) 71907) ((-419 . -1186) 71877) ((-419 . -722) 71856) ((-419 . -719) 71835) ((-419 . -760) 71789) ((-419 . -757) 71743) ((-419 . -717) 71722) ((-419 . -718) 71701) ((-419 . -655) 71646) ((-419 . -583) 71571) ((-419 . -243) 71548) ((-419 . -241) 71525) ((-419 . -426) 71509) ((-419 . -453) 71442) ((-419 . -259) 71380) ((-419 . -34) T) ((-419 . -539) 71357) ((-419 . -951) 71186) ((-419 . -556) 70990) ((-419 . -352) 70959) ((-419 . -581) 70867) ((-419 . -591) 70706) ((-419 . -326) 70676) ((-419 . -317) 70655) ((-419 . -190) 70608) ((-419 . -589) 70396) ((-419 . -970) 70375) ((-419 . -1025) 70354) ((-419 . -1060) 70333) ((-419 . -664) 70312) ((-419 . -962) 70291) ((-419 . -186) 70187) ((-419 . -189) 70089) ((-419 . -225) 70059) ((-419 . -807) 69931) ((-419 . -812) 69805) ((-419 . -810) 69738) ((-419 . -184) 69708) ((-419 . -553) 69405) ((-419 . -969) 69330) ((-419 . -964) 69235) ((-419 . -82) 69155) ((-419 . -104) 69030) ((-419 . -25) 68867) ((-419 . -72) 68604) ((-419 . -13) T) ((-419 . -1128) T) ((-419 . -1013) 68360) ((-419 . -23) 68216) ((-419 . -21) 68131) ((-418 . -862) 68076) ((-418 . -556) 67868) ((-418 . -951) 67746) ((-418 . -1133) 67725) ((-418 . -822) 67704) ((-418 . -797) NIL) ((-418 . -812) 67681) ((-418 . -807) 67656) ((-418 . -810) 67633) ((-418 . -453) 67571) ((-418 . -389) 67525) ((-418 . -581) 67473) ((-418 . -591) 67362) ((-418 . -326) 67346) ((-418 . -47) 67303) ((-418 . -38) 67155) ((-418 . -583) 67007) ((-418 . -655) 66859) ((-418 . -245) 66793) ((-418 . -495) 66727) ((-418 . -82) 66552) ((-418 . -964) 66398) ((-418 . -969) 66244) ((-418 . -146) 66158) ((-418 . -120) 66137) ((-418 . -118) 66116) ((-418 . -589) 66026) ((-418 . -104) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -13) T) ((-418 . -1128) T) ((-418 . -553) 66008) ((-418 . -1013) T) ((-418 . -23) T) ((-418 . -21) T) ((-418 . -962) T) ((-418 . -664) T) ((-418 . -1060) T) ((-418 . -1025) T) ((-418 . -970) T) ((-418 . -352) 65992) ((-418 . -276) 65949) ((-418 . -259) 65936) ((-418 . -554) 65797) ((-416 . -1106) 65776) ((-416 . -183) 65724) ((-416 . -76) 65672) ((-416 . -259) 65470) ((-416 . -453) 65222) ((-416 . -426) 65157) ((-416 . -124) 65105) ((-416 . -554) NIL) ((-416 . -193) 65053) ((-416 . -550) 65032) ((-416 . -243) 65011) ((-416 . -1128) T) ((-416 . -13) T) ((-416 . -241) 64990) ((-416 . -1013) T) ((-416 . -553) 64972) ((-416 . -72) T) ((-416 . -34) T) ((-416 . -539) 64951) ((-415 . -995) T) ((-415 . -427) 64932) ((-415 . -553) 64898) ((-415 . -556) 64879) ((-415 . -1013) T) ((-415 . -1128) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -64) T) ((-414 . -311) T) ((-414 . -1133) T) ((-414 . -833) T) ((-414 . -495) T) ((-414 . -146) T) ((-414 . -556) 64829) ((-414 . -655) 64794) ((-414 . -583) 64759) ((-414 . -38) 64724) ((-414 . -389) T) ((-414 . -257) T) ((-414 . -591) 64689) ((-414 . -589) 64639) ((-414 . -970) T) ((-414 . -1025) T) ((-414 . -1060) T) ((-414 . -664) T) ((-414 . -962) T) ((-414 . -82) 64588) ((-414 . -964) 64553) ((-414 . -969) 64518) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1013) T) ((-414 . -553) 64470) ((-414 . -1128) T) ((-414 . -13) T) ((-414 . -72) T) ((-414 . -25) T) ((-414 . -104) T) ((-414 . -245) T) ((-414 . -201) T) ((-414 . -120) T) ((-414 . -951) 64430) ((-414 . -934) T) ((-414 . -554) 64352) ((-413 . -1123) 64321) ((-413 . -553) 64283) ((-413 . -124) 64267) ((-413 . -34) T) ((-413 . -13) T) ((-413 . -1128) T) ((-413 . -72) T) ((-413 . -259) 64205) ((-413 . -453) 64138) ((-413 . -1013) T) ((-413 . -426) 64122) ((-413 . -554) 64083) ((-413 . -890) 64052) ((-412 . -1106) 64031) ((-412 . -183) 63979) ((-412 . -76) 63927) ((-412 . -259) 63725) ((-412 . -453) 63477) ((-412 . -426) 63412) ((-412 . -124) 63360) ((-412 . -554) NIL) ((-412 . -193) 63308) ((-412 . -550) 63287) ((-412 . -243) 63266) ((-412 . -1128) T) ((-412 . -13) T) ((-412 . -241) 63245) ((-412 . -1013) T) ((-412 . -553) 63227) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -539) 63206) ((-411 . -1161) 63190) ((-411 . -190) 63142) ((-411 . -186) 63088) ((-411 . -189) 63040) ((-411 . -241) 62998) ((-411 . -810) 62904) ((-411 . -807) 62785) ((-411 . -812) 62691) ((-411 . -887) 62654) ((-411 . -38) 62501) ((-411 . -82) 62321) ((-411 . -964) 62162) ((-411 . -969) 62003) ((-411 . -589) 61888) ((-411 . -591) 61788) ((-411 . -583) 61635) ((-411 . -655) 61482) ((-411 . -556) 61314) ((-411 . -118) 61293) ((-411 . -120) 61272) ((-411 . -47) 61242) ((-411 . -1157) 61212) ((-411 . -35) 61178) ((-411 . -66) 61144) ((-411 . -239) 61110) ((-411 . -430) 61076) ((-411 . -1117) 61042) ((-411 . -1114) 61008) ((-411 . -916) 60974) ((-411 . -201) 60953) ((-411 . -245) 60907) ((-411 . -104) T) ((-411 . -25) T) ((-411 . -72) T) ((-411 . -13) T) ((-411 . -1128) T) ((-411 . -553) 60889) ((-411 . -1013) T) ((-411 . -23) T) ((-411 . -21) T) ((-411 . -962) T) ((-411 . -664) T) ((-411 . -1060) T) ((-411 . -1025) T) ((-411 . -970) T) ((-411 . -257) 60868) ((-411 . -389) 60847) ((-411 . -146) 60781) ((-411 . -495) 60735) ((-411 . -833) 60714) ((-411 . -1133) 60693) ((-411 . -311) 60672) ((-405 . -1013) T) ((-405 . -553) 60654) ((-405 . -1128) T) ((-405 . -13) T) ((-405 . -72) T) ((-400 . -890) 60623) ((-400 . -554) 60584) ((-400 . -426) 60568) ((-400 . -1013) T) ((-400 . -453) 60501) ((-400 . -259) 60439) ((-400 . -553) 60401) ((-400 . -72) T) ((-400 . -1128) T) ((-400 . -13) T) ((-400 . -34) T) ((-400 . -124) 60385) ((-398 . -655) 60356) ((-398 . -583) 60327) ((-398 . -591) 60298) ((-398 . -589) 60254) ((-398 . -104) T) ((-398 . -25) T) ((-398 . -72) T) ((-398 . -13) T) ((-398 . -1128) T) ((-398 . -553) 60236) ((-398 . -1013) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -969) 60207) ((-398 . -964) 60178) ((-398 . -82) 60139) ((-391 . -862) 60106) ((-391 . -556) 59898) ((-391 . -951) 59776) ((-391 . -1133) 59755) ((-391 . -822) 59734) ((-391 . -797) NIL) ((-391 . -812) 59711) ((-391 . -807) 59686) ((-391 . -810) 59663) ((-391 . -453) 59601) ((-391 . -389) 59555) ((-391 . -581) 59503) ((-391 . -591) 59392) ((-391 . -326) 59376) ((-391 . -47) 59355) ((-391 . -38) 59207) ((-391 . -583) 59059) ((-391 . -655) 58911) ((-391 . -245) 58845) ((-391 . -495) 58779) ((-391 . -82) 58604) ((-391 . -964) 58450) ((-391 . -969) 58296) ((-391 . -146) 58210) ((-391 . -120) 58189) ((-391 . -118) 58168) ((-391 . -589) 58078) ((-391 . -104) T) ((-391 . -25) T) ((-391 . -72) T) ((-391 . -13) T) ((-391 . -1128) T) ((-391 . -553) 58060) ((-391 . -1013) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -962) T) ((-391 . -664) T) ((-391 . -1060) T) ((-391 . -1025) T) ((-391 . -970) T) ((-391 . -352) 58044) ((-391 . -276) 58023) ((-391 . -259) 58010) ((-391 . -554) 57871) ((-390 . -358) 57841) ((-390 . -684) 57811) ((-390 . -658) T) ((-390 . -686) T) ((-390 . -82) 57762) ((-390 . -964) 57732) ((-390 . -969) 57702) ((-390 . -21) T) ((-390 . -589) 57617) ((-390 . -23) T) ((-390 . -1013) T) ((-390 . -553) 57599) ((-390 . -72) T) ((-390 . -25) T) ((-390 . -104) T) ((-390 . -591) 57529) ((-390 . -583) 57499) ((-390 . -655) 57469) ((-390 . -315) 57439) ((-390 . -1128) T) ((-390 . -13) T) ((-390 . -241) 57402) ((-378 . -1013) T) ((-378 . -553) 57384) ((-378 . -1128) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1013) T) ((-377 . -553) 57366) ((-377 . -1128) T) ((-377 . -13) T) ((-377 . -72) T) ((-376 . -1013) T) ((-376 . -553) 57348) ((-376 . -1128) T) ((-376 . -13) T) ((-376 . -72) T) ((-374 . -553) 57330) ((-369 . -38) 57314) ((-369 . -556) 57283) ((-369 . -591) 57257) ((-369 . -589) 57216) ((-369 . -970) T) ((-369 . -1025) T) ((-369 . -1060) T) ((-369 . -664) T) ((-369 . -962) T) ((-369 . -82) 57195) ((-369 . -964) 57179) ((-369 . -969) 57163) ((-369 . -21) T) ((-369 . -23) T) ((-369 . -1013) T) ((-369 . -553) 57145) ((-369 . -1128) T) ((-369 . -13) T) ((-369 . -72) T) ((-369 . -25) T) ((-369 . -104) T) ((-369 . -583) 57129) ((-369 . -655) 57113) ((-355 . -664) T) ((-355 . -1013) T) ((-355 . -553) 57095) ((-355 . -1128) T) ((-355 . -13) T) ((-355 . -72) T) ((-355 . -1025) T) ((-353 . -410) T) ((-353 . -1025) T) ((-353 . -72) T) ((-353 . -13) T) ((-353 . -1128) T) ((-353 . -553) 57077) ((-353 . -1013) T) ((-353 . -664) T) ((-347 . -905) 57061) ((-347 . -1065) 57039) ((-347 . -951) 56906) ((-347 . -556) 56805) ((-347 . -554) 56608) ((-347 . -934) 56587) ((-347 . -822) 56566) ((-347 . -795) 56550) ((-347 . -756) 56529) ((-347 . -722) 56508) ((-347 . -719) 56487) ((-347 . -760) 56441) ((-347 . -757) 56395) ((-347 . -717) 56374) ((-347 . -715) 56353) ((-347 . -741) 56332) ((-347 . -797) 56257) ((-347 . -340) 56241) ((-347 . -581) 56189) ((-347 . -591) 56105) ((-347 . -326) 56089) ((-347 . -241) 56047) ((-347 . -259) 56012) ((-347 . -453) 55924) ((-347 . -287) 55908) ((-347 . -201) T) ((-347 . -82) 55839) ((-347 . -964) 55791) ((-347 . -969) 55743) ((-347 . -245) T) ((-347 . -655) 55695) ((-347 . -583) 55647) ((-347 . -589) 55584) ((-347 . -38) 55536) ((-347 . -257) T) ((-347 . -389) T) ((-347 . -146) T) ((-347 . -495) T) ((-347 . -833) T) ((-347 . -1133) T) ((-347 . -311) T) ((-347 . -190) 55515) ((-347 . -186) 55463) ((-347 . -189) 55417) ((-347 . -225) 55401) ((-347 . -807) 55325) ((-347 . -812) 55251) ((-347 . -810) 55210) ((-347 . -184) 55194) ((-347 . -120) 55173) ((-347 . -118) 55152) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1128) T) ((-347 . -553) 55134) ((-347 . -1013) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -962) T) ((-347 . -664) T) ((-347 . -1060) T) ((-347 . -1025) T) ((-347 . -970) T) ((-345 . -495) T) ((-345 . -245) T) ((-345 . -146) T) ((-345 . -556) 55043) ((-345 . -655) 55017) ((-345 . -583) 54991) ((-345 . -591) 54965) ((-345 . -589) 54924) ((-345 . -104) T) ((-345 . -25) T) ((-345 . -72) T) ((-345 . -13) T) ((-345 . -1128) T) ((-345 . -553) 54906) ((-345 . -1013) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -969) 54880) ((-345 . -964) 54854) ((-345 . -82) 54821) ((-345 . -962) T) ((-345 . -664) T) ((-345 . -1060) T) ((-345 . -1025) T) ((-345 . -970) T) ((-345 . -38) 54795) ((-345 . -184) 54779) ((-345 . -810) 54738) ((-345 . -812) 54664) ((-345 . -807) 54588) ((-345 . -225) 54572) ((-345 . -189) 54526) ((-345 . -186) 54474) ((-345 . -190) 54453) ((-345 . -287) 54437) ((-345 . -453) 54279) ((-345 . -259) 54218) ((-345 . -241) 54146) ((-345 . -352) 54130) ((-345 . -951) 54028) ((-345 . -389) 53981) ((-345 . -934) 53960) ((-345 . -554) 53863) ((-345 . -1133) 53841) ((-339 . -1013) T) ((-339 . -553) 53823) ((-339 . -1128) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -189) T) ((-339 . -186) 53810) ((-339 . -554) 53787) ((-337 . -684) 53771) ((-337 . -658) T) ((-337 . -686) T) ((-337 . -82) 53750) ((-337 . -964) 53734) ((-337 . -969) 53718) ((-337 . -21) T) ((-337 . -589) 53687) ((-337 . -23) T) ((-337 . -1013) T) ((-337 . -553) 53669) ((-337 . -1128) T) ((-337 . -13) T) ((-337 . -72) T) ((-337 . -25) T) ((-337 . -104) T) ((-337 . -591) 53653) ((-337 . -583) 53637) ((-337 . -655) 53621) ((-335 . -336) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1128) T) ((-335 . -553) 53587) ((-335 . -1013) T) ((-335 . -556) 53568) ((-335 . -427) 53549) ((-334 . -333) 53533) ((-334 . -556) 53517) ((-334 . -951) 53501) ((-334 . -760) 53480) ((-334 . -757) 53459) ((-334 . -1025) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1128) T) ((-334 . -553) 53441) ((-334 . -1013) T) ((-334 . -664) T) ((-331 . -332) 53420) ((-331 . -556) 53404) ((-331 . -951) 53388) ((-331 . -583) 53358) ((-331 . -655) 53328) ((-331 . -591) 53312) ((-331 . -589) 53281) ((-331 . -104) T) ((-331 . -25) T) ((-331 . -72) T) ((-331 . -13) T) ((-331 . -1128) T) ((-331 . -553) 53263) ((-331 . -1013) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -969) 53247) ((-331 . -964) 53231) ((-331 . -82) 53210) ((-330 . -82) 53189) ((-330 . -964) 53173) ((-330 . -969) 53157) ((-330 . -21) T) ((-330 . -589) 53126) ((-330 . -23) T) ((-330 . -1013) T) ((-330 . -553) 53108) ((-330 . -1128) T) ((-330 . -13) T) ((-330 . -72) T) ((-330 . -25) T) ((-330 . -104) T) ((-330 . -591) 53092) ((-330 . -447) 53071) ((-330 . -558) 53036) ((-330 . -655) 53006) ((-330 . -583) 52976) ((-327 . -344) T) ((-327 . -120) T) ((-327 . -556) 52926) ((-327 . -591) 52891) ((-327 . -589) 52841) ((-327 . -104) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -13) T) ((-327 . -1128) T) ((-327 . -553) 52808) ((-327 . -1013) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -970) T) ((-327 . -1025) T) ((-327 . -1060) T) ((-327 . -664) T) ((-327 . -962) T) ((-327 . -554) 52722) ((-327 . -311) T) ((-327 . -1133) T) ((-327 . -833) T) ((-327 . -495) T) ((-327 . -146) T) ((-327 . -655) 52687) ((-327 . -583) 52652) ((-327 . -38) 52617) ((-327 . -389) T) ((-327 . -257) T) ((-327 . -82) 52566) ((-327 . -964) 52531) ((-327 . -969) 52496) ((-327 . -245) T) ((-327 . -201) T) ((-327 . -756) T) ((-327 . -722) T) ((-327 . -719) T) ((-327 . -760) T) ((-327 . -757) T) ((-327 . -717) T) ((-327 . -715) T) ((-327 . -797) 52478) ((-327 . -916) T) ((-327 . -934) T) ((-327 . -951) 52438) ((-327 . -973) T) ((-327 . -190) T) ((-327 . -186) 52425) ((-327 . -189) T) ((-327 . -1114) T) ((-327 . -1117) T) ((-327 . -430) T) ((-327 . -239) T) ((-327 . -66) T) ((-327 . -35) T) ((-327 . -558) 52407) ((-312 . -313) 52384) ((-312 . -72) T) ((-312 . -13) T) ((-312 . -1128) T) ((-312 . -553) 52366) ((-312 . -1013) T) ((-309 . -410) T) ((-309 . -1025) T) ((-309 . -72) T) ((-309 . -13) T) ((-309 . -1128) T) ((-309 . -553) 52348) ((-309 . -1013) T) ((-309 . -664) T) ((-309 . -951) 52332) ((-309 . -556) 52316) ((-307 . -279) 52300) ((-307 . -190) 52279) ((-307 . -186) 52252) ((-307 . -189) 52231) ((-307 . -317) 52210) ((-307 . -1065) 52189) ((-307 . -298) 52168) ((-307 . -120) 52147) ((-307 . -556) 52084) ((-307 . -591) 52036) ((-307 . -589) 51973) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -72) T) ((-307 . -13) T) ((-307 . -1128) T) ((-307 . -553) 51955) ((-307 . -1013) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -970) T) ((-307 . -1025) T) ((-307 . -1060) T) ((-307 . -664) T) ((-307 . -962) T) ((-307 . -311) T) ((-307 . -1133) T) ((-307 . -833) T) ((-307 . -495) T) ((-307 . -146) T) ((-307 . -655) 51907) ((-307 . -583) 51859) ((-307 . -38) 51824) ((-307 . -389) T) ((-307 . -257) T) ((-307 . -82) 51755) ((-307 . -964) 51707) ((-307 . -969) 51659) ((-307 . -245) T) ((-307 . -201) T) ((-307 . -342) 51613) ((-307 . -118) 51567) ((-307 . -951) 51551) ((-307 . -1186) 51535) ((-307 . -1197) 51519) ((-303 . -279) 51503) ((-303 . -190) 51482) ((-303 . -186) 51455) ((-303 . -189) 51434) ((-303 . -317) 51413) ((-303 . -1065) 51392) ((-303 . -298) 51371) ((-303 . -120) 51350) ((-303 . -556) 51287) ((-303 . -591) 51239) ((-303 . -589) 51176) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1128) T) ((-303 . -553) 51158) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1060) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -311) T) ((-303 . -1133) T) ((-303 . -833) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -655) 51110) ((-303 . -583) 51062) ((-303 . -38) 51027) ((-303 . -389) T) ((-303 . -257) T) ((-303 . -82) 50958) ((-303 . -964) 50910) ((-303 . -969) 50862) ((-303 . -245) T) ((-303 . -201) T) ((-303 . -342) 50816) ((-303 . -118) 50770) ((-303 . -951) 50754) ((-303 . -1186) 50738) ((-303 . -1197) 50722) ((-302 . -279) 50706) ((-302 . -190) 50685) ((-302 . -186) 50658) ((-302 . -189) 50637) ((-302 . -317) 50616) ((-302 . -1065) 50595) ((-302 . -298) 50574) ((-302 . -120) 50553) ((-302 . -556) 50490) ((-302 . -591) 50442) ((-302 . -589) 50379) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1128) T) ((-302 . -553) 50361) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1060) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -311) T) ((-302 . -1133) T) ((-302 . -833) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -655) 50313) ((-302 . -583) 50265) ((-302 . -38) 50230) ((-302 . -389) T) ((-302 . -257) T) ((-302 . -82) 50161) ((-302 . -964) 50113) ((-302 . -969) 50065) ((-302 . -245) T) ((-302 . -201) T) ((-302 . -342) 50019) ((-302 . -118) 49973) ((-302 . -951) 49957) ((-302 . -1186) 49941) ((-302 . -1197) 49925) ((-301 . -279) 49909) ((-301 . -190) 49888) ((-301 . -186) 49861) ((-301 . -189) 49840) ((-301 . -317) 49819) ((-301 . -1065) 49798) ((-301 . -298) 49777) ((-301 . -120) 49756) ((-301 . -556) 49693) ((-301 . -591) 49645) ((-301 . -589) 49582) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1128) T) ((-301 . -553) 49564) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1060) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -311) T) ((-301 . -1133) T) ((-301 . -833) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -655) 49516) ((-301 . -583) 49468) ((-301 . -38) 49433) ((-301 . -389) T) ((-301 . -257) T) ((-301 . -82) 49364) ((-301 . -964) 49316) ((-301 . -969) 49268) ((-301 . -245) T) ((-301 . -201) T) ((-301 . -342) 49222) ((-301 . -118) 49176) ((-301 . -951) 49160) ((-301 . -1186) 49144) ((-301 . -1197) 49128) ((-300 . -279) 49105) ((-300 . -190) T) ((-300 . -186) 49092) ((-300 . -189) T) ((-300 . -317) T) ((-300 . -1065) T) ((-300 . -298) T) ((-300 . -120) 49074) ((-300 . -556) 49004) ((-300 . -591) 48949) ((-300 . -589) 48879) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -13) T) ((-300 . -1128) T) ((-300 . -553) 48861) ((-300 . -1013) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -970) T) ((-300 . -1025) T) ((-300 . -1060) T) ((-300 . -664) T) ((-300 . -962) T) ((-300 . -311) T) ((-300 . -1133) T) ((-300 . -833) T) ((-300 . -495) T) ((-300 . -146) T) ((-300 . -655) 48806) ((-300 . -583) 48751) ((-300 . -38) 48716) ((-300 . -389) T) ((-300 . -257) T) ((-300 . -82) 48633) ((-300 . -964) 48578) ((-300 . -969) 48523) ((-300 . -245) T) ((-300 . -201) T) ((-300 . -342) T) ((-300 . -118) T) ((-300 . -951) 48500) ((-300 . -1186) 48477) ((-300 . -1197) 48454) ((-294 . -279) 48438) ((-294 . -190) 48417) ((-294 . -186) 48390) ((-294 . -189) 48369) ((-294 . -317) 48348) ((-294 . -1065) 48327) ((-294 . -298) 48306) ((-294 . -120) 48285) ((-294 . -556) 48222) ((-294 . -591) 48174) ((-294 . -589) 48111) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1128) T) ((-294 . -553) 48093) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1060) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -311) T) ((-294 . -1133) T) ((-294 . -833) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -655) 48045) ((-294 . -583) 47997) ((-294 . -38) 47962) ((-294 . -389) T) ((-294 . -257) T) ((-294 . -82) 47893) ((-294 . -964) 47845) ((-294 . -969) 47797) ((-294 . -245) T) ((-294 . -201) T) ((-294 . -342) 47751) ((-294 . -118) 47705) ((-294 . -951) 47689) ((-294 . -1186) 47673) ((-294 . -1197) 47657) ((-293 . -279) 47641) ((-293 . -190) 47620) ((-293 . -186) 47593) ((-293 . -189) 47572) ((-293 . -317) 47551) ((-293 . -1065) 47530) ((-293 . -298) 47509) ((-293 . -120) 47488) ((-293 . -556) 47425) ((-293 . -591) 47377) ((-293 . -589) 47314) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1128) T) ((-293 . -553) 47296) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1060) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -311) T) ((-293 . -1133) T) ((-293 . -833) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -655) 47248) ((-293 . -583) 47200) ((-293 . -38) 47165) ((-293 . -389) T) ((-293 . -257) T) ((-293 . -82) 47096) ((-293 . -964) 47048) ((-293 . -969) 47000) ((-293 . -245) T) ((-293 . -201) T) ((-293 . -342) 46954) ((-293 . -118) 46908) ((-293 . -951) 46892) ((-293 . -1186) 46876) ((-293 . -1197) 46860) ((-292 . -279) 46837) ((-292 . -190) T) ((-292 . -186) 46824) ((-292 . -189) T) ((-292 . -317) T) ((-292 . -1065) T) ((-292 . -298) T) ((-292 . -120) 46806) ((-292 . -556) 46736) ((-292 . -591) 46681) ((-292 . -589) 46611) ((-292 . -104) T) ((-292 . -25) T) ((-292 . -72) T) ((-292 . -13) T) ((-292 . -1128) T) ((-292 . -553) 46593) ((-292 . -1013) T) ((-292 . -23) T) ((-292 . -21) T) ((-292 . -970) T) ((-292 . -1025) T) ((-292 . -1060) T) ((-292 . -664) T) ((-292 . -962) T) ((-292 . -311) T) ((-292 . -1133) T) ((-292 . -833) T) ((-292 . -495) T) ((-292 . -146) T) ((-292 . -655) 46538) ((-292 . -583) 46483) ((-292 . -38) 46448) ((-292 . -389) T) ((-292 . -257) T) ((-292 . -82) 46365) ((-292 . -964) 46310) ((-292 . -969) 46255) ((-292 . -245) T) ((-292 . -201) T) ((-292 . -342) T) ((-292 . -118) T) ((-292 . -951) 46232) ((-292 . -1186) 46209) ((-292 . -1197) 46186) ((-288 . -279) 46163) ((-288 . -190) T) ((-288 . -186) 46150) ((-288 . -189) T) ((-288 . -317) T) ((-288 . -1065) T) ((-288 . -298) T) ((-288 . -120) 46132) ((-288 . -556) 46062) ((-288 . -591) 46007) ((-288 . -589) 45937) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -72) T) ((-288 . -13) T) ((-288 . -1128) T) ((-288 . -553) 45919) ((-288 . -1013) T) ((-288 . -23) T) ((-288 . -21) T) ((-288 . -970) T) ((-288 . -1025) T) ((-288 . -1060) T) ((-288 . -664) T) ((-288 . -962) T) ((-288 . -311) T) ((-288 . -1133) T) ((-288 . -833) T) ((-288 . -495) T) ((-288 . -146) T) ((-288 . -655) 45864) ((-288 . -583) 45809) ((-288 . -38) 45774) ((-288 . -389) T) ((-288 . -257) T) ((-288 . -82) 45691) ((-288 . -964) 45636) ((-288 . -969) 45581) ((-288 . -245) T) ((-288 . -201) T) ((-288 . -342) T) ((-288 . -118) T) ((-288 . -951) 45558) ((-288 . -1186) 45535) ((-288 . -1197) 45512) ((-282 . -285) 45481) ((-282 . -104) T) ((-282 . -25) T) ((-282 . -72) T) ((-282 . -13) T) ((-282 . -1128) T) ((-282 . -553) 45463) ((-282 . -1013) T) ((-282 . -23) T) ((-282 . -589) 45445) ((-282 . -21) T) ((-281 . -1013) T) ((-281 . -553) 45427) ((-281 . -1128) T) ((-281 . -13) T) ((-281 . -72) T) ((-280 . -757) T) ((-280 . -553) 45409) ((-280 . -1013) T) ((-280 . -72) T) ((-280 . -13) T) ((-280 . -1128) T) ((-280 . -760) T) ((-277 . -19) 45393) ((-277 . -594) 45377) ((-277 . -243) 45354) ((-277 . -241) 45306) ((-277 . -539) 45283) ((-277 . -554) 45244) ((-277 . -426) 45228) ((-277 . -1013) 45181) ((-277 . -453) 45114) ((-277 . -259) 45052) ((-277 . -553) 44967) ((-277 . -72) 44901) ((-277 . -1128) T) ((-277 . -13) T) ((-277 . -34) T) ((-277 . -124) 44885) ((-277 . -757) 44864) ((-277 . -760) 44843) ((-277 . -321) 44827) ((-277 . -237) 44811) ((-274 . -273) 44788) ((-274 . -556) 44772) ((-274 . -951) 44756) ((-274 . -23) T) ((-274 . -1013) T) ((-274 . -553) 44738) ((-274 . -1128) T) ((-274 . -13) T) ((-274 . -72) T) ((-274 . -25) T) ((-274 . -104) T) ((-272 . -21) T) ((-272 . -589) 44720) ((-272 . -23) T) ((-272 . -1013) T) ((-272 . -553) 44702) ((-272 . -1128) T) ((-272 . -13) T) ((-272 . -72) T) ((-272 . -25) T) ((-272 . -104) T) ((-272 . -655) 44684) ((-272 . -583) 44666) ((-272 . -591) 44648) ((-272 . -969) 44630) ((-272 . -964) 44612) ((-272 . -82) 44587) ((-272 . -273) 44564) ((-272 . -556) 44548) ((-272 . -951) 44532) ((-272 . -757) 44511) ((-272 . -760) 44490) ((-269 . -1161) 44474) ((-269 . -190) 44426) ((-269 . -186) 44372) ((-269 . -189) 44324) ((-269 . -241) 44282) ((-269 . -810) 44188) ((-269 . -807) 44092) ((-269 . -812) 43998) ((-269 . -887) 43961) ((-269 . -38) 43808) ((-269 . -82) 43628) ((-269 . -964) 43469) ((-269 . -969) 43310) ((-269 . -589) 43195) ((-269 . -591) 43095) ((-269 . -583) 42942) ((-269 . -655) 42789) ((-269 . -556) 42621) ((-269 . -118) 42600) ((-269 . -120) 42579) ((-269 . -47) 42549) ((-269 . -1157) 42519) ((-269 . -35) 42485) ((-269 . -66) 42451) ((-269 . -239) 42417) ((-269 . -430) 42383) ((-269 . -1117) 42349) ((-269 . -1114) 42315) ((-269 . -916) 42281) ((-269 . -201) 42260) ((-269 . -245) 42214) ((-269 . -104) T) ((-269 . -25) T) ((-269 . -72) T) ((-269 . -13) T) ((-269 . -1128) T) ((-269 . -553) 42196) ((-269 . -1013) T) ((-269 . -23) T) ((-269 . -21) T) ((-269 . -962) T) ((-269 . -664) T) ((-269 . -1060) T) ((-269 . -1025) T) ((-269 . -970) T) ((-269 . -257) 42175) ((-269 . -389) 42154) ((-269 . -146) 42088) ((-269 . -495) 42042) ((-269 . -833) 42021) ((-269 . -1133) 42000) ((-269 . -311) 41979) ((-269 . -717) T) ((-269 . -757) T) ((-269 . -760) T) ((-269 . -719) T) ((-264 . -361) 41963) ((-264 . -556) 41538) ((-264 . -951) 41209) ((-264 . -554) 41070) ((-264 . -795) 41054) ((-264 . -812) 41021) ((-264 . -807) 40986) ((-264 . -810) 40953) ((-264 . -410) 40932) ((-264 . -352) 40916) ((-264 . -797) 40841) ((-264 . -340) 40825) ((-264 . -581) 40733) ((-264 . -591) 40471) ((-264 . -326) 40441) ((-264 . -201) 40420) ((-264 . -82) 40309) ((-264 . -964) 40219) ((-264 . -969) 40129) ((-264 . -245) 40108) ((-264 . -655) 40018) ((-264 . -583) 39928) ((-264 . -589) 39595) ((-264 . -38) 39505) ((-264 . -257) 39484) ((-264 . -389) 39463) ((-264 . -146) 39442) ((-264 . -495) 39421) ((-264 . -833) 39400) ((-264 . -1133) 39379) ((-264 . -311) 39358) ((-264 . -259) 39345) ((-264 . -453) 39311) ((-264 . -253) T) ((-264 . -120) 39290) ((-264 . -118) 39269) ((-264 . -962) 39163) ((-264 . -664) 39016) ((-264 . -1060) 38910) ((-264 . -1025) 38763) ((-264 . -970) 38657) ((-264 . -104) 38532) ((-264 . -25) 38388) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1128) T) ((-264 . -553) 38370) ((-264 . -1013) T) ((-264 . -23) 38226) ((-264 . -21) 38101) ((-264 . -29) 38071) ((-264 . -916) 38050) ((-264 . -27) 38029) ((-264 . -1114) 38008) ((-264 . -1117) 37987) ((-264 . -430) 37966) ((-264 . -239) 37945) ((-264 . -66) 37924) ((-264 . -35) 37903) ((-264 . -133) 37882) ((-264 . -116) 37861) ((-264 . -570) 37840) ((-264 . -872) 37819) ((-264 . -1052) 37798) ((-263 . -905) 37759) ((-263 . -1065) NIL) ((-263 . -951) 37689) ((-263 . -556) 37572) ((-263 . -554) NIL) ((-263 . -934) NIL) ((-263 . -822) NIL) ((-263 . -795) 37533) ((-263 . -756) NIL) ((-263 . -722) NIL) ((-263 . -719) NIL) ((-263 . -760) NIL) ((-263 . -757) NIL) ((-263 . -717) NIL) ((-263 . -715) NIL) ((-263 . -741) NIL) ((-263 . -797) NIL) ((-263 . -340) 37494) ((-263 . -581) 37455) ((-263 . -591) 37384) ((-263 . -326) 37345) ((-263 . -241) 37211) ((-263 . -259) 37107) ((-263 . -453) 36858) ((-263 . -287) 36819) ((-263 . -201) T) ((-263 . -82) 36704) ((-263 . -964) 36633) ((-263 . -969) 36562) ((-263 . -245) T) ((-263 . -655) 36491) ((-263 . -583) 36420) ((-263 . -589) 36334) ((-263 . -38) 36263) ((-263 . -257) T) ((-263 . -389) T) ((-263 . -146) T) ((-263 . -495) T) ((-263 . -833) T) ((-263 . -1133) T) ((-263 . -311) T) ((-263 . -190) NIL) ((-263 . -186) NIL) ((-263 . -189) NIL) ((-263 . -225) 36224) ((-263 . -807) NIL) ((-263 . -812) NIL) ((-263 . -810) NIL) ((-263 . -184) 36185) ((-263 . -120) 36141) ((-263 . -118) 36097) ((-263 . -104) T) ((-263 . -25) T) ((-263 . -72) T) ((-263 . -13) T) ((-263 . -1128) T) ((-263 . -553) 36079) ((-263 . -1013) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -962) T) ((-263 . -664) T) ((-263 . -1060) T) ((-263 . -1025) T) ((-263 . -970) T) ((-262 . -995) T) ((-262 . -427) 36060) ((-262 . -553) 36026) ((-262 . -556) 36007) ((-262 . -1013) T) ((-262 . -1128) T) ((-262 . -13) T) ((-262 . -72) T) ((-262 . -64) T) ((-261 . -1013) T) ((-261 . -553) 35989) ((-261 . -1128) T) ((-261 . -13) T) ((-261 . -72) T) ((-250 . -1106) 35968) ((-250 . -183) 35916) ((-250 . -76) 35864) ((-250 . -259) 35662) ((-250 . -453) 35414) ((-250 . -426) 35349) ((-250 . -124) 35297) ((-250 . -554) NIL) ((-250 . -193) 35245) ((-250 . -550) 35224) ((-250 . -243) 35203) ((-250 . -1128) T) ((-250 . -13) T) ((-250 . -241) 35182) ((-250 . -1013) T) ((-250 . -553) 35164) ((-250 . -72) T) ((-250 . -34) T) ((-250 . -539) 35143) ((-248 . -1128) T) ((-248 . -13) T) ((-248 . -453) 35092) ((-248 . -1013) 34878) ((-248 . -553) 34624) ((-248 . -72) 34410) ((-248 . -25) 34278) ((-248 . -21) 34165) ((-248 . -589) 33912) ((-248 . -23) 33799) ((-248 . -104) 33686) ((-248 . -1025) 33571) ((-248 . -664) 33477) ((-248 . -410) 33456) ((-248 . -962) 33402) ((-248 . -1060) 33348) ((-248 . -970) 33294) ((-248 . -591) 33162) ((-248 . -556) 33097) ((-248 . -82) 33017) ((-248 . -964) 32942) ((-248 . -969) 32867) ((-248 . -655) 32812) ((-248 . -583) 32757) ((-248 . -810) 32716) ((-248 . -807) 32673) ((-248 . -812) 32632) ((-248 . -1186) 32602) ((-246 . -553) 32584) ((-244 . -257) T) ((-244 . -389) T) ((-244 . -38) 32571) ((-244 . -556) 32543) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1060) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 32528) ((-244 . -964) 32515) ((-244 . -969) 32502) ((-244 . -21) T) ((-244 . -589) 32474) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -553) 32456) ((-244 . -1128) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 32443) ((-244 . -583) 32430) ((-244 . -655) 32417) ((-244 . -146) T) ((-244 . -245) T) ((-244 . -495) T) ((-244 . -833) T) ((-244 . -241) 32396) ((-235 . -553) 32378) ((-234 . -553) 32360) ((-229 . -757) T) ((-229 . -553) 32342) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1128) T) ((-229 . -760) T) ((-226 . -213) 32304) ((-226 . -556) 32064) ((-226 . -951) 31910) ((-226 . -554) 31658) ((-226 . -276) 31630) ((-226 . -352) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -964) 31137) ((-226 . -969) 30983) ((-226 . -589) 30893) ((-226 . -591) 30782) ((-226 . -583) 30634) ((-226 . -655) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -495) 30292) ((-226 . -245) 30226) ((-226 . -47) 30198) ((-226 . -326) 30182) ((-226 . -581) 30130) ((-226 . -389) 30084) ((-226 . -453) 29975) ((-226 . -810) 29921) ((-226 . -807) 29830) ((-226 . -812) 29743) ((-226 . -797) 29602) ((-226 . -822) 29581) ((-226 . -1133) 29560) ((-226 . -862) 29527) ((-226 . -259) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 29475) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1060) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1128) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1013) T) ((-221 . -553) 29327) ((-221 . -1128) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1186) 29276) ((-211 . -722) 29255) ((-211 . -719) 29234) ((-211 . -760) 29188) ((-211 . -757) 29142) ((-211 . -717) 29121) ((-211 . -718) 29100) ((-211 . -655) 29045) ((-211 . -583) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -426) 28908) ((-211 . -453) 28841) ((-211 . -259) 28779) ((-211 . -34) T) ((-211 . -539) 28756) ((-211 . -951) 28585) ((-211 . -556) 28389) ((-211 . -352) 28358) ((-211 . -581) 28266) ((-211 . -591) 28092) ((-211 . -326) 28062) ((-211 . -317) 28041) ((-211 . -190) 27994) ((-211 . -589) 27847) ((-211 . -970) 27826) ((-211 . -1025) 27805) ((-211 . -1060) 27784) ((-211 . -664) 27763) ((-211 . -962) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -807) 27382) ((-211 . -812) 27256) ((-211 . -810) 27189) ((-211 . -184) 27159) ((-211 . -553) 27120) ((-211 . -969) 27045) ((-211 . -964) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1128) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1186) 26819) ((-210 . -722) 26798) ((-210 . -719) 26777) ((-210 . -760) 26731) ((-210 . -757) 26685) ((-210 . -717) 26664) ((-210 . -718) 26643) ((-210 . -655) 26588) ((-210 . -583) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -426) 26451) ((-210 . -453) 26384) ((-210 . -259) 26322) ((-210 . -34) T) ((-210 . -539) 26299) ((-210 . -951) 26128) ((-210 . -556) 25932) ((-210 . -352) 25901) ((-210 . -581) 25809) ((-210 . -591) 25622) ((-210 . -326) 25592) ((-210 . -317) 25571) ((-210 . -190) 25524) ((-210 . -589) 25364) ((-210 . -970) 25343) ((-210 . -1025) 25322) ((-210 . -1060) 25301) ((-210 . -664) 25280) ((-210 . -962) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -807) 24899) ((-210 . -812) 24773) ((-210 . -810) 24706) ((-210 . -184) 24676) ((-210 . -553) 24637) ((-210 . -969) 24562) ((-210 . -964) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1128) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -553) 24369) ((-209 . -1128) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -553) 24310) ((-208 . -1128) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24292) ((-207 . -1013) T) ((-207 . -553) 24274) ((-207 . -1128) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24219) ((-206 . -556) 24011) ((-206 . -951) 23889) ((-206 . -1133) 23868) ((-206 . -822) 23847) ((-206 . -797) NIL) ((-206 . -812) 23824) ((-206 . -807) 23799) ((-206 . -810) 23776) ((-206 . -453) 23714) ((-206 . -389) 23668) ((-206 . -581) 23616) ((-206 . -591) 23505) ((-206 . -326) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -583) 23150) ((-206 . -655) 23002) ((-206 . -245) 22936) ((-206 . -495) 22870) ((-206 . -82) 22695) ((-206 . -964) 22541) ((-206 . -969) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -589) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1128) T) ((-206 . -553) 22151) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1060) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -352) 22135) ((-206 . -276) 22092) ((-206 . -259) 22079) ((-206 . -554) 21940) ((-203 . -609) 21924) ((-203 . -1167) 21908) ((-203 . -924) 21892) ((-203 . -1063) 21876) ((-203 . -757) 21855) ((-203 . -760) 21834) ((-203 . -321) 21818) ((-203 . -594) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -539) 21708) ((-203 . -554) 21669) ((-203 . -426) 21653) ((-203 . -1013) 21606) ((-203 . -453) 21539) ((-203 . -259) 21477) ((-203 . -553) 21372) ((-203 . -72) 21306) ((-203 . -1128) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -427) 21251) ((-203 . -556) 21228) ((-197 . -196) 21207) ((-197 . -1186) 21177) ((-197 . -722) 21156) ((-197 . -719) 21135) ((-197 . -760) 21089) ((-197 . -757) 21043) ((-197 . -717) 21022) ((-197 . -718) 21001) ((-197 . -655) 20946) ((-197 . -583) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -426) 20809) ((-197 . -453) 20742) ((-197 . -259) 20680) ((-197 . -34) T) ((-197 . -539) 20657) ((-197 . -951) 20486) ((-197 . -556) 20290) ((-197 . -352) 20259) ((-197 . -581) 20167) ((-197 . -591) 20006) ((-197 . -326) 19976) ((-197 . -317) 19955) ((-197 . -190) 19908) ((-197 . -589) 19696) ((-197 . -970) 19675) ((-197 . -1025) 19654) ((-197 . -1060) 19633) ((-197 . -664) 19612) ((-197 . -962) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -807) 19231) ((-197 . -812) 19105) ((-197 . -810) 19038) ((-197 . -184) 19008) ((-197 . -553) 18705) ((-197 . -969) 18630) ((-197 . -964) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1128) T) ((-197 . -1013) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -628) 17389) ((-181 . -426) 17373) ((-181 . -1013) 17351) ((-181 . -453) 17284) ((-181 . -259) 17222) ((-181 . -553) 17157) ((-181 . -72) 17111) ((-181 . -1128) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -344) T) ((-179 . -120) T) ((-179 . -556) 17019) ((-179 . -591) 16984) ((-179 . -589) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1128) T) ((-179 . -553) 16916) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1060) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 16846) ((-179 . -311) T) ((-179 . -1133) T) ((-179 . -833) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -655) 16811) ((-179 . -583) 16776) ((-179 . -38) 16741) ((-179 . -389) T) ((-179 . -257) T) ((-179 . -82) 16690) ((-179 . -964) 16655) ((-179 . -969) 16620) ((-179 . -245) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 16602) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 16562) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1114) T) ((-179 . -1117) T) ((-179 . -430) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 16526) ((-177 . -556) 16488) ((-177 . -591) 16455) ((-177 . -589) 16407) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1060) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -553) 16389) ((-177 . -1128) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16366) ((-176 . -214) 16350) ((-176 . -1034) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1128) T) ((-176 . -72) 16272) ((-176 . -553) 16207) ((-176 . -259) 16145) ((-176 . -453) 16078) ((-176 . -1013) 16056) ((-176 . -426) 16040) ((-176 . -909) 16024) ((-172 . -995) T) ((-172 . -427) 16005) ((-172 . -553) 15971) ((-172 . -556) 15952) ((-172 . -1013) T) ((-172 . -1128) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 15934) ((-171 . -1065) T) ((-171 . -556) 15884) ((-171 . -951) 15844) ((-171 . -554) 15774) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 15756) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 15738) ((-171 . -340) 15720) ((-171 . -581) 15702) ((-171 . -326) 15684) ((-171 . -241) NIL) ((-171 . -259) NIL) ((-171 . -453) NIL) ((-171 . -287) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -964) 15543) ((-171 . -969) 15493) ((-171 . -245) T) ((-171 . -655) 15443) ((-171 . -583) 15393) ((-171 . -591) 15343) ((-171 . -589) 15293) ((-171 . -38) 15243) ((-171 . -257) T) ((-171 . -389) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -833) T) ((-171 . -1133) T) ((-171 . -311) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1128) T) ((-171 . -553) 15136) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1060) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1013) T) ((-168 . -553) 15118) ((-168 . -1128) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -317) T) ((-167 . -1013) T) ((-167 . -553) 15100) ((-167 . -1128) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15077) ((-166 . -1013) T) ((-166 . -553) 15059) ((-166 . -1128) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -553) 15041) ((-161 . -1128) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -553) 15023) ((-158 . -1128) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -553) 15005) ((-157 . -1128) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 14987) ((-154 . -995) T) ((-154 . -427) 14968) ((-154 . -553) 14934) ((-154 . -556) 14915) ((-154 . -1013) T) ((-154 . -1128) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 14897) ((-148 . -38) 14829) ((-148 . -556) 14746) ((-148 . -591) 14678) ((-148 . -589) 14595) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1060) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14494) ((-148 . -964) 14426) ((-148 . -969) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -553) 14340) ((-148 . -1128) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14272) ((-148 . -655) 14204) ((-148 . -311) T) ((-148 . -1133) T) ((-148 . -833) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -389) T) ((-148 . -257) T) ((-148 . -245) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -553) 14186) ((-145 . -1128) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -430) 14082) ((-142 . -1117) 14060) ((-142 . -1114) 14038) ((-142 . -916) 13990) ((-142 . -822) 13943) ((-142 . -554) 13711) ((-142 . -795) 13695) ((-142 . -317) 13649) ((-142 . -298) 13628) ((-142 . -1065) 13607) ((-142 . -342) 13586) ((-142 . -350) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -964) 13196) ((-142 . -969) 13109) ((-142 . -583) 12943) ((-142 . -655) 12777) ((-142 . -319) 12748) ((-142 . -662) 12719) ((-142 . -951) 12617) ((-142 . -556) 12402) ((-142 . -352) 12386) ((-142 . -797) 12311) ((-142 . -340) 12295) ((-142 . -581) 12243) ((-142 . -591) 12120) ((-142 . -589) 12018) ((-142 . -326) 12002) ((-142 . -241) 11960) ((-142 . -259) 11925) ((-142 . -453) 11837) ((-142 . -287) 11821) ((-142 . -201) 11775) ((-142 . -1133) 11683) ((-142 . -311) 11637) ((-142 . -833) 11571) ((-142 . -495) 11485) ((-142 . -245) 11399) ((-142 . -389) 11333) ((-142 . -257) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -807) 10991) ((-142 . -812) 10917) ((-142 . -810) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1060) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -553) 10821) ((-142 . -1128) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -995) T) ((-135 . -427) 10756) ((-135 . -553) 10722) ((-135 . -556) 10703) ((-135 . -1013) T) ((-135 . -1128) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -553) 10685) ((-134 . -1128) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1128) T) ((-130 . -553) 10667) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -427) 10648) ((-129 . -553) 10614) ((-129 . -556) 10595) ((-129 . -1013) T) ((-129 . -1128) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -427) 10576) ((-127 . -553) 10542) ((-127 . -556) 10523) ((-127 . -1013) T) ((-127 . -1128) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1060) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -589) 10482) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -553) 10464) ((-125 . -1128) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10438) ((-125 . -556) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -964) 10354) ((-125 . -969) 10338) ((-125 . -583) 10322) ((-125 . -655) 10306) ((-125 . -1186) 10290) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1013) T) ((-117 . -553) 10272) ((-117 . -1128) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -317) T) ((-114 . -1013) T) ((-114 . -553) 10254) ((-114 . -1128) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10213) ((-114 . -366) 10195) ((-114 . -1011) 10177) ((-114 . -317) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -426) 10123) ((-114 . -453) NIL) ((-114 . -259) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -553) 10069) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -553) 10036) ((-112 . -1128) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10018) ((-111 . -995) T) ((-111 . -427) 9999) ((-111 . -553) 9965) ((-111 . -556) 9946) ((-111 . -1013) T) ((-111 . -1128) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -427) 9927) ((-110 . -553) 9893) ((-110 . -556) 9874) ((-110 . -1013) T) ((-110 . -1128) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -402) 9851) ((-108 . -556) 9747) ((-108 . -951) 9731) ((-108 . -1013) T) ((-108 . -553) 9713) ((-108 . -1128) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -407) 9668) ((-108 . -241) 9645) ((-107 . -757) T) ((-107 . -553) 9627) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1128) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1025) T) ((-107 . -951) 9609) ((-107 . -556) 9591) ((-106 . -995) T) ((-106 . -427) 9572) ((-106 . -553) 9538) ((-106 . -556) 9519) ((-106 . -1013) T) ((-106 . -1128) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -553) 9501) ((-103 . -1128) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -594) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -539) 9365) ((-102 . -554) NIL) ((-102 . -426) 9347) ((-102 . -1013) T) ((-102 . -453) NIL) ((-102 . -259) NIL) ((-102 . -553) 9291) ((-102 . -72) T) ((-102 . -1128) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -321) 9255) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1013) T) ((-101 . -553) 9237) ((-101 . -1128) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -317) T) ((-101 . -605) T) ((-100 . -98) 9221) ((-100 . -924) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1128) T) ((-100 . -72) 9159) ((-100 . -553) 9094) ((-100 . -259) 9032) ((-100 . -453) 8965) ((-100 . -1013) 8943) ((-100 . -426) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -924) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1128) T) ((-99 . -72) 8833) ((-99 . -553) 8768) ((-99 . -259) 8706) ((-99 . -453) 8639) ((-99 . -1013) 8617) ((-99 . -426) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -924) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1128) T) ((-94 . -72) 8507) ((-94 . -553) 8442) ((-94 . -259) 8380) ((-94 . -453) 8313) ((-94 . -1013) 8291) ((-94 . -426) 8275) ((-94 . -92) 8259) ((-90 . -905) 8237) ((-90 . -1065) NIL) ((-90 . -951) 8215) ((-90 . -556) 8146) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8124) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -340) 8102) ((-90 . -581) 8080) ((-90 . -591) 8026) ((-90 . -326) 8004) ((-90 . -241) 7938) ((-90 . -259) 7885) ((-90 . -453) 7755) ((-90 . -287) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -964) 7598) ((-90 . -969) 7544) ((-90 . -245) T) ((-90 . -655) 7490) ((-90 . -583) 7436) ((-90 . -589) 7367) ((-90 . -38) 7313) ((-90 . -257) T) ((-90 . -389) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -833) T) ((-90 . -1133) T) ((-90 . -311) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1128) T) ((-90 . -553) 7251) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1060) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -780) 7235) ((-89 . -833) T) ((-89 . -495) T) ((-89 . -245) T) ((-89 . -146) T) ((-89 . -556) 7207) ((-89 . -655) 7194) ((-89 . -583) 7181) ((-89 . -969) 7168) ((-89 . -964) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -389) T) ((-89 . -257) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1060) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -589) 7099) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -553) 7081) ((-89 . -1128) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7068) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7050) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1128) T) ((-86 . -760) T) ((-86 . -748) 7031) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1013) T) ((-85 . -553) 7013) ((-85 . -1128) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -317) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 6995) ((-81 . -96) T) ((-81 . -321) 6978) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -553) 6943) ((-81 . -259) NIL) ((-81 . -453) NIL) ((-81 . -1013) T) ((-81 . -426) 6926) ((-81 . -554) 6908) ((-81 . -241) 6859) ((-81 . -539) 6835) ((-81 . -243) 6811) ((-81 . -594) 6794) ((-81 . -19) 6777) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1128) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1128) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1013) T) ((-79 . -553) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6699) ((-77 . -905) 6681) ((-77 . -1065) T) ((-77 . -556) 6631) ((-77 . -951) 6591) ((-77 . -554) 6521) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6503) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6485) ((-77 . -340) 6467) ((-77 . -581) 6449) ((-77 . -326) 6431) ((-77 . -241) NIL) ((-77 . -259) NIL) ((-77 . -453) NIL) ((-77 . -287) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -964) 6290) ((-77 . -969) 6240) ((-77 . -245) T) ((-77 . -655) 6190) ((-77 . -583) 6140) ((-77 . -591) 6090) ((-77 . -589) 6040) ((-77 . -38) 5990) ((-77 . -257) T) ((-77 . -389) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -833) T) ((-77 . -1133) T) ((-77 . -311) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1128) T) ((-77 . -553) 5884) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1060) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 5868) ((-73 . -924) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1128) T) ((-73 . -72) 5806) ((-73 . -553) 5741) ((-73 . -259) 5679) ((-73 . -453) 5612) ((-73 . -1013) 5590) ((-73 . -426) 5574) ((-73 . -92) 5558) ((-69 . -410) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1128) T) ((-69 . -553) 5540) ((-69 . -1013) T) ((-69 . -664) T) ((-69 . -241) 5519) ((-67 . -995) T) ((-67 . -427) 5500) ((-67 . -553) 5466) ((-67 . -556) 5447) ((-67 . -1013) T) ((-67 . -1128) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5431) ((-62 . -426) 5415) ((-62 . -1013) 5393) ((-62 . -453) 5326) ((-62 . -259) 5264) ((-62 . -553) 5199) ((-62 . -72) 5153) ((-62 . -1128) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1128) T) ((-60 . -72) 5053) ((-60 . -553) 4988) ((-60 . -259) 4926) ((-60 . -453) 4859) ((-60 . -1013) 4837) ((-60 . -426) 4821) ((-58 . -19) 4805) ((-58 . -594) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -539) 4695) ((-58 . -554) 4656) ((-58 . -426) 4640) ((-58 . -1013) 4593) ((-58 . -453) 4526) ((-58 . -259) 4464) ((-58 . -553) 4379) ((-58 . -72) 4313) ((-58 . -1128) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -757) 4276) ((-58 . -760) 4255) ((-58 . -321) 4239) ((-55 . -1013) T) ((-55 . -553) 4221) ((-55 . -1128) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4203) ((-55 . -556) 4185) ((-51 . -1013) T) ((-51 . -553) 4167) ((-51 . -1128) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4151) ((-50 . -556) 4120) ((-50 . -591) 4094) ((-50 . -589) 4053) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1060) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -553) 4035) ((-50 . -1128) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4019) ((-49 . -1013) T) ((-49 . -553) 4001) ((-49 . -1128) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -253) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1128) T) ((-48 . -553) 3983) ((-48 . -1013) T) ((-48 . -556) 3884) ((-48 . -951) 3827) ((-48 . -453) 3793) ((-48 . -259) 3780) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -964) 3694) ((-48 . -969) 3659) ((-48 . -245) T) ((-48 . -655) 3624) ((-48 . -583) 3589) ((-48 . -591) 3539) ((-48 . -589) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1060) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3454) ((-48 . -257) T) ((-48 . -389) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -833) T) ((-48 . -1133) T) ((-48 . -311) T) ((-48 . -581) 3414) ((-48 . -934) T) ((-48 . -554) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -539) 3248) ((-45 . -259) 3046) ((-45 . -453) 2798) ((-45 . -426) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -550) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1106) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1128) T) ((-45 . -72) T) ((-45 . -553) 2234) ((-45 . -1013) T) ((-45 . -554) NIL) ((-45 . -594) 2182) ((-45 . -321) 2130) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -1063) 2078) ((-45 . -924) 2026) ((-45 . -1167) 1974) ((-45 . -609) 1922) ((-44 . -358) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -315) 1672) ((-44 . -1128) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -290) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1060) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1128) T) ((-40 . -553) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -311) T) ((-40 . -1133) T) ((-40 . -833) T) ((-40 . -495) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -389) T) ((-40 . -257) T) ((-40 . -245) T) ((-40 . -201) T) ((-40 . -317) NIL) ((-40 . -298) NIL) ((-40 . -1065) NIL) ((-40 . -118) 539) ((-40 . -342) NIL) ((-40 . -350) 511) ((-40 . -120) 483) ((-40 . -319) 455) ((-40 . -326) 432) ((-40 . -581) 366) ((-40 . -352) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -995) T) ((-31 . -427) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1013) T) ((-31 . -1128) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1128) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1128) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1128) T) ((-1 . -1013) T) ((-1 . -553) 30) ((-1 . -1128) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-485)) . T)) +(((-1210 . -146) T) ((-1210 . -557) 199592) ((-1210 . -972) T) ((-1210 . -1027) T) ((-1210 . -1062) T) ((-1210 . -665) T) ((-1210 . -963) T) ((-1210 . -592) 199579) ((-1210 . -590) 199551) ((-1210 . -104) T) ((-1210 . -25) T) ((-1210 . -72) T) ((-1210 . -13) T) ((-1210 . -1130) T) ((-1210 . -554) 199533) ((-1210 . -1015) T) ((-1210 . -23) T) ((-1210 . -21) T) ((-1210 . -970) 199520) ((-1210 . -965) 199507) ((-1210 . -82) 199492) ((-1210 . -318) T) ((-1210 . -555) 199474) ((-1210 . -1067) T) ((-1206 . -1015) T) ((-1206 . -554) 199441) ((-1206 . -1130) T) ((-1206 . -13) T) ((-1206 . -72) T) ((-1206 . -428) 199423) ((-1206 . -557) 199405) ((-1205 . -1203) 199384) ((-1205 . -952) 199361) ((-1205 . -557) 199310) ((-1205 . -963) T) ((-1205 . -665) T) ((-1205 . -1062) T) ((-1205 . -1027) T) ((-1205 . -972) T) ((-1205 . -21) T) ((-1205 . -590) 199269) ((-1205 . -23) T) ((-1205 . -1015) T) ((-1205 . -554) 199251) ((-1205 . -1130) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -592) 199225) ((-1205 . -1195) 199209) ((-1205 . -656) 199179) ((-1205 . -584) 199149) ((-1205 . -970) 199133) ((-1205 . -965) 199117) ((-1205 . -82) 199096) ((-1205 . -38) 199066) ((-1205 . -1200) 199045) ((-1204 . -963) T) ((-1204 . -665) T) ((-1204 . -1062) T) ((-1204 . -1027) T) ((-1204 . -972) T) ((-1204 . -21) T) ((-1204 . -590) 199004) ((-1204 . -23) T) ((-1204 . -1015) T) ((-1204 . -554) 198986) ((-1204 . -1130) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -592) 198960) ((-1204 . -557) 198916) ((-1204 . -1195) 198900) ((-1204 . -656) 198870) ((-1204 . -584) 198840) ((-1204 . -970) 198824) ((-1204 . -965) 198808) ((-1204 . -82) 198787) ((-1204 . -38) 198757) ((-1204 . -333) 198736) ((-1204 . -952) 198720) ((-1202 . -1203) 198696) ((-1202 . -952) 198670) ((-1202 . -557) 198616) ((-1202 . -963) T) ((-1202 . -665) T) ((-1202 . -1062) T) ((-1202 . -1027) T) ((-1202 . -972) T) ((-1202 . -21) T) ((-1202 . -590) 198575) ((-1202 . -23) T) ((-1202 . -1015) T) ((-1202 . -554) 198557) ((-1202 . -1130) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -592) 198531) ((-1202 . -1195) 198515) ((-1202 . -656) 198485) ((-1202 . -584) 198455) ((-1202 . -970) 198439) ((-1202 . -965) 198423) ((-1202 . -82) 198402) ((-1202 . -38) 198372) ((-1202 . -1200) 198348) ((-1201 . -1203) 198327) ((-1201 . -952) 198284) ((-1201 . -557) 198213) ((-1201 . -963) T) ((-1201 . -665) T) ((-1201 . -1062) T) ((-1201 . -1027) T) ((-1201 . -972) T) ((-1201 . -21) T) ((-1201 . -590) 198172) ((-1201 . -23) T) ((-1201 . -1015) T) ((-1201 . -554) 198154) ((-1201 . -1130) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -592) 198128) ((-1201 . -1195) 198112) ((-1201 . -656) 198082) ((-1201 . -584) 198052) ((-1201 . -970) 198036) ((-1201 . -965) 198020) ((-1201 . -82) 197999) ((-1201 . -38) 197969) ((-1201 . -1200) 197948) ((-1201 . -333) 197920) ((-1196 . -333) 197892) ((-1196 . -557) 197841) ((-1196 . -952) 197818) ((-1196 . -584) 197788) ((-1196 . -656) 197758) ((-1196 . -592) 197732) ((-1196 . -590) 197691) ((-1196 . -104) T) ((-1196 . -25) T) ((-1196 . -72) T) ((-1196 . -13) T) ((-1196 . -1130) T) ((-1196 . -554) 197673) ((-1196 . -1015) T) ((-1196 . -23) T) ((-1196 . -21) T) ((-1196 . -970) 197657) ((-1196 . -965) 197641) ((-1196 . -82) 197620) ((-1196 . -1203) 197599) ((-1196 . -963) T) ((-1196 . -665) T) ((-1196 . -1062) T) ((-1196 . -1027) T) ((-1196 . -972) T) ((-1196 . -1195) 197583) ((-1196 . -38) 197553) ((-1196 . -1200) 197532) ((-1194 . -1125) 197501) ((-1194 . -554) 197463) ((-1194 . -124) 197447) ((-1194 . -34) T) ((-1194 . -13) T) ((-1194 . -1130) T) ((-1194 . -72) T) ((-1194 . -260) 197385) ((-1194 . -454) 197318) ((-1194 . -1015) T) ((-1194 . -427) 197302) ((-1194 . -555) 197263) ((-1194 . -891) 197232) ((-1193 . -963) T) ((-1193 . -665) T) ((-1193 . -1062) T) ((-1193 . -1027) T) ((-1193 . -972) T) ((-1193 . -21) T) ((-1193 . -590) 197177) ((-1193 . -23) T) ((-1193 . -1015) T) ((-1193 . -554) 197146) ((-1193 . -1130) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -592) 197106) ((-1193 . -557) 197048) ((-1193 . -428) 197032) ((-1193 . -38) 197002) ((-1193 . -82) 196967) ((-1193 . -965) 196937) ((-1193 . -970) 196907) ((-1193 . -584) 196877) ((-1193 . -656) 196847) ((-1192 . -997) T) ((-1192 . -428) 196828) ((-1192 . -554) 196794) ((-1192 . -557) 196775) ((-1192 . -1015) T) ((-1192 . -1130) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1191 . -997) T) ((-1191 . -428) 196756) ((-1191 . -554) 196722) ((-1191 . -557) 196703) ((-1191 . -1015) T) ((-1191 . -1130) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1186 . -554) 196685) ((-1184 . -1015) T) ((-1184 . -554) 196667) ((-1184 . -1130) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1183 . -1015) T) ((-1183 . -554) 196649) ((-1183 . -1130) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1180 . -1179) 196633) ((-1180 . -322) 196617) ((-1180 . -761) 196596) ((-1180 . -758) 196575) ((-1180 . -124) 196559) ((-1180 . -34) T) ((-1180 . -13) T) ((-1180 . -1130) T) ((-1180 . -72) 196493) ((-1180 . -554) 196408) ((-1180 . -260) 196346) ((-1180 . -454) 196279) ((-1180 . -1015) 196232) ((-1180 . -427) 196216) ((-1180 . -555) 196177) ((-1180 . -241) 196129) ((-1180 . -540) 196106) ((-1180 . -243) 196083) ((-1180 . -595) 196067) ((-1180 . -19) 196051) ((-1177 . -1015) T) ((-1177 . -554) 196017) ((-1177 . -1130) T) ((-1177 . -13) T) ((-1177 . -72) T) ((-1170 . -1173) 196001) ((-1170 . -190) 195960) ((-1170 . -557) 195842) ((-1170 . -592) 195767) ((-1170 . -590) 195677) ((-1170 . -104) T) ((-1170 . -25) T) ((-1170 . -72) T) ((-1170 . -554) 195659) ((-1170 . -1015) T) ((-1170 . -23) T) ((-1170 . -21) T) ((-1170 . -972) T) ((-1170 . -1027) T) ((-1170 . -1062) T) ((-1170 . -665) T) ((-1170 . -963) T) ((-1170 . -186) 195612) ((-1170 . -13) T) ((-1170 . -1130) T) ((-1170 . -189) 195571) ((-1170 . -241) 195536) ((-1170 . -811) 195449) ((-1170 . -808) 195337) ((-1170 . -813) 195250) ((-1170 . -888) 195220) ((-1170 . -38) 195117) ((-1170 . -82) 194982) ((-1170 . -965) 194868) ((-1170 . -970) 194754) ((-1170 . -584) 194651) ((-1170 . -656) 194548) ((-1170 . -118) 194527) ((-1170 . -120) 194506) ((-1170 . -146) 194460) ((-1170 . -496) 194439) ((-1170 . -246) 194418) ((-1170 . -47) 194395) ((-1170 . -1159) 194372) ((-1170 . -35) 194338) ((-1170 . -66) 194304) ((-1170 . -239) 194270) ((-1170 . -431) 194236) ((-1170 . -1119) 194202) ((-1170 . -1116) 194168) ((-1170 . -917) 194134) ((-1167 . -277) 194078) ((-1167 . -952) 194044) ((-1167 . -353) 194010) ((-1167 . -38) 193867) ((-1167 . -557) 193741) ((-1167 . -592) 193630) ((-1167 . -590) 193504) ((-1167 . -972) T) ((-1167 . -1027) T) ((-1167 . -1062) T) ((-1167 . -665) T) ((-1167 . -963) T) ((-1167 . -82) 193354) ((-1167 . -965) 193243) ((-1167 . -970) 193132) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1015) T) ((-1167 . -554) 193114) ((-1167 . -1130) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -584) 192971) ((-1167 . -656) 192828) ((-1167 . -118) 192789) ((-1167 . -120) 192750) ((-1167 . -146) T) ((-1167 . -496) T) ((-1167 . -246) T) ((-1167 . -47) 192694) ((-1166 . -1165) 192673) ((-1166 . -312) 192652) ((-1166 . -1135) 192631) ((-1166 . -834) 192610) ((-1166 . -496) 192564) ((-1166 . -146) 192498) ((-1166 . -557) 192317) ((-1166 . -656) 192164) ((-1166 . -584) 192011) ((-1166 . -38) 191858) ((-1166 . -390) 191837) ((-1166 . -258) 191816) ((-1166 . -592) 191716) ((-1166 . -590) 191601) ((-1166 . -972) T) ((-1166 . -1027) T) ((-1166 . -1062) T) ((-1166 . -665) T) ((-1166 . -963) T) ((-1166 . -82) 191421) ((-1166 . -965) 191262) ((-1166 . -970) 191103) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1015) T) ((-1166 . -554) 191085) ((-1166 . -1130) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -246) 191039) ((-1166 . -201) 191018) ((-1166 . -917) 190984) ((-1166 . -1116) 190950) ((-1166 . -1119) 190916) ((-1166 . -431) 190882) ((-1166 . -239) 190848) ((-1166 . -66) 190814) ((-1166 . -35) 190780) ((-1166 . -1159) 190750) ((-1166 . -47) 190720) ((-1166 . -120) 190699) ((-1166 . -118) 190678) ((-1166 . -888) 190641) ((-1166 . -813) 190547) ((-1166 . -808) 190451) ((-1166 . -811) 190357) ((-1166 . -241) 190315) ((-1166 . -189) 190267) ((-1166 . -186) 190213) ((-1166 . -190) 190165) ((-1166 . -1163) 190149) ((-1166 . -952) 190133) ((-1161 . -1165) 190094) ((-1161 . -312) 190073) ((-1161 . -1135) 190052) ((-1161 . -834) 190031) ((-1161 . -496) 189985) ((-1161 . -146) 189919) ((-1161 . -557) 189668) ((-1161 . -656) 189515) ((-1161 . -584) 189362) ((-1161 . -38) 189209) ((-1161 . -390) 189188) ((-1161 . -258) 189167) ((-1161 . -592) 189067) ((-1161 . -590) 188952) ((-1161 . -972) T) ((-1161 . -1027) T) ((-1161 . -1062) T) ((-1161 . -665) T) ((-1161 . -963) T) ((-1161 . -82) 188772) ((-1161 . -965) 188613) ((-1161 . -970) 188454) ((-1161 . -21) T) ((-1161 . -23) T) ((-1161 . -1015) T) ((-1161 . -554) 188436) ((-1161 . -1130) T) ((-1161 . -13) T) ((-1161 . -72) T) ((-1161 . -25) T) ((-1161 . -104) T) ((-1161 . -246) 188390) ((-1161 . -201) 188369) ((-1161 . -917) 188335) ((-1161 . -1116) 188301) ((-1161 . -1119) 188267) ((-1161 . -431) 188233) ((-1161 . -239) 188199) ((-1161 . -66) 188165) ((-1161 . -35) 188131) ((-1161 . -1159) 188101) ((-1161 . -47) 188071) ((-1161 . -120) 188050) ((-1161 . -118) 188029) ((-1161 . -888) 187992) ((-1161 . -813) 187898) ((-1161 . -808) 187779) ((-1161 . -811) 187685) ((-1161 . -241) 187643) ((-1161 . -189) 187595) ((-1161 . -186) 187541) ((-1161 . -190) 187493) ((-1161 . -1163) 187477) ((-1161 . -952) 187412) ((-1149 . -1156) 187396) ((-1149 . -1067) 187374) ((-1149 . -555) NIL) ((-1149 . -260) 187361) ((-1149 . -454) 187309) ((-1149 . -277) 187286) ((-1149 . -952) 187169) ((-1149 . -353) 187153) ((-1149 . -38) 186985) ((-1149 . -82) 186790) ((-1149 . -965) 186616) ((-1149 . -970) 186442) ((-1149 . -590) 186352) ((-1149 . -592) 186241) ((-1149 . -584) 186073) ((-1149 . -656) 185905) ((-1149 . -557) 185661) ((-1149 . -118) 185640) ((-1149 . -120) 185619) ((-1149 . -47) 185596) ((-1149 . -327) 185580) ((-1149 . -582) 185528) ((-1149 . -811) 185472) ((-1149 . -808) 185379) ((-1149 . -813) 185290) ((-1149 . -798) NIL) ((-1149 . -823) 185269) ((-1149 . -1135) 185248) ((-1149 . -863) 185218) ((-1149 . -834) 185197) ((-1149 . -496) 185111) ((-1149 . -246) 185025) ((-1149 . -146) 184919) ((-1149 . -390) 184853) ((-1149 . -258) 184832) ((-1149 . -241) 184759) ((-1149 . -190) T) ((-1149 . -104) T) ((-1149 . -25) T) ((-1149 . -72) T) ((-1149 . -554) 184741) ((-1149 . -1015) T) ((-1149 . -23) T) ((-1149 . -21) T) ((-1149 . -972) T) ((-1149 . -1027) T) ((-1149 . -1062) T) ((-1149 . -665) T) ((-1149 . -963) T) ((-1149 . -186) 184728) ((-1149 . -13) T) ((-1149 . -1130) T) ((-1149 . -189) T) ((-1149 . -225) 184712) ((-1149 . -184) 184696) ((-1147 . -1008) 184680) ((-1147 . -559) 184664) ((-1147 . -1015) 184642) ((-1147 . -554) 184609) ((-1147 . -1130) 184587) ((-1147 . -13) 184565) ((-1147 . -72) 184543) ((-1147 . -1009) 184500) ((-1145 . -1144) 184479) ((-1145 . -917) 184445) ((-1145 . -1116) 184411) ((-1145 . -1119) 184377) ((-1145 . -431) 184343) ((-1145 . -239) 184309) ((-1145 . -66) 184275) ((-1145 . -35) 184241) ((-1145 . -1159) 184218) ((-1145 . -47) 184195) ((-1145 . -557) 183950) ((-1145 . -656) 183770) ((-1145 . -584) 183590) ((-1145 . -592) 183401) ((-1145 . -590) 183259) ((-1145 . -970) 183073) ((-1145 . -965) 182887) ((-1145 . -82) 182675) ((-1145 . -38) 182495) ((-1145 . -888) 182465) ((-1145 . -241) 182365) ((-1145 . -1142) 182349) ((-1145 . -972) T) ((-1145 . -1027) T) ((-1145 . -1062) T) ((-1145 . -665) T) ((-1145 . -963) T) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1015) T) ((-1145 . -554) 182331) ((-1145 . -1130) T) ((-1145 . -13) T) ((-1145 . -72) T) ((-1145 . -25) T) ((-1145 . -104) T) ((-1145 . -118) 182259) ((-1145 . -120) 182187) ((-1145 . -555) 181860) ((-1145 . -184) 181830) ((-1145 . -811) 181684) ((-1145 . -813) 181484) ((-1145 . -808) 181282) ((-1145 . -225) 181252) ((-1145 . -189) 181114) ((-1145 . -186) 180970) ((-1145 . -190) 180878) ((-1145 . -312) 180857) ((-1145 . -1135) 180836) ((-1145 . -834) 180815) ((-1145 . -496) 180769) ((-1145 . -146) 180703) ((-1145 . -390) 180682) ((-1145 . -258) 180661) ((-1145 . -246) 180615) ((-1145 . -201) 180594) ((-1145 . -288) 180564) ((-1145 . -454) 180424) ((-1145 . -260) 180363) ((-1145 . -327) 180333) ((-1145 . -582) 180241) ((-1145 . -341) 180211) ((-1145 . -798) 180084) ((-1145 . -742) 180037) ((-1145 . -716) 179990) ((-1145 . -718) 179943) ((-1145 . -758) 179845) ((-1145 . -761) 179747) ((-1145 . -720) 179700) ((-1145 . -723) 179653) ((-1145 . -757) 179606) ((-1145 . -796) 179576) ((-1145 . -823) 179529) ((-1145 . -935) 179482) ((-1145 . -952) 179271) ((-1145 . -1067) 179223) ((-1145 . -906) 179193) ((-1140 . -1144) 179154) ((-1140 . -917) 179120) ((-1140 . -1116) 179086) ((-1140 . -1119) 179052) ((-1140 . -431) 179018) ((-1140 . -239) 178984) ((-1140 . -66) 178950) ((-1140 . -35) 178916) ((-1140 . -1159) 178893) ((-1140 . -47) 178870) ((-1140 . -557) 178671) ((-1140 . -656) 178473) ((-1140 . -584) 178275) ((-1140 . -592) 178130) ((-1140 . -590) 177970) ((-1140 . -970) 177766) ((-1140 . -965) 177562) ((-1140 . -82) 177314) ((-1140 . -38) 177116) ((-1140 . -888) 177086) ((-1140 . -241) 176914) ((-1140 . -1142) 176898) ((-1140 . -972) T) ((-1140 . -1027) T) ((-1140 . -1062) T) ((-1140 . -665) T) ((-1140 . -963) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1015) T) ((-1140 . -554) 176880) ((-1140 . -1130) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -25) T) ((-1140 . -104) T) ((-1140 . -118) 176790) ((-1140 . -120) 176700) ((-1140 . -555) NIL) ((-1140 . -184) 176652) ((-1140 . -811) 176488) ((-1140 . -813) 176252) ((-1140 . -808) 175991) ((-1140 . -225) 175943) ((-1140 . -189) 175769) ((-1140 . -186) 175589) ((-1140 . -190) 175479) ((-1140 . -312) 175458) ((-1140 . -1135) 175437) ((-1140 . -834) 175416) ((-1140 . -496) 175370) ((-1140 . -146) 175304) ((-1140 . -390) 175283) ((-1140 . -258) 175262) ((-1140 . -246) 175216) ((-1140 . -201) 175195) ((-1140 . -288) 175147) ((-1140 . -454) 174881) ((-1140 . -260) 174766) ((-1140 . -327) 174718) ((-1140 . -582) 174670) ((-1140 . -341) 174622) ((-1140 . -798) NIL) ((-1140 . -742) NIL) ((-1140 . -716) NIL) ((-1140 . -718) NIL) ((-1140 . -758) NIL) ((-1140 . -761) NIL) ((-1140 . -720) NIL) ((-1140 . -723) NIL) ((-1140 . -757) NIL) ((-1140 . -796) 174574) ((-1140 . -823) NIL) ((-1140 . -935) NIL) ((-1140 . -952) 174540) ((-1140 . -1067) NIL) ((-1140 . -906) 174492) ((-1139 . -754) T) ((-1139 . -761) T) ((-1139 . -758) T) ((-1139 . -1015) T) ((-1139 . -554) 174474) ((-1139 . -1130) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -318) T) ((-1139 . -606) T) ((-1138 . -754) T) ((-1138 . -761) T) ((-1138 . -758) T) ((-1138 . -1015) T) ((-1138 . -554) 174456) ((-1138 . -1130) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -318) T) ((-1138 . -606) T) ((-1137 . -754) T) ((-1137 . -761) T) ((-1137 . -758) T) ((-1137 . -1015) T) ((-1137 . -554) 174438) ((-1137 . -1130) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -318) T) ((-1137 . -606) T) ((-1136 . -754) T) ((-1136 . -761) T) ((-1136 . -758) T) ((-1136 . -1015) T) ((-1136 . -554) 174420) ((-1136 . -1130) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -318) T) ((-1136 . -606) T) ((-1131 . -997) T) ((-1131 . -428) 174401) ((-1131 . -554) 174367) ((-1131 . -557) 174348) ((-1131 . -1015) T) ((-1131 . -1130) T) ((-1131 . -13) T) ((-1131 . -72) T) ((-1131 . -64) T) ((-1128 . -428) 174325) ((-1128 . -554) 174266) ((-1128 . -557) 174243) ((-1128 . -1015) 174221) ((-1128 . -1130) 174199) ((-1128 . -13) 174177) ((-1128 . -72) 174155) ((-1123 . -681) 174131) ((-1123 . -35) 174097) ((-1123 . -66) 174063) ((-1123 . -239) 174029) ((-1123 . -431) 173995) ((-1123 . -1119) 173961) ((-1123 . -1116) 173927) ((-1123 . -917) 173893) ((-1123 . -47) 173862) ((-1123 . -38) 173759) ((-1123 . -584) 173656) ((-1123 . -656) 173553) ((-1123 . -557) 173435) ((-1123 . -246) 173414) ((-1123 . -496) 173393) ((-1123 . -82) 173258) ((-1123 . -965) 173144) ((-1123 . -970) 173030) ((-1123 . -146) 172984) ((-1123 . -120) 172963) ((-1123 . -118) 172942) ((-1123 . -592) 172867) ((-1123 . -590) 172777) ((-1123 . -888) 172738) ((-1123 . -813) 172719) ((-1123 . -1130) T) ((-1123 . -13) T) ((-1123 . -808) 172698) ((-1123 . -963) T) ((-1123 . -665) T) ((-1123 . -1062) T) ((-1123 . -1027) T) ((-1123 . -972) T) ((-1123 . -21) T) ((-1123 . -23) T) ((-1123 . -1015) T) ((-1123 . -554) 172680) ((-1123 . -72) T) ((-1123 . -25) T) ((-1123 . -104) T) ((-1123 . -811) 172661) ((-1123 . -454) 172628) ((-1123 . -260) 172615) ((-1117 . -925) 172599) ((-1117 . -34) T) ((-1117 . -13) T) ((-1117 . -1130) T) ((-1117 . -72) 172553) ((-1117 . -554) 172488) ((-1117 . -260) 172426) ((-1117 . -454) 172359) ((-1117 . -1015) 172337) ((-1117 . -427) 172321) ((-1112 . -314) 172295) ((-1112 . -72) T) ((-1112 . -13) T) ((-1112 . -1130) T) ((-1112 . -554) 172277) ((-1112 . -1015) T) ((-1110 . -1015) T) ((-1110 . -554) 172259) ((-1110 . -1130) T) ((-1110 . -13) T) ((-1110 . -72) T) ((-1110 . -557) 172241) ((-1105 . -749) 172225) ((-1105 . -72) T) ((-1105 . -13) T) ((-1105 . -1130) T) ((-1105 . -554) 172207) ((-1105 . -1015) T) ((-1103 . -1108) 172186) ((-1103 . -183) 172134) ((-1103 . -76) 172082) ((-1103 . -260) 171880) ((-1103 . -454) 171632) ((-1103 . -427) 171567) ((-1103 . -124) 171515) ((-1103 . -555) NIL) ((-1103 . -193) 171463) ((-1103 . -551) 171442) ((-1103 . -243) 171421) ((-1103 . -1130) T) ((-1103 . -13) T) ((-1103 . -241) 171400) ((-1103 . -1015) T) ((-1103 . -554) 171382) ((-1103 . -72) T) ((-1103 . -34) T) ((-1103 . -540) 171361) ((-1099 . -1015) T) ((-1099 . -554) 171343) ((-1099 . -1130) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1098 . -754) T) ((-1098 . -761) T) ((-1098 . -758) T) ((-1098 . -1015) T) ((-1098 . -554) 171325) ((-1098 . -1130) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -318) T) ((-1098 . -606) T) ((-1097 . -754) T) ((-1097 . -761) T) ((-1097 . -758) T) ((-1097 . -1015) T) ((-1097 . -554) 171307) ((-1097 . -1130) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -318) T) ((-1096 . -1176) T) ((-1096 . -1015) T) ((-1096 . -554) 171274) ((-1096 . -1130) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -952) 171210) ((-1096 . -557) 171146) ((-1095 . -554) 171128) ((-1094 . -554) 171110) ((-1093 . -277) 171087) ((-1093 . -952) 170985) ((-1093 . -353) 170969) ((-1093 . -38) 170866) ((-1093 . -557) 170723) ((-1093 . -592) 170648) ((-1093 . -590) 170558) ((-1093 . -972) T) ((-1093 . -1027) T) ((-1093 . -1062) T) ((-1093 . -665) T) ((-1093 . -963) T) ((-1093 . -82) 170423) ((-1093 . -965) 170309) ((-1093 . -970) 170195) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1015) T) ((-1093 . -554) 170177) ((-1093 . -1130) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -25) T) ((-1093 . -104) T) ((-1093 . -584) 170074) ((-1093 . -656) 169971) ((-1093 . -118) 169950) ((-1093 . -120) 169929) ((-1093 . -146) 169883) ((-1093 . -496) 169862) ((-1093 . -246) 169841) ((-1093 . -47) 169818) ((-1091 . -758) T) ((-1091 . -554) 169800) ((-1091 . -1015) T) ((-1091 . -72) T) ((-1091 . -13) T) ((-1091 . -1130) T) ((-1091 . -761) T) ((-1091 . -555) 169722) ((-1091 . -557) 169688) ((-1091 . -952) 169670) ((-1091 . -798) 169637) ((-1090 . -1173) 169621) ((-1090 . -190) 169580) ((-1090 . -557) 169462) ((-1090 . -592) 169387) ((-1090 . -590) 169297) ((-1090 . -104) T) ((-1090 . -25) T) ((-1090 . -72) T) ((-1090 . -554) 169279) ((-1090 . -1015) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -972) T) ((-1090 . -1027) T) ((-1090 . -1062) T) ((-1090 . -665) T) ((-1090 . -963) T) ((-1090 . -186) 169232) ((-1090 . -13) T) ((-1090 . -1130) T) ((-1090 . -189) 169191) ((-1090 . -241) 169156) ((-1090 . -811) 169069) ((-1090 . -808) 168957) ((-1090 . -813) 168870) ((-1090 . -888) 168840) ((-1090 . -38) 168737) ((-1090 . -82) 168602) ((-1090 . -965) 168488) ((-1090 . -970) 168374) ((-1090 . -584) 168271) ((-1090 . -656) 168168) ((-1090 . -118) 168147) ((-1090 . -120) 168126) ((-1090 . -146) 168080) ((-1090 . -496) 168059) ((-1090 . -246) 168038) ((-1090 . -47) 168015) ((-1090 . -1159) 167992) ((-1090 . -35) 167958) ((-1090 . -66) 167924) ((-1090 . -239) 167890) ((-1090 . -431) 167856) ((-1090 . -1119) 167822) ((-1090 . -1116) 167788) ((-1090 . -917) 167754) ((-1089 . -1165) 167715) ((-1089 . -312) 167694) ((-1089 . -1135) 167673) ((-1089 . -834) 167652) ((-1089 . -496) 167606) ((-1089 . -146) 167540) ((-1089 . -557) 167289) ((-1089 . -656) 167136) ((-1089 . -584) 166983) ((-1089 . -38) 166830) ((-1089 . -390) 166809) ((-1089 . -258) 166788) ((-1089 . -592) 166688) ((-1089 . -590) 166573) ((-1089 . -972) T) ((-1089 . -1027) T) ((-1089 . -1062) T) ((-1089 . -665) T) ((-1089 . -963) T) ((-1089 . -82) 166393) ((-1089 . -965) 166234) ((-1089 . -970) 166075) ((-1089 . -21) T) ((-1089 . -23) T) ((-1089 . -1015) T) ((-1089 . -554) 166057) ((-1089 . -1130) T) ((-1089 . -13) T) ((-1089 . -72) T) ((-1089 . -25) T) ((-1089 . -104) T) ((-1089 . -246) 166011) ((-1089 . -201) 165990) ((-1089 . -917) 165956) ((-1089 . -1116) 165922) ((-1089 . -1119) 165888) ((-1089 . -431) 165854) ((-1089 . -239) 165820) ((-1089 . -66) 165786) ((-1089 . -35) 165752) ((-1089 . -1159) 165722) ((-1089 . -47) 165692) ((-1089 . -120) 165671) ((-1089 . -118) 165650) ((-1089 . -888) 165613) ((-1089 . -813) 165519) ((-1089 . -808) 165400) ((-1089 . -811) 165306) ((-1089 . -241) 165264) ((-1089 . -189) 165216) ((-1089 . -186) 165162) ((-1089 . -190) 165114) ((-1089 . -1163) 165098) ((-1089 . -952) 165033) ((-1086 . -1156) 165017) ((-1086 . -1067) 164995) ((-1086 . -555) NIL) ((-1086 . -260) 164982) ((-1086 . -454) 164930) ((-1086 . -277) 164907) ((-1086 . -952) 164790) ((-1086 . -353) 164774) ((-1086 . -38) 164606) ((-1086 . -82) 164411) ((-1086 . -965) 164237) ((-1086 . -970) 164063) ((-1086 . -590) 163973) ((-1086 . -592) 163862) ((-1086 . -584) 163694) ((-1086 . -656) 163526) ((-1086 . -557) 163303) ((-1086 . -118) 163282) ((-1086 . -120) 163261) ((-1086 . -47) 163238) ((-1086 . -327) 163222) ((-1086 . -582) 163170) ((-1086 . -811) 163114) ((-1086 . -808) 163021) ((-1086 . -813) 162932) ((-1086 . -798) NIL) ((-1086 . -823) 162911) ((-1086 . -1135) 162890) ((-1086 . -863) 162860) ((-1086 . -834) 162839) ((-1086 . -496) 162753) ((-1086 . -246) 162667) ((-1086 . -146) 162561) ((-1086 . -390) 162495) ((-1086 . -258) 162474) ((-1086 . -241) 162401) ((-1086 . -190) T) ((-1086 . -104) T) ((-1086 . -25) T) ((-1086 . -72) T) ((-1086 . -554) 162383) ((-1086 . -1015) T) ((-1086 . -23) T) ((-1086 . -21) T) ((-1086 . -972) T) ((-1086 . -1027) T) ((-1086 . -1062) T) ((-1086 . -665) T) ((-1086 . -963) T) ((-1086 . -186) 162370) ((-1086 . -13) T) ((-1086 . -1130) T) ((-1086 . -189) T) ((-1086 . -225) 162354) ((-1086 . -184) 162338) ((-1083 . -1144) 162299) ((-1083 . -917) 162265) ((-1083 . -1116) 162231) ((-1083 . -1119) 162197) ((-1083 . -431) 162163) ((-1083 . -239) 162129) ((-1083 . -66) 162095) ((-1083 . -35) 162061) ((-1083 . -1159) 162038) ((-1083 . -47) 162015) ((-1083 . -557) 161816) ((-1083 . -656) 161618) ((-1083 . -584) 161420) ((-1083 . -592) 161275) ((-1083 . -590) 161115) ((-1083 . -970) 160911) ((-1083 . -965) 160707) ((-1083 . -82) 160459) ((-1083 . -38) 160261) ((-1083 . -888) 160231) ((-1083 . -241) 160059) ((-1083 . -1142) 160043) ((-1083 . -972) T) ((-1083 . -1027) T) ((-1083 . -1062) T) ((-1083 . -665) T) ((-1083 . -963) T) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1015) T) ((-1083 . -554) 160025) ((-1083 . -1130) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -25) T) ((-1083 . -104) T) ((-1083 . -118) 159935) ((-1083 . -120) 159845) ((-1083 . -555) NIL) ((-1083 . -184) 159797) ((-1083 . -811) 159633) ((-1083 . -813) 159397) ((-1083 . -808) 159136) ((-1083 . -225) 159088) ((-1083 . -189) 158914) ((-1083 . -186) 158734) ((-1083 . -190) 158624) ((-1083 . -312) 158603) ((-1083 . -1135) 158582) ((-1083 . -834) 158561) ((-1083 . -496) 158515) ((-1083 . -146) 158449) ((-1083 . -390) 158428) ((-1083 . -258) 158407) ((-1083 . -246) 158361) ((-1083 . -201) 158340) ((-1083 . -288) 158292) ((-1083 . -454) 158026) ((-1083 . -260) 157911) ((-1083 . -327) 157863) ((-1083 . -582) 157815) ((-1083 . -341) 157767) ((-1083 . -798) NIL) ((-1083 . -742) NIL) ((-1083 . -716) NIL) ((-1083 . -718) NIL) ((-1083 . -758) NIL) ((-1083 . -761) NIL) ((-1083 . -720) NIL) ((-1083 . -723) NIL) ((-1083 . -757) NIL) ((-1083 . -796) 157719) ((-1083 . -823) NIL) ((-1083 . -935) NIL) ((-1083 . -952) 157685) ((-1083 . -1067) NIL) ((-1083 . -906) 157637) ((-1082 . -997) T) ((-1082 . -428) 157618) ((-1082 . -554) 157584) ((-1082 . -557) 157565) ((-1082 . -1015) T) ((-1082 . -1130) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -64) T) ((-1081 . -1015) T) ((-1081 . -554) 157547) ((-1081 . -1130) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1080 . -1015) T) ((-1080 . -554) 157529) ((-1080 . -1130) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1075 . -1108) 157505) ((-1075 . -183) 157450) ((-1075 . -76) 157395) ((-1075 . -260) 157184) ((-1075 . -454) 156924) ((-1075 . -427) 156856) ((-1075 . -124) 156801) ((-1075 . -555) NIL) ((-1075 . -193) 156746) ((-1075 . -551) 156722) ((-1075 . -243) 156698) ((-1075 . -1130) T) ((-1075 . -13) T) ((-1075 . -241) 156674) ((-1075 . -1015) T) ((-1075 . -554) 156656) ((-1075 . -72) T) ((-1075 . -34) T) ((-1075 . -540) 156632) ((-1074 . -1059) T) ((-1074 . -322) 156614) ((-1074 . -761) T) ((-1074 . -758) T) ((-1074 . -124) 156596) ((-1074 . -34) T) ((-1074 . -13) T) ((-1074 . -1130) T) ((-1074 . -72) T) ((-1074 . -554) 156578) ((-1074 . -260) NIL) ((-1074 . -454) NIL) ((-1074 . -1015) T) ((-1074 . -427) 156560) ((-1074 . -555) NIL) ((-1074 . -241) 156510) ((-1074 . -540) 156485) ((-1074 . -243) 156460) ((-1074 . -595) 156442) ((-1074 . -19) 156424) ((-1070 . -618) 156408) ((-1070 . -595) 156392) ((-1070 . -243) 156369) ((-1070 . -241) 156321) ((-1070 . -540) 156298) ((-1070 . -555) 156259) ((-1070 . -427) 156243) ((-1070 . -1015) 156221) ((-1070 . -454) 156154) ((-1070 . -260) 156092) ((-1070 . -554) 156027) ((-1070 . -72) 155981) ((-1070 . -1130) T) ((-1070 . -13) T) ((-1070 . -34) T) ((-1070 . -124) 155965) ((-1070 . -1169) 155949) ((-1070 . -925) 155933) ((-1070 . -1065) 155917) ((-1070 . -557) 155894) ((-1068 . -997) T) ((-1068 . -428) 155875) ((-1068 . -554) 155841) ((-1068 . -557) 155822) ((-1068 . -1015) T) ((-1068 . -1130) T) ((-1068 . -13) T) ((-1068 . -72) T) ((-1068 . -64) T) ((-1066 . -1108) 155801) ((-1066 . -183) 155749) ((-1066 . -76) 155697) ((-1066 . -260) 155495) ((-1066 . -454) 155247) ((-1066 . -427) 155182) ((-1066 . -124) 155130) ((-1066 . -555) NIL) ((-1066 . -193) 155078) ((-1066 . -551) 155057) ((-1066 . -243) 155036) ((-1066 . -1130) T) ((-1066 . -13) T) ((-1066 . -241) 155015) ((-1066 . -1015) T) ((-1066 . -554) 154997) ((-1066 . -72) T) ((-1066 . -34) T) ((-1066 . -540) 154976) ((-1063 . -1036) 154960) ((-1063 . -427) 154944) ((-1063 . -1015) 154922) ((-1063 . -454) 154855) ((-1063 . -260) 154793) ((-1063 . -554) 154728) ((-1063 . -72) 154682) ((-1063 . -1130) T) ((-1063 . -13) T) ((-1063 . -34) T) ((-1063 . -76) 154666) ((-1061 . -1022) 154635) ((-1061 . -1125) 154604) ((-1061 . -554) 154566) ((-1061 . -124) 154550) ((-1061 . -34) T) ((-1061 . -13) T) ((-1061 . -1130) T) ((-1061 . -72) T) ((-1061 . -260) 154488) ((-1061 . -454) 154421) ((-1061 . -1015) T) ((-1061 . -427) 154405) ((-1061 . -555) 154366) ((-1061 . -891) 154335) ((-1061 . -985) 154304) ((-1057 . -1038) 154249) ((-1057 . -427) 154233) ((-1057 . -454) 154166) ((-1057 . -260) 154104) ((-1057 . -34) T) ((-1057 . -967) 154044) ((-1057 . -952) 153942) ((-1057 . -557) 153861) ((-1057 . -353) 153845) ((-1057 . -582) 153793) ((-1057 . -592) 153731) ((-1057 . -327) 153715) ((-1057 . -190) 153694) ((-1057 . -186) 153642) ((-1057 . -189) 153596) ((-1057 . -225) 153580) ((-1057 . -808) 153504) ((-1057 . -813) 153430) ((-1057 . -811) 153389) ((-1057 . -184) 153373) ((-1057 . -656) 153308) ((-1057 . -584) 153243) ((-1057 . -590) 153202) ((-1057 . -104) T) ((-1057 . -25) T) ((-1057 . -72) T) ((-1057 . -13) T) ((-1057 . -1130) T) ((-1057 . -554) 153164) ((-1057 . -1015) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -970) 153148) ((-1057 . -965) 153132) ((-1057 . -82) 153111) ((-1057 . -963) T) ((-1057 . -665) T) ((-1057 . -1062) T) ((-1057 . -1027) T) ((-1057 . -972) T) ((-1057 . -38) 153071) ((-1057 . -555) 153032) ((-1056 . -925) 153003) ((-1056 . -34) T) ((-1056 . -13) T) ((-1056 . -1130) T) ((-1056 . -72) T) ((-1056 . -554) 152985) ((-1056 . -260) 152911) ((-1056 . -454) 152819) ((-1056 . -1015) T) ((-1056 . -427) 152790) ((-1055 . -1015) T) ((-1055 . -554) 152772) ((-1055 . -1130) T) ((-1055 . -13) T) ((-1055 . -72) T) ((-1050 . -1052) T) ((-1050 . -1176) T) ((-1050 . -64) T) ((-1050 . -72) T) ((-1050 . -13) T) ((-1050 . -1130) T) ((-1050 . -554) 152738) ((-1050 . -1015) T) ((-1050 . -557) 152719) ((-1050 . -428) 152700) ((-1050 . -997) T) ((-1048 . -1049) 152684) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1130) T) ((-1048 . -554) 152666) ((-1048 . -1015) T) ((-1041 . -681) 152645) ((-1041 . -35) 152611) ((-1041 . -66) 152577) ((-1041 . -239) 152543) ((-1041 . -431) 152509) ((-1041 . -1119) 152475) ((-1041 . -1116) 152441) ((-1041 . -917) 152407) ((-1041 . -47) 152379) ((-1041 . -38) 152276) ((-1041 . -584) 152173) ((-1041 . -656) 152070) ((-1041 . -557) 151952) ((-1041 . -246) 151931) ((-1041 . -496) 151910) ((-1041 . -82) 151775) ((-1041 . -965) 151661) ((-1041 . -970) 151547) ((-1041 . -146) 151501) ((-1041 . -120) 151480) ((-1041 . -118) 151459) ((-1041 . -592) 151384) ((-1041 . -590) 151294) ((-1041 . -888) 151261) ((-1041 . -813) 151245) ((-1041 . -1130) T) ((-1041 . -13) T) ((-1041 . -808) 151227) ((-1041 . -963) T) ((-1041 . -665) T) ((-1041 . -1062) T) ((-1041 . -1027) T) ((-1041 . -972) T) ((-1041 . -21) T) ((-1041 . -23) T) ((-1041 . -1015) T) ((-1041 . -554) 151209) ((-1041 . -72) T) ((-1041 . -25) T) ((-1041 . -104) T) ((-1041 . -811) 151193) ((-1041 . -454) 151163) ((-1041 . -260) 151150) ((-1040 . -863) 151117) ((-1040 . -557) 150916) ((-1040 . -952) 150801) ((-1040 . -1135) 150780) ((-1040 . -823) 150759) ((-1040 . -798) 150618) ((-1040 . -813) 150602) ((-1040 . -808) 150584) ((-1040 . -811) 150568) ((-1040 . -454) 150520) ((-1040 . -390) 150474) ((-1040 . -582) 150422) ((-1040 . -592) 150311) ((-1040 . -327) 150295) ((-1040 . -47) 150267) ((-1040 . -38) 150119) ((-1040 . -584) 149971) ((-1040 . -656) 149823) ((-1040 . -246) 149757) ((-1040 . -496) 149691) ((-1040 . -82) 149516) ((-1040 . -965) 149362) ((-1040 . -970) 149208) ((-1040 . -146) 149122) ((-1040 . -120) 149101) ((-1040 . -118) 149080) ((-1040 . -590) 148990) ((-1040 . -104) T) ((-1040 . -25) T) ((-1040 . -72) T) ((-1040 . -13) T) ((-1040 . -1130) T) ((-1040 . -554) 148972) ((-1040 . -1015) T) ((-1040 . -23) T) ((-1040 . -21) T) ((-1040 . -963) T) ((-1040 . -665) T) ((-1040 . -1062) T) ((-1040 . -1027) T) ((-1040 . -972) T) ((-1040 . -353) 148956) ((-1040 . -277) 148928) ((-1040 . -260) 148915) ((-1040 . -555) 148663) ((-1035 . -484) T) ((-1035 . -1135) T) ((-1035 . -1067) T) ((-1035 . -952) 148645) ((-1035 . -555) 148560) ((-1035 . -935) T) ((-1035 . -798) 148542) ((-1035 . -757) T) ((-1035 . -723) T) ((-1035 . -720) T) ((-1035 . -761) T) ((-1035 . -758) T) ((-1035 . -718) T) ((-1035 . -716) T) ((-1035 . -742) T) ((-1035 . -592) 148514) ((-1035 . -582) 148496) ((-1035 . -834) T) ((-1035 . -496) T) ((-1035 . -246) T) ((-1035 . -146) T) ((-1035 . -557) 148468) ((-1035 . -656) 148455) ((-1035 . -584) 148442) ((-1035 . -970) 148429) ((-1035 . -965) 148416) ((-1035 . -82) 148401) ((-1035 . -38) 148388) ((-1035 . -390) T) ((-1035 . -258) T) ((-1035 . -189) T) ((-1035 . -186) 148375) ((-1035 . -190) T) ((-1035 . -116) T) ((-1035 . -963) T) ((-1035 . -665) T) ((-1035 . -1062) T) ((-1035 . -1027) T) ((-1035 . -972) T) ((-1035 . -21) T) ((-1035 . -590) 148347) ((-1035 . -23) T) ((-1035 . -1015) T) ((-1035 . -554) 148329) ((-1035 . -1130) T) ((-1035 . -13) T) ((-1035 . -72) T) ((-1035 . -25) T) ((-1035 . -104) T) ((-1035 . -120) T) ((-1035 . -754) T) ((-1035 . -318) T) ((-1035 . -84) T) ((-1035 . -606) T) ((-1031 . -997) T) ((-1031 . -428) 148310) ((-1031 . -554) 148276) ((-1031 . -557) 148257) ((-1031 . -1015) T) ((-1031 . -1130) T) ((-1031 . -13) T) ((-1031 . -72) T) ((-1031 . -64) T) ((-1030 . -1015) T) ((-1030 . -554) 148239) ((-1030 . -1130) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1028 . -196) 148218) ((-1028 . -1188) 148188) ((-1028 . -723) 148167) ((-1028 . -720) 148146) ((-1028 . -761) 148100) ((-1028 . -758) 148054) ((-1028 . -718) 148033) ((-1028 . -719) 148012) ((-1028 . -656) 147957) ((-1028 . -584) 147882) ((-1028 . -243) 147859) ((-1028 . -241) 147836) ((-1028 . -427) 147820) ((-1028 . -454) 147753) ((-1028 . -260) 147691) ((-1028 . -34) T) ((-1028 . -540) 147668) ((-1028 . -952) 147497) ((-1028 . -557) 147301) ((-1028 . -353) 147270) ((-1028 . -582) 147178) ((-1028 . -592) 147017) ((-1028 . -327) 146987) ((-1028 . -318) 146966) ((-1028 . -190) 146919) ((-1028 . -590) 146707) ((-1028 . -972) 146686) ((-1028 . -1027) 146665) ((-1028 . -1062) 146644) ((-1028 . -665) 146623) ((-1028 . -963) 146602) ((-1028 . -186) 146498) ((-1028 . -189) 146400) ((-1028 . -225) 146370) ((-1028 . -808) 146242) ((-1028 . -813) 146116) ((-1028 . -811) 146049) ((-1028 . -184) 146019) ((-1028 . -554) 145716) ((-1028 . -970) 145641) ((-1028 . -965) 145546) ((-1028 . -82) 145466) ((-1028 . -104) 145341) ((-1028 . -25) 145178) ((-1028 . -72) 144915) ((-1028 . -13) T) ((-1028 . -1130) T) ((-1028 . -1015) 144671) ((-1028 . -23) 144527) ((-1028 . -21) 144442) ((-1024 . -1025) 144426) ((-1024 . |MappingCategory|) 144400) ((-1024 . -1130) T) ((-1024 . -80) 144384) ((-1024 . -1015) T) ((-1024 . -554) 144366) ((-1024 . -13) T) ((-1024 . -72) T) ((-1019 . -1018) 144330) ((-1019 . -72) T) ((-1019 . -554) 144312) ((-1019 . -1015) T) ((-1019 . -241) 144268) ((-1019 . -1130) T) ((-1019 . -13) T) ((-1019 . -559) 144183) ((-1017 . -1018) 144135) ((-1017 . -72) T) ((-1017 . -554) 144117) ((-1017 . -1015) T) ((-1017 . -241) 144073) ((-1017 . -1130) T) ((-1017 . -13) T) ((-1017 . -559) 143976) ((-1016 . -318) T) ((-1016 . -72) T) ((-1016 . -13) T) ((-1016 . -1130) T) ((-1016 . -554) 143958) ((-1016 . -1015) T) ((-1011 . -367) 143942) ((-1011 . -1013) 143926) ((-1011 . -318) 143905) ((-1011 . -193) 143889) ((-1011 . -555) 143850) ((-1011 . -124) 143834) ((-1011 . -427) 143818) ((-1011 . -1015) T) ((-1011 . -454) 143751) ((-1011 . -260) 143689) ((-1011 . -554) 143671) ((-1011 . -72) T) ((-1011 . -1130) T) ((-1011 . -13) T) ((-1011 . -34) T) ((-1011 . -76) 143655) ((-1011 . -183) 143639) ((-1010 . -997) T) ((-1010 . -428) 143620) ((-1010 . -554) 143586) ((-1010 . -557) 143567) ((-1010 . -1015) T) ((-1010 . -1130) T) ((-1010 . -13) T) ((-1010 . -72) T) ((-1010 . -64) T) ((-1006 . -1130) T) ((-1006 . -13) T) ((-1006 . -1015) 143537) ((-1006 . -554) 143496) ((-1006 . -72) 143466) ((-1005 . -997) T) ((-1005 . -428) 143447) ((-1005 . -554) 143413) ((-1005 . -557) 143394) ((-1005 . -1015) T) ((-1005 . -1130) T) ((-1005 . -13) T) ((-1005 . -72) T) ((-1005 . -64) T) ((-1003 . -1008) 143378) ((-1003 . -559) 143362) ((-1003 . -1015) 143340) ((-1003 . -554) 143307) ((-1003 . -1130) 143285) ((-1003 . -13) 143263) ((-1003 . -72) 143241) ((-1003 . -1009) 143199) ((-1002 . -228) 143183) ((-1002 . -557) 143167) ((-1002 . -952) 143151) ((-1002 . -761) T) ((-1002 . -72) T) ((-1002 . -1015) T) ((-1002 . -554) 143133) ((-1002 . -758) T) ((-1002 . -186) 143120) ((-1002 . -13) T) ((-1002 . -1130) T) ((-1002 . -189) T) ((-1001 . -213) 143057) ((-1001 . -557) 142800) ((-1001 . -952) 142629) ((-1001 . -555) NIL) ((-1001 . -277) 142590) ((-1001 . -353) 142574) ((-1001 . -38) 142426) ((-1001 . -82) 142251) ((-1001 . -965) 142097) ((-1001 . -970) 141943) ((-1001 . -590) 141853) ((-1001 . -592) 141742) ((-1001 . -584) 141594) ((-1001 . -656) 141446) ((-1001 . -118) 141425) ((-1001 . -120) 141404) ((-1001 . -146) 141318) ((-1001 . -496) 141252) ((-1001 . -246) 141186) ((-1001 . -47) 141147) ((-1001 . -327) 141131) ((-1001 . -582) 141079) ((-1001 . -390) 141033) ((-1001 . -454) 140896) ((-1001 . -811) 140831) ((-1001 . -808) 140729) ((-1001 . -813) 140631) ((-1001 . -798) NIL) ((-1001 . -823) 140610) ((-1001 . -1135) 140589) ((-1001 . -863) 140534) ((-1001 . -260) 140521) ((-1001 . -190) 140500) ((-1001 . -104) T) ((-1001 . -25) T) ((-1001 . -72) T) ((-1001 . -554) 140482) ((-1001 . -1015) T) ((-1001 . -23) T) ((-1001 . -21) T) ((-1001 . -972) T) ((-1001 . -1027) T) ((-1001 . -1062) T) ((-1001 . -665) T) ((-1001 . -963) T) ((-1001 . -186) 140430) ((-1001 . -13) T) ((-1001 . -1130) T) ((-1001 . -189) 140384) ((-1001 . -225) 140368) ((-1001 . -184) 140352) ((-999 . -554) 140334) ((-996 . -758) T) ((-996 . -554) 140316) ((-996 . -1015) T) ((-996 . -72) T) ((-996 . -13) T) ((-996 . -1130) T) ((-996 . -761) T) ((-996 . -555) 140297) ((-993 . -663) 140276) ((-993 . -952) 140174) ((-993 . -353) 140158) ((-993 . -582) 140106) ((-993 . -592) 139983) ((-993 . -327) 139967) ((-993 . -320) 139946) ((-993 . -120) 139925) ((-993 . -557) 139750) ((-993 . -656) 139624) ((-993 . -584) 139498) ((-993 . -590) 139396) ((-993 . -970) 139309) ((-993 . -965) 139222) ((-993 . -82) 139114) ((-993 . -38) 138988) ((-993 . -351) 138967) ((-993 . -343) 138946) ((-993 . -118) 138900) ((-993 . -1067) 138879) ((-993 . -299) 138858) ((-993 . -318) 138812) ((-993 . -201) 138766) ((-993 . -246) 138720) ((-993 . -258) 138674) ((-993 . -390) 138628) ((-993 . -496) 138582) ((-993 . -834) 138536) ((-993 . -1135) 138490) ((-993 . -312) 138444) ((-993 . -190) 138372) ((-993 . -186) 138248) ((-993 . -189) 138130) ((-993 . -225) 138100) ((-993 . -808) 137972) ((-993 . -813) 137846) ((-993 . -811) 137779) ((-993 . -184) 137749) ((-993 . -555) 137733) ((-993 . -21) T) ((-993 . -23) T) ((-993 . -1015) T) ((-993 . -554) 137715) ((-993 . -1130) T) ((-993 . -13) T) ((-993 . -72) T) ((-993 . -25) T) ((-993 . -104) T) ((-993 . -963) T) ((-993 . -665) T) ((-993 . -1062) T) ((-993 . -1027) T) ((-993 . -972) T) ((-993 . -146) T) ((-991 . -1015) T) ((-991 . -554) 137697) ((-991 . -1130) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -241) 137676) ((-990 . -1015) T) ((-990 . -554) 137658) ((-990 . -1130) T) ((-990 . -13) T) ((-990 . -72) T) ((-989 . -1015) T) ((-989 . -554) 137640) ((-989 . -1130) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 137619) ((-989 . -952) 137596) ((-989 . -557) 137573) ((-988 . -1130) T) ((-988 . -13) T) ((-987 . -997) T) ((-987 . -428) 137554) ((-987 . -554) 137520) ((-987 . -557) 137501) ((-987 . -1015) T) ((-987 . -1130) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -64) T) ((-980 . -997) T) ((-980 . -428) 137482) ((-980 . -554) 137448) ((-980 . -557) 137429) ((-980 . -1015) T) ((-980 . -1130) T) ((-980 . -13) T) ((-980 . -72) T) ((-980 . -64) T) ((-977 . -484) T) ((-977 . -1135) T) ((-977 . -1067) T) ((-977 . -952) 137411) ((-977 . -555) 137326) ((-977 . -935) T) ((-977 . -798) 137308) ((-977 . -757) T) ((-977 . -723) T) ((-977 . -720) T) ((-977 . -761) T) ((-977 . -758) T) ((-977 . -718) T) ((-977 . -716) T) ((-977 . -742) T) ((-977 . -592) 137280) ((-977 . -582) 137262) ((-977 . -834) T) ((-977 . -496) T) ((-977 . -246) T) ((-977 . -146) T) ((-977 . -557) 137234) ((-977 . -656) 137221) ((-977 . -584) 137208) ((-977 . -970) 137195) ((-977 . -965) 137182) ((-977 . -82) 137167) ((-977 . -38) 137154) ((-977 . -390) T) ((-977 . -258) T) ((-977 . -189) T) ((-977 . -186) 137141) ((-977 . -190) T) ((-977 . -116) T) ((-977 . -963) T) ((-977 . -665) T) ((-977 . -1062) T) ((-977 . -1027) T) ((-977 . -972) T) ((-977 . -21) T) ((-977 . -590) 137113) ((-977 . -23) T) ((-977 . -1015) T) ((-977 . -554) 137095) ((-977 . -1130) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -25) T) ((-977 . -104) T) ((-977 . -120) T) ((-977 . -559) 137076) ((-976 . -982) 137055) ((-976 . -72) T) ((-976 . -13) T) ((-976 . -1130) T) ((-976 . -554) 137037) ((-976 . -1015) T) ((-973 . -1130) T) ((-973 . -13) T) ((-973 . -1015) 137015) ((-973 . -554) 136982) ((-973 . -72) 136960) ((-968 . -967) 136900) ((-968 . -584) 136845) ((-968 . -656) 136790) ((-968 . -34) T) ((-968 . -260) 136728) ((-968 . -454) 136661) ((-968 . -427) 136645) ((-968 . -592) 136629) ((-968 . -590) 136598) ((-968 . -104) T) ((-968 . -25) T) ((-968 . -72) T) ((-968 . -13) T) ((-968 . -1130) T) ((-968 . -554) 136560) ((-968 . -1015) T) ((-968 . -23) T) ((-968 . -21) T) ((-968 . -970) 136544) ((-968 . -965) 136528) ((-968 . -82) 136507) ((-968 . -1188) 136477) ((-968 . -555) 136438) ((-960 . -985) 136367) ((-960 . -891) 136296) ((-960 . -555) 136238) ((-960 . -427) 136203) ((-960 . -1015) T) ((-960 . -454) 136087) ((-960 . -260) 135995) ((-960 . -554) 135938) ((-960 . -72) T) ((-960 . -1130) T) ((-960 . -13) T) ((-960 . -34) T) ((-960 . -124) 135903) ((-960 . -1125) 135832) ((-950 . -997) T) ((-950 . -428) 135813) ((-950 . -554) 135779) ((-950 . -557) 135760) ((-950 . -1015) T) ((-950 . -1130) T) ((-950 . -13) T) ((-950 . -72) T) ((-950 . -64) T) ((-949 . -146) T) ((-949 . -557) 135729) ((-949 . -972) T) ((-949 . -1027) T) ((-949 . -1062) T) ((-949 . -665) T) ((-949 . -963) T) ((-949 . -592) 135703) ((-949 . -590) 135662) ((-949 . -104) T) ((-949 . -25) T) ((-949 . -72) T) ((-949 . -13) T) ((-949 . -1130) T) ((-949 . -554) 135644) ((-949 . -1015) T) ((-949 . -23) T) ((-949 . -21) T) ((-949 . -970) 135618) ((-949 . -965) 135592) ((-949 . -82) 135559) ((-949 . -38) 135543) ((-949 . -584) 135527) ((-949 . -656) 135511) ((-942 . -985) 135480) ((-942 . -891) 135449) ((-942 . -555) 135410) ((-942 . -427) 135394) ((-942 . -1015) T) ((-942 . -454) 135327) ((-942 . -260) 135265) ((-942 . -554) 135227) ((-942 . -72) T) ((-942 . -1130) T) ((-942 . -13) T) ((-942 . -34) T) ((-942 . -124) 135211) ((-942 . -1125) 135180) ((-941 . -1015) T) ((-941 . -554) 135162) ((-941 . -1130) T) ((-941 . -13) T) ((-941 . -72) T) ((-939 . -927) T) ((-939 . -917) T) ((-939 . -716) T) ((-939 . -718) T) ((-939 . -758) T) ((-939 . -761) T) ((-939 . -720) T) ((-939 . -723) T) ((-939 . -757) T) ((-939 . -952) 135047) ((-939 . -353) 135009) ((-939 . -201) T) ((-939 . -246) T) ((-939 . -258) T) ((-939 . -390) T) ((-939 . -38) 134946) ((-939 . -584) 134883) ((-939 . -656) 134820) ((-939 . -557) 134757) ((-939 . -496) T) ((-939 . -834) T) ((-939 . -1135) T) ((-939 . -312) T) ((-939 . -82) 134666) ((-939 . -965) 134603) ((-939 . -970) 134540) ((-939 . -146) T) ((-939 . -120) T) ((-939 . -592) 134477) ((-939 . -590) 134414) ((-939 . -104) T) ((-939 . -25) T) ((-939 . -72) T) ((-939 . -13) T) ((-939 . -1130) T) ((-939 . -554) 134396) ((-939 . -1015) T) ((-939 . -23) T) ((-939 . -21) T) ((-939 . -963) T) ((-939 . -665) T) ((-939 . -1062) T) ((-939 . -1027) T) ((-939 . -972) T) ((-934 . -997) T) ((-934 . -428) 134377) ((-934 . -554) 134343) ((-934 . -557) 134324) ((-934 . -1015) T) ((-934 . -1130) T) ((-934 . -13) T) ((-934 . -72) T) ((-934 . -64) T) ((-919 . -906) 134306) ((-919 . -1067) T) ((-919 . -557) 134256) ((-919 . -952) 134216) ((-919 . -555) 134146) ((-919 . -935) T) ((-919 . -823) NIL) ((-919 . -796) 134128) ((-919 . -757) T) ((-919 . -723) T) ((-919 . -720) T) ((-919 . -761) T) ((-919 . -758) T) ((-919 . -718) T) ((-919 . -716) T) ((-919 . -742) T) ((-919 . -798) 134110) ((-919 . -341) 134092) ((-919 . -582) 134074) ((-919 . -327) 134056) ((-919 . -241) NIL) ((-919 . -260) NIL) ((-919 . -454) NIL) ((-919 . -288) 134038) ((-919 . -201) T) ((-919 . -82) 133965) ((-919 . -965) 133915) ((-919 . -970) 133865) ((-919 . -246) T) ((-919 . -656) 133815) ((-919 . -584) 133765) ((-919 . -592) 133715) ((-919 . -590) 133665) ((-919 . -38) 133615) ((-919 . -258) T) ((-919 . -390) T) ((-919 . -146) T) ((-919 . -496) T) ((-919 . -834) T) ((-919 . -1135) T) ((-919 . -312) T) ((-919 . -190) T) ((-919 . -186) 133602) ((-919 . -189) T) ((-919 . -225) 133584) ((-919 . -808) NIL) ((-919 . -813) NIL) ((-919 . -811) NIL) ((-919 . -184) 133566) ((-919 . -120) T) ((-919 . -118) NIL) ((-919 . -104) T) ((-919 . -25) T) ((-919 . -72) T) ((-919 . -13) T) ((-919 . -1130) T) ((-919 . -554) 133526) ((-919 . -1015) T) ((-919 . -23) T) ((-919 . -21) T) ((-919 . -963) T) ((-919 . -665) T) ((-919 . -1062) T) ((-919 . -1027) T) ((-919 . -972) T) ((-918 . -291) 133500) ((-918 . -146) T) ((-918 . -557) 133430) ((-918 . -972) T) ((-918 . -1027) T) ((-918 . -1062) T) ((-918 . -665) T) ((-918 . -963) T) ((-918 . -592) 133332) ((-918 . -590) 133262) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1130) T) ((-918 . -554) 133244) ((-918 . -1015) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -970) 133189) ((-918 . -965) 133134) ((-918 . -82) 133051) ((-918 . -555) 133035) ((-918 . -184) 133012) ((-918 . -811) 132964) ((-918 . -813) 132876) ((-918 . -808) 132786) ((-918 . -225) 132763) ((-918 . -189) 132703) ((-918 . -186) 132637) ((-918 . -190) 132609) ((-918 . -312) T) ((-918 . -1135) T) ((-918 . -834) T) ((-918 . -496) T) ((-918 . -656) 132554) ((-918 . -584) 132499) ((-918 . -38) 132444) ((-918 . -390) T) ((-918 . -258) T) ((-918 . -246) T) ((-918 . -201) T) ((-918 . -318) NIL) ((-918 . -299) NIL) ((-918 . -1067) NIL) ((-918 . -118) 132416) ((-918 . -343) NIL) ((-918 . -351) 132388) ((-918 . -120) 132360) ((-918 . -320) 132332) ((-918 . -327) 132309) ((-918 . -582) 132243) ((-918 . -353) 132220) ((-918 . -952) 132097) ((-918 . -663) 132069) ((-915 . -910) 132053) ((-915 . -427) 132037) ((-915 . -1015) 132015) ((-915 . -454) 131948) ((-915 . -260) 131886) ((-915 . -554) 131821) ((-915 . -72) 131775) ((-915 . -1130) T) ((-915 . -13) T) ((-915 . -34) T) ((-915 . -76) 131759) ((-911 . -913) 131743) ((-911 . -761) 131722) ((-911 . -758) 131701) ((-911 . -952) 131599) ((-911 . -353) 131583) ((-911 . -582) 131531) ((-911 . -592) 131433) ((-911 . -327) 131417) ((-911 . -241) 131375) ((-911 . -260) 131340) ((-911 . -454) 131252) ((-911 . -288) 131236) ((-911 . -38) 131184) ((-911 . -82) 131062) ((-911 . -965) 130961) ((-911 . -970) 130860) ((-911 . -590) 130783) ((-911 . -584) 130731) ((-911 . -656) 130679) ((-911 . -557) 130573) ((-911 . -246) 130527) ((-911 . -201) 130506) ((-911 . -190) 130485) ((-911 . -186) 130433) ((-911 . -189) 130387) ((-911 . -225) 130371) ((-911 . -808) 130295) ((-911 . -813) 130221) ((-911 . -811) 130180) ((-911 . -184) 130164) ((-911 . -555) 130125) ((-911 . -120) 130104) ((-911 . -118) 130083) ((-911 . -104) T) ((-911 . -25) T) ((-911 . -72) T) ((-911 . -13) T) ((-911 . -1130) T) ((-911 . -554) 130065) ((-911 . -1015) T) ((-911 . -23) T) ((-911 . -21) T) ((-911 . -963) T) ((-911 . -665) T) ((-911 . -1062) T) ((-911 . -1027) T) ((-911 . -972) T) ((-909 . -997) T) ((-909 . -428) 130046) ((-909 . -554) 130012) ((-909 . -557) 129993) ((-909 . -1015) T) ((-909 . -1130) T) ((-909 . -13) T) ((-909 . -72) T) ((-909 . -64) T) ((-908 . -21) T) ((-908 . -590) 129975) ((-908 . -23) T) ((-908 . -1015) T) ((-908 . -554) 129957) ((-908 . -1130) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -25) T) ((-908 . -104) T) ((-908 . -241) 129924) ((-904 . -554) 129906) ((-901 . -1015) T) ((-901 . -554) 129888) ((-901 . -1130) T) ((-901 . -13) T) ((-901 . -72) T) ((-886 . -723) T) ((-886 . -720) T) ((-886 . -761) T) ((-886 . -758) T) ((-886 . -718) T) ((-886 . -23) T) ((-886 . -1015) T) ((-886 . -554) 129848) ((-886 . -1130) T) ((-886 . -13) T) ((-886 . -72) T) ((-886 . -25) T) ((-886 . -104) T) ((-885 . -997) T) ((-885 . -428) 129829) ((-885 . -554) 129795) ((-885 . -557) 129776) ((-885 . -1015) T) ((-885 . -1130) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -64) T) ((-879 . -882) T) ((-879 . -72) T) ((-879 . -554) 129758) ((-879 . -1015) T) ((-879 . -606) T) ((-879 . -13) T) ((-879 . -1130) T) ((-879 . -84) T) ((-879 . -557) 129742) ((-878 . -554) 129724) ((-877 . -1015) T) ((-877 . -554) 129706) ((-877 . -1130) T) ((-877 . -13) T) ((-877 . -72) T) ((-877 . -318) 129659) ((-877 . -665) 129561) ((-877 . -1027) 129463) ((-877 . -23) 129277) ((-877 . -25) 129091) ((-877 . -104) 128949) ((-877 . -411) 128902) ((-877 . -21) 128857) ((-877 . -590) 128801) ((-877 . -719) 128754) ((-877 . -718) 128707) ((-877 . -758) 128609) ((-877 . -761) 128511) ((-877 . -720) 128464) ((-877 . -723) 128417) ((-871 . -19) 128401) ((-871 . -595) 128385) ((-871 . -243) 128362) ((-871 . -241) 128314) ((-871 . -540) 128291) ((-871 . -555) 128252) ((-871 . -427) 128236) ((-871 . -1015) 128189) ((-871 . -454) 128122) ((-871 . -260) 128060) ((-871 . -554) 127975) ((-871 . -72) 127909) ((-871 . -1130) T) ((-871 . -13) T) ((-871 . -34) T) ((-871 . -124) 127893) ((-871 . -758) 127872) ((-871 . -761) 127851) ((-871 . -322) 127835) ((-869 . -277) 127814) ((-869 . -952) 127712) ((-869 . -353) 127696) ((-869 . -38) 127593) ((-869 . -557) 127450) ((-869 . -592) 127375) ((-869 . -590) 127285) ((-869 . -972) T) ((-869 . -1027) T) ((-869 . -1062) T) ((-869 . -665) T) ((-869 . -963) T) ((-869 . -82) 127150) ((-869 . -965) 127036) ((-869 . -970) 126922) ((-869 . -21) T) ((-869 . -23) T) ((-869 . -1015) T) ((-869 . -554) 126904) ((-869 . -1130) T) ((-869 . -13) T) ((-869 . -72) T) ((-869 . -25) T) ((-869 . -104) T) ((-869 . -584) 126801) ((-869 . -656) 126698) ((-869 . -118) 126677) ((-869 . -120) 126656) ((-869 . -146) 126610) ((-869 . -496) 126589) ((-869 . -246) 126568) ((-869 . -47) 126547) ((-867 . -1015) T) ((-867 . -554) 126513) ((-867 . -1130) T) ((-867 . -13) T) ((-867 . -72) T) ((-859 . -863) 126474) ((-859 . -557) 126270) ((-859 . -952) 126152) ((-859 . -1135) 126131) ((-859 . -823) 126110) ((-859 . -798) 126035) ((-859 . -813) 126016) ((-859 . -808) 125995) ((-859 . -811) 125976) ((-859 . -454) 125922) ((-859 . -390) 125876) ((-859 . -582) 125824) ((-859 . -592) 125713) ((-859 . -327) 125697) ((-859 . -47) 125666) ((-859 . -38) 125518) ((-859 . -584) 125370) ((-859 . -656) 125222) ((-859 . -246) 125156) ((-859 . -496) 125090) ((-859 . -82) 124915) ((-859 . -965) 124761) ((-859 . -970) 124607) ((-859 . -146) 124521) ((-859 . -120) 124500) ((-859 . -118) 124479) ((-859 . -590) 124389) ((-859 . -104) T) ((-859 . -25) T) ((-859 . -72) T) ((-859 . -13) T) ((-859 . -1130) T) ((-859 . -554) 124371) ((-859 . -1015) T) ((-859 . -23) T) ((-859 . -21) T) ((-859 . -963) T) ((-859 . -665) T) ((-859 . -1062) T) ((-859 . -1027) T) ((-859 . -972) T) ((-859 . -353) 124355) ((-859 . -277) 124324) ((-859 . -260) 124311) ((-859 . -555) 124172) ((-856 . -895) 124156) ((-856 . -19) 124140) ((-856 . -595) 124124) ((-856 . -243) 124101) ((-856 . -241) 124053) ((-856 . -540) 124030) ((-856 . -555) 123991) ((-856 . -427) 123975) ((-856 . -1015) 123928) ((-856 . -454) 123861) ((-856 . -260) 123799) ((-856 . -554) 123714) ((-856 . -72) 123648) ((-856 . -1130) T) ((-856 . -13) T) ((-856 . -34) T) ((-856 . -124) 123632) ((-856 . -758) 123611) ((-856 . -761) 123590) ((-856 . -322) 123574) ((-856 . -1179) 123558) ((-856 . -559) 123535) ((-840 . -889) T) ((-840 . -554) 123517) ((-838 . -868) T) ((-838 . -554) 123499) ((-832 . -720) T) ((-832 . -761) T) ((-832 . -758) T) ((-832 . -1015) T) ((-832 . -554) 123481) ((-832 . -1130) T) ((-832 . -13) T) ((-832 . -72) T) ((-832 . -25) T) ((-832 . -665) T) ((-832 . -1027) T) ((-827 . -312) T) ((-827 . -1135) T) ((-827 . -834) T) ((-827 . -496) T) ((-827 . -146) T) ((-827 . -557) 123418) ((-827 . -656) 123370) ((-827 . -584) 123322) ((-827 . -38) 123274) ((-827 . -390) T) ((-827 . -258) T) ((-827 . -592) 123226) ((-827 . -590) 123163) ((-827 . -972) T) ((-827 . -1027) T) ((-827 . -1062) T) ((-827 . -665) T) ((-827 . -963) T) ((-827 . -82) 123094) ((-827 . -965) 123046) ((-827 . -970) 122998) ((-827 . -21) T) ((-827 . -23) T) ((-827 . -1015) T) ((-827 . -554) 122980) ((-827 . -1130) T) ((-827 . -13) T) ((-827 . -72) T) ((-827 . -25) T) ((-827 . -104) T) ((-827 . -246) T) ((-827 . -201) T) ((-819 . -299) T) ((-819 . -1067) T) ((-819 . -318) T) ((-819 . -118) T) ((-819 . -312) T) ((-819 . -1135) T) ((-819 . -834) T) ((-819 . -496) T) ((-819 . -146) T) ((-819 . -557) 122930) ((-819 . -656) 122895) ((-819 . -584) 122860) ((-819 . -38) 122825) ((-819 . -390) T) ((-819 . -258) T) ((-819 . -82) 122774) ((-819 . -965) 122739) ((-819 . -970) 122704) ((-819 . -590) 122654) ((-819 . -592) 122619) ((-819 . -246) T) ((-819 . -201) T) ((-819 . -343) T) ((-819 . -189) T) ((-819 . -1130) T) ((-819 . -13) T) ((-819 . -186) 122606) ((-819 . -963) T) ((-819 . -665) T) ((-819 . -1062) T) ((-819 . -1027) T) ((-819 . -972) T) ((-819 . -21) T) ((-819 . -23) T) ((-819 . -1015) T) ((-819 . -554) 122588) ((-819 . -72) T) ((-819 . -25) T) ((-819 . -104) T) ((-819 . -190) T) ((-819 . -280) 122575) ((-819 . -120) 122557) ((-819 . -952) 122544) ((-819 . -1188) 122531) ((-819 . -1199) 122518) ((-819 . -555) 122500) ((-818 . -1015) T) ((-818 . -554) 122482) ((-818 . -1130) T) ((-818 . -13) T) ((-818 . -72) T) ((-815 . -817) 122466) ((-815 . -761) 122420) ((-815 . -758) 122374) ((-815 . -665) T) ((-815 . -1015) T) ((-815 . -554) 122356) ((-815 . -72) T) ((-815 . -1027) T) ((-815 . -411) T) ((-815 . -1130) T) ((-815 . -13) T) ((-815 . -241) 122335) ((-814 . -92) 122319) ((-814 . -427) 122303) ((-814 . -1015) 122281) ((-814 . -454) 122214) ((-814 . -260) 122152) ((-814 . -554) 122066) ((-814 . -72) 122020) ((-814 . -1130) T) ((-814 . -13) T) ((-814 . -34) T) ((-814 . -925) 122004) ((-805 . -758) T) ((-805 . -554) 121986) ((-805 . -1015) T) ((-805 . -72) T) ((-805 . -13) T) ((-805 . -1130) T) ((-805 . -761) T) ((-805 . -952) 121963) ((-805 . -557) 121940) ((-802 . -1015) T) ((-802 . -554) 121922) ((-802 . -1130) T) ((-802 . -13) T) ((-802 . -72) T) ((-802 . -952) 121890) ((-802 . -557) 121858) ((-800 . -1015) T) ((-800 . -554) 121840) ((-800 . -1130) T) ((-800 . -13) T) ((-800 . -72) T) ((-797 . -1015) T) ((-797 . -554) 121822) ((-797 . -1130) T) ((-797 . -13) T) ((-797 . -72) T) ((-787 . -997) T) ((-787 . -428) 121803) ((-787 . -554) 121769) ((-787 . -557) 121750) ((-787 . -1015) T) ((-787 . -1130) T) ((-787 . -13) T) ((-787 . -72) T) ((-787 . -64) T) ((-787 . -1176) T) ((-785 . -1015) T) ((-785 . -554) 121732) ((-785 . -1130) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -557) 121714) ((-784 . -1130) T) ((-784 . -13) T) ((-784 . -554) 121589) ((-784 . -1015) 121540) ((-784 . -72) 121491) ((-783 . -906) 121475) ((-783 . -1067) 121453) ((-783 . -952) 121320) ((-783 . -557) 121219) ((-783 . -555) 121022) ((-783 . -935) 121001) ((-783 . -823) 120980) ((-783 . -796) 120964) ((-783 . -757) 120943) ((-783 . -723) 120922) ((-783 . -720) 120901) ((-783 . -761) 120855) ((-783 . -758) 120809) ((-783 . -718) 120788) ((-783 . -716) 120767) ((-783 . -742) 120746) ((-783 . -798) 120671) ((-783 . -341) 120655) ((-783 . -582) 120603) ((-783 . -592) 120519) ((-783 . -327) 120503) ((-783 . -241) 120461) ((-783 . -260) 120426) ((-783 . -454) 120338) ((-783 . -288) 120322) ((-783 . -201) T) ((-783 . -82) 120253) ((-783 . -965) 120205) ((-783 . -970) 120157) ((-783 . -246) T) ((-783 . -656) 120109) ((-783 . -584) 120061) ((-783 . -590) 119998) ((-783 . -38) 119950) ((-783 . -258) T) ((-783 . -390) T) ((-783 . -146) T) ((-783 . -496) T) ((-783 . -834) T) ((-783 . -1135) T) ((-783 . -312) T) ((-783 . -190) 119929) ((-783 . -186) 119877) ((-783 . -189) 119831) ((-783 . -225) 119815) ((-783 . -808) 119739) ((-783 . -813) 119665) ((-783 . -811) 119624) ((-783 . -184) 119608) ((-783 . -120) 119587) ((-783 . -118) 119566) ((-783 . -104) T) ((-783 . -25) T) ((-783 . -72) T) ((-783 . -13) T) ((-783 . -1130) T) ((-783 . -554) 119548) ((-783 . -1015) T) ((-783 . -23) T) ((-783 . -21) T) ((-783 . -963) T) ((-783 . -665) T) ((-783 . -1062) T) ((-783 . -1027) T) ((-783 . -972) T) ((-782 . -906) 119525) ((-782 . -1067) NIL) ((-782 . -952) 119502) ((-782 . -557) 119432) ((-782 . -555) NIL) ((-782 . -935) NIL) ((-782 . -823) NIL) ((-782 . -796) 119409) ((-782 . -757) NIL) ((-782 . -723) NIL) ((-782 . -720) NIL) ((-782 . -761) NIL) ((-782 . -758) NIL) ((-782 . -718) NIL) ((-782 . -716) NIL) ((-782 . -742) NIL) ((-782 . -798) NIL) ((-782 . -341) 119386) ((-782 . -582) 119363) ((-782 . -592) 119308) ((-782 . -327) 119285) ((-782 . -241) 119215) ((-782 . -260) 119159) ((-782 . -454) 119022) ((-782 . -288) 118999) ((-782 . -201) T) ((-782 . -82) 118916) ((-782 . -965) 118861) ((-782 . -970) 118806) ((-782 . -246) T) ((-782 . -656) 118751) ((-782 . -584) 118696) ((-782 . -590) 118626) ((-782 . -38) 118571) ((-782 . -258) T) ((-782 . -390) T) ((-782 . -146) T) ((-782 . -496) T) ((-782 . -834) T) ((-782 . -1135) T) ((-782 . -312) T) ((-782 . -190) NIL) ((-782 . -186) NIL) ((-782 . -189) NIL) ((-782 . -225) 118548) ((-782 . -808) NIL) ((-782 . -813) NIL) ((-782 . -811) NIL) ((-782 . -184) 118525) ((-782 . -120) T) ((-782 . -118) NIL) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1130) T) ((-782 . -554) 118507) ((-782 . -1015) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -963) T) ((-782 . -665) T) ((-782 . -1062) T) ((-782 . -1027) T) ((-782 . -972) T) ((-780 . -781) 118491) ((-780 . -834) T) ((-780 . -496) T) ((-780 . -246) T) ((-780 . -146) T) ((-780 . -557) 118463) ((-780 . -656) 118450) ((-780 . -584) 118437) ((-780 . -970) 118424) ((-780 . -965) 118411) ((-780 . -82) 118396) ((-780 . -38) 118383) ((-780 . -390) T) ((-780 . -258) T) ((-780 . -963) T) ((-780 . -665) T) ((-780 . -1062) T) ((-780 . -1027) T) ((-780 . -972) T) ((-780 . -21) T) ((-780 . -590) 118355) ((-780 . -23) T) ((-780 . -1015) T) ((-780 . -554) 118337) ((-780 . -1130) T) ((-780 . -13) T) ((-780 . -72) T) ((-780 . -25) T) ((-780 . -104) T) ((-780 . -592) 118324) ((-780 . -120) T) ((-777 . -963) T) ((-777 . -665) T) ((-777 . -1062) T) ((-777 . -1027) T) ((-777 . -972) T) ((-777 . -21) T) ((-777 . -590) 118269) ((-777 . -23) T) ((-777 . -1015) T) ((-777 . -554) 118231) ((-777 . -1130) T) ((-777 . -13) T) ((-777 . -72) T) ((-777 . -25) T) ((-777 . -104) T) ((-777 . -592) 118191) ((-777 . -557) 118126) ((-777 . -428) 118103) ((-777 . -38) 118073) ((-777 . -82) 118038) ((-777 . -965) 118008) ((-777 . -970) 117978) ((-777 . -584) 117948) ((-777 . -656) 117918) ((-776 . -1015) T) ((-776 . -554) 117900) ((-776 . -1130) T) ((-776 . -13) T) ((-776 . -72) T) ((-775 . -754) T) ((-775 . -761) T) ((-775 . -758) T) ((-775 . -1015) T) ((-775 . -554) 117882) ((-775 . -1130) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -318) T) ((-775 . -555) 117804) ((-774 . -1015) T) ((-774 . -554) 117786) ((-774 . -1130) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -772) T) ((-773 . -147) T) ((-773 . -554) 117768) ((-769 . -758) T) ((-769 . -554) 117750) ((-769 . -1015) T) ((-769 . -72) T) ((-769 . -13) T) ((-769 . -1130) T) ((-769 . -761) T) ((-766 . -763) 117734) ((-766 . -952) 117632) ((-766 . -557) 117530) ((-766 . -353) 117514) ((-766 . -656) 117484) ((-766 . -584) 117454) ((-766 . -592) 117428) ((-766 . -590) 117387) ((-766 . -104) T) ((-766 . -25) T) ((-766 . -72) T) ((-766 . -13) T) ((-766 . -1130) T) ((-766 . -554) 117369) ((-766 . -1015) T) ((-766 . -23) T) ((-766 . -21) T) ((-766 . -970) 117353) ((-766 . -965) 117337) ((-766 . -82) 117316) ((-766 . -963) T) ((-766 . -665) T) ((-766 . -1062) T) ((-766 . -1027) T) ((-766 . -972) T) ((-766 . -38) 117286) ((-765 . -763) 117270) ((-765 . -952) 117168) ((-765 . -557) 117087) ((-765 . -353) 117071) ((-765 . -656) 117041) ((-765 . -584) 117011) ((-765 . -592) 116985) ((-765 . -590) 116944) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1130) T) ((-765 . -554) 116926) ((-765 . -1015) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -970) 116910) ((-765 . -965) 116894) ((-765 . -82) 116873) ((-765 . -963) T) ((-765 . -665) T) ((-765 . -1062) T) ((-765 . -1027) T) ((-765 . -972) T) ((-765 . -38) 116843) ((-759 . -761) T) ((-759 . -1130) T) ((-759 . -13) T) ((-759 . -72) T) ((-759 . -428) 116827) ((-759 . -554) 116775) ((-759 . -557) 116759) ((-752 . -1015) T) ((-752 . -554) 116741) ((-752 . -1130) T) ((-752 . -13) T) ((-752 . -72) T) ((-752 . -353) 116725) ((-752 . -557) 116598) ((-752 . -952) 116496) ((-752 . -21) 116451) ((-752 . -590) 116371) ((-752 . -23) 116326) ((-752 . -25) 116281) ((-752 . -104) 116236) ((-752 . -757) 116215) ((-752 . -592) 116188) ((-752 . -972) 116167) ((-752 . -1062) 116146) ((-752 . -963) 116125) ((-752 . -723) 116104) ((-752 . -720) 116083) ((-752 . -761) 116062) ((-752 . -758) 116041) ((-752 . -718) 116020) ((-752 . -716) 115999) ((-752 . -1027) 115978) ((-752 . -665) 115957) ((-751 . -749) 115939) ((-751 . -72) T) ((-751 . -13) T) ((-751 . -1130) T) ((-751 . -554) 115921) ((-751 . -1015) T) ((-747 . -963) T) ((-747 . -665) T) ((-747 . -1062) T) ((-747 . -1027) T) ((-747 . -972) T) ((-747 . -21) T) ((-747 . -590) 115866) ((-747 . -23) T) ((-747 . -1015) T) ((-747 . -554) 115848) ((-747 . -1130) T) ((-747 . -13) T) ((-747 . -72) T) ((-747 . -25) T) ((-747 . -104) T) ((-747 . -592) 115808) ((-747 . -557) 115763) ((-747 . -952) 115733) ((-747 . -241) 115712) ((-747 . -120) 115691) ((-747 . -118) 115670) ((-747 . -38) 115640) ((-747 . -82) 115605) ((-747 . -965) 115575) ((-747 . -970) 115545) ((-747 . -584) 115515) ((-747 . -656) 115485) ((-745 . -1015) T) ((-745 . -554) 115467) ((-745 . -1130) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -353) 115451) ((-745 . -557) 115324) ((-745 . -952) 115222) ((-745 . -21) 115177) ((-745 . -590) 115097) ((-745 . -23) 115052) ((-745 . -25) 115007) ((-745 . -104) 114962) ((-745 . -757) 114941) ((-745 . -592) 114914) ((-745 . -972) 114893) ((-745 . -1062) 114872) ((-745 . -963) 114851) ((-745 . -723) 114830) ((-745 . -720) 114809) ((-745 . -761) 114788) ((-745 . -758) 114767) ((-745 . -718) 114746) ((-745 . -716) 114725) ((-745 . -1027) 114704) ((-745 . -665) 114683) ((-743 . -647) 114667) ((-743 . -557) 114622) ((-743 . -656) 114592) ((-743 . -584) 114562) ((-743 . -592) 114536) ((-743 . -590) 114495) ((-743 . -104) T) ((-743 . -25) T) ((-743 . -72) T) ((-743 . -13) T) ((-743 . -1130) T) ((-743 . -554) 114477) ((-743 . -1015) T) ((-743 . -23) T) ((-743 . -21) T) ((-743 . -970) 114461) ((-743 . -965) 114445) ((-743 . -82) 114424) ((-743 . -963) T) ((-743 . -665) T) ((-743 . -1062) T) ((-743 . -1027) T) ((-743 . -972) T) ((-743 . -38) 114394) ((-743 . -190) 114373) ((-743 . -186) 114346) ((-743 . -189) 114325) ((-741 . -334) 114309) ((-741 . -557) 114293) ((-741 . -952) 114277) ((-741 . -761) T) ((-741 . -758) T) ((-741 . -1027) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1130) T) ((-741 . -554) 114259) ((-741 . -1015) T) ((-741 . -665) T) ((-741 . -756) T) ((-741 . -768) T) ((-740 . -228) 114243) ((-740 . -557) 114227) ((-740 . -952) 114211) ((-740 . -761) T) ((-740 . -72) T) ((-740 . -1015) T) ((-740 . -554) 114193) ((-740 . -758) T) ((-740 . -186) 114180) ((-740 . -13) T) ((-740 . -1130) T) ((-740 . -189) T) ((-739 . -82) 114115) ((-739 . -965) 114066) ((-739 . -970) 114017) ((-739 . -21) T) ((-739 . -590) 113953) ((-739 . -23) T) ((-739 . -1015) T) ((-739 . -554) 113922) ((-739 . -1130) T) ((-739 . -13) T) ((-739 . -72) T) ((-739 . -25) T) ((-739 . -104) T) ((-739 . -592) 113873) ((-739 . -190) T) ((-739 . -557) 113782) ((-739 . -972) T) ((-739 . -1027) T) ((-739 . -1062) T) ((-739 . -665) T) ((-739 . -963) T) ((-739 . -186) 113769) ((-739 . -189) T) ((-739 . -428) 113753) ((-739 . -312) 113732) ((-739 . -1135) 113711) ((-739 . -834) 113690) ((-739 . -496) 113669) ((-739 . -146) 113648) ((-739 . -656) 113585) ((-739 . -584) 113522) ((-739 . -38) 113459) ((-739 . -390) 113438) ((-739 . -258) 113417) ((-739 . -246) 113396) ((-739 . -201) 113375) ((-738 . -213) 113314) ((-738 . -557) 113058) ((-738 . -952) 112888) ((-738 . -555) NIL) ((-738 . -277) 112850) ((-738 . -353) 112834) ((-738 . -38) 112686) ((-738 . -82) 112511) ((-738 . -965) 112357) ((-738 . -970) 112203) ((-738 . -590) 112113) ((-738 . -592) 112002) ((-738 . -584) 111854) ((-738 . -656) 111706) ((-738 . -118) 111685) ((-738 . -120) 111664) ((-738 . -146) 111578) ((-738 . -496) 111512) ((-738 . -246) 111446) ((-738 . -47) 111408) ((-738 . -327) 111392) ((-738 . -582) 111340) ((-738 . -390) 111294) ((-738 . -454) 111159) ((-738 . -811) 111095) ((-738 . -808) 110994) ((-738 . -813) 110897) ((-738 . -798) NIL) ((-738 . -823) 110876) ((-738 . -1135) 110855) ((-738 . -863) 110802) ((-738 . -260) 110789) ((-738 . -190) 110768) ((-738 . -104) T) ((-738 . -25) T) ((-738 . -72) T) ((-738 . -554) 110750) ((-738 . -1015) T) ((-738 . -23) T) ((-738 . -21) T) ((-738 . -972) T) ((-738 . -1027) T) ((-738 . -1062) T) ((-738 . -665) T) ((-738 . -963) T) ((-738 . -186) 110698) ((-738 . -13) T) ((-738 . -1130) T) ((-738 . -189) 110652) ((-738 . -225) 110636) ((-738 . -184) 110620) ((-737 . -196) 110599) ((-737 . -1188) 110569) ((-737 . -723) 110548) ((-737 . -720) 110527) ((-737 . -761) 110481) ((-737 . -758) 110435) ((-737 . -718) 110414) ((-737 . -719) 110393) ((-737 . -656) 110338) ((-737 . -584) 110263) ((-737 . -243) 110240) ((-737 . -241) 110217) ((-737 . -427) 110201) ((-737 . -454) 110134) ((-737 . -260) 110072) ((-737 . -34) T) ((-737 . -540) 110049) ((-737 . -952) 109878) ((-737 . -557) 109682) ((-737 . -353) 109651) ((-737 . -582) 109559) ((-737 . -592) 109398) ((-737 . -327) 109368) ((-737 . -318) 109347) ((-737 . -190) 109300) ((-737 . -590) 109088) ((-737 . -972) 109067) ((-737 . -1027) 109046) ((-737 . -1062) 109025) ((-737 . -665) 109004) ((-737 . -963) 108983) ((-737 . -186) 108879) ((-737 . -189) 108781) ((-737 . -225) 108751) ((-737 . -808) 108623) ((-737 . -813) 108497) ((-737 . -811) 108430) ((-737 . -184) 108400) ((-737 . -554) 108097) ((-737 . -970) 108022) ((-737 . -965) 107927) ((-737 . -82) 107847) ((-737 . -104) 107722) ((-737 . -25) 107559) ((-737 . -72) 107296) ((-737 . -13) T) ((-737 . -1130) T) ((-737 . -1015) 107052) ((-737 . -23) 106908) ((-737 . -21) 106823) ((-724 . -722) 106807) ((-724 . -761) 106786) ((-724 . -758) 106765) ((-724 . -952) 106558) ((-724 . -557) 106411) ((-724 . -353) 106375) ((-724 . -241) 106333) ((-724 . -260) 106298) ((-724 . -454) 106210) ((-724 . -288) 106194) ((-724 . -318) 106173) ((-724 . -555) 106134) ((-724 . -120) 106113) ((-724 . -118) 106092) ((-724 . -656) 106076) ((-724 . -584) 106060) ((-724 . -592) 106034) ((-724 . -590) 105993) ((-724 . -104) T) ((-724 . -25) T) ((-724 . -72) T) ((-724 . -13) T) ((-724 . -1130) T) ((-724 . -554) 105975) ((-724 . -1015) T) ((-724 . -23) T) ((-724 . -21) T) ((-724 . -970) 105959) ((-724 . -965) 105943) ((-724 . -82) 105922) ((-724 . -963) T) ((-724 . -665) T) ((-724 . -1062) T) ((-724 . -1027) T) ((-724 . -972) T) ((-724 . -38) 105906) ((-706 . -1156) 105890) ((-706 . -1067) 105868) ((-706 . -555) NIL) ((-706 . -260) 105855) ((-706 . -454) 105803) ((-706 . -277) 105780) ((-706 . -952) 105642) ((-706 . -353) 105626) ((-706 . -38) 105458) ((-706 . -82) 105263) ((-706 . -965) 105089) ((-706 . -970) 104915) ((-706 . -590) 104825) ((-706 . -592) 104714) ((-706 . -584) 104546) ((-706 . -656) 104378) ((-706 . -557) 104134) ((-706 . -118) 104113) ((-706 . -120) 104092) ((-706 . -47) 104069) ((-706 . -327) 104053) ((-706 . -582) 104001) ((-706 . -811) 103945) ((-706 . -808) 103852) ((-706 . -813) 103763) ((-706 . -798) NIL) ((-706 . -823) 103742) ((-706 . -1135) 103721) ((-706 . -863) 103691) ((-706 . -834) 103670) ((-706 . -496) 103584) ((-706 . -246) 103498) ((-706 . -146) 103392) ((-706 . -390) 103326) ((-706 . -258) 103305) ((-706 . -241) 103232) ((-706 . -190) T) ((-706 . -104) T) ((-706 . -25) T) ((-706 . -72) T) ((-706 . -554) 103193) ((-706 . -1015) T) ((-706 . -23) T) ((-706 . -21) T) ((-706 . -972) T) ((-706 . -1027) T) ((-706 . -1062) T) ((-706 . -665) T) ((-706 . -963) T) ((-706 . -186) 103180) ((-706 . -13) T) ((-706 . -1130) T) ((-706 . -189) T) ((-706 . -225) 103164) ((-706 . -184) 103148) ((-705 . -979) 103115) ((-705 . -555) 102750) ((-705 . -260) 102737) ((-705 . -454) 102689) ((-705 . -277) 102661) ((-705 . -952) 102520) ((-705 . -353) 102504) ((-705 . -38) 102356) ((-705 . -557) 102129) ((-705 . -592) 102018) ((-705 . -590) 101928) ((-705 . -972) T) ((-705 . -1027) T) ((-705 . -1062) T) ((-705 . -665) T) ((-705 . -963) T) ((-705 . -82) 101753) ((-705 . -965) 101599) ((-705 . -970) 101445) ((-705 . -21) T) ((-705 . -23) T) ((-705 . -1015) T) ((-705 . -554) 101359) ((-705 . -1130) T) ((-705 . -13) T) ((-705 . -72) T) ((-705 . -25) T) ((-705 . -104) T) ((-705 . -584) 101211) ((-705 . -656) 101063) ((-705 . -118) 101042) ((-705 . -120) 101021) ((-705 . -146) 100935) ((-705 . -496) 100869) ((-705 . -246) 100803) ((-705 . -47) 100775) ((-705 . -327) 100759) ((-705 . -582) 100707) ((-705 . -390) 100661) ((-705 . -811) 100645) ((-705 . -808) 100627) ((-705 . -813) 100611) ((-705 . -798) 100470) ((-705 . -823) 100449) ((-705 . -1135) 100428) ((-705 . -863) 100395) ((-698 . -1015) T) ((-698 . -554) 100377) ((-698 . -1130) T) ((-698 . -13) T) ((-698 . -72) T) ((-696 . -719) T) ((-696 . -104) T) ((-696 . -25) T) ((-696 . -72) T) ((-696 . -13) T) ((-696 . -1130) T) ((-696 . -554) 100359) ((-696 . -1015) T) ((-696 . -23) T) ((-696 . -718) T) ((-696 . -758) T) ((-696 . -761) T) ((-696 . -720) T) ((-696 . -723) T) ((-696 . -665) T) ((-696 . -1027) T) ((-677 . -678) 100343) ((-677 . -1013) 100327) ((-677 . -193) 100311) ((-677 . -555) 100272) ((-677 . -124) 100256) ((-677 . -427) 100240) ((-677 . -1015) T) ((-677 . -454) 100173) ((-677 . -260) 100111) ((-677 . -554) 100093) ((-677 . -72) T) ((-677 . -1130) T) ((-677 . -13) T) ((-677 . -34) T) ((-677 . -76) 100077) ((-677 . -636) 100061) ((-676 . -963) T) ((-676 . -665) T) ((-676 . -1062) T) ((-676 . -1027) T) ((-676 . -972) T) ((-676 . -21) T) ((-676 . -590) 100006) ((-676 . -23) T) ((-676 . -1015) T) ((-676 . -554) 99988) ((-676 . -1130) T) ((-676 . -13) T) ((-676 . -72) T) ((-676 . -25) T) ((-676 . -104) T) ((-676 . -592) 99948) ((-676 . -557) 99904) ((-676 . -952) 99875) ((-676 . -120) 99854) ((-676 . -118) 99833) ((-676 . -38) 99803) ((-676 . -82) 99768) ((-676 . -965) 99738) ((-676 . -970) 99708) ((-676 . -584) 99678) ((-676 . -656) 99648) ((-676 . -318) 99601) ((-672 . -863) 99554) ((-672 . -557) 99346) ((-672 . -952) 99224) ((-672 . -1135) 99203) ((-672 . -823) 99182) ((-672 . -798) NIL) ((-672 . -813) 99159) ((-672 . -808) 99134) ((-672 . -811) 99111) ((-672 . -454) 99049) ((-672 . -390) 99003) ((-672 . -582) 98951) ((-672 . -592) 98840) ((-672 . -327) 98824) ((-672 . -47) 98789) ((-672 . -38) 98641) ((-672 . -584) 98493) ((-672 . -656) 98345) ((-672 . -246) 98279) ((-672 . -496) 98213) ((-672 . -82) 98038) ((-672 . -965) 97884) ((-672 . -970) 97730) ((-672 . -146) 97644) ((-672 . -120) 97623) ((-672 . -118) 97602) ((-672 . -590) 97512) ((-672 . -104) T) ((-672 . -25) T) ((-672 . -72) T) ((-672 . -13) T) ((-672 . -1130) T) ((-672 . -554) 97494) ((-672 . -1015) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -963) T) ((-672 . -665) T) ((-672 . -1062) T) ((-672 . -1027) T) ((-672 . -972) T) ((-672 . -353) 97478) ((-672 . -277) 97443) ((-672 . -260) 97430) ((-672 . -555) 97291) ((-666 . -667) 97275) ((-666 . -80) 97259) ((-666 . -1130) T) ((-666 . |MappingCategory|) 97233) ((-666 . -1025) 97217) ((-666 . -1015) T) ((-666 . -554) 97178) ((-666 . -13) T) ((-666 . -72) T) ((-657 . -411) T) ((-657 . -1027) T) ((-657 . -72) T) ((-657 . -13) T) ((-657 . -1130) T) ((-657 . -554) 97160) ((-657 . -1015) T) ((-657 . -665) T) ((-654 . -963) T) ((-654 . -665) T) ((-654 . -1062) T) ((-654 . -1027) T) ((-654 . -972) T) ((-654 . -21) T) ((-654 . -590) 97132) ((-654 . -23) T) ((-654 . -1015) T) ((-654 . -554) 97114) ((-654 . -1130) T) ((-654 . -13) T) ((-654 . -72) T) ((-654 . -25) T) ((-654 . -104) T) ((-654 . -592) 97101) ((-654 . -557) 97083) ((-653 . -963) T) ((-653 . -665) T) ((-653 . -1062) T) ((-653 . -1027) T) ((-653 . -972) T) ((-653 . -21) T) ((-653 . -590) 97028) ((-653 . -23) T) ((-653 . -1015) T) ((-653 . -554) 97010) ((-653 . -1130) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -592) 96970) ((-653 . -557) 96925) ((-653 . -952) 96895) ((-653 . -241) 96874) ((-653 . -120) 96853) ((-653 . -118) 96832) ((-653 . -38) 96802) ((-653 . -82) 96767) ((-653 . -965) 96737) ((-653 . -970) 96707) ((-653 . -584) 96677) ((-653 . -656) 96647) ((-652 . -758) T) ((-652 . -554) 96582) ((-652 . -1015) T) ((-652 . -72) T) ((-652 . -13) T) ((-652 . -1130) T) ((-652 . -761) T) ((-652 . -428) 96532) ((-652 . -557) 96482) ((-651 . -1156) 96466) ((-651 . -1067) 96444) ((-651 . -555) NIL) ((-651 . -260) 96431) ((-651 . -454) 96379) ((-651 . -277) 96356) ((-651 . -952) 96239) ((-651 . -353) 96223) ((-651 . -38) 96055) ((-651 . -82) 95860) ((-651 . -965) 95686) ((-651 . -970) 95512) ((-651 . -590) 95422) ((-651 . -592) 95311) ((-651 . -584) 95143) ((-651 . -656) 94975) ((-651 . -557) 94739) ((-651 . -118) 94718) ((-651 . -120) 94697) ((-651 . -47) 94674) ((-651 . -327) 94658) ((-651 . -582) 94606) ((-651 . -811) 94550) ((-651 . -808) 94457) ((-651 . -813) 94368) ((-651 . -798) NIL) ((-651 . -823) 94347) ((-651 . -1135) 94326) ((-651 . -863) 94296) ((-651 . -834) 94275) ((-651 . -496) 94189) ((-651 . -246) 94103) ((-651 . -146) 93997) ((-651 . -390) 93931) ((-651 . -258) 93910) ((-651 . -241) 93837) ((-651 . -190) T) ((-651 . -104) T) ((-651 . -25) T) ((-651 . -72) T) ((-651 . -554) 93819) ((-651 . -1015) T) ((-651 . -23) T) ((-651 . -21) T) ((-651 . -972) T) ((-651 . -1027) T) ((-651 . -1062) T) ((-651 . -665) T) ((-651 . -963) T) ((-651 . -186) 93806) ((-651 . -13) T) ((-651 . -1130) T) ((-651 . -189) T) ((-651 . -225) 93790) ((-651 . -184) 93774) ((-651 . -318) 93753) ((-650 . -312) T) ((-650 . -1135) T) ((-650 . -834) T) ((-650 . -496) T) ((-650 . -146) T) ((-650 . -557) 93703) ((-650 . -656) 93668) ((-650 . -584) 93633) ((-650 . -38) 93598) ((-650 . -390) T) ((-650 . -258) T) ((-650 . -592) 93563) ((-650 . -590) 93513) ((-650 . -972) T) ((-650 . -1027) T) ((-650 . -1062) T) ((-650 . -665) T) ((-650 . -963) T) ((-650 . -82) 93462) ((-650 . -965) 93427) ((-650 . -970) 93392) ((-650 . -21) T) ((-650 . -23) T) ((-650 . -1015) T) ((-650 . -554) 93374) ((-650 . -1130) T) ((-650 . -13) T) ((-650 . -72) T) ((-650 . -25) T) ((-650 . -104) T) ((-650 . -246) T) ((-650 . -201) T) ((-649 . -1015) T) ((-649 . -554) 93356) ((-649 . -1130) T) ((-649 . -13) T) ((-649 . -72) T) ((-634 . -1176) T) ((-634 . -952) 93340) ((-634 . -557) 93324) ((-634 . -554) 93306) ((-632 . -629) 93264) ((-632 . -427) 93248) ((-632 . -1015) 93226) ((-632 . -454) 93159) ((-632 . -260) 93097) ((-632 . -554) 93032) ((-632 . -72) 92986) ((-632 . -1130) T) ((-632 . -13) T) ((-632 . -34) T) ((-632 . -57) 92944) ((-632 . -555) 92905) ((-624 . -997) T) ((-624 . -428) 92886) ((-624 . -554) 92836) ((-624 . -557) 92817) ((-624 . -1015) T) ((-624 . -1130) T) ((-624 . -13) T) ((-624 . -72) T) ((-624 . -64) T) ((-620 . -758) T) ((-620 . -554) 92799) ((-620 . -1015) T) ((-620 . -72) T) ((-620 . -13) T) ((-620 . -1130) T) ((-620 . -761) T) ((-620 . -952) 92783) ((-620 . -557) 92767) ((-619 . -997) T) ((-619 . -428) 92748) ((-619 . -554) 92714) ((-619 . -557) 92695) ((-619 . -1015) T) ((-619 . -1130) T) ((-619 . -13) T) ((-619 . -72) T) ((-619 . -64) T) ((-616 . -758) T) ((-616 . -554) 92677) ((-616 . -1015) T) ((-616 . -72) T) ((-616 . -13) T) ((-616 . -1130) T) ((-616 . -761) T) ((-616 . -952) 92661) ((-616 . -557) 92645) ((-615 . -997) T) ((-615 . -428) 92626) ((-615 . -554) 92592) ((-615 . -557) 92573) ((-615 . -1015) T) ((-615 . -1130) T) ((-615 . -13) T) ((-615 . -72) T) ((-615 . -64) T) ((-614 . -1038) 92518) ((-614 . -427) 92502) ((-614 . -454) 92435) ((-614 . -260) 92373) ((-614 . -34) T) ((-614 . -967) 92313) ((-614 . -952) 92211) ((-614 . -557) 92130) ((-614 . -353) 92114) ((-614 . -582) 92062) ((-614 . -592) 92000) ((-614 . -327) 91984) ((-614 . -190) 91963) ((-614 . -186) 91911) ((-614 . -189) 91865) ((-614 . -225) 91849) ((-614 . -808) 91773) ((-614 . -813) 91699) ((-614 . -811) 91658) ((-614 . -184) 91642) ((-614 . -656) 91626) ((-614 . -584) 91610) ((-614 . -590) 91569) ((-614 . -104) T) ((-614 . -25) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1130) T) ((-614 . -554) 91531) ((-614 . -1015) T) ((-614 . -23) T) ((-614 . -21) T) ((-614 . -970) 91515) ((-614 . -965) 91499) ((-614 . -82) 91478) ((-614 . -963) T) ((-614 . -665) T) ((-614 . -1062) T) ((-614 . -1027) T) ((-614 . -972) T) ((-614 . -38) 91438) ((-614 . -359) 91422) ((-614 . -685) 91406) ((-614 . -659) T) ((-614 . -687) T) ((-614 . -316) 91390) ((-614 . -241) 91367) ((-608 . -324) 91346) ((-608 . -656) 91330) ((-608 . -584) 91314) ((-608 . -592) 91298) ((-608 . -590) 91267) ((-608 . -104) T) ((-608 . -25) T) ((-608 . -72) T) ((-608 . -13) T) ((-608 . -1130) T) ((-608 . -554) 91249) ((-608 . -1015) T) ((-608 . -23) T) ((-608 . -21) T) ((-608 . -970) 91233) ((-608 . -965) 91217) ((-608 . -82) 91196) ((-608 . -576) 91180) ((-608 . -333) 91152) ((-608 . -557) 91129) ((-608 . -952) 91106) ((-600 . -602) 91090) ((-600 . -38) 91060) ((-600 . -557) 90979) ((-600 . -592) 90953) ((-600 . -590) 90912) ((-600 . -972) T) ((-600 . -1027) T) ((-600 . -1062) T) ((-600 . -665) T) ((-600 . -963) T) ((-600 . -82) 90891) ((-600 . -965) 90875) ((-600 . -970) 90859) ((-600 . -21) T) ((-600 . -23) T) ((-600 . -1015) T) ((-600 . -554) 90841) ((-600 . -72) T) ((-600 . -25) T) ((-600 . -104) T) ((-600 . -584) 90811) ((-600 . -656) 90781) ((-600 . -353) 90765) ((-600 . -952) 90663) ((-600 . -763) 90647) ((-600 . -1130) T) ((-600 . -13) T) ((-600 . -241) 90608) ((-599 . -602) 90592) ((-599 . -38) 90562) ((-599 . -557) 90481) ((-599 . -592) 90455) ((-599 . -590) 90414) ((-599 . -972) T) ((-599 . -1027) T) ((-599 . -1062) T) ((-599 . -665) T) ((-599 . -963) T) ((-599 . -82) 90393) ((-599 . -965) 90377) ((-599 . -970) 90361) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1015) T) ((-599 . -554) 90343) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -584) 90313) ((-599 . -656) 90283) ((-599 . -353) 90267) ((-599 . -952) 90165) ((-599 . -763) 90149) ((-599 . -1130) T) ((-599 . -13) T) ((-599 . -241) 90128) ((-598 . -602) 90112) ((-598 . -38) 90082) ((-598 . -557) 90001) ((-598 . -592) 89975) ((-598 . -590) 89934) ((-598 . -972) T) ((-598 . -1027) T) ((-598 . -1062) T) ((-598 . -665) T) ((-598 . -963) T) ((-598 . -82) 89913) ((-598 . -965) 89897) ((-598 . -970) 89881) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1015) T) ((-598 . -554) 89863) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -584) 89833) ((-598 . -656) 89803) ((-598 . -353) 89787) ((-598 . -952) 89685) ((-598 . -763) 89669) ((-598 . -1130) T) ((-598 . -13) T) ((-598 . -241) 89648) ((-596 . -656) 89632) ((-596 . -584) 89616) ((-596 . -592) 89600) ((-596 . -590) 89569) ((-596 . -104) T) ((-596 . -25) T) ((-596 . -72) T) ((-596 . -13) T) ((-596 . -1130) T) ((-596 . -554) 89551) ((-596 . -1015) T) ((-596 . -23) T) ((-596 . -21) T) ((-596 . -970) 89535) ((-596 . -965) 89519) ((-596 . -82) 89498) ((-596 . -716) 89477) ((-596 . -718) 89456) ((-596 . -758) 89435) ((-596 . -761) 89414) ((-596 . -720) 89393) ((-596 . -723) 89372) ((-593 . -1015) T) ((-593 . -554) 89354) ((-593 . -1130) T) ((-593 . -13) T) ((-593 . -72) T) ((-593 . -952) 89338) ((-593 . -557) 89322) ((-591 . -636) 89306) ((-591 . -76) 89290) ((-591 . -34) T) ((-591 . -13) T) ((-591 . -1130) T) ((-591 . -72) 89244) ((-591 . -554) 89179) ((-591 . -260) 89117) ((-591 . -454) 89050) ((-591 . -1015) 89028) ((-591 . -427) 89012) ((-591 . -124) 88996) ((-591 . -555) 88957) ((-591 . -193) 88941) ((-589 . -997) T) ((-589 . -428) 88922) ((-589 . -554) 88875) ((-589 . -557) 88856) ((-589 . -1015) T) ((-589 . -1130) T) ((-589 . -13) T) ((-589 . -72) T) ((-589 . -64) T) ((-585 . -610) 88840) ((-585 . -1169) 88824) ((-585 . -925) 88808) ((-585 . -1065) 88792) ((-585 . -758) 88771) ((-585 . -761) 88750) ((-585 . -322) 88734) ((-585 . -595) 88718) ((-585 . -243) 88695) ((-585 . -241) 88647) ((-585 . -540) 88624) ((-585 . -555) 88585) ((-585 . -427) 88569) ((-585 . -1015) 88522) ((-585 . -454) 88455) ((-585 . -260) 88393) ((-585 . -554) 88308) ((-585 . -72) 88242) ((-585 . -1130) T) ((-585 . -13) T) ((-585 . -34) T) ((-585 . -124) 88226) ((-585 . -237) 88210) ((-583 . -1188) 88194) ((-583 . -82) 88173) ((-583 . -965) 88157) ((-583 . -970) 88141) ((-583 . -21) T) ((-583 . -590) 88110) ((-583 . -23) T) ((-583 . -1015) T) ((-583 . -554) 88092) ((-583 . -1130) T) ((-583 . -13) T) ((-583 . -72) T) ((-583 . -25) T) ((-583 . -104) T) ((-583 . -592) 88076) ((-583 . -584) 88060) ((-583 . -656) 88044) ((-583 . -241) 88011) ((-581 . -1188) 87995) ((-581 . -82) 87974) ((-581 . -965) 87958) ((-581 . -970) 87942) ((-581 . -21) T) ((-581 . -590) 87911) ((-581 . -23) T) ((-581 . -1015) T) ((-581 . -554) 87893) ((-581 . -1130) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -592) 87877) ((-581 . -584) 87861) ((-581 . -656) 87845) ((-581 . -557) 87822) ((-581 . -448) 87794) ((-581 . -559) 87752) ((-579 . -754) T) ((-579 . -761) T) ((-579 . -758) T) ((-579 . -1015) T) ((-579 . -554) 87734) ((-579 . -1130) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -318) T) ((-579 . -557) 87711) ((-574 . -685) 87695) ((-574 . -659) T) ((-574 . -687) T) ((-574 . -82) 87674) ((-574 . -965) 87658) ((-574 . -970) 87642) ((-574 . -21) T) ((-574 . -590) 87611) ((-574 . -23) T) ((-574 . -1015) T) ((-574 . -554) 87580) ((-574 . -1130) T) ((-574 . -13) T) ((-574 . -72) T) ((-574 . -25) T) ((-574 . -104) T) ((-574 . -592) 87564) ((-574 . -584) 87548) ((-574 . -656) 87532) ((-574 . -359) 87497) ((-574 . -316) 87432) ((-574 . -241) 87390) ((-573 . -1108) 87365) ((-573 . -183) 87309) ((-573 . -76) 87253) ((-573 . -260) 87098) ((-573 . -454) 86898) ((-573 . -427) 86828) ((-573 . -124) 86772) ((-573 . -555) NIL) ((-573 . -193) 86716) ((-573 . -551) 86691) ((-573 . -243) 86666) ((-573 . -1130) T) ((-573 . -13) T) ((-573 . -241) 86619) ((-573 . -1015) T) ((-573 . -554) 86601) ((-573 . -72) T) ((-573 . -34) T) ((-573 . -540) 86576) ((-568 . -411) T) ((-568 . -1027) T) ((-568 . -72) T) ((-568 . -13) T) ((-568 . -1130) T) ((-568 . -554) 86558) ((-568 . -1015) T) ((-568 . -665) T) ((-567 . -997) T) ((-567 . -428) 86539) ((-567 . -554) 86505) ((-567 . -557) 86486) ((-567 . -1015) T) ((-567 . -1130) T) ((-567 . -13) T) ((-567 . -72) T) ((-567 . -64) T) ((-564 . -184) 86470) ((-564 . -811) 86429) ((-564 . -813) 86355) ((-564 . -808) 86279) ((-564 . -225) 86263) ((-564 . -189) 86217) ((-564 . -1130) T) ((-564 . -13) T) ((-564 . -186) 86165) ((-564 . -963) T) ((-564 . -665) T) ((-564 . -1062) T) ((-564 . -1027) T) ((-564 . -972) T) ((-564 . -21) T) ((-564 . -590) 86137) ((-564 . -23) T) ((-564 . -1015) T) ((-564 . -554) 86119) ((-564 . -72) T) ((-564 . -25) T) ((-564 . -104) T) ((-564 . -592) 86106) ((-564 . -557) 86002) ((-564 . -190) 85981) ((-564 . -496) T) ((-564 . -246) T) ((-564 . -146) T) ((-564 . -656) 85968) ((-564 . -584) 85955) ((-564 . -970) 85942) ((-564 . -965) 85929) ((-564 . -82) 85914) ((-564 . -38) 85901) ((-564 . -555) 85878) ((-564 . -353) 85862) ((-564 . -952) 85747) ((-564 . -120) 85726) ((-564 . -118) 85705) ((-564 . -258) 85684) ((-564 . -390) 85663) ((-564 . -834) 85642) ((-560 . -38) 85626) ((-560 . -557) 85595) ((-560 . -592) 85569) ((-560 . -590) 85528) ((-560 . -972) T) ((-560 . -1027) T) ((-560 . -1062) T) ((-560 . -665) T) ((-560 . -963) T) ((-560 . -82) 85507) ((-560 . -965) 85491) ((-560 . -970) 85475) ((-560 . -21) T) ((-560 . -23) T) ((-560 . -1015) T) ((-560 . -554) 85457) ((-560 . -1130) T) ((-560 . -13) T) ((-560 . -72) T) ((-560 . -25) T) ((-560 . -104) T) ((-560 . -584) 85441) ((-560 . -656) 85425) ((-560 . -757) 85404) ((-560 . -723) 85383) ((-560 . -720) 85362) ((-560 . -761) 85341) ((-560 . -758) 85320) ((-560 . -718) 85299) ((-560 . -716) 85278) ((-558 . -882) T) ((-558 . -72) T) ((-558 . -554) 85260) ((-558 . -1015) T) ((-558 . -606) T) ((-558 . -13) T) ((-558 . -1130) T) ((-558 . -84) T) ((-558 . -318) T) ((-552 . -105) T) ((-552 . -72) T) ((-552 . -13) T) ((-552 . -1130) T) ((-552 . -554) 85242) ((-552 . -1015) T) ((-552 . -758) T) ((-552 . -761) T) ((-552 . -796) 85226) ((-552 . -555) 85087) ((-549 . -314) 85025) ((-549 . -72) T) ((-549 . -13) T) ((-549 . -1130) T) ((-549 . -554) 85007) ((-549 . -1015) T) ((-549 . -1108) 84983) ((-549 . -183) 84928) ((-549 . -76) 84873) ((-549 . -260) 84662) ((-549 . -454) 84402) ((-549 . -427) 84334) ((-549 . -124) 84279) ((-549 . -555) NIL) ((-549 . -193) 84224) ((-549 . -551) 84200) ((-549 . -243) 84176) ((-549 . -241) 84152) ((-549 . -34) T) ((-549 . -540) 84128) ((-548 . -1015) T) ((-548 . -554) 84080) ((-548 . -1130) T) ((-548 . -13) T) ((-548 . -72) T) ((-548 . -428) 84047) ((-548 . -557) 84014) ((-547 . -1015) T) ((-547 . -554) 83996) ((-547 . -1130) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -606) T) ((-546 . -1015) T) ((-546 . -554) 83978) ((-546 . -1130) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -606) T) ((-545 . -1015) T) ((-545 . -554) 83945) ((-545 . -1130) T) ((-545 . -13) T) ((-545 . -72) T) ((-544 . -1015) T) ((-544 . -554) 83927) ((-544 . -1130) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -606) T) ((-543 . -1015) T) ((-543 . -554) 83894) ((-543 . -1130) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -428) 83876) ((-543 . -557) 83858) ((-542 . -685) 83842) ((-542 . -659) T) ((-542 . -687) T) ((-542 . -82) 83821) ((-542 . -965) 83805) ((-542 . -970) 83789) ((-542 . -21) T) ((-542 . -590) 83758) ((-542 . -23) T) ((-542 . -1015) T) ((-542 . -554) 83727) ((-542 . -1130) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -25) T) ((-542 . -104) T) ((-542 . -592) 83711) ((-542 . -584) 83695) ((-542 . -656) 83679) ((-542 . -359) 83644) ((-542 . -316) 83579) ((-542 . -241) 83537) ((-541 . -997) T) ((-541 . -428) 83518) ((-541 . -554) 83468) ((-541 . -557) 83449) ((-541 . -1015) T) ((-541 . -1130) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -64) T) ((-538 . -1179) 83433) ((-538 . -322) 83417) ((-538 . -761) 83396) ((-538 . -758) 83375) ((-538 . -124) 83359) ((-538 . -34) T) ((-538 . -13) T) ((-538 . -1130) T) ((-538 . -72) 83293) ((-538 . -554) 83208) ((-538 . -260) 83146) ((-538 . -454) 83079) ((-538 . -1015) 83032) ((-538 . -427) 83016) ((-538 . -555) 82977) ((-538 . -241) 82929) ((-538 . -540) 82906) ((-538 . -243) 82883) ((-538 . -595) 82867) ((-538 . -19) 82851) ((-537 . -554) 82833) ((-533 . -1015) T) ((-533 . -554) 82799) ((-533 . -1130) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -428) 82780) ((-533 . -557) 82761) ((-532 . -963) T) ((-532 . -665) T) ((-532 . -1062) T) ((-532 . -1027) T) ((-532 . -972) T) ((-532 . -21) T) ((-532 . -590) 82720) ((-532 . -23) T) ((-532 . -1015) T) ((-532 . -554) 82702) ((-532 . -1130) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -592) 82676) ((-532 . -557) 82634) ((-532 . -82) 82587) ((-532 . -965) 82547) ((-532 . -970) 82507) ((-532 . -496) 82486) ((-532 . -246) 82465) ((-532 . -146) 82444) ((-532 . -656) 82417) ((-532 . -584) 82390) ((-532 . -38) 82363) ((-531 . -1159) 82340) ((-531 . -47) 82317) ((-531 . -38) 82214) ((-531 . -584) 82111) ((-531 . -656) 82008) ((-531 . -557) 81890) ((-531 . -246) 81869) ((-531 . -496) 81848) ((-531 . -82) 81713) ((-531 . -965) 81599) ((-531 . -970) 81485) ((-531 . -146) 81439) ((-531 . -120) 81418) ((-531 . -118) 81397) ((-531 . -592) 81322) ((-531 . -590) 81232) ((-531 . -888) 81202) ((-531 . -813) 81115) ((-531 . -808) 81026) ((-531 . -811) 80939) ((-531 . -241) 80904) ((-531 . -189) 80863) ((-531 . -1130) T) ((-531 . -13) T) ((-531 . -186) 80816) ((-531 . -963) T) ((-531 . -665) T) ((-531 . -1062) T) ((-531 . -1027) T) ((-531 . -972) T) ((-531 . -21) T) ((-531 . -23) T) ((-531 . -1015) T) ((-531 . -554) 80798) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -190) 80757) ((-529 . -997) T) ((-529 . -428) 80738) ((-529 . -554) 80704) ((-529 . -557) 80685) ((-529 . -1015) T) ((-529 . -1130) T) ((-529 . -13) T) ((-529 . -72) T) ((-529 . -64) T) ((-523 . -1015) T) ((-523 . -554) 80651) ((-523 . -1130) T) ((-523 . -13) T) ((-523 . -72) T) ((-523 . -428) 80632) ((-523 . -557) 80613) ((-520 . -656) 80588) ((-520 . -584) 80563) ((-520 . -592) 80538) ((-520 . -590) 80498) ((-520 . -104) T) ((-520 . -25) T) ((-520 . -72) T) ((-520 . -13) T) ((-520 . -1130) T) ((-520 . -554) 80480) ((-520 . -1015) T) ((-520 . -23) T) ((-520 . -21) T) ((-520 . -970) 80455) ((-520 . -965) 80430) ((-520 . -82) 80391) ((-520 . -952) 80375) ((-520 . -557) 80359) ((-518 . -299) T) ((-518 . -1067) T) ((-518 . -318) T) ((-518 . -118) T) ((-518 . -312) T) ((-518 . -1135) T) ((-518 . -834) T) ((-518 . -496) T) ((-518 . -146) T) ((-518 . -557) 80309) ((-518 . -656) 80274) ((-518 . -584) 80239) ((-518 . -38) 80204) ((-518 . -390) T) ((-518 . -258) T) ((-518 . -82) 80153) ((-518 . -965) 80118) ((-518 . -970) 80083) ((-518 . -590) 80033) ((-518 . -592) 79998) ((-518 . -246) T) ((-518 . -201) T) ((-518 . -343) T) ((-518 . -189) T) ((-518 . -1130) T) ((-518 . -13) T) ((-518 . -186) 79985) ((-518 . -963) T) ((-518 . -665) T) ((-518 . -1062) T) ((-518 . -1027) T) ((-518 . -972) T) ((-518 . -21) T) ((-518 . -23) T) ((-518 . -1015) T) ((-518 . -554) 79967) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -190) T) ((-518 . -280) 79954) ((-518 . -120) 79936) ((-518 . -952) 79923) ((-518 . -1188) 79910) ((-518 . -1199) 79897) ((-518 . -555) 79879) ((-517 . -781) 79863) ((-517 . -834) T) ((-517 . -496) T) ((-517 . -246) T) ((-517 . -146) T) ((-517 . -557) 79835) ((-517 . -656) 79822) ((-517 . -584) 79809) ((-517 . -970) 79796) ((-517 . -965) 79783) ((-517 . -82) 79768) ((-517 . -38) 79755) ((-517 . -390) T) ((-517 . -258) T) ((-517 . -963) T) ((-517 . -665) T) ((-517 . -1062) T) ((-517 . -1027) T) ((-517 . -972) T) ((-517 . -21) T) ((-517 . -590) 79727) ((-517 . -23) T) ((-517 . -1015) T) ((-517 . -554) 79709) ((-517 . -1130) T) ((-517 . -13) T) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -592) 79696) ((-517 . -120) T) ((-516 . -1015) T) ((-516 . -554) 79678) ((-516 . -1130) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -1015) T) ((-515 . -554) 79660) ((-515 . -1130) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -513) T) ((-514 . -772) T) ((-514 . -147) T) ((-514 . -466) T) ((-514 . -554) 79642) ((-508 . -494) 79626) ((-508 . -35) T) ((-508 . -66) T) ((-508 . -239) T) ((-508 . -431) T) ((-508 . -1119) T) ((-508 . -1116) T) ((-508 . -952) 79608) ((-508 . -917) T) ((-508 . -761) T) ((-508 . -758) T) ((-508 . -496) T) ((-508 . -246) T) ((-508 . -146) T) ((-508 . -557) 79580) ((-508 . -656) 79567) ((-508 . -584) 79554) ((-508 . -592) 79541) ((-508 . -590) 79513) ((-508 . -104) T) ((-508 . -25) T) ((-508 . -72) T) ((-508 . -13) T) ((-508 . -1130) T) ((-508 . -554) 79495) ((-508 . -1015) T) ((-508 . -23) T) ((-508 . -21) T) ((-508 . -970) 79482) ((-508 . -965) 79469) ((-508 . -82) 79454) ((-508 . -963) T) ((-508 . -665) T) ((-508 . -1062) T) ((-508 . -1027) T) ((-508 . -972) T) ((-508 . -38) 79441) ((-508 . -390) T) ((-490 . -1108) 79420) ((-490 . -183) 79368) ((-490 . -76) 79316) ((-490 . -260) 79114) ((-490 . -454) 78866) ((-490 . -427) 78801) ((-490 . -124) 78749) ((-490 . -555) NIL) ((-490 . -193) 78697) ((-490 . -551) 78676) ((-490 . -243) 78655) ((-490 . -1130) T) ((-490 . -13) T) ((-490 . -241) 78634) ((-490 . -1015) T) ((-490 . -554) 78616) ((-490 . -72) T) ((-490 . -34) T) ((-490 . -540) 78595) ((-489 . -754) T) ((-489 . -761) T) ((-489 . -758) T) ((-489 . -1015) T) ((-489 . -554) 78577) ((-489 . -1130) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -318) T) ((-488 . -754) T) ((-488 . -761) T) ((-488 . -758) T) ((-488 . -1015) T) ((-488 . -554) 78559) ((-488 . -1130) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -318) T) ((-487 . -754) T) ((-487 . -761) T) ((-487 . -758) T) ((-487 . -1015) T) ((-487 . -554) 78541) ((-487 . -1130) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -318) T) ((-486 . -754) T) ((-486 . -761) T) ((-486 . -758) T) ((-486 . -1015) T) ((-486 . -554) 78523) ((-486 . -1130) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -318) T) ((-485 . -484) T) ((-485 . -1135) T) ((-485 . -1067) T) ((-485 . -952) 78505) ((-485 . -555) 78420) ((-485 . -935) T) ((-485 . -798) 78402) ((-485 . -757) T) ((-485 . -723) T) ((-485 . -720) T) ((-485 . -761) T) ((-485 . -758) T) ((-485 . -718) T) ((-485 . -716) T) ((-485 . -742) T) ((-485 . -592) 78374) ((-485 . -582) 78356) ((-485 . -834) T) ((-485 . -496) T) ((-485 . -246) T) ((-485 . -146) T) ((-485 . -557) 78328) ((-485 . -656) 78315) ((-485 . -584) 78302) ((-485 . -970) 78289) ((-485 . -965) 78276) ((-485 . -82) 78261) ((-485 . -38) 78248) ((-485 . -390) T) ((-485 . -258) T) ((-485 . -189) T) ((-485 . -186) 78235) ((-485 . -190) T) ((-485 . -116) T) ((-485 . -963) T) ((-485 . -665) T) ((-485 . -1062) T) ((-485 . -1027) T) ((-485 . -972) T) ((-485 . -21) T) ((-485 . -590) 78207) ((-485 . -23) T) ((-485 . -1015) T) ((-485 . -554) 78189) ((-485 . -1130) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -25) T) ((-485 . -104) T) ((-485 . -120) T) ((-474 . -1018) 78141) ((-474 . -72) T) ((-474 . -554) 78123) ((-474 . -1015) T) ((-474 . -241) 78079) ((-474 . -1130) T) ((-474 . -13) T) ((-474 . -559) 77982) ((-474 . -555) 77963) ((-472 . -693) 77945) ((-472 . -466) T) ((-472 . -147) T) ((-472 . -772) T) ((-472 . -513) T) ((-472 . -554) 77927) ((-470 . -719) T) ((-470 . -104) T) ((-470 . -25) T) ((-470 . -72) T) ((-470 . -13) T) ((-470 . -1130) T) ((-470 . -554) 77909) ((-470 . -1015) T) ((-470 . -23) T) ((-470 . -718) T) ((-470 . -758) T) ((-470 . -761) T) ((-470 . -720) T) ((-470 . -723) T) ((-470 . -448) 77886) ((-470 . -559) 77849) ((-468 . -466) T) ((-468 . -147) T) ((-468 . -554) 77831) ((-464 . -997) T) ((-464 . -428) 77812) ((-464 . -554) 77778) ((-464 . -557) 77759) ((-464 . -1015) T) ((-464 . -1130) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-463 . -997) T) ((-463 . -428) 77740) ((-463 . -554) 77706) ((-463 . -557) 77687) ((-463 . -1015) T) ((-463 . -1130) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -629) 77637) ((-462 . -427) 77621) ((-462 . -1015) 77599) ((-462 . -454) 77532) ((-462 . -260) 77470) ((-462 . -554) 77405) ((-462 . -72) 77359) ((-462 . -1130) T) ((-462 . -13) T) ((-462 . -34) T) ((-462 . -57) 77309) ((-459 . -57) 77283) ((-459 . -34) T) ((-459 . -13) T) ((-459 . -1130) T) ((-459 . -72) 77237) ((-459 . -554) 77172) ((-459 . -260) 77110) ((-459 . -454) 77043) ((-459 . -1015) 77021) ((-459 . -427) 77005) ((-458 . -280) 76982) ((-458 . -190) T) ((-458 . -186) 76969) ((-458 . -189) T) ((-458 . -318) T) ((-458 . -1067) T) ((-458 . -299) T) ((-458 . -120) 76951) ((-458 . -557) 76881) ((-458 . -592) 76826) ((-458 . -590) 76756) ((-458 . -104) T) ((-458 . -25) T) ((-458 . -72) T) ((-458 . -13) T) ((-458 . -1130) T) ((-458 . -554) 76738) ((-458 . -1015) T) ((-458 . -23) T) ((-458 . -21) T) ((-458 . -972) T) ((-458 . -1027) T) ((-458 . -1062) T) ((-458 . -665) T) ((-458 . -963) T) ((-458 . -312) T) ((-458 . -1135) T) ((-458 . -834) T) ((-458 . -496) T) ((-458 . -146) T) ((-458 . -656) 76683) ((-458 . -584) 76628) ((-458 . -38) 76593) ((-458 . -390) T) ((-458 . -258) T) ((-458 . -82) 76510) ((-458 . -965) 76455) ((-458 . -970) 76400) ((-458 . -246) T) ((-458 . -201) T) ((-458 . -343) T) ((-458 . -118) T) ((-458 . -952) 76377) ((-458 . -1188) 76354) ((-458 . -1199) 76331) ((-457 . -997) T) ((-457 . -428) 76312) ((-457 . -554) 76278) ((-457 . -557) 76259) ((-457 . -1015) T) ((-457 . -1130) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -64) T) ((-456 . -19) 76243) ((-456 . -595) 76227) ((-456 . -243) 76204) ((-456 . -241) 76156) ((-456 . -540) 76133) ((-456 . -555) 76094) ((-456 . -427) 76078) ((-456 . -1015) 76031) ((-456 . -454) 75964) ((-456 . -260) 75902) ((-456 . -554) 75817) ((-456 . -72) 75751) ((-456 . -1130) T) ((-456 . -13) T) ((-456 . -34) T) ((-456 . -124) 75735) ((-456 . -758) 75714) ((-456 . -761) 75693) ((-456 . -322) 75677) ((-456 . -237) 75661) ((-455 . -274) 75640) ((-455 . -557) 75624) ((-455 . -952) 75608) ((-455 . -23) T) ((-455 . -1015) T) ((-455 . -554) 75590) ((-455 . -1130) T) ((-455 . -13) T) ((-455 . -72) T) ((-455 . -25) T) ((-455 . -104) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1130) T) ((-452 . -554) 75562) ((-451 . -719) T) ((-451 . -104) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1130) T) ((-451 . -554) 75544) ((-451 . -1015) T) ((-451 . -23) T) ((-451 . -718) T) ((-451 . -758) T) ((-451 . -761) T) ((-451 . -720) T) ((-451 . -723) T) ((-451 . -448) 75523) ((-451 . -559) 75488) ((-450 . -718) T) ((-450 . -758) T) ((-450 . -761) T) ((-450 . -720) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1130) T) ((-450 . -554) 75470) ((-450 . -1015) T) ((-450 . -23) T) ((-450 . -448) 75449) ((-450 . -559) 75414) ((-449 . -448) 75393) ((-449 . -554) 75333) ((-449 . -1015) 75284) ((-449 . -559) 75249) ((-449 . -1130) T) ((-449 . -13) T) ((-449 . -72) T) ((-447 . -23) T) ((-447 . -1015) T) ((-447 . -554) 75231) ((-447 . -1130) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -448) 75210) ((-447 . -559) 75175) ((-446 . -21) T) ((-446 . -590) 75157) ((-446 . -23) T) ((-446 . -1015) T) ((-446 . -554) 75139) ((-446 . -1130) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -104) T) ((-446 . -448) 75118) ((-446 . -559) 75083) ((-445 . -1015) T) ((-445 . -554) 75065) ((-445 . -1130) T) ((-445 . -13) T) ((-445 . -72) T) ((-442 . -1015) T) ((-442 . -554) 75047) ((-442 . -1130) T) ((-442 . -13) T) ((-442 . -72) T) ((-440 . -758) T) ((-440 . -554) 75029) ((-440 . -1015) T) ((-440 . -72) T) ((-440 . -13) T) ((-440 . -1130) T) ((-440 . -761) T) ((-440 . -557) 75010) ((-438 . -96) T) ((-438 . -322) 74993) ((-438 . -761) T) ((-438 . -758) T) ((-438 . -124) 74976) ((-438 . -34) T) ((-438 . -72) T) ((-438 . -554) 74958) ((-438 . -260) NIL) ((-438 . -454) NIL) ((-438 . -1015) T) ((-438 . -427) 74941) ((-438 . -555) 74923) ((-438 . -241) 74874) ((-438 . -540) 74850) ((-438 . -243) 74826) ((-438 . -595) 74809) ((-438 . -19) 74792) ((-438 . -606) T) ((-438 . -13) T) ((-438 . -1130) T) ((-438 . -84) T) ((-435 . -57) 74742) ((-435 . -34) T) ((-435 . -13) T) ((-435 . -1130) T) ((-435 . -72) 74696) ((-435 . -554) 74631) ((-435 . -260) 74569) ((-435 . -454) 74502) ((-435 . -1015) 74480) ((-435 . -427) 74464) ((-434 . -19) 74448) ((-434 . -595) 74432) ((-434 . -243) 74409) ((-434 . -241) 74361) ((-434 . -540) 74338) ((-434 . -555) 74299) ((-434 . -427) 74283) ((-434 . -1015) 74236) ((-434 . -454) 74169) ((-434 . -260) 74107) ((-434 . -554) 74022) ((-434 . -72) 73956) ((-434 . -1130) T) ((-434 . -13) T) ((-434 . -34) T) ((-434 . -124) 73940) ((-434 . -758) 73919) ((-434 . -761) 73898) ((-434 . -322) 73882) ((-433 . -254) T) ((-433 . -72) T) ((-433 . -13) T) ((-433 . -1130) T) ((-433 . -554) 73864) ((-433 . -1015) T) ((-433 . -557) 73765) ((-433 . -952) 73708) ((-433 . -454) 73674) ((-433 . -260) 73661) ((-433 . -27) T) ((-433 . -917) T) ((-433 . -201) T) ((-433 . -82) 73610) ((-433 . -965) 73575) ((-433 . -970) 73540) ((-433 . -246) T) ((-433 . -656) 73505) ((-433 . -584) 73470) ((-433 . -592) 73420) ((-433 . -590) 73370) ((-433 . -104) T) ((-433 . -25) T) ((-433 . -23) T) ((-433 . -21) T) ((-433 . -963) T) ((-433 . -665) T) ((-433 . -1062) T) ((-433 . -1027) T) ((-433 . -972) T) ((-433 . -38) 73335) ((-433 . -258) T) ((-433 . -390) T) ((-433 . -146) T) ((-433 . -496) T) ((-433 . -834) T) ((-433 . -1135) T) ((-433 . -312) T) ((-433 . -582) 73295) ((-433 . -935) T) ((-433 . -555) 73240) ((-433 . -120) T) ((-433 . -190) T) ((-433 . -186) 73227) ((-433 . -189) T) ((-429 . -1015) T) ((-429 . -554) 73193) ((-429 . -1130) T) ((-429 . -13) T) ((-429 . -72) T) ((-425 . -906) 73175) ((-425 . -1067) T) ((-425 . -557) 73125) ((-425 . -952) 73085) ((-425 . -555) 73015) ((-425 . -935) T) ((-425 . -823) NIL) ((-425 . -796) 72997) ((-425 . -757) T) ((-425 . -723) T) ((-425 . -720) T) ((-425 . -761) T) ((-425 . -758) T) ((-425 . -718) T) ((-425 . -716) T) ((-425 . -742) T) ((-425 . -798) 72979) ((-425 . -341) 72961) ((-425 . -582) 72943) ((-425 . -327) 72925) ((-425 . -241) NIL) ((-425 . -260) NIL) ((-425 . -454) NIL) ((-425 . -288) 72907) ((-425 . -201) T) ((-425 . -82) 72834) ((-425 . -965) 72784) ((-425 . -970) 72734) ((-425 . -246) T) ((-425 . -656) 72684) ((-425 . -584) 72634) ((-425 . -592) 72584) ((-425 . -590) 72534) ((-425 . -38) 72484) ((-425 . -258) T) ((-425 . -390) T) ((-425 . -146) T) ((-425 . -496) T) ((-425 . -834) T) ((-425 . -1135) T) ((-425 . -312) T) ((-425 . -190) T) ((-425 . -186) 72471) ((-425 . -189) T) ((-425 . -225) 72453) ((-425 . -808) NIL) ((-425 . -813) NIL) ((-425 . -811) NIL) ((-425 . -184) 72435) ((-425 . -120) T) ((-425 . -118) NIL) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1130) T) ((-425 . -554) 72377) ((-425 . -1015) T) ((-425 . -23) T) ((-425 . -21) T) ((-425 . -963) T) ((-425 . -665) T) ((-425 . -1062) T) ((-425 . -1027) T) ((-425 . -972) T) ((-423 . -286) 72346) ((-423 . -104) T) ((-423 . -25) T) ((-423 . -72) T) ((-423 . -13) T) ((-423 . -1130) T) ((-423 . -554) 72328) ((-423 . -1015) T) ((-423 . -23) T) ((-423 . -590) 72310) ((-423 . -21) T) ((-422 . -883) 72294) ((-422 . -427) 72278) ((-422 . -1015) 72256) ((-422 . -454) 72189) ((-422 . -260) 72127) ((-422 . -554) 72062) ((-422 . -72) 72016) ((-422 . -1130) T) ((-422 . -13) T) ((-422 . -34) T) ((-422 . -76) 72000) ((-421 . -997) T) ((-421 . -428) 71981) ((-421 . -554) 71947) ((-421 . -557) 71928) ((-421 . -1015) T) ((-421 . -1130) T) ((-421 . -13) T) ((-421 . -72) T) ((-421 . -64) T) ((-420 . -196) 71907) ((-420 . -1188) 71877) ((-420 . -723) 71856) ((-420 . -720) 71835) ((-420 . -761) 71789) ((-420 . -758) 71743) ((-420 . -718) 71722) ((-420 . -719) 71701) ((-420 . -656) 71646) ((-420 . -584) 71571) ((-420 . -243) 71548) ((-420 . -241) 71525) ((-420 . -427) 71509) ((-420 . -454) 71442) ((-420 . -260) 71380) ((-420 . -34) T) ((-420 . -540) 71357) ((-420 . -952) 71186) ((-420 . -557) 70990) ((-420 . -353) 70959) ((-420 . -582) 70867) ((-420 . -592) 70706) ((-420 . -327) 70676) ((-420 . -318) 70655) ((-420 . -190) 70608) ((-420 . -590) 70396) ((-420 . -972) 70375) ((-420 . -1027) 70354) ((-420 . -1062) 70333) ((-420 . -665) 70312) ((-420 . -963) 70291) ((-420 . -186) 70187) ((-420 . -189) 70089) ((-420 . -225) 70059) ((-420 . -808) 69931) ((-420 . -813) 69805) ((-420 . -811) 69738) ((-420 . -184) 69708) ((-420 . -554) 69405) ((-420 . -970) 69330) ((-420 . -965) 69235) ((-420 . -82) 69155) ((-420 . -104) 69030) ((-420 . -25) 68867) ((-420 . -72) 68604) ((-420 . -13) T) ((-420 . -1130) T) ((-420 . -1015) 68360) ((-420 . -23) 68216) ((-420 . -21) 68131) ((-419 . -863) 68076) ((-419 . -557) 67868) ((-419 . -952) 67746) ((-419 . -1135) 67725) ((-419 . -823) 67704) ((-419 . -798) NIL) ((-419 . -813) 67681) ((-419 . -808) 67656) ((-419 . -811) 67633) ((-419 . -454) 67571) ((-419 . -390) 67525) ((-419 . -582) 67473) ((-419 . -592) 67362) ((-419 . -327) 67346) ((-419 . -47) 67303) ((-419 . -38) 67155) ((-419 . -584) 67007) ((-419 . -656) 66859) ((-419 . -246) 66793) ((-419 . -496) 66727) ((-419 . -82) 66552) ((-419 . -965) 66398) ((-419 . -970) 66244) ((-419 . -146) 66158) ((-419 . -120) 66137) ((-419 . -118) 66116) ((-419 . -590) 66026) ((-419 . -104) T) ((-419 . -25) T) ((-419 . -72) T) ((-419 . -13) T) ((-419 . -1130) T) ((-419 . -554) 66008) ((-419 . -1015) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -963) T) ((-419 . -665) T) ((-419 . -1062) T) ((-419 . -1027) T) ((-419 . -972) T) ((-419 . -353) 65992) ((-419 . -277) 65949) ((-419 . -260) 65936) ((-419 . -555) 65797) ((-417 . -1108) 65776) ((-417 . -183) 65724) ((-417 . -76) 65672) ((-417 . -260) 65470) ((-417 . -454) 65222) ((-417 . -427) 65157) ((-417 . -124) 65105) ((-417 . -555) NIL) ((-417 . -193) 65053) ((-417 . -551) 65032) ((-417 . -243) 65011) ((-417 . -1130) T) ((-417 . -13) T) ((-417 . -241) 64990) ((-417 . -1015) T) ((-417 . -554) 64972) ((-417 . -72) T) ((-417 . -34) T) ((-417 . -540) 64951) ((-416 . -997) T) ((-416 . -428) 64932) ((-416 . -554) 64898) ((-416 . -557) 64879) ((-416 . -1015) T) ((-416 . -1130) T) ((-416 . -13) T) ((-416 . -72) T) ((-416 . -64) T) ((-415 . -312) T) ((-415 . -1135) T) ((-415 . -834) T) ((-415 . -496) T) ((-415 . -146) T) ((-415 . -557) 64829) ((-415 . -656) 64794) ((-415 . -584) 64759) ((-415 . -38) 64724) ((-415 . -390) T) ((-415 . -258) T) ((-415 . -592) 64689) ((-415 . -590) 64639) ((-415 . -972) T) ((-415 . -1027) T) ((-415 . -1062) T) ((-415 . -665) T) ((-415 . -963) T) ((-415 . -82) 64588) ((-415 . -965) 64553) ((-415 . -970) 64518) ((-415 . -21) T) ((-415 . -23) T) ((-415 . -1015) T) ((-415 . -554) 64470) ((-415 . -1130) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -25) T) ((-415 . -104) T) ((-415 . -246) T) ((-415 . -201) T) ((-415 . -120) T) ((-415 . -952) 64430) ((-415 . -935) T) ((-415 . -555) 64352) ((-414 . -1125) 64321) ((-414 . -554) 64283) ((-414 . -124) 64267) ((-414 . -34) T) ((-414 . -13) T) ((-414 . -1130) T) ((-414 . -72) T) ((-414 . -260) 64205) ((-414 . -454) 64138) ((-414 . -1015) T) ((-414 . -427) 64122) ((-414 . -555) 64083) ((-414 . -891) 64052) ((-413 . -1108) 64031) ((-413 . -183) 63979) ((-413 . -76) 63927) ((-413 . -260) 63725) ((-413 . -454) 63477) ((-413 . -427) 63412) ((-413 . -124) 63360) ((-413 . -555) NIL) ((-413 . -193) 63308) ((-413 . -551) 63287) ((-413 . -243) 63266) ((-413 . -1130) T) ((-413 . -13) T) ((-413 . -241) 63245) ((-413 . -1015) T) ((-413 . -554) 63227) ((-413 . -72) T) ((-413 . -34) T) ((-413 . -540) 63206) ((-412 . -1163) 63190) ((-412 . -190) 63142) ((-412 . -186) 63088) ((-412 . -189) 63040) ((-412 . -241) 62998) ((-412 . -811) 62904) ((-412 . -808) 62785) ((-412 . -813) 62691) ((-412 . -888) 62654) ((-412 . -38) 62501) ((-412 . -82) 62321) ((-412 . -965) 62162) ((-412 . -970) 62003) ((-412 . -590) 61888) ((-412 . -592) 61788) ((-412 . -584) 61635) ((-412 . -656) 61482) ((-412 . -557) 61314) ((-412 . -118) 61293) ((-412 . -120) 61272) ((-412 . -47) 61242) ((-412 . -1159) 61212) ((-412 . -35) 61178) ((-412 . -66) 61144) ((-412 . -239) 61110) ((-412 . -431) 61076) ((-412 . -1119) 61042) ((-412 . -1116) 61008) ((-412 . -917) 60974) ((-412 . -201) 60953) ((-412 . -246) 60907) ((-412 . -104) T) ((-412 . -25) T) ((-412 . -72) T) ((-412 . -13) T) ((-412 . -1130) T) ((-412 . -554) 60889) ((-412 . -1015) T) ((-412 . -23) T) ((-412 . -21) T) ((-412 . -963) T) ((-412 . -665) T) ((-412 . -1062) T) ((-412 . -1027) T) ((-412 . -972) T) ((-412 . -258) 60868) ((-412 . -390) 60847) ((-412 . -146) 60781) ((-412 . -496) 60735) ((-412 . -834) 60714) ((-412 . -1135) 60693) ((-412 . -312) 60672) ((-406 . -1015) T) ((-406 . -554) 60654) ((-406 . -1130) T) ((-406 . -13) T) ((-406 . -72) T) ((-401 . -891) 60623) ((-401 . -555) 60584) ((-401 . -427) 60568) ((-401 . -1015) T) ((-401 . -454) 60501) ((-401 . -260) 60439) ((-401 . -554) 60401) ((-401 . -72) T) ((-401 . -1130) T) ((-401 . -13) T) ((-401 . -34) T) ((-401 . -124) 60385) ((-399 . -656) 60356) ((-399 . -584) 60327) ((-399 . -592) 60298) ((-399 . -590) 60254) ((-399 . -104) T) ((-399 . -25) T) ((-399 . -72) T) ((-399 . -13) T) ((-399 . -1130) T) ((-399 . -554) 60236) ((-399 . -1015) T) ((-399 . -23) T) ((-399 . -21) T) ((-399 . -970) 60207) ((-399 . -965) 60178) ((-399 . -82) 60139) ((-392 . -863) 60106) ((-392 . -557) 59898) ((-392 . -952) 59776) ((-392 . -1135) 59755) ((-392 . -823) 59734) ((-392 . -798) NIL) ((-392 . -813) 59711) ((-392 . -808) 59686) ((-392 . -811) 59663) ((-392 . -454) 59601) ((-392 . -390) 59555) ((-392 . -582) 59503) ((-392 . -592) 59392) ((-392 . -327) 59376) ((-392 . -47) 59355) ((-392 . -38) 59207) ((-392 . -584) 59059) ((-392 . -656) 58911) ((-392 . -246) 58845) ((-392 . -496) 58779) ((-392 . -82) 58604) ((-392 . -965) 58450) ((-392 . -970) 58296) ((-392 . -146) 58210) ((-392 . -120) 58189) ((-392 . -118) 58168) ((-392 . -590) 58078) ((-392 . -104) T) ((-392 . -25) T) ((-392 . -72) T) ((-392 . -13) T) ((-392 . -1130) T) ((-392 . -554) 58060) ((-392 . -1015) T) ((-392 . -23) T) ((-392 . -21) T) ((-392 . -963) T) ((-392 . -665) T) ((-392 . -1062) T) ((-392 . -1027) T) ((-392 . -972) T) ((-392 . -353) 58044) ((-392 . -277) 58023) ((-392 . -260) 58010) ((-392 . -555) 57871) ((-391 . -359) 57841) ((-391 . -685) 57811) ((-391 . -659) T) ((-391 . -687) T) ((-391 . -82) 57762) ((-391 . -965) 57732) ((-391 . -970) 57702) ((-391 . -21) T) ((-391 . -590) 57617) ((-391 . -23) T) ((-391 . -1015) T) ((-391 . -554) 57599) ((-391 . -72) T) ((-391 . -25) T) ((-391 . -104) T) ((-391 . -592) 57529) ((-391 . -584) 57499) ((-391 . -656) 57469) ((-391 . -316) 57439) ((-391 . -1130) T) ((-391 . -13) T) ((-391 . -241) 57402) ((-379 . -1015) T) ((-379 . -554) 57384) ((-379 . -1130) T) ((-379 . -13) T) ((-379 . -72) T) ((-378 . -1015) T) ((-378 . -554) 57366) ((-378 . -1130) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1015) T) ((-377 . -554) 57348) ((-377 . -1130) T) ((-377 . -13) T) ((-377 . -72) T) ((-375 . -554) 57330) ((-370 . -38) 57314) ((-370 . -557) 57283) ((-370 . -592) 57257) ((-370 . -590) 57216) ((-370 . -972) T) ((-370 . -1027) T) ((-370 . -1062) T) ((-370 . -665) T) ((-370 . -963) T) ((-370 . -82) 57195) ((-370 . -965) 57179) ((-370 . -970) 57163) ((-370 . -21) T) ((-370 . -23) T) ((-370 . -1015) T) ((-370 . -554) 57145) ((-370 . -1130) T) ((-370 . -13) T) ((-370 . -72) T) ((-370 . -25) T) ((-370 . -104) T) ((-370 . -584) 57129) ((-370 . -656) 57113) ((-356 . -665) T) ((-356 . -1015) T) ((-356 . -554) 57095) ((-356 . -1130) T) ((-356 . -13) T) ((-356 . -72) T) ((-356 . -1027) T) ((-354 . -411) T) ((-354 . -1027) T) ((-354 . -72) T) ((-354 . -13) T) ((-354 . -1130) T) ((-354 . -554) 57077) ((-354 . -1015) T) ((-354 . -665) T) ((-348 . -906) 57061) ((-348 . -1067) 57039) ((-348 . -952) 56906) ((-348 . -557) 56805) ((-348 . -555) 56608) ((-348 . -935) 56587) ((-348 . -823) 56566) ((-348 . -796) 56550) ((-348 . -757) 56529) ((-348 . -723) 56508) ((-348 . -720) 56487) ((-348 . -761) 56441) ((-348 . -758) 56395) ((-348 . -718) 56374) ((-348 . -716) 56353) ((-348 . -742) 56332) ((-348 . -798) 56257) ((-348 . -341) 56241) ((-348 . -582) 56189) ((-348 . -592) 56105) ((-348 . -327) 56089) ((-348 . -241) 56047) ((-348 . -260) 56012) ((-348 . -454) 55924) ((-348 . -288) 55908) ((-348 . -201) T) ((-348 . -82) 55839) ((-348 . -965) 55791) ((-348 . -970) 55743) ((-348 . -246) T) ((-348 . -656) 55695) ((-348 . -584) 55647) ((-348 . -590) 55584) ((-348 . -38) 55536) ((-348 . -258) T) ((-348 . -390) T) ((-348 . -146) T) ((-348 . -496) T) ((-348 . -834) T) ((-348 . -1135) T) ((-348 . -312) T) ((-348 . -190) 55515) ((-348 . -186) 55463) ((-348 . -189) 55417) ((-348 . -225) 55401) ((-348 . -808) 55325) ((-348 . -813) 55251) ((-348 . -811) 55210) ((-348 . -184) 55194) ((-348 . -120) 55173) ((-348 . -118) 55152) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1130) T) ((-348 . -554) 55134) ((-348 . -1015) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -963) T) ((-348 . -665) T) ((-348 . -1062) T) ((-348 . -1027) T) ((-348 . -972) T) ((-346 . -496) T) ((-346 . -246) T) ((-346 . -146) T) ((-346 . -557) 55043) ((-346 . -656) 55017) ((-346 . -584) 54991) ((-346 . -592) 54965) ((-346 . -590) 54924) ((-346 . -104) T) ((-346 . -25) T) ((-346 . -72) T) ((-346 . -13) T) ((-346 . -1130) T) ((-346 . -554) 54906) ((-346 . -1015) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -970) 54880) ((-346 . -965) 54854) ((-346 . -82) 54821) ((-346 . -963) T) ((-346 . -665) T) ((-346 . -1062) T) ((-346 . -1027) T) ((-346 . -972) T) ((-346 . -38) 54795) ((-346 . -184) 54779) ((-346 . -811) 54738) ((-346 . -813) 54664) ((-346 . -808) 54588) ((-346 . -225) 54572) ((-346 . -189) 54526) ((-346 . -186) 54474) ((-346 . -190) 54453) ((-346 . -288) 54437) ((-346 . -454) 54279) ((-346 . -260) 54218) ((-346 . -241) 54146) ((-346 . -353) 54130) ((-346 . -952) 54028) ((-346 . -390) 53981) ((-346 . -935) 53960) ((-346 . -555) 53863) ((-346 . -1135) 53841) ((-340 . -1015) T) ((-340 . -554) 53823) ((-340 . -1130) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -189) T) ((-340 . -186) 53810) ((-340 . -555) 53787) ((-338 . -685) 53771) ((-338 . -659) T) ((-338 . -687) T) ((-338 . -82) 53750) ((-338 . -965) 53734) ((-338 . -970) 53718) ((-338 . -21) T) ((-338 . -590) 53687) ((-338 . -23) T) ((-338 . -1015) T) ((-338 . -554) 53669) ((-338 . -1130) T) ((-338 . -13) T) ((-338 . -72) T) ((-338 . -25) T) ((-338 . -104) T) ((-338 . -592) 53653) ((-338 . -584) 53637) ((-338 . -656) 53621) ((-336 . -337) T) ((-336 . -72) T) ((-336 . -13) T) ((-336 . -1130) T) ((-336 . -554) 53587) ((-336 . -1015) T) ((-336 . -557) 53568) ((-336 . -428) 53549) ((-335 . -334) 53533) ((-335 . -557) 53517) ((-335 . -952) 53501) ((-335 . -761) 53480) ((-335 . -758) 53459) ((-335 . -1027) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1130) T) ((-335 . -554) 53441) ((-335 . -1015) T) ((-335 . -665) T) ((-332 . -333) 53420) ((-332 . -557) 53404) ((-332 . -952) 53388) ((-332 . -584) 53358) ((-332 . -656) 53328) ((-332 . -592) 53312) ((-332 . -590) 53281) ((-332 . -104) T) ((-332 . -25) T) ((-332 . -72) T) ((-332 . -13) T) ((-332 . -1130) T) ((-332 . -554) 53263) ((-332 . -1015) T) ((-332 . -23) T) ((-332 . -21) T) ((-332 . -970) 53247) ((-332 . -965) 53231) ((-332 . -82) 53210) ((-331 . -82) 53189) ((-331 . -965) 53173) ((-331 . -970) 53157) ((-331 . -21) T) ((-331 . -590) 53126) ((-331 . -23) T) ((-331 . -1015) T) ((-331 . -554) 53108) ((-331 . -1130) T) ((-331 . -13) T) ((-331 . -72) T) ((-331 . -25) T) ((-331 . -104) T) ((-331 . -592) 53092) ((-331 . -448) 53071) ((-331 . -559) 53036) ((-331 . -656) 53006) ((-331 . -584) 52976) ((-328 . -345) T) ((-328 . -120) T) ((-328 . -557) 52926) ((-328 . -592) 52891) ((-328 . -590) 52841) ((-328 . -104) T) ((-328 . -25) T) ((-328 . -72) T) ((-328 . -13) T) ((-328 . -1130) T) ((-328 . -554) 52808) ((-328 . -1015) T) ((-328 . -23) T) ((-328 . -21) T) ((-328 . -972) T) ((-328 . -1027) T) ((-328 . -1062) T) ((-328 . -665) T) ((-328 . -963) T) ((-328 . -555) 52722) ((-328 . -312) T) ((-328 . -1135) T) ((-328 . -834) T) ((-328 . -496) T) ((-328 . -146) T) ((-328 . -656) 52687) ((-328 . -584) 52652) ((-328 . -38) 52617) ((-328 . -390) T) ((-328 . -258) T) ((-328 . -82) 52566) ((-328 . -965) 52531) ((-328 . -970) 52496) ((-328 . -246) T) ((-328 . -201) T) ((-328 . -757) T) ((-328 . -723) T) ((-328 . -720) T) ((-328 . -761) T) ((-328 . -758) T) ((-328 . -718) T) ((-328 . -716) T) ((-328 . -798) 52478) ((-328 . -917) T) ((-328 . -935) T) ((-328 . -952) 52438) ((-328 . -975) T) ((-328 . -190) T) ((-328 . -186) 52425) ((-328 . -189) T) ((-328 . -1116) T) ((-328 . -1119) T) ((-328 . -431) T) ((-328 . -239) T) ((-328 . -66) T) ((-328 . -35) T) ((-328 . -559) 52407) ((-313 . -314) 52384) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1130) T) ((-313 . -554) 52366) ((-313 . -1015) T) ((-310 . -411) T) ((-310 . -1027) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1130) T) ((-310 . -554) 52348) ((-310 . -1015) T) ((-310 . -665) T) ((-310 . -952) 52332) ((-310 . -557) 52316) ((-308 . -280) 52300) ((-308 . -190) 52279) ((-308 . -186) 52252) ((-308 . -189) 52231) ((-308 . -318) 52210) ((-308 . -1067) 52189) ((-308 . -299) 52168) ((-308 . -120) 52147) ((-308 . -557) 52084) ((-308 . -592) 52036) ((-308 . -590) 51973) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1130) T) ((-308 . -554) 51955) ((-308 . -1015) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -972) T) ((-308 . -1027) T) ((-308 . -1062) T) ((-308 . -665) T) ((-308 . -963) T) ((-308 . -312) T) ((-308 . -1135) T) ((-308 . -834) T) ((-308 . -496) T) ((-308 . -146) T) ((-308 . -656) 51907) ((-308 . -584) 51859) ((-308 . -38) 51824) ((-308 . -390) T) ((-308 . -258) T) ((-308 . -82) 51755) ((-308 . -965) 51707) ((-308 . -970) 51659) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -343) 51613) ((-308 . -118) 51567) ((-308 . -952) 51551) ((-308 . -1188) 51535) ((-308 . -1199) 51519) ((-304 . -280) 51503) ((-304 . -190) 51482) ((-304 . -186) 51455) ((-304 . -189) 51434) ((-304 . -318) 51413) ((-304 . -1067) 51392) ((-304 . -299) 51371) ((-304 . -120) 51350) ((-304 . -557) 51287) ((-304 . -592) 51239) ((-304 . -590) 51176) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1130) T) ((-304 . -554) 51158) ((-304 . -1015) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -972) T) ((-304 . -1027) T) ((-304 . -1062) T) ((-304 . -665) T) ((-304 . -963) T) ((-304 . -312) T) ((-304 . -1135) T) ((-304 . -834) T) ((-304 . -496) T) ((-304 . -146) T) ((-304 . -656) 51110) ((-304 . -584) 51062) ((-304 . -38) 51027) ((-304 . -390) T) ((-304 . -258) T) ((-304 . -82) 50958) ((-304 . -965) 50910) ((-304 . -970) 50862) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -343) 50816) ((-304 . -118) 50770) ((-304 . -952) 50754) ((-304 . -1188) 50738) ((-304 . -1199) 50722) ((-303 . -280) 50706) ((-303 . -190) 50685) ((-303 . -186) 50658) ((-303 . -189) 50637) ((-303 . -318) 50616) ((-303 . -1067) 50595) ((-303 . -299) 50574) ((-303 . -120) 50553) ((-303 . -557) 50490) ((-303 . -592) 50442) ((-303 . -590) 50379) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1130) T) ((-303 . -554) 50361) ((-303 . -1015) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -972) T) ((-303 . -1027) T) ((-303 . -1062) T) ((-303 . -665) T) ((-303 . -963) T) ((-303 . -312) T) ((-303 . -1135) T) ((-303 . -834) T) ((-303 . -496) T) ((-303 . -146) T) ((-303 . -656) 50313) ((-303 . -584) 50265) ((-303 . -38) 50230) ((-303 . -390) T) ((-303 . -258) T) ((-303 . -82) 50161) ((-303 . -965) 50113) ((-303 . -970) 50065) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -343) 50019) ((-303 . -118) 49973) ((-303 . -952) 49957) ((-303 . -1188) 49941) ((-303 . -1199) 49925) ((-302 . -280) 49909) ((-302 . -190) 49888) ((-302 . -186) 49861) ((-302 . -189) 49840) ((-302 . -318) 49819) ((-302 . -1067) 49798) ((-302 . -299) 49777) ((-302 . -120) 49756) ((-302 . -557) 49693) ((-302 . -592) 49645) ((-302 . -590) 49582) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1130) T) ((-302 . -554) 49564) ((-302 . -1015) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -972) T) ((-302 . -1027) T) ((-302 . -1062) T) ((-302 . -665) T) ((-302 . -963) T) ((-302 . -312) T) ((-302 . -1135) T) ((-302 . -834) T) ((-302 . -496) T) ((-302 . -146) T) ((-302 . -656) 49516) ((-302 . -584) 49468) ((-302 . -38) 49433) ((-302 . -390) T) ((-302 . -258) T) ((-302 . -82) 49364) ((-302 . -965) 49316) ((-302 . -970) 49268) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -343) 49222) ((-302 . -118) 49176) ((-302 . -952) 49160) ((-302 . -1188) 49144) ((-302 . -1199) 49128) ((-301 . -280) 49105) ((-301 . -190) T) ((-301 . -186) 49092) ((-301 . -189) T) ((-301 . -318) T) ((-301 . -1067) T) ((-301 . -299) T) ((-301 . -120) 49074) ((-301 . -557) 49004) ((-301 . -592) 48949) ((-301 . -590) 48879) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1130) T) ((-301 . -554) 48861) ((-301 . -1015) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -972) T) ((-301 . -1027) T) ((-301 . -1062) T) ((-301 . -665) T) ((-301 . -963) T) ((-301 . -312) T) ((-301 . -1135) T) ((-301 . -834) T) ((-301 . -496) T) ((-301 . -146) T) ((-301 . -656) 48806) ((-301 . -584) 48751) ((-301 . -38) 48716) ((-301 . -390) T) ((-301 . -258) T) ((-301 . -82) 48633) ((-301 . -965) 48578) ((-301 . -970) 48523) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -343) T) ((-301 . -118) T) ((-301 . -952) 48500) ((-301 . -1188) 48477) ((-301 . -1199) 48454) ((-295 . -280) 48438) ((-295 . -190) 48417) ((-295 . -186) 48390) ((-295 . -189) 48369) ((-295 . -318) 48348) ((-295 . -1067) 48327) ((-295 . -299) 48306) ((-295 . -120) 48285) ((-295 . -557) 48222) ((-295 . -592) 48174) ((-295 . -590) 48111) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1130) T) ((-295 . -554) 48093) ((-295 . -1015) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -972) T) ((-295 . -1027) T) ((-295 . -1062) T) ((-295 . -665) T) ((-295 . -963) T) ((-295 . -312) T) ((-295 . -1135) T) ((-295 . -834) T) ((-295 . -496) T) ((-295 . -146) T) ((-295 . -656) 48045) ((-295 . -584) 47997) ((-295 . -38) 47962) ((-295 . -390) T) ((-295 . -258) T) ((-295 . -82) 47893) ((-295 . -965) 47845) ((-295 . -970) 47797) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -343) 47751) ((-295 . -118) 47705) ((-295 . -952) 47689) ((-295 . -1188) 47673) ((-295 . -1199) 47657) ((-294 . -280) 47641) ((-294 . -190) 47620) ((-294 . -186) 47593) ((-294 . -189) 47572) ((-294 . -318) 47551) ((-294 . -1067) 47530) ((-294 . -299) 47509) ((-294 . -120) 47488) ((-294 . -557) 47425) ((-294 . -592) 47377) ((-294 . -590) 47314) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1130) T) ((-294 . -554) 47296) ((-294 . -1015) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -972) T) ((-294 . -1027) T) ((-294 . -1062) T) ((-294 . -665) T) ((-294 . -963) T) ((-294 . -312) T) ((-294 . -1135) T) ((-294 . -834) T) ((-294 . -496) T) ((-294 . -146) T) ((-294 . -656) 47248) ((-294 . -584) 47200) ((-294 . -38) 47165) ((-294 . -390) T) ((-294 . -258) T) ((-294 . -82) 47096) ((-294 . -965) 47048) ((-294 . -970) 47000) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -343) 46954) ((-294 . -118) 46908) ((-294 . -952) 46892) ((-294 . -1188) 46876) ((-294 . -1199) 46860) ((-293 . -280) 46837) ((-293 . -190) T) ((-293 . -186) 46824) ((-293 . -189) T) ((-293 . -318) T) ((-293 . -1067) T) ((-293 . -299) T) ((-293 . -120) 46806) ((-293 . -557) 46736) ((-293 . -592) 46681) ((-293 . -590) 46611) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1130) T) ((-293 . -554) 46593) ((-293 . -1015) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -972) T) ((-293 . -1027) T) ((-293 . -1062) T) ((-293 . -665) T) ((-293 . -963) T) ((-293 . -312) T) ((-293 . -1135) T) ((-293 . -834) T) ((-293 . -496) T) ((-293 . -146) T) ((-293 . -656) 46538) ((-293 . -584) 46483) ((-293 . -38) 46448) ((-293 . -390) T) ((-293 . -258) T) ((-293 . -82) 46365) ((-293 . -965) 46310) ((-293 . -970) 46255) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -343) T) ((-293 . -118) T) ((-293 . -952) 46232) ((-293 . -1188) 46209) ((-293 . -1199) 46186) ((-289 . -280) 46163) ((-289 . -190) T) ((-289 . -186) 46150) ((-289 . -189) T) ((-289 . -318) T) ((-289 . -1067) T) ((-289 . -299) T) ((-289 . -120) 46132) ((-289 . -557) 46062) ((-289 . -592) 46007) ((-289 . -590) 45937) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1130) T) ((-289 . -554) 45919) ((-289 . -1015) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -972) T) ((-289 . -1027) T) ((-289 . -1062) T) ((-289 . -665) T) ((-289 . -963) T) ((-289 . -312) T) ((-289 . -1135) T) ((-289 . -834) T) ((-289 . -496) T) ((-289 . -146) T) ((-289 . -656) 45864) ((-289 . -584) 45809) ((-289 . -38) 45774) ((-289 . -390) T) ((-289 . -258) T) ((-289 . -82) 45691) ((-289 . -965) 45636) ((-289 . -970) 45581) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -343) T) ((-289 . -118) T) ((-289 . -952) 45558) ((-289 . -1188) 45535) ((-289 . -1199) 45512) ((-283 . -286) 45481) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1130) T) ((-283 . -554) 45463) ((-283 . -1015) T) ((-283 . -23) T) ((-283 . -590) 45445) ((-283 . -21) T) ((-282 . -1015) T) ((-282 . -554) 45427) ((-282 . -1130) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -758) T) ((-281 . -554) 45409) ((-281 . -1015) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1130) T) ((-281 . -761) T) ((-278 . -19) 45393) ((-278 . -595) 45377) ((-278 . -243) 45354) ((-278 . -241) 45306) ((-278 . -540) 45283) ((-278 . -555) 45244) ((-278 . -427) 45228) ((-278 . -1015) 45181) ((-278 . -454) 45114) ((-278 . -260) 45052) ((-278 . -554) 44967) ((-278 . -72) 44901) ((-278 . -1130) T) ((-278 . -13) T) ((-278 . -34) T) ((-278 . -124) 44885) ((-278 . -758) 44864) ((-278 . -761) 44843) ((-278 . -322) 44827) ((-278 . -237) 44811) ((-275 . -274) 44788) ((-275 . -557) 44772) ((-275 . -952) 44756) ((-275 . -23) T) ((-275 . -1015) T) ((-275 . -554) 44738) ((-275 . -1130) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -590) 44720) ((-273 . -23) T) ((-273 . -1015) T) ((-273 . -554) 44702) ((-273 . -1130) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -656) 44684) ((-273 . -584) 44666) ((-273 . -592) 44648) ((-273 . -970) 44630) ((-273 . -965) 44612) ((-273 . -82) 44587) ((-273 . -274) 44564) ((-273 . -557) 44548) ((-273 . -952) 44532) ((-273 . -758) 44511) ((-273 . -761) 44490) ((-270 . -1163) 44474) ((-270 . -190) 44426) ((-270 . -186) 44372) ((-270 . -189) 44324) ((-270 . -241) 44282) ((-270 . -811) 44188) ((-270 . -808) 44092) ((-270 . -813) 43998) ((-270 . -888) 43961) ((-270 . -38) 43808) ((-270 . -82) 43628) ((-270 . -965) 43469) ((-270 . -970) 43310) ((-270 . -590) 43195) ((-270 . -592) 43095) ((-270 . -584) 42942) ((-270 . -656) 42789) ((-270 . -557) 42621) ((-270 . -118) 42600) ((-270 . -120) 42579) ((-270 . -47) 42549) ((-270 . -1159) 42519) ((-270 . -35) 42485) ((-270 . -66) 42451) ((-270 . -239) 42417) ((-270 . -431) 42383) ((-270 . -1119) 42349) ((-270 . -1116) 42315) ((-270 . -917) 42281) ((-270 . -201) 42260) ((-270 . -246) 42214) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1130) T) ((-270 . -554) 42196) ((-270 . -1015) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -963) T) ((-270 . -665) T) ((-270 . -1062) T) ((-270 . -1027) T) ((-270 . -972) T) ((-270 . -258) 42175) ((-270 . -390) 42154) ((-270 . -146) 42088) ((-270 . -496) 42042) ((-270 . -834) 42021) ((-270 . -1135) 42000) ((-270 . -312) 41979) ((-270 . -718) T) ((-270 . -758) T) ((-270 . -761) T) ((-270 . -720) T) ((-265 . -362) 41963) ((-265 . -557) 41538) ((-265 . -952) 41209) ((-265 . -555) 41070) ((-265 . -796) 41054) ((-265 . -813) 41021) ((-265 . -808) 40986) ((-265 . -811) 40953) ((-265 . -411) 40932) ((-265 . -353) 40916) ((-265 . -798) 40841) ((-265 . -341) 40825) ((-265 . -582) 40733) ((-265 . -592) 40471) ((-265 . -327) 40441) ((-265 . -201) 40420) ((-265 . -82) 40309) ((-265 . -965) 40219) ((-265 . -970) 40129) ((-265 . -246) 40108) ((-265 . -656) 40018) ((-265 . -584) 39928) ((-265 . -590) 39595) ((-265 . -38) 39505) ((-265 . -258) 39484) ((-265 . -390) 39463) ((-265 . -146) 39442) ((-265 . -496) 39421) ((-265 . -834) 39400) ((-265 . -1135) 39379) ((-265 . -312) 39358) ((-265 . -260) 39345) ((-265 . -454) 39311) ((-265 . -254) T) ((-265 . -120) 39290) ((-265 . -118) 39269) ((-265 . -963) 39163) ((-265 . -665) 39016) ((-265 . -1062) 38910) ((-265 . -1027) 38763) ((-265 . -972) 38657) ((-265 . -104) 38532) ((-265 . -25) 38388) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1130) T) ((-265 . -554) 38370) ((-265 . -1015) T) ((-265 . -23) 38226) ((-265 . -21) 38101) ((-265 . -29) 38071) ((-265 . -917) 38050) ((-265 . -27) 38029) ((-265 . -1116) 38008) ((-265 . -1119) 37987) ((-265 . -431) 37966) ((-265 . -239) 37945) ((-265 . -66) 37924) ((-265 . -35) 37903) ((-265 . -133) 37882) ((-265 . -116) 37861) ((-265 . -571) 37840) ((-265 . -873) 37819) ((-265 . -1054) 37798) ((-264 . -906) 37759) ((-264 . -1067) NIL) ((-264 . -952) 37689) ((-264 . -557) 37572) ((-264 . -555) NIL) ((-264 . -935) NIL) ((-264 . -823) NIL) ((-264 . -796) 37533) ((-264 . -757) NIL) ((-264 . -723) NIL) ((-264 . -720) NIL) ((-264 . -761) NIL) ((-264 . -758) NIL) ((-264 . -718) NIL) ((-264 . -716) NIL) ((-264 . -742) NIL) ((-264 . -798) NIL) ((-264 . -341) 37494) ((-264 . -582) 37455) ((-264 . -592) 37384) ((-264 . -327) 37345) ((-264 . -241) 37211) ((-264 . -260) 37107) ((-264 . -454) 36858) ((-264 . -288) 36819) ((-264 . -201) T) ((-264 . -82) 36704) ((-264 . -965) 36633) ((-264 . -970) 36562) ((-264 . -246) T) ((-264 . -656) 36491) ((-264 . -584) 36420) ((-264 . -590) 36334) ((-264 . -38) 36263) ((-264 . -258) T) ((-264 . -390) T) ((-264 . -146) T) ((-264 . -496) T) ((-264 . -834) T) ((-264 . -1135) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36224) ((-264 . -808) NIL) ((-264 . -813) NIL) ((-264 . -811) NIL) ((-264 . -184) 36185) ((-264 . -120) 36141) ((-264 . -118) 36097) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1130) T) ((-264 . -554) 36079) ((-264 . -1015) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -963) T) ((-264 . -665) T) ((-264 . -1062) T) ((-264 . -1027) T) ((-264 . -972) T) ((-263 . -997) T) ((-263 . -428) 36060) ((-263 . -554) 36026) ((-263 . -557) 36007) ((-263 . -1015) T) ((-263 . -1130) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1015) T) ((-262 . -554) 35989) ((-262 . -1130) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1108) 35968) ((-251 . -183) 35916) ((-251 . -76) 35864) ((-251 . -260) 35662) ((-251 . -454) 35414) ((-251 . -427) 35349) ((-251 . -124) 35297) ((-251 . -555) NIL) ((-251 . -193) 35245) ((-251 . -551) 35224) ((-251 . -243) 35203) ((-251 . -1130) T) ((-251 . -13) T) ((-251 . -241) 35182) ((-251 . -1015) T) ((-251 . -554) 35164) ((-251 . -72) T) ((-251 . -34) T) ((-251 . -540) 35143) ((-249 . -1130) T) ((-249 . -13) T) ((-249 . -454) 35092) ((-249 . -1015) 34878) ((-249 . -554) 34624) ((-249 . -72) 34410) ((-249 . -25) 34278) ((-249 . -21) 34165) ((-249 . -590) 33912) ((-249 . -23) 33799) ((-249 . -104) 33686) ((-249 . -1027) 33571) ((-249 . -665) 33477) ((-249 . -411) 33456) ((-249 . -963) 33402) ((-249 . -1062) 33348) ((-249 . -972) 33294) ((-249 . -592) 33162) ((-249 . -557) 33097) ((-249 . -82) 33017) ((-249 . -965) 32942) ((-249 . -970) 32867) ((-249 . -656) 32812) ((-249 . -584) 32757) ((-249 . -811) 32716) ((-249 . -808) 32673) ((-249 . -813) 32632) ((-249 . -1188) 32602) ((-247 . -554) 32584) ((-244 . -258) T) ((-244 . -390) T) ((-244 . -38) 32571) ((-244 . -557) 32543) ((-244 . -972) T) ((-244 . -1027) T) ((-244 . -1062) T) ((-244 . -665) T) ((-244 . -963) T) ((-244 . -82) 32528) ((-244 . -965) 32515) ((-244 . -970) 32502) ((-244 . -21) T) ((-244 . -590) 32474) ((-244 . -23) T) ((-244 . -1015) T) ((-244 . -554) 32456) ((-244 . -1130) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -592) 32443) ((-244 . -584) 32430) ((-244 . -656) 32417) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -496) T) ((-244 . -834) T) ((-244 . -241) 32396) ((-235 . -554) 32378) ((-234 . -554) 32360) ((-229 . -758) T) ((-229 . -554) 32342) ((-229 . -1015) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1130) T) ((-229 . -761) T) ((-226 . -213) 32304) ((-226 . -557) 32064) ((-226 . -952) 31910) ((-226 . -555) 31658) ((-226 . -277) 31630) ((-226 . -353) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -965) 31137) ((-226 . -970) 30983) ((-226 . -590) 30893) ((-226 . -592) 30782) ((-226 . -584) 30634) ((-226 . -656) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -496) 30292) ((-226 . -246) 30226) ((-226 . -47) 30198) ((-226 . -327) 30182) ((-226 . -582) 30130) ((-226 . -390) 30084) ((-226 . -454) 29975) ((-226 . -811) 29921) ((-226 . -808) 29830) ((-226 . -813) 29743) ((-226 . -798) 29602) ((-226 . -823) 29581) ((-226 . -1135) 29560) ((-226 . -863) 29527) ((-226 . -260) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -554) 29475) ((-226 . -1015) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -972) T) ((-226 . -1027) T) ((-226 . -1062) T) ((-226 . -665) T) ((-226 . -963) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1130) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1015) T) ((-221 . -554) 29327) ((-221 . -1130) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1188) 29276) ((-211 . -723) 29255) ((-211 . -720) 29234) ((-211 . -761) 29188) ((-211 . -758) 29142) ((-211 . -718) 29121) ((-211 . -719) 29100) ((-211 . -656) 29045) ((-211 . -584) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -427) 28908) ((-211 . -454) 28841) ((-211 . -260) 28779) ((-211 . -34) T) ((-211 . -540) 28756) ((-211 . -952) 28585) ((-211 . -557) 28389) ((-211 . -353) 28358) ((-211 . -582) 28266) ((-211 . -592) 28092) ((-211 . -327) 28062) ((-211 . -318) 28041) ((-211 . -190) 27994) ((-211 . -590) 27847) ((-211 . -972) 27826) ((-211 . -1027) 27805) ((-211 . -1062) 27784) ((-211 . -665) 27763) ((-211 . -963) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -808) 27382) ((-211 . -813) 27256) ((-211 . -811) 27189) ((-211 . -184) 27159) ((-211 . -554) 27120) ((-211 . -970) 27045) ((-211 . -965) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1130) T) ((-211 . -1015) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1188) 26819) ((-210 . -723) 26798) ((-210 . -720) 26777) ((-210 . -761) 26731) ((-210 . -758) 26685) ((-210 . -718) 26664) ((-210 . -719) 26643) ((-210 . -656) 26588) ((-210 . -584) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -427) 26451) ((-210 . -454) 26384) ((-210 . -260) 26322) ((-210 . -34) T) ((-210 . -540) 26299) ((-210 . -952) 26128) ((-210 . -557) 25932) ((-210 . -353) 25901) ((-210 . -582) 25809) ((-210 . -592) 25622) ((-210 . -327) 25592) ((-210 . -318) 25571) ((-210 . -190) 25524) ((-210 . -590) 25364) ((-210 . -972) 25343) ((-210 . -1027) 25322) ((-210 . -1062) 25301) ((-210 . -665) 25280) ((-210 . -963) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -808) 24899) ((-210 . -813) 24773) ((-210 . -811) 24706) ((-210 . -184) 24676) ((-210 . -554) 24637) ((-210 . -970) 24562) ((-210 . -965) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1130) T) ((-210 . -1015) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1015) T) ((-209 . -554) 24369) ((-209 . -1130) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1015) T) ((-208 . -554) 24310) ((-208 . -1130) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -749) 24292) ((-207 . -1015) T) ((-207 . -554) 24274) ((-207 . -1130) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -863) 24219) ((-206 . -557) 24011) ((-206 . -952) 23889) ((-206 . -1135) 23868) ((-206 . -823) 23847) ((-206 . -798) NIL) ((-206 . -813) 23824) ((-206 . -808) 23799) ((-206 . -811) 23776) ((-206 . -454) 23714) ((-206 . -390) 23668) ((-206 . -582) 23616) ((-206 . -592) 23505) ((-206 . -327) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -584) 23150) ((-206 . -656) 23002) ((-206 . -246) 22936) ((-206 . -496) 22870) ((-206 . -82) 22695) ((-206 . -965) 22541) ((-206 . -970) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -590) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1130) T) ((-206 . -554) 22151) ((-206 . -1015) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -963) T) ((-206 . -665) T) ((-206 . -1062) T) ((-206 . -1027) T) ((-206 . -972) T) ((-206 . -353) 22135) ((-206 . -277) 22092) ((-206 . -260) 22079) ((-206 . -555) 21940) ((-203 . -610) 21924) ((-203 . -1169) 21908) ((-203 . -925) 21892) ((-203 . -1065) 21876) ((-203 . -758) 21855) ((-203 . -761) 21834) ((-203 . -322) 21818) ((-203 . -595) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -540) 21708) ((-203 . -555) 21669) ((-203 . -427) 21653) ((-203 . -1015) 21606) ((-203 . -454) 21539) ((-203 . -260) 21477) ((-203 . -554) 21372) ((-203 . -72) 21306) ((-203 . -1130) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -428) 21251) ((-203 . -557) 21228) ((-197 . -196) 21207) ((-197 . -1188) 21177) ((-197 . -723) 21156) ((-197 . -720) 21135) ((-197 . -761) 21089) ((-197 . -758) 21043) ((-197 . -718) 21022) ((-197 . -719) 21001) ((-197 . -656) 20946) ((-197 . -584) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -427) 20809) ((-197 . -454) 20742) ((-197 . -260) 20680) ((-197 . -34) T) ((-197 . -540) 20657) ((-197 . -952) 20486) ((-197 . -557) 20290) ((-197 . -353) 20259) ((-197 . -582) 20167) ((-197 . -592) 20006) ((-197 . -327) 19976) ((-197 . -318) 19955) ((-197 . -190) 19908) ((-197 . -590) 19696) ((-197 . -972) 19675) ((-197 . -1027) 19654) ((-197 . -1062) 19633) ((-197 . -665) 19612) ((-197 . -963) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -808) 19231) ((-197 . -813) 19105) ((-197 . -811) 19038) ((-197 . -184) 19008) ((-197 . -554) 18705) ((-197 . -970) 18630) ((-197 . -965) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1130) T) ((-197 . -1015) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -629) 17389) ((-181 . -427) 17373) ((-181 . -1015) 17351) ((-181 . -454) 17284) ((-181 . -260) 17222) ((-181 . -554) 17157) ((-181 . -72) 17111) ((-181 . -1130) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -345) T) ((-179 . -120) T) ((-179 . -557) 17019) ((-179 . -592) 16984) ((-179 . -590) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1130) T) ((-179 . -554) 16916) ((-179 . -1015) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -972) T) ((-179 . -1027) T) ((-179 . -1062) T) ((-179 . -665) T) ((-179 . -963) T) ((-179 . -555) 16846) ((-179 . -312) T) ((-179 . -1135) T) ((-179 . -834) T) ((-179 . -496) T) ((-179 . -146) T) ((-179 . -656) 16811) ((-179 . -584) 16776) ((-179 . -38) 16741) ((-179 . -390) T) ((-179 . -258) T) ((-179 . -82) 16690) ((-179 . -965) 16655) ((-179 . -970) 16620) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -757) T) ((-179 . -723) T) ((-179 . -720) T) ((-179 . -761) T) ((-179 . -758) T) ((-179 . -718) T) ((-179 . -716) T) ((-179 . -798) 16602) ((-179 . -917) T) ((-179 . -935) T) ((-179 . -952) 16562) ((-179 . -975) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1116) T) ((-179 . -1119) T) ((-179 . -431) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -562) 16526) ((-177 . -557) 16488) ((-177 . -592) 16455) ((-177 . -590) 16407) ((-177 . -972) T) ((-177 . -1027) T) ((-177 . -1062) T) ((-177 . -665) T) ((-177 . -963) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1015) T) ((-177 . -554) 16389) ((-177 . -1130) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -952) 16366) ((-176 . -214) 16350) ((-176 . -1036) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1130) T) ((-176 . -72) 16272) ((-176 . -554) 16207) ((-176 . -260) 16145) ((-176 . -454) 16078) ((-176 . -1015) 16056) ((-176 . -427) 16040) ((-176 . -910) 16024) ((-172 . -997) T) ((-172 . -428) 16005) ((-172 . -554) 15971) ((-172 . -557) 15952) ((-172 . -1015) T) ((-172 . -1130) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -906) 15934) ((-171 . -1067) T) ((-171 . -557) 15884) ((-171 . -952) 15844) ((-171 . -555) 15774) ((-171 . -935) T) ((-171 . -823) NIL) ((-171 . -796) 15756) ((-171 . -757) T) ((-171 . -723) T) ((-171 . -720) T) ((-171 . -761) T) ((-171 . -758) T) ((-171 . -718) T) ((-171 . -716) T) ((-171 . -742) T) ((-171 . -798) 15738) ((-171 . -341) 15720) ((-171 . -582) 15702) ((-171 . -327) 15684) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -454) NIL) ((-171 . -288) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -965) 15543) ((-171 . -970) 15493) ((-171 . -246) T) ((-171 . -656) 15443) ((-171 . -584) 15393) ((-171 . -592) 15343) ((-171 . -590) 15293) ((-171 . -38) 15243) ((-171 . -258) T) ((-171 . -390) T) ((-171 . -146) T) ((-171 . -496) T) ((-171 . -834) T) ((-171 . -1135) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -808) NIL) ((-171 . -813) NIL) ((-171 . -811) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1130) T) ((-171 . -554) 15136) ((-171 . -1015) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -963) T) ((-171 . -665) T) ((-171 . -1062) T) ((-171 . -1027) T) ((-171 . -972) T) ((-168 . -754) T) ((-168 . -761) T) ((-168 . -758) T) ((-168 . -1015) T) ((-168 . -554) 15118) ((-168 . -1130) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -318) T) ((-167 . -1015) T) ((-167 . -554) 15100) ((-167 . -1130) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -557) 15077) ((-166 . -1015) T) ((-166 . -554) 15059) ((-166 . -1130) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1015) T) ((-161 . -554) 15041) ((-161 . -1130) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1015) T) ((-158 . -554) 15023) ((-158 . -1130) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1015) T) ((-157 . -554) 15005) ((-157 . -1130) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -749) 14987) ((-154 . -997) T) ((-154 . -428) 14968) ((-154 . -554) 14934) ((-154 . -557) 14915) ((-154 . -1015) T) ((-154 . -1130) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -554) 14897) ((-148 . -38) 14829) ((-148 . -557) 14746) ((-148 . -592) 14678) ((-148 . -590) 14595) ((-148 . -972) T) ((-148 . -1027) T) ((-148 . -1062) T) ((-148 . -665) T) ((-148 . -963) T) ((-148 . -82) 14494) ((-148 . -965) 14426) ((-148 . -970) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1015) T) ((-148 . -554) 14340) ((-148 . -1130) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -584) 14272) ((-148 . -656) 14204) ((-148 . -312) T) ((-148 . -1135) T) ((-148 . -834) T) ((-148 . -496) T) ((-148 . -146) T) ((-148 . -390) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1015) T) ((-145 . -554) 14186) ((-145 . -1130) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -431) 14082) ((-142 . -1119) 14060) ((-142 . -1116) 14038) ((-142 . -917) 13990) ((-142 . -823) 13943) ((-142 . -555) 13711) ((-142 . -796) 13695) ((-142 . -318) 13649) ((-142 . -299) 13628) ((-142 . -1067) 13607) ((-142 . -343) 13586) ((-142 . -351) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -965) 13196) ((-142 . -970) 13109) ((-142 . -584) 12943) ((-142 . -656) 12777) ((-142 . -320) 12748) ((-142 . -663) 12719) ((-142 . -952) 12617) ((-142 . -557) 12402) ((-142 . -353) 12386) ((-142 . -798) 12311) ((-142 . -341) 12295) ((-142 . -582) 12243) ((-142 . -592) 12120) ((-142 . -590) 12018) ((-142 . -327) 12002) ((-142 . -241) 11960) ((-142 . -260) 11925) ((-142 . -454) 11837) ((-142 . -288) 11821) ((-142 . -201) 11775) ((-142 . -1135) 11683) ((-142 . -312) 11637) ((-142 . -834) 11571) ((-142 . -496) 11485) ((-142 . -246) 11399) ((-142 . -390) 11333) ((-142 . -258) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -808) 10991) ((-142 . -813) 10917) ((-142 . -811) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -963) T) ((-142 . -665) T) ((-142 . -1062) T) ((-142 . -1027) T) ((-142 . -972) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1015) T) ((-142 . -554) 10821) ((-142 . -1130) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -997) T) ((-135 . -428) 10756) ((-135 . -554) 10722) ((-135 . -557) 10703) ((-135 . -1015) T) ((-135 . -1130) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1015) T) ((-134 . -554) 10685) ((-134 . -1130) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1130) T) ((-130 . -554) 10667) ((-130 . -1015) T) ((-129 . -997) T) ((-129 . -428) 10648) ((-129 . -554) 10614) ((-129 . -557) 10595) ((-129 . -1015) T) ((-129 . -1130) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -997) T) ((-127 . -428) 10576) ((-127 . -554) 10542) ((-127 . -557) 10523) ((-127 . -1015) T) ((-127 . -1130) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -963) T) ((-125 . -665) T) ((-125 . -1062) T) ((-125 . -1027) T) ((-125 . -972) T) ((-125 . -21) T) ((-125 . -590) 10482) ((-125 . -23) T) ((-125 . -1015) T) ((-125 . -554) 10464) ((-125 . -1130) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -592) 10438) ((-125 . -557) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -965) 10354) ((-125 . -970) 10338) ((-125 . -584) 10322) ((-125 . -656) 10306) ((-125 . -1188) 10290) ((-117 . -754) T) ((-117 . -761) T) ((-117 . -758) T) ((-117 . -1015) T) ((-117 . -554) 10272) ((-117 . -1130) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -318) T) ((-114 . -1015) T) ((-114 . -554) 10254) ((-114 . -1130) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -555) 10213) ((-114 . -367) 10195) ((-114 . -1013) 10177) ((-114 . -318) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -427) 10123) ((-114 . -454) NIL) ((-114 . -260) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -554) 10069) ((-112 . -160) T) ((-112 . -1015) T) ((-112 . -554) 10036) ((-112 . -1130) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -749) 10018) ((-111 . -997) T) ((-111 . -428) 9999) ((-111 . -554) 9965) ((-111 . -557) 9946) ((-111 . -1015) T) ((-111 . -1130) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -997) T) ((-110 . -428) 9927) ((-110 . -554) 9893) ((-110 . -557) 9874) ((-110 . -1015) T) ((-110 . -1130) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -403) 9851) ((-108 . -557) 9747) ((-108 . -952) 9731) ((-108 . -1015) T) ((-108 . -554) 9713) ((-108 . -1130) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -408) 9668) ((-108 . -241) 9645) ((-107 . -758) T) ((-107 . -554) 9627) ((-107 . -1015) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1130) T) ((-107 . -761) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -665) T) ((-107 . -1027) T) ((-107 . -952) 9609) ((-107 . -557) 9591) ((-106 . -997) T) ((-106 . -428) 9572) ((-106 . -554) 9538) ((-106 . -557) 9519) ((-106 . -1015) T) ((-106 . -1130) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1015) T) ((-103 . -554) 9501) ((-103 . -1130) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -595) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -540) 9365) ((-102 . -555) NIL) ((-102 . -427) 9347) ((-102 . -1015) T) ((-102 . -454) NIL) ((-102 . -260) NIL) ((-102 . -554) 9291) ((-102 . -72) T) ((-102 . -1130) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -758) T) ((-102 . -761) T) ((-102 . -322) 9255) ((-101 . -754) T) ((-101 . -761) T) ((-101 . -758) T) ((-101 . -1015) T) ((-101 . -554) 9237) ((-101 . -1130) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -318) T) ((-101 . -606) T) ((-100 . -98) 9221) ((-100 . -925) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1130) T) ((-100 . -72) 9159) ((-100 . -554) 9094) ((-100 . -260) 9032) ((-100 . -454) 8965) ((-100 . -1015) 8943) ((-100 . -427) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -925) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1130) T) ((-99 . -72) 8833) ((-99 . -554) 8768) ((-99 . -260) 8706) ((-99 . -454) 8639) ((-99 . -1015) 8617) ((-99 . -427) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -925) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1130) T) ((-94 . -72) 8507) ((-94 . -554) 8442) ((-94 . -260) 8380) ((-94 . -454) 8313) ((-94 . -1015) 8291) ((-94 . -427) 8275) ((-94 . -92) 8259) ((-90 . -906) 8237) ((-90 . -1067) NIL) ((-90 . -952) 8215) ((-90 . -557) 8146) ((-90 . -555) NIL) ((-90 . -935) NIL) ((-90 . -823) NIL) ((-90 . -796) 8124) ((-90 . -757) NIL) ((-90 . -723) NIL) ((-90 . -720) NIL) ((-90 . -761) NIL) ((-90 . -758) NIL) ((-90 . -718) NIL) ((-90 . -716) NIL) ((-90 . -742) NIL) ((-90 . -798) NIL) ((-90 . -341) 8102) ((-90 . -582) 8080) ((-90 . -592) 8026) ((-90 . -327) 8004) ((-90 . -241) 7938) ((-90 . -260) 7885) ((-90 . -454) 7755) ((-90 . -288) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -965) 7598) ((-90 . -970) 7544) ((-90 . -246) T) ((-90 . -656) 7490) ((-90 . -584) 7436) ((-90 . -590) 7367) ((-90 . -38) 7313) ((-90 . -258) T) ((-90 . -390) T) ((-90 . -146) T) ((-90 . -496) T) ((-90 . -834) T) ((-90 . -1135) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -808) NIL) ((-90 . -813) NIL) ((-90 . -811) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1130) T) ((-90 . -554) 7251) ((-90 . -1015) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -963) T) ((-90 . -665) T) ((-90 . -1062) T) ((-90 . -1027) T) ((-90 . -972) T) ((-89 . -781) 7235) ((-89 . -834) T) ((-89 . -496) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -557) 7207) ((-89 . -656) 7194) ((-89 . -584) 7181) ((-89 . -970) 7168) ((-89 . -965) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -390) T) ((-89 . -258) T) ((-89 . -963) T) ((-89 . -665) T) ((-89 . -1062) T) ((-89 . -1027) T) ((-89 . -972) T) ((-89 . -21) T) ((-89 . -590) 7099) ((-89 . -23) T) ((-89 . -1015) T) ((-89 . -554) 7081) ((-89 . -1130) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -592) 7068) ((-89 . -120) T) ((-86 . -758) T) ((-86 . -554) 7050) ((-86 . -1015) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1130) T) ((-86 . -761) T) ((-86 . -749) 7031) ((-85 . -754) T) ((-85 . -761) T) ((-85 . -758) T) ((-85 . -1015) T) ((-85 . -554) 7013) ((-85 . -1130) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -318) T) ((-85 . -882) T) ((-85 . -606) T) ((-85 . -84) T) ((-85 . -555) 6995) ((-81 . -96) T) ((-81 . -322) 6978) ((-81 . -761) T) ((-81 . -758) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -554) 6943) ((-81 . -260) NIL) ((-81 . -454) NIL) ((-81 . -1015) T) ((-81 . -427) 6926) ((-81 . -555) 6908) ((-81 . -241) 6859) ((-81 . -540) 6835) ((-81 . -243) 6811) ((-81 . -595) 6794) ((-81 . -19) 6777) ((-81 . -606) T) ((-81 . -13) T) ((-81 . -1130) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1130) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1015) T) ((-79 . -554) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -554) 6699) ((-77 . -906) 6681) ((-77 . -1067) T) ((-77 . -557) 6631) ((-77 . -952) 6591) ((-77 . -555) 6521) ((-77 . -935) T) ((-77 . -823) NIL) ((-77 . -796) 6503) ((-77 . -757) T) ((-77 . -723) T) ((-77 . -720) T) ((-77 . -761) T) ((-77 . -758) T) ((-77 . -718) T) ((-77 . -716) T) ((-77 . -742) T) ((-77 . -798) 6485) ((-77 . -341) 6467) ((-77 . -582) 6449) ((-77 . -327) 6431) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -454) NIL) ((-77 . -288) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -965) 6290) ((-77 . -970) 6240) ((-77 . -246) T) ((-77 . -656) 6190) ((-77 . -584) 6140) ((-77 . -592) 6090) ((-77 . -590) 6040) ((-77 . -38) 5990) ((-77 . -258) T) ((-77 . -390) T) ((-77 . -146) T) ((-77 . -496) T) ((-77 . -834) T) ((-77 . -1135) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -808) NIL) ((-77 . -813) NIL) ((-77 . -811) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1130) T) ((-77 . -554) 5884) ((-77 . -1015) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -963) T) ((-77 . -665) T) ((-77 . -1062) T) ((-77 . -1027) T) ((-77 . -972) T) ((-73 . -98) 5868) ((-73 . -925) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1130) T) ((-73 . -72) 5806) ((-73 . -554) 5741) ((-73 . -260) 5679) ((-73 . -454) 5612) ((-73 . -1015) 5590) ((-73 . -427) 5574) ((-73 . -92) 5558) ((-69 . -411) T) ((-69 . -1027) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1130) T) ((-69 . -554) 5540) ((-69 . -1015) T) ((-69 . -665) T) ((-69 . -241) 5519) ((-67 . -997) T) ((-67 . -428) 5500) ((-67 . -554) 5466) ((-67 . -557) 5447) ((-67 . -1015) T) ((-67 . -1130) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1036) 5431) ((-62 . -427) 5415) ((-62 . -1015) 5393) ((-62 . -454) 5326) ((-62 . -260) 5264) ((-62 . -554) 5199) ((-62 . -72) 5153) ((-62 . -1130) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1130) T) ((-60 . -72) 5053) ((-60 . -554) 4988) ((-60 . -260) 4926) ((-60 . -454) 4859) ((-60 . -1015) 4837) ((-60 . -427) 4821) ((-58 . -19) 4805) ((-58 . -595) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -540) 4695) ((-58 . -555) 4656) ((-58 . -427) 4640) ((-58 . -1015) 4593) ((-58 . -454) 4526) ((-58 . -260) 4464) ((-58 . -554) 4379) ((-58 . -72) 4313) ((-58 . -1130) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -758) 4276) ((-58 . -761) 4255) ((-58 . -322) 4239) ((-55 . -1015) T) ((-55 . -554) 4221) ((-55 . -1130) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -952) 4203) ((-55 . -557) 4185) ((-51 . -1015) T) ((-51 . -554) 4167) ((-51 . -1130) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -562) 4151) ((-50 . -557) 4120) ((-50 . -592) 4094) ((-50 . -590) 4053) ((-50 . -972) T) ((-50 . -1027) T) ((-50 . -1062) T) ((-50 . -665) T) ((-50 . -963) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1015) T) ((-50 . -554) 4035) ((-50 . -1130) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -952) 4019) ((-49 . -1015) T) ((-49 . -554) 4001) ((-49 . -1130) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1130) T) ((-48 . -554) 3983) ((-48 . -1015) T) ((-48 . -557) 3884) ((-48 . -952) 3827) ((-48 . -454) 3793) ((-48 . -260) 3780) ((-48 . -27) T) ((-48 . -917) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -965) 3694) ((-48 . -970) 3659) ((-48 . -246) T) ((-48 . -656) 3624) ((-48 . -584) 3589) ((-48 . -592) 3539) ((-48 . -590) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -963) T) ((-48 . -665) T) ((-48 . -1062) T) ((-48 . -1027) T) ((-48 . -972) T) ((-48 . -38) 3454) ((-48 . -258) T) ((-48 . -390) T) ((-48 . -146) T) ((-48 . -496) T) ((-48 . -834) T) ((-48 . -1135) T) ((-48 . -312) T) ((-48 . -582) 3414) ((-48 . -935) T) ((-48 . -555) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -540) 3248) ((-45 . -260) 3046) ((-45 . -454) 2798) ((-45 . -427) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -551) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1108) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1130) T) ((-45 . -72) T) ((-45 . -554) 2234) ((-45 . -1015) T) ((-45 . -555) NIL) ((-45 . -595) 2182) ((-45 . -322) 2130) ((-45 . -761) NIL) ((-45 . -758) NIL) ((-45 . -1065) 2078) ((-45 . -925) 2026) ((-45 . -1169) 1974) ((-45 . -610) 1922) ((-44 . -359) 1906) ((-44 . -685) 1890) ((-44 . -659) T) ((-44 . -687) T) ((-44 . -82) 1869) ((-44 . -965) 1853) ((-44 . -970) 1837) ((-44 . -21) T) ((-44 . -590) 1780) ((-44 . -23) T) ((-44 . -1015) T) ((-44 . -554) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -592) 1720) ((-44 . -584) 1704) ((-44 . -656) 1688) ((-44 . -316) 1672) ((-44 . -1130) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -557) 1553) ((-40 . -972) T) ((-40 . -1027) T) ((-40 . -1062) T) ((-40 . -665) T) ((-40 . -963) T) ((-40 . -592) 1455) ((-40 . -590) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1130) T) ((-40 . -554) 1367) ((-40 . -1015) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -970) 1312) ((-40 . -965) 1257) ((-40 . -82) 1174) ((-40 . -555) 1158) ((-40 . -184) 1135) ((-40 . -811) 1087) ((-40 . -813) 999) ((-40 . -808) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1135) T) ((-40 . -834) T) ((-40 . -496) T) ((-40 . -656) 677) ((-40 . -584) 622) ((-40 . -38) 567) ((-40 . -390) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -318) NIL) ((-40 . -299) NIL) ((-40 . -1067) NIL) ((-40 . -118) 539) ((-40 . -343) NIL) ((-40 . -351) 511) ((-40 . -120) 483) ((-40 . -320) 455) ((-40 . -327) 432) ((-40 . -582) 366) ((-40 . -353) 343) ((-40 . -952) 220) ((-40 . -663) 192) ((-31 . -997) T) ((-31 . -428) 173) ((-31 . -554) 139) ((-31 . -557) 120) ((-31 . -1015) T) ((-31 . -1130) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -868) T) ((-30 . -554) 102) ((0 . |EnumerationCategory|) T) ((0 . -554) 84) ((0 . -1015) T) ((0 . -72) T) ((0 . -1130) T) ((-2 . |RecordCategory|) T) ((-2 . -554) 66) ((-2 . -1015) T) ((-2 . -72) T) ((-2 . -1130) T) ((-3 . |UnionCategory|) T) ((-3 . -554) 48) ((-3 . -1015) T) ((-3 . -72) T) ((-3 . -1130) T) ((-1 . -1015) T) ((-1 . -554) 30) ((-1 . -1130) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 269f49ab..3cbc5d9f 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3577105534) -(3995 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3577141750) +(3999 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -73,17 +73,17 @@ |Elaboration| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| - |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| - |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| - |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |EuclideanDomain&| |EuclideanDomain| |Evalable&| - |Evalable| |EvaluateCycleIndicators| |Exit| |ExitAst| |ExponentialExpansion| - |Expression| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| - |ExpressionSpaceODESolver| |ExpressionTubePlot| - |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| - |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| - |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| - |FlexibleArray| |FiniteAlgebraicExtensionField&| + |EltableAggregate| |EuclideanModularRing| |EntireRing&| |EntireRing| + |Environment| |EigenPackage| |Equation| |EquationFunctions2| |EqTable| + |ErrorFunctions| |ExpressionSpace&| |ExpressionSpace| + |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |EuclideanDomain&| + |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| + |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| + |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| + |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| + |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FourierComponent| |FunctorData| |FiniteDivisor| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| |FullyEvalableOver| |FiniteField| @@ -312,8 +312,8 @@ |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RightLinearSet| |RectangularMatrixCategory&| |RectangularMatrixCategory| - |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| - |RangeBinding| |RealNumberSystem&| |RealNumberSystem| + |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng&| + |Rng| |RangeBinding| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| @@ -396,17 +396,17 @@ |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| - |Union| |zerosOf| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| - |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| - |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| - |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| - |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| - |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| - |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| - |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules| |localUnquote| - |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray| |associatedSystem| - |uncouplingMatrices| |associatedEquations| |arrayStack| |morphism| - |balancedFactorisation| |before?| |mapDown!| |mapUp!| |setleaves!| + |Union| |opposite?| |zerosOf| |zeroOf| |rootsOf| |makeSketch| |inrootof| + |droot| |iroot| |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| + |ratDenom| |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| + |leftRank| |rightRank| |doubleRank| |weakBiRank| |biRank| + |basisOfCommutingElements| |basisOfLeftAnnihilator| |basisOfRightAnnihilator| + |basisOfLeftNucleus| |basisOfRightNucleus| |basisOfMiddleNucleus| + |basisOfNucleus| |basisOfCenter| |basisOfLeftNucloid| |basisOfRightNucloid| + |basisOfCentroid| |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules| + |localUnquote| |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray| + |associatedSystem| |uncouplingMatrices| |associatedEquations| |arrayStack| + |morphism| |balancedFactorisation| |before?| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |inspect| |extract!| |bag| |binding| |binaryOperation| |setProperties| |setProperty| |deleteProperty!| |has?| |comparison| |equality| @@ -769,9 +769,9 @@ |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| - |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| - |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| - |left| |roman| |mainSquareFreePart| |mainPrimitivePart| |mainContent| + |rectangularMatrix| |annihilate?| |characteristic| |round| |fractionPart| + |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| + |right| |left| |roman| |mainSquareFreePart| |mainPrimitivePart| |mainContent| |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| |subResultantChain| |halfExtendedSubResultantGcd2| |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 4417a140..8b11d4e6 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4042 +1,4048 @@ -(2806310 . 3577105543) -((-1730 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3785 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 44 T ELT)) (-2296 (($ $) 80 T ELT)) (-3839 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3416 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-2888 (((-584 |#2|) $) 13 T ELT)) (-3515 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2303 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3797 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) 66 T ELT)) (-2304 (($ $ (-484)) 76 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 34 T ELT) (((-695) |#2| $) NIL T ELT)) (-1729 (($ $ $ (-484)) 69 T ELT)) (-3397 (($ $) 68 T ELT)) (-3527 (($ (-584 |#2|)) 73 T ELT)) (-3799 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3943 (((-773) $) 92 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3055 (((-85) $ $) 95 T ELT)) (-2684 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -1729 (|#1| |#1| |#1| (-484))) (-15 -1730 ((-85) |#1|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3416 ((-484) |#2| |#1| (-484))) (-15 -3416 ((-484) |#2| |#1|)) (-15 -3416 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3515 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3785 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -2303 (|#1| |#1| |#1| (-484))) (-15 -2303 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| (-1145 (-484)))) (-15 -2304 (|#1| |#1| (-484))) (-15 -3955 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3799 (|#1| (-584 |#1|))) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3799 (|#1| |#2| |#1|)) (-15 -3799 (|#1| |#1| |#2|)) (-15 -3797 (|#1| |#1| (-1145 (-484)))) (-15 -3527 (|#1| (-584 |#2|))) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3797 (|#2| |#1| (-484))) (-15 -3797 (|#2| |#1| (-484) |#2|)) (-15 -3785 (|#2| |#1| (-484) |#2|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -2888 ((-584 |#2|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3397 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18)) +(2820677 . 3577141760) +((-1733 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1731 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2299 (($ $) 80 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3420 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-2891 (((-585 |#2|) $) 13 T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1950 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2306 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2307 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 34 T ELT) (((-696) |#2| $) NIL T ELT)) (-1732 (($ $ $ (-485)) 69 T ELT)) (-3401 (($ $) 68 T ELT)) (-3531 (($ (-585 |#2|)) 73 T ELT)) (-3803 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-585 $)) 85 T ELT)) (-3947 (((-774) $) 92 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3058 (((-85) $ $) 95 T ELT)) (-2687 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -1732 (|#1| |#1| |#1| (-485))) (-15 -1733 ((-85) |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3789 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -2306 (|#1| |#1| |#1| (-485))) (-15 -2306 (|#1| |#2| |#1| (-485))) (-15 -2307 (|#1| |#1| (-1147 (-485)))) (-15 -2307 (|#1| |#1| (-485))) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3803 (|#1| (-585 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3531 (|#1| (-585 |#2|))) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3789 (|#2| |#1| (-485) |#2|)) (-15 -1947 ((-696) |#2| |#1|)) (-15 -2891 ((-585 |#2|) |#1|)) (-15 -1947 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1950 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-19 |#2|) (-1130)) (T -18)) NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3993)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-19 |#1|) (-113) (-1128)) (T -19)) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3997)) ELT) (($ $) 97 (-12 (|has| |#1| (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 109 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 106 T ELT) (((-485) |#1| $) 105 (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) 104 (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 91 (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 100 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 93 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 95 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 94 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 96 (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-19 |#1|) (-113) (-1130)) (T -19)) NIL -(-13 (-321 |t#1|) (-10 -7 (-6 -3993))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T)) -((-1310 (((-3 $ "failed") $ $) 12 T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-484) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1310 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20)) +(-13 (-322 |t#1|) (-10 -7 (-6 -3997))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1130) . T)) +((-1313 (((-3 $ "failed") $ $) 12 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 16 T ELT) (($ (-485) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -1313 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-21)) (T -20)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT))) (((-21) (-113)) (T -21)) -((-3834 (*1 *1 *1) (-4 *1 (-21))) (-3834 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-589 (-484)) (-10 -8 (-15 -3834 ($ $)) (-15 -3834 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1013) . T) ((-1128) . T)) -((-3186 (((-85) $) 10 T ELT)) (-3721 (($) 15 T CONST)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-695) |#1|)) (-15 -3186 ((-85) |#1|)) (-15 -3721 (|#1|) -3949) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22)) +((-3838 (*1 *1 *1) (-4 *1 (-21))) (-3838 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-590 (-485)) (-10 -8 (-15 -3838 ($ $)) (-15 -3838 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-1015) . T) ((-1130) . T)) +((-3190 (((-85) $) 10 T ELT)) (-3725 (($) 15 T CONST)) (-1215 (((-85) $ $) 22 T ELT)) (* (($ (-832) $) 14 T ELT) (($ (-696) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 * (|#1| (-832) |#1|))) (-23)) (T -22)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-23) (-113)) (T -23)) -((-2659 (*1 *1) (-4 *1 (-23))) (-3721 (*1 *1) (-4 *1 (-23))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695))))) -(-13 (-25) (-10 -8 (-15 -2659 ($) -3949) (-15 -3721 ($) -3949) (-15 -3186 ((-85) $)) (-15 * ($ (-695) $)))) -(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((* (($ (-831) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24)) +((-2662 (*1 *1) (-4 *1 (-23))) (-3725 (*1 *1) (-4 *1 (-23))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) (-1215 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +(-13 (-25) (-10 -8 (-15 -2662 ($) -3953) (-15 -3725 ($) -3953) (-15 -3190 ((-85) $)) (-15 * ($ (-696) $)) (-15 -1215 ((-85) $ $)))) +(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((* (($ (-832) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-832) |#1|))) (-25)) (T -24)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT))) +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT))) (((-25) (-113)) (T -25)) -((-3836 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))) -(-13 (-1013) (-10 -8 (-15 -3836 ($ $ $)) (-15 * ($ (-831) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-1213 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1084 $)) 16 T ELT) (((-584 $) (-1084 $) (-1089)) 20 T ELT)) (-1214 (($ (-858 $)) 30 T ELT) (($ (-1084 $)) 11 T ELT) (($ (-1084 $) (-1089)) 60 T ELT)) (-1215 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1084 $)) 18 T ELT) (((-584 $) (-1084 $) (-1089)) 19 T ELT)) (-3181 (($ (-858 $)) 31 T ELT) (($ (-1084 $)) 13 T ELT) (($ (-1084 $) (-1089)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1213 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1213 ((-584 |#1|) (-1084 |#1|))) (-15 -1213 ((-584 |#1|) (-858 |#1|))) (-15 -1214 (|#1| (-1084 |#1|) (-1089))) (-15 -1214 (|#1| (-1084 |#1|))) (-15 -1214 (|#1| (-858 |#1|))) (-15 -1215 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1215 ((-584 |#1|) (-1084 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -3181 (|#1| (-1084 |#1|) (-1089))) (-15 -3181 (|#1| (-1084 |#1|))) (-15 -3181 (|#1| (-858 |#1|)))) (-27)) (T -26)) +((-3840 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ (-832) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-1216 (((-585 $) (-859 $)) 32 T ELT) (((-585 $) (-1086 $)) 16 T ELT) (((-585 $) (-1086 $) (-1091)) 20 T ELT)) (-1217 (($ (-859 $)) 30 T ELT) (($ (-1086 $)) 11 T ELT) (($ (-1086 $) (-1091)) 60 T ELT)) (-1218 (((-585 $) (-859 $)) 33 T ELT) (((-585 $) (-1086 $)) 18 T ELT) (((-585 $) (-1086 $) (-1091)) 19 T ELT)) (-3185 (($ (-859 $)) 31 T ELT) (($ (-1086 $)) 13 T ELT) (($ (-1086 $) (-1091)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1216 ((-585 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-585 |#1|) (-1086 |#1|))) (-15 -1216 ((-585 |#1|) (-859 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-859 |#1|))) (-15 -1218 ((-585 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-585 |#1|) (-1086 |#1|))) (-15 -1218 ((-585 |#1|) (-859 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-859 |#1|)))) (-27)) (T -26)) NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1213 (((-584 $) (-858 $)) 96 T ELT) (((-584 $) (-1084 $)) 95 T ELT) (((-584 $) (-1084 $) (-1089)) 94 T ELT)) (-1214 (($ (-858 $)) 99 T ELT) (($ (-1084 $)) 98 T ELT) (($ (-1084 $) (-1089)) 97 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-3036 (($ $) 108 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-1215 (((-584 $) (-858 $)) 102 T ELT) (((-584 $) (-1084 $)) 101 T ELT) (((-584 $) (-1084 $) (-1089)) 100 T ELT)) (-3181 (($ (-858 $)) 105 T ELT) (($ (-1084 $)) 104 T ELT) (($ (-1084 $) (-1089)) 103 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 107 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 106 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) +((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1086 $)) 97 T ELT) (((-585 $) (-1086 $) (-1091)) 96 T ELT)) (-1217 (($ (-859 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1218 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1086 $)) 103 T ELT) (((-585 $) (-1086 $) (-1091)) 102 T ELT)) (-3185 (($ (-859 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-348 (-485))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) (((-27) (-113)) (T -27)) -((-3181 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1213 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1))))) -(-13 (-311) (-916) (-10 -8 (-15 -3181 ($ (-858 $))) (-15 -3181 ($ (-1084 $))) (-15 -3181 ($ (-1084 $) (-1089))) (-15 -1215 ((-584 $) (-858 $))) (-15 -1215 ((-584 $) (-1084 $))) (-15 -1215 ((-584 $) (-1084 $) (-1089))) (-15 -1214 ($ (-858 $))) (-15 -1214 ($ (-1084 $))) (-15 -1214 ($ (-1084 $) (-1089))) (-15 -1213 ((-584 $) (-858 $))) (-15 -1213 ((-584 $) (-1084 $))) (-15 -1213 ((-584 $) (-1084 $) (-1089))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-1213 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 $) (-1089)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1089)) 45 T ELT)) (-1214 (($ (-858 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1089)) 39 T ELT)) (-1215 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 $) (-1089)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1089)) 47 T ELT)) (-3181 (($ (-858 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1089)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1213 ((-584 |#1|) |#1| (-1089))) (-15 -1214 (|#1| |#1| (-1089))) (-15 -1213 ((-584 |#1|) |#1|)) (-15 -1214 (|#1| |#1|)) (-15 -1215 ((-584 |#1|) |#1| (-1089))) (-15 -3181 (|#1| |#1| (-1089))) (-15 -1215 ((-584 |#1|) |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -1213 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1213 ((-584 |#1|) (-1084 |#1|))) (-15 -1213 ((-584 |#1|) (-858 |#1|))) (-15 -1214 (|#1| (-1084 |#1|) (-1089))) (-15 -1214 (|#1| (-1084 |#1|))) (-15 -1214 (|#1| (-858 |#1|))) (-15 -1215 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1215 ((-584 |#1|) (-1084 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -3181 (|#1| (-1084 |#1|) (-1089))) (-15 -3181 (|#1| (-1084 |#1|))) (-15 -3181 (|#1| (-858 |#1|)))) (-29 |#2|) (-495)) (T -28)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1213 (((-584 $) (-858 $)) 96 T ELT) (((-584 $) (-1084 $)) 95 T ELT) (((-584 $) (-1084 $) (-1089)) 94 T ELT) (((-584 $) $) 146 T ELT) (((-584 $) $ (-1089)) 144 T ELT)) (-1214 (($ (-858 $)) 99 T ELT) (($ (-1084 $)) 98 T ELT) (($ (-1084 $) (-1089)) 97 T ELT) (($ $) 147 T ELT) (($ $ (-1089)) 145 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-1089)) $) 215 T ELT)) (-3082 (((-347 (-1084 $)) $ (-551 $)) 247 (|has| |#1| (-495)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1598 (((-584 (-551 $)) $) 178 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-1602 (($ $ (-584 (-551 $)) (-584 $)) 168 T ELT) (($ $ (-584 (-248 $))) 167 T ELT) (($ $ (-248 $)) 166 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-3036 (($ $) 108 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-1215 (((-584 $) (-858 $)) 102 T ELT) (((-584 $) (-1084 $)) 101 T ELT) (((-584 $) (-1084 $) (-1089)) 100 T ELT) (((-584 $) $) 150 T ELT) (((-584 $) $ (-1089)) 148 T ELT)) (-3181 (($ (-858 $)) 105 T ELT) (($ (-1084 $)) 104 T ELT) (($ (-1084 $) (-1089)) 103 T ELT) (($ $) 151 T ELT) (($ $ (-1089)) 149 T ELT)) (-3155 (((-3 (-858 |#1|) #1="failed") $) 266 (|has| |#1| (-962)) ELT) (((-3 (-347 (-858 |#1|)) #1#) $) 249 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 211 T ELT) (((-3 (-484) #1#) $) 208 (|has| |#1| (-951 (-484))) ELT) (((-3 (-1089) #1#) $) 202 T ELT) (((-3 (-551 $) #1#) $) 153 T ELT) (((-3 (-347 (-484)) #1#) $) 141 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3154 (((-858 |#1|) $) 265 (|has| |#1| (-962)) ELT) (((-347 (-858 |#1|)) $) 248 (|has| |#1| (-495)) ELT) ((|#1| $) 210 T ELT) (((-484) $) 209 (|has| |#1| (-951 (-484))) ELT) (((-1089) $) 201 T ELT) (((-551 $) $) 152 T ELT) (((-347 (-484)) $) 142 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2563 (($ $ $) 69 T ELT)) (-2278 (((-631 |#1|) (-631 $)) 254 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 253 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 140 (OR (-2561 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (((-631 (-484)) (-631 $)) 139 (OR (-2561 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 207 (|has| |#1| (-797 (-327))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 206 (|has| |#1| (-797 (-484))) ELT)) (-2572 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-1597 (((-584 (-86)) $) 179 T ELT)) (-3592 (((-86) (-86)) 180 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2672 (((-85) $) 200 (|has| $ (-951 (-484))) ELT)) (-2995 (($ $) 232 (|has| |#1| (-962)) ELT)) (-2997 (((-1038 |#1| (-551 $)) $) 231 (|has| |#1| (-962)) ELT)) (-3010 (($ $ (-484)) 107 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-1595 (((-1084 $) (-551 $)) 197 (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) 186 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 176 T ELT)) (-2279 (((-631 |#1|) (-1178 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 138 (OR (-2561 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (((-631 (-484)) (-1178 $)) 137 (OR (-2561 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 177 T ELT)) (-2234 (($ (-86) (-584 $)) 185 T ELT) (($ (-86) $) 184 T ELT)) (-2822 (((-3 (-584 $) #3="failed") $) 226 (|has| |#1| (-1025)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-484))) #3#) $) 235 (|has| |#1| (-962)) ELT)) (-2821 (((-3 (-584 $) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 $))) #3#) $) 229 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #3#) $ (-1089)) 234 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #3#) $ (-86)) 233 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #3#) $) 227 (|has| |#1| (-1025)) ELT)) (-2632 (((-85) $ (-1089)) 183 T ELT) (((-85) $ (-86)) 182 T ELT)) (-2483 (($ $) 86 T ELT)) (-2602 (((-695) $) 175 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 213 T ELT)) (-1794 ((|#1| $) 214 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1596 (((-85) $ (-1089)) 188 T ELT) (((-85) $ $) 187 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-2673 (((-85) $) 199 (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-1089) (-695) (-1 $ $)) 239 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 237 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 236 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 225 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 224 (|has| |#1| (-554 (-473))) ELT) (($ $) 223 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) 222 (|has| |#1| (-554 (-473))) ELT) (($ $ (-1089)) 221 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) (-1 $ $)) 196 T ELT) (($ $ (-86) (-1 $ (-584 $))) 195 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 194 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 193 T ELT) (($ $ (-1089) (-1 $ $)) 192 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 191 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 190 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 189 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ $ $) 159 T ELT) (($ $ (-248 $)) 158 T ELT) (($ $ (-584 (-248 $))) 157 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 156 T ELT) (($ $ (-551 $) $) 155 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-3797 (($ (-86) (-584 $)) 165 T ELT) (($ (-86) $ $ $ $) 164 T ELT) (($ (-86) $ $ $) 163 T ELT) (($ (-86) $ $) 162 T ELT) (($ (-86) $) 161 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-1601 (($ $ $) 174 T ELT) (($ $) 173 T ELT)) (-3755 (($ $ (-584 (-1089)) (-584 (-695))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 260 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 259 (|has| |#1| (-962)) ELT) (($ $ (-1089)) 257 (|has| |#1| (-962)) ELT)) (-2994 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 241 (|has| |#1| (-495)) ELT)) (-3183 (($ $) 198 (|has| $ (-962)) ELT)) (-3969 (((-473) $) 270 (|has| |#1| (-554 (-473))) ELT) (($ (-345 $)) 240 (|has| |#1| (-495)) ELT) (((-801 (-327)) $) 205 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-801 (-484)) $) 204 (|has| |#1| (-554 (-801 (-484)))) ELT)) (-3008 (($ $ $) 269 (|has| |#1| (-410)) ELT)) (-2434 (($ $ $) 268 (|has| |#1| (-410)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-858 |#1|)) 267 (|has| |#1| (-962)) ELT) (($ (-347 (-858 |#1|))) 250 (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) 246 (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) 245 (|has| |#1| (-495)) ELT) (($ (-347 |#1|)) 244 (|has| |#1| (-495)) ELT) (($ (-1038 |#1| (-551 $))) 230 (|has| |#1| (-962)) ELT) (($ |#1|) 212 T ELT) (($ (-1089)) 203 T ELT) (($ (-551 $)) 154 T ELT)) (-2701 (((-633 $) $) 252 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-2589 (($ (-584 $)) 170 T ELT) (($ $) 169 T ELT)) (-2253 (((-85) (-86)) 181 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-1793 (($ (-1089) (-584 $)) 220 T ELT) (($ (-1089) $ $ $ $) 219 T ELT) (($ (-1089) $ $ $) 218 T ELT) (($ (-1089) $ $) 217 T ELT) (($ (-1089) $) 216 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 (-1089)) (-584 (-695))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 263 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 262 (|has| |#1| (-962)) ELT) (($ $ (-1089)) 258 (|has| |#1| (-962)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT) (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 243 (|has| |#1| (-495)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 106 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 251 (|has| |#1| (-146)) ELT) (($ |#1| $) 143 (|has| |#1| (-962)) ELT))) -(((-29 |#1|) (-113) (-495)) (T -29)) -((-3181 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3181 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1214 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1213 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1214 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1213 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-361 |t#1|) (-10 -8 (-15 -3181 ($ $)) (-15 -1215 ((-584 $) $)) (-15 -3181 ($ $ (-1089))) (-15 -1215 ((-584 $) $ (-1089))) (-15 -1214 ($ $)) (-15 -1213 ((-584 $) $)) (-15 -1214 ($ $ (-1089))) (-15 -1213 ((-584 $) $ (-1089))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-556 (-484)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1089)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-201) . T) ((-245) . T) ((-257) . T) ((-259 $) . T) ((-253) . T) ((-311) . T) ((-326 |#1|) |has| |#1| (-962)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-361 |#1|) . T) ((-389) . T) ((-410) |has| |#1| (-410)) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-347 (-484))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1089)) |has| |#1| (-962)) ((-810 (-1089)) |has| |#1| (-962)) ((-812 (-1089)) |has| |#1| (-962)) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484))))) ((-951 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1089)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-2895 (((-1001 (-179)) $) NIL T ELT)) (-2896 (((-1001 (-179)) $) NIL T ELT)) (-3132 (($ $ (-179)) 164 T ELT)) (-1216 (($ (-858 (-484)) (-1089) (-1089) (-1001 (-347 (-484))) (-1001 (-347 (-484)))) 103 T ELT)) (-2897 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3943 (((-773) $) 195 T ELT))) -(((-30) (-13 (-867) (-10 -8 (-15 -1216 ($ (-858 (-484)) (-1089) (-1089) (-1001 (-347 (-484))) (-1001 (-347 (-484))))) (-15 -3132 ($ $ (-179)))))) (T -30)) -((-1216 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-347 (-484)))) (-5 *1 (-30)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-1048) $) 10 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-995) (-10 -8 (-15 -2693 ((-1048) $)) (-15 -3231 ((-1048) $))))) (T -31)) -((-2693 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))) -((-3181 ((|#2| (-1084 |#2|) (-1089)) 39 T ELT)) (-3592 (((-86) (-86)) 53 T ELT)) (-1595 (((-1084 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-484))) ELT)) (-1219 ((|#2| |#1| (-484)) 120 (|has| |#1| (-951 (-484))) ELT)) (-1217 ((|#2| (-1084 |#2|) |#2|) 29 T ELT)) (-1218 (((-773) (-584 |#2|)) 87 T ELT)) (-3183 ((|#2| |#2|) 143 (|has| |#1| (-951 (-484))) ELT)) (-2253 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-347 (-484))) 96 (|has| |#1| (-951 (-484))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3181 (|#2| (-1084 |#2|) (-1089))) (-15 -3592 ((-86) (-86))) (-15 -2253 ((-85) (-86))) (-15 -1217 (|#2| (-1084 |#2|) |#2|)) (-15 -1218 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-484))) (PROGN (-15 ** (|#2| |#2| (-347 (-484)))) (-15 -1595 ((-1084 |#2|) (-551 |#2|))) (-15 -3183 (|#2| |#2|)) (-15 -1219 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-361 |#1|)) (T -32)) -((-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-495)))) (-3183 (*1 *2 *2) (-12 (-4 *3 (-951 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-361 *3)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-361 *4)) (-4 *4 (-951 (-484))) (-4 *4 (-495)) (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-951 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-495)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1217 (*1 *2 *3 *2) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-361 *4)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495))))) -((-3721 (($) 10 T CONST)) (-1220 (((-85) $ $) 8 T ELT)) (-3400 (((-85) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3721 (|#1|) -3949) (-15 -3400 ((-85) |#1|)) (-15 -1220 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3721 (($) 7 T CONST)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3397 (($ $) 10 T ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) +((-3185 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-585 *1))))) +(-13 (-312) (-917) (-10 -8 (-15 -3185 ($ (-859 $))) (-15 -3185 ($ (-1086 $))) (-15 -3185 ($ (-1086 $) (-1091))) (-15 -1218 ((-585 $) (-859 $))) (-15 -1218 ((-585 $) (-1086 $))) (-15 -1218 ((-585 $) (-1086 $) (-1091))) (-15 -1217 ($ (-859 $))) (-15 -1217 ($ (-1086 $))) (-15 -1217 ($ (-1086 $) (-1091))) (-15 -1216 ((-585 $) (-859 $))) (-15 -1216 ((-585 $) (-1086 $))) (-15 -1216 ((-585 $) (-1086 $) (-1091))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-917) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-1216 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-1086 $) (-1091)) 54 T ELT) (((-585 $) $) 22 T ELT) (((-585 $) $ (-1091)) 45 T ELT)) (-1217 (($ (-859 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1091)) 39 T ELT)) (-1218 (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-1086 $) (-1091)) 52 T ELT) (((-585 $) $) 18 T ELT) (((-585 $) $ (-1091)) 47 T ELT)) (-3185 (($ (-859 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1091)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1216 ((-585 |#1|) |#1| (-1091))) (-15 -1217 (|#1| |#1| (-1091))) (-15 -1216 ((-585 |#1|) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -1218 ((-585 |#1|) |#1| (-1091))) (-15 -3185 (|#1| |#1| (-1091))) (-15 -1218 ((-585 |#1|) |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -1216 ((-585 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-585 |#1|) (-1086 |#1|))) (-15 -1216 ((-585 |#1|) (-859 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-859 |#1|))) (-15 -1218 ((-585 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-585 |#1|) (-1086 |#1|))) (-15 -1218 ((-585 |#1|) (-859 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-859 |#1|)))) (-29 |#2|) (-496)) (T -28)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-585 $) (-859 $)) 98 T ELT) (((-585 $) (-1086 $)) 97 T ELT) (((-585 $) (-1086 $) (-1091)) 96 T ELT) (((-585 $) $) 148 T ELT) (((-585 $) $ (-1091)) 146 T ELT)) (-1217 (($ (-859 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1091)) 147 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-1091)) $) 217 T ELT)) (-3085 (((-348 (-1086 $)) $ (-552 $)) 249 (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1601 (((-585 (-552 $)) $) 180 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-585 (-552 $)) (-585 $)) 170 T ELT) (($ $ (-585 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1218 (((-585 $) (-859 $)) 104 T ELT) (((-585 $) (-1086 $)) 103 T ELT) (((-585 $) (-1086 $) (-1091)) 102 T ELT) (((-585 $) $) 152 T ELT) (((-585 $) $ (-1091)) 150 T ELT)) (-3185 (($ (-859 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1091)) 151 T ELT)) (-3159 (((-3 (-859 |#1|) #1="failed") $) 268 (|has| |#1| (-963)) ELT) (((-3 (-348 (-859 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-952 (-485))) ELT) (((-3 (-1091) #1#) $) 204 T ELT) (((-3 (-552 $) #1#) $) 155 T ELT) (((-3 (-348 (-485)) #1#) $) 143 (OR (-12 (|has| |#1| (-952 (-485))) (|has| |#1| (-496))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3158 (((-859 |#1|) $) 267 (|has| |#1| (-963)) ELT) (((-348 (-859 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-952 (-485))) ELT) (((-1091) $) 203 T ELT) (((-552 $) $) 154 T ELT) (((-348 (-485)) $) 144 (OR (-12 (|has| |#1| (-952 (-485))) (|has| |#1| (-496))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2281 (((-632 |#1|) (-632 $)) 256 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 255 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 142 (OR (-2564 (|has| |#1| (-963)) (|has| |#1| (-582 (-485)))) (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT) (((-632 (-485)) (-632 $)) 141 (OR (-2564 (|has| |#1| (-963)) (|has| |#1| (-582 (-485)))) (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 209 (|has| |#1| (-798 (-328))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 208 (|has| |#1| (-798 (-485))) ELT)) (-2575 (($ (-585 $)) 174 T ELT) (($ $) 173 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1600 (((-585 (-86)) $) 181 T ELT)) (-3596 (((-86) (-86)) 182 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 202 (|has| $ (-952 (-485))) ELT)) (-2998 (($ $) 234 (|has| |#1| (-963)) ELT)) (-3000 (((-1040 |#1| (-552 $)) $) 233 (|has| |#1| (-963)) ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-1598 (((-1086 $) (-552 $)) 199 (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) 188 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 178 T ELT)) (-2282 (((-632 |#1|) (-1180 $)) 258 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 257 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 140 (OR (-2564 (|has| |#1| (-963)) (|has| |#1| (-582 (-485)))) (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT) (((-632 (-485)) (-1180 $)) 139 (OR (-2564 (|has| |#1| (-963)) (|has| |#1| (-582 (-485)))) (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 179 T ELT)) (-2237 (($ (-86) (-585 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2825 (((-3 (-585 $) #3="failed") $) 228 (|has| |#1| (-1027)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #3#) $) 237 (|has| |#1| (-963)) ELT)) (-2824 (((-3 (-585 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #3#) $ (-1091)) 236 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #3#) $ (-86)) 235 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #3#) $) 229 (|has| |#1| (-1027)) ELT)) (-2635 (((-85) $ (-1091)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2486 (($ $) 88 T ELT)) (-2605 (((-696) $) 177 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 215 T ELT)) (-1797 ((|#1| $) 216 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1599 (((-85) $ (-1091)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2676 (((-85) $) 201 (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-1091) (-696) (-1 $ $)) 241 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696) (-1 $ (-585 $))) 240 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 239 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ $))) 238 (|has| |#1| (-963)) ELT) (($ $ (-585 (-86)) (-585 $) (-1091)) 227 (|has| |#1| (-555 (-474))) ELT) (($ $ (-86) $ (-1091)) 226 (|has| |#1| (-555 (-474))) ELT) (($ $) 225 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-1091))) 224 (|has| |#1| (-555 (-474))) ELT) (($ $ (-1091)) 223 (|has| |#1| (-555 (-474))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-585 $))) 197 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 196 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 195 T ELT) (($ $ (-1091) (-1 $ $)) 194 T ELT) (($ $ (-1091) (-1 $ (-585 $))) 193 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) 192 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) 191 T ELT) (($ $ (-585 $) (-585 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-585 (-249 $))) 159 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 158 T ELT) (($ $ (-552 $) $) 157 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-3801 (($ (-86) (-585 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3759 (($ $ (-585 (-1091)) (-585 (-696))) 263 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) 262 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) 261 (|has| |#1| (-963)) ELT) (($ $ (-1091)) 259 (|has| |#1| (-963)) ELT)) (-2997 (($ $) 244 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-552 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 200 (|has| $ (-963)) ELT)) (-3973 (((-474) $) 272 (|has| |#1| (-555 (-474))) ELT) (($ (-346 $)) 242 (|has| |#1| (-496)) ELT) (((-802 (-328)) $) 207 (|has| |#1| (-555 (-802 (-328)))) ELT) (((-802 (-485)) $) 206 (|has| |#1| (-555 (-802 (-485)))) ELT)) (-3011 (($ $ $) 271 (|has| |#1| (-411)) ELT)) (-2437 (($ $ $) 270 (|has| |#1| (-411)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ (-859 |#1|)) 269 (|has| |#1| (-963)) ELT) (($ (-348 (-859 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-348 (-859 (-348 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-859 (-348 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-348 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1040 |#1| (-552 $))) 232 (|has| |#1| (-963)) ELT) (($ |#1|) 214 T ELT) (($ (-1091)) 205 T ELT) (($ (-552 $)) 156 T ELT)) (-2704 (((-634 $) $) 254 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-2592 (($ (-585 $)) 172 T ELT) (($ $) 171 T ELT)) (-2256 (((-85) (-86)) 183 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-1796 (($ (-1091) (-585 $)) 222 T ELT) (($ (-1091) $ $ $ $) 221 T ELT) (($ (-1091) $ $ $) 220 T ELT) (($ (-1091) $ $) 219 T ELT) (($ (-1091) $) 218 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 (-1091)) (-585 (-696))) 266 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) 265 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) 264 (|has| |#1| (-963)) ELT) (($ $ (-1091)) 260 (|has| |#1| (-963)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ (-1040 |#1| (-552 $)) (-1040 |#1| (-552 $))) 245 (|has| |#1| (-496)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-348 (-485))) 108 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-963)) ELT))) +(((-29 |#1|) (-113) (-496)) (T -29)) +((-3185 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1218 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-3185 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-1217 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-362 |t#1|) (-10 -8 (-15 -3185 ($ $)) (-15 -1218 ((-585 $) $)) (-15 -3185 ($ $ (-1091))) (-15 -1218 ((-585 $) $ (-1091))) (-15 -1217 ($ $)) (-15 -1216 ((-585 $) $)) (-15 -1217 ($ $ (-1091))) (-15 -1216 ((-585 $) $ (-1091))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) . T) ((-557 (-348 (-859 |#1|))) |has| |#1| (-496)) ((-557 (-485)) . T) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1091)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-555 (-802 (-328))) |has| |#1| (-555 (-802 (-328)))) ((-555 (-802 (-485))) |has| |#1| (-555 (-802 (-485)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-327 |#1|) |has| |#1| (-963)) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-362 |#1|) . T) ((-390) . T) ((-411) |has| |#1| (-411)) ((-454 (-552 $) $) . T) ((-454 $ $) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 (-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) . T) ((-582 (-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-348 (-485))) . T) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) . T) ((-665) . T) ((-808 $ (-1091)) |has| |#1| (-963)) ((-811 (-1091)) |has| |#1| (-963)) ((-813 (-1091)) |has| |#1| (-963)) ((-798 (-328)) |has| |#1| (-798 (-328))) ((-798 (-485)) |has| |#1| (-798 (-485))) ((-796 |#1|) . T) ((-834) . T) ((-917) . T) ((-952 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485))))) ((-952 (-348 (-859 |#1|))) |has| |#1| (-496)) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1091)) . T) ((-952 |#1|) . T) ((-965 (-348 (-485))) . T) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-2898 (((-1003 (-179)) $) NIL T ELT)) (-2899 (((-1003 (-179)) $) NIL T ELT)) (-3136 (($ $ (-179)) 164 T ELT)) (-1219 (($ (-859 (-485)) (-1091) (-1091) (-1003 (-348 (-485))) (-1003 (-348 (-485)))) 103 T ELT)) (-2900 (((-585 (-585 (-856 (-179)))) $) 181 T ELT)) (-3947 (((-774) $) 195 T ELT))) +(((-30) (-13 (-868) (-10 -8 (-15 -1219 ($ (-859 (-485)) (-1091) (-1091) (-1003 (-348 (-485))) (-1003 (-348 (-485))))) (-15 -3136 ($ $ (-179)))))) (T -30)) +((-1219 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-859 (-485))) (-5 *3 (-1091)) (-5 *4 (-1003 (-348 (-485)))) (-5 *1 (-30)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-1050) $) 10 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-997) (-10 -8 (-15 -2696 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -31)) +((-2696 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31))))) +((-3185 ((|#2| (-1086 |#2|) (-1091)) 39 T ELT)) (-3596 (((-86) (-86)) 53 T ELT)) (-1598 (((-1086 |#2|) (-552 |#2|)) 148 (|has| |#1| (-952 (-485))) ELT)) (-1222 ((|#2| |#1| (-485)) 120 (|has| |#1| (-952 (-485))) ELT)) (-1220 ((|#2| (-1086 |#2|) |#2|) 29 T ELT)) (-1221 (((-774) (-585 |#2|)) 87 T ELT)) (-3187 ((|#2| |#2|) 143 (|has| |#1| (-952 (-485))) ELT)) (-2256 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-348 (-485))) 96 (|has| |#1| (-952 (-485))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3185 (|#2| (-1086 |#2|) (-1091))) (-15 -3596 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -1220 (|#2| (-1086 |#2|) |#2|)) (-15 -1221 ((-774) (-585 |#2|))) (IF (|has| |#1| (-952 (-485))) (PROGN (-15 ** (|#2| |#2| (-348 (-485)))) (-15 -1598 ((-1086 |#2|) (-552 |#2|))) (-15 -3187 (|#2| |#2|)) (-15 -1222 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-362 |#1|)) (T -32)) +((-1222 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *2 (-362 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-496)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-952 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-362 *3)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-552 *5)) (-4 *5 (-362 *4)) (-4 *4 (-952 (-485))) (-4 *4 (-496)) (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-485))) (-4 *4 (-952 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-362 *4)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-362 *4)) (-4 *4 (-496)) (-5 *2 (-774)) (-5 *1 (-32 *4 *5)))) (-1220 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-362 *4)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-362 *3)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-362 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-496))))) +((-3725 (($) 10 T CONST)) (-1223 (((-85) $ $) 8 T ELT)) (-3404 (((-85) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3725 (|#1|) -3953) (-15 -3404 ((-85) |#1|)) (-15 -1223 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3725 (($) 7 T CONST)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3401 (($ $) 10 T ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) (((-34) (-113)) (T -34)) -((-1220 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3397 (*1 *1 *1) (-4 *1 (-34))) (-3562 (*1 *1) (-4 *1 (-34))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3721 (*1 *1) (-4 *1 (-34))) (-3954 (*1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-34)) (-5 *2 (-695))))) -(-13 (-1128) (-10 -8 (-15 -1220 ((-85) $ $)) (-15 -3397 ($ $)) (-15 -3562 ($)) (-15 -3400 ((-85) $)) (-15 -3721 ($) -3949) (IF (|has| $ (-6 -3992)) (-15 -3954 ((-695) $)) |%noBranch|))) -(((-13) . T) ((-1128) . T)) -((-3495 (($ $) 11 T ELT)) (-3493 (($ $) 10 T ELT)) (-3497 (($ $) 9 T ELT)) (-3498 (($ $) 8 T ELT)) (-3496 (($ $) 7 T ELT)) (-3494 (($ $) 6 T ELT))) +((-1223 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3401 (*1 *1 *1) (-4 *1 (-34))) (-3566 (*1 *1) (-4 *1 (-34))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3725 (*1 *1) (-4 *1 (-34))) (-3958 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-34)) (-5 *2 (-696))))) +(-13 (-1130) (-10 -8 (-15 -1223 ((-85) $ $)) (-15 -3401 ($ $)) (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3725 ($) -3953) (IF (|has| $ (-6 -3996)) (-15 -3958 ((-696) $)) |%noBranch|))) +(((-13) . T) ((-1130) . T)) +((-3499 (($ $) 11 T ELT)) (-3497 (($ $) 10 T ELT)) (-3501 (($ $) 9 T ELT)) (-3502 (($ $) 8 T ELT)) (-3500 (($ $) 7 T ELT)) (-3498 (($ $) 6 T ELT))) (((-35) (-113)) (T -35)) -((-3495 (*1 *1 *1) (-4 *1 (-35))) (-3493 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35))) (-3494 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $)) (-15 -3497 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)))) -((-2567 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3399 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3792 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3794 (($ $) 154 T ELT)) (-3596 (($) 77 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2197 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3993)) ELT) (((-1184) $ (-484) (-484)) 186 (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 167 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3993)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3439 (((-85) $ (-695)) 203 T ELT)) (-3024 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 163 (|has| $ (-6 -3993)) ELT)) (-3783 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3993)) ELT)) (-3786 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3993)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 140 (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3992)) ELT)) (-3793 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2230 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 212 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 222 T ELT)) (-3796 (($ $ (-695)) 150 T ELT) (($ $) 148 T ELT)) (-2367 (($ $) 225 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1351 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992)))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3992)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3992)) ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) 196 T ELT)) (-3440 (((-85) $) 200 T ELT)) (-3416 (((-484) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) 217 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) 84 (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 131 T ELT)) (-3026 (((-85) $ $) 139 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3611 (($ (-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3716 (((-85) $ (-695)) 202 T ELT)) (-2199 ((|#1| $) 101 (|has| |#1| (-757)) ELT) (((-484) $) 188 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 204 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2855 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3515 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) 85 (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT) (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 ((|#1| $) 100 (|has| |#1| (-757)) ELT) (((-484) $) 189 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 205 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3993)) ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3531 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3713 (((-85) $ (-695)) 201 T ELT)) (-3029 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3524 (((-85) $) 132 T ELT)) (-3240 (((-1072) $) 22 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3795 (($ $ (-695)) 153 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2231 (((-584 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) 230 T ELT) (($ $ $ (-484)) 229 T ELT)) (-2303 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) 170 T ELT) (($ $ $ (-484)) 169 T ELT)) (-2202 (((-584 |#1|) $) 98 T ELT) (((-584 (-484)) $) 191 T ELT)) (-2203 (((-85) |#1| $) 97 T ELT) (((-85) (-484) $) 192 T ELT)) (-3241 (((-1033) $) 21 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3798 ((|#2| $) 102 (|has| |#1| (-757)) ELT) (($ $ (-695)) 147 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2198 (($ $ |#2|) 103 (|has| $ (-6 -3993)) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3441 (((-85) $) 199 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2204 (((-584 |#2|) $) 96 T ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) 194 T ELT) (($ $ (-1145 (-484))) 177 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3028 (((-484) $ $) 137 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1569 (($ $ (-484)) 233 T ELT) (($ $ (-1145 (-484))) 232 T ELT)) (-2304 (($ $ (-484)) 172 T ELT) (($ $ (-1145 (-484))) 171 T ELT)) (-3630 (((-85) $) 135 T ELT)) (-3789 (($ $) 159 T ELT)) (-3787 (($ $) 160 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) 158 T ELT)) (-3791 (($ $) 157 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3992)) ELT)) (-1729 (($ $ $ (-484)) 213 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473)))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3788 (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3799 (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-584 $)) 174 T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3943 (((-773) $) 17 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3519 (((-584 $) $) 130 T ELT)) (-3027 (((-85) $ $) 138 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1221 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 206 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2566 (((-85) $ $) 208 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3055 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2683 (((-85) $ $) 207 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2684 (((-85) $ $) 209 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36)) -((-1221 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| -3857 *3) (|:| |entry| *4)))))) -(-13 (-1106 |t#1| |t#2|) (-609 (-2 (|:| -3857 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1221 ((-3 (-2 (|:| -3857 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1145 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-321 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-426 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-539 (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-453 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1013))) ((-1063 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-1106 |#1| |#2|) . T) ((-1128) . T) ((-1167 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T)) -((-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#2|)) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +((-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3498 ($ $)) (-15 -3500 ($ $)) (-15 -3502 ($ $)) (-15 -3501 ($ $)) (-15 -3497 ($ $)) (-15 -3499 ($ $)))) +((-2570 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3798 (($ $) 154 T ELT)) (-3600 (($) 77 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2200 (((-1186) $ |#1| |#1|) 104 (|has| $ (-6 -3997)) ELT) (((-1186) $ (-485) (-485)) 186 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 167 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1731 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3997)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3443 (((-85) $ (-696)) 203 T ELT)) (-3027 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 163 (|has| $ (-6 -3997)) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3997)) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3997)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 140 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3996)) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 212 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 222 T ELT)) (-3800 (($ $ (-696)) 150 T ELT) (($ $) 148 T ELT)) (-2370 (($ $) 225 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-1354 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996)))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 196 T ELT)) (-3444 (((-85) $) 200 T ELT)) (-3420 (((-485) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 217 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) 84 (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 131 T ELT)) (-3029 (((-85) $ $) 139 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-3615 (($ (-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3720 (((-85) $ (-696)) 202 T ELT)) (-2202 ((|#1| $) 101 (|has| |#1| (-758)) ELT) (((-485) $) 188 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 204 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) 85 (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 ((|#1| $) 100 (|has| |#1| (-758)) ELT) (((-485) $) 189 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 205 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3717 (((-85) $ (-696)) 201 T ELT)) (-3032 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3528 (((-85) $) 132 T ELT)) (-3244 (((-1074) $) 22 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3799 (($ $ (-696)) 153 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2234 (((-585 |#1|) $) 67 T ELT)) (-2235 (((-85) |#1| $) 68 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 230 T ELT) (($ $ $ (-485)) 229 T ELT)) (-2306 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 170 T ELT) (($ $ $ (-485)) 169 T ELT)) (-2205 (((-585 |#1|) $) 98 T ELT) (((-585 (-485)) $) 191 T ELT)) (-2206 (((-85) |#1| $) 97 T ELT) (((-85) (-485) $) 192 T ELT)) (-3245 (((-1035) $) 21 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3802 ((|#2| $) 102 (|has| |#1| (-758)) ELT) (($ $ (-696)) 147 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2201 (($ $ |#2|) 103 (|has| $ (-6 -3997)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3445 (((-85) $) 199 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2207 (((-585 |#2|) $) 96 T ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 194 T ELT) (($ $ (-1147 (-485))) 177 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3031 (((-485) $ $) 137 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1572 (($ $ (-485)) 233 T ELT) (($ $ (-1147 (-485))) 232 T ELT)) (-2307 (($ $ (-485)) 172 T ELT) (($ $ (-1147 (-485))) 171 T ELT)) (-3634 (((-85) $) 135 T ELT)) (-3793 (($ $) 159 T ELT)) (-3791 (($ $) 160 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) 158 T ELT)) (-3795 (($ $) 157 T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) |#2| $) 86 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3996)) ELT)) (-1732 (($ $ $ (-485)) 213 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474)))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-585 $)) 174 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3947 (((-774) $) 17 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-3523 (((-585 $) $) 130 T ELT)) (-3030 (((-85) $ $) 138 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1224 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 206 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2569 (((-85) $ $) 208 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3058 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2686 (((-85) $ $) 207 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2687 (((-85) $ $) 209 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-36 |#1| |#2|) (-113) (-1015) (-1015)) (T -36)) +((-1224 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| -3861 *3) (|:| |entry| *4)))))) +(-13 (-1108 |t#1| |t#2|) (-610 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1224 ((-3 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1147 (-485)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-237 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-322 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-427 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-427 |#2|) . T) ((-540 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-540 |#1| |#2|) . T) ((-454 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-595 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-610 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-758) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ((-761) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ((-925 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1015) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) (|has| |#2| (-1015))) ((-1065 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1108 |#1| |#2|) . T) ((-1130) . T) ((-1169 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) (((-38 |#1|) (-113) (-146)) (T -38)) NIL -(-13 (-962) (-655 |t#1|) (-556 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3415 (((-345 |#1|) |#1|) 41 T ELT)) (-3729 (((-345 |#1|) |#1|) 30 T ELT) (((-345 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1222 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3729 ((-345 |#1|) |#1| (-584 (-48)))) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3415 ((-345 |#1|) |#1|)) (-15 -1222 ((-85) |#1|))) (-1154 (-48))) (T -39)) -((-1222 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2062 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2060 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|))) NIL T ELT)) (-3327 (((-347 |#2|) $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3134 (((-695)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#2|))) 60 T ELT) (($ (-1178 |#2|) |#2|) 130 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2563 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-631 $)) NIL T ELT)) (-1650 (((-1178 $) (-1178 $)) NIL T ELT)) (-3839 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-584 (-584 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3107 (((-831)) NIL T ELT)) (-2993 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2562 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3500 (($ $) NIL T ELT)) (-2832 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3720 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3769 (((-831) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-3374 (((-695)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) 105 T ELT)) (-3130 (((-347 |#2|) $) NIL T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) NIL (|has| |#1| (-311)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2013 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2009 (((-831) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3078 ((|#3| $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1223 (((-1184) (-695)) 83 T ELT)) (-1646 (((-631 (-347 |#2|))) 55 T ELT)) (-1648 (((-631 (-347 |#2|))) 48 T ELT)) (-2483 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 131 T ELT)) (-1647 (((-631 (-347 |#2|))) 49 T ELT)) (-1649 (((-631 (-347 |#2|))) 47 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1655 (((-1178 $)) 46 T ELT)) (-3915 (((-1178 $)) 45 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3443 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2399 (($ (-831)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| #1#)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1664 (((-695)) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3729 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3797 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3754 (((-347 |#2|) (-1178 $)) NIL T ELT) (((-347 |#2|)) 43 T ELT)) (-1763 (((-695) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3755 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2407 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3183 ((|#3|) 54 T ELT)) (-1672 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3222 (((-1178 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 |#2|)) $) 61 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 106 T ELT)) (-3969 (((-1178 (-347 |#2|)) $) NIL T ELT) (($ (-1178 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2701 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2448 ((|#3| $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1661 (((-85)) 41 T ELT)) (-1660 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 27 T CONST)) (-2668 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| (-347 |#2|) (-311)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-290 |#1| |#2| |#3|) (-10 -7 (-15 -1223 ((-1184) (-695))))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) |#3|) (T -40)) -((-1223 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-347 *5))) (-14 *7 *6)))) -((-1224 ((|#2| |#2|) 47 T ELT)) (-1229 ((|#2| |#2|) 136 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1228 ((|#2| |#2|) 100 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1227 ((|#2| |#2|) 101 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1230 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1226 (((-1084 |#2|) |#2|) 44 T ELT)) (-1225 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1224 (|#2| |#2|)) (-15 -1225 (|#2| |#2|)) (-15 -1225 (|#2| |#2| |#2|)) (-15 -1225 (|#2| |#2| (-584 |#2|))) (-15 -1225 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1226 ((-1084 |#2|) |#2|)) (IF (|has| |#1| (-13 (-389) (-951 (-484)))) (IF (|has| |#2| (-361 |#1|)) (PROGN (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 |#1| (-551 $)) $)) (-15 -2996 ((-1038 |#1| (-551 $)) $)) (-15 -3943 ($ (-1038 |#1| (-551 $))))))) (T -41)) -((-1230 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *5 (-551 $)) $)) (-15 -2996 ((-1038 *5 (-551 $)) $)) (-15 -3943 ($ (-1038 *5 (-551 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $))))))))) (-1226 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -3943 ($ (-1038 *4 (-551 $))))))))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -3943 ($ (-1038 *4 (-551 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -3943 ($ (-1038 *4 (-551 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $))))))))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -3943 ($ (-1038 *3 (-551 $)))))))))) -((-3729 (((-345 (-1084 |#3|)) (-1084 |#3|) (-584 (-48))) 23 T ELT) (((-345 |#3|) |#3| (-584 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3729 ((-345 |#3|) |#3| (-584 (-48)))) (-15 -3729 ((-345 (-1084 |#3|)) (-1084 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42)) -((-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))) -((-1234 (((-695) |#2|) 70 T ELT)) (-1232 (((-695) |#2|) 74 T ELT)) (-1247 (((-584 |#2|)) 37 T ELT)) (-1231 (((-695) |#2|) 73 T ELT)) (-1233 (((-695) |#2|) 69 T ELT)) (-1235 (((-695) |#2|) 72 T ELT)) (-1245 (((-584 (-631 |#1|))) 65 T ELT)) (-1240 (((-584 |#2|)) 60 T ELT)) (-1238 (((-584 |#2|) |#2|) 48 T ELT)) (-1242 (((-584 |#2|)) 62 T ELT)) (-1241 (((-584 |#2|)) 61 T ELT)) (-1244 (((-584 (-631 |#1|))) 53 T ELT)) (-1239 (((-584 |#2|)) 59 T ELT)) (-1237 (((-584 |#2|) |#2|) 47 T ELT)) (-1236 (((-584 |#2|)) 55 T ELT)) (-1246 (((-584 (-631 |#1|))) 66 T ELT)) (-1243 (((-584 |#2|)) 64 T ELT)) (-2011 (((-1178 |#2|) (-1178 |#2|)) 99 (|has| |#1| (-257)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1231 ((-695) |#2|)) (-15 -1232 ((-695) |#2|)) (-15 -1233 ((-695) |#2|)) (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-584 |#2|))) (-15 -1237 ((-584 |#2|) |#2|)) (-15 -1238 ((-584 |#2|) |#2|)) (-15 -1239 ((-584 |#2|))) (-15 -1240 ((-584 |#2|))) (-15 -1241 ((-584 |#2|))) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 (-631 |#1|)))) (-15 -1245 ((-584 (-631 |#1|)))) (-15 -1246 ((-584 (-631 |#1|)))) (-15 -1247 ((-584 |#2|))) (IF (|has| |#1| (-257)) (-15 -2011 ((-1178 |#2|) (-1178 |#2|))) |%noBranch|)) (-495) (-358 |#1|)) (T -43)) -((-2011 (*1 *2 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1236 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3221 (((-1178 (-631 |#1|)) (-1178 $)) NIL T ELT) (((-1178 (-631 |#1|))) 24 T ELT)) (-1727 (((-1178 $)) 52 T ELT)) (-3721 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2406 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL T ELT)) (-1703 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1721 (((-1084 |#1|) $) NIL T ELT)) (-1715 (((-85)) 99 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-3464 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3107 (((-831)) 53 T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) 101 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1704 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1722 (((-1084 |#1|) $) NIL T ELT)) (-1716 (((-85)) 98 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1707 (((-85)) 106 T ELT)) (-1709 (((-85)) 105 T ELT)) (-1711 (((-85)) 107 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1714 (((-85)) 100 T ELT)) (-3797 ((|#1| $ (-484)) 55 T ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 48 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 28 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3969 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) 95 T ELT)) (-3943 (((-773) $) 71 T ELT) (($ (-1178 |#1|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 51 T ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) 91 T ELT)) (-2544 (($ (-631 |#1|) $) 18 T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) 97 T ELT)) (-1717 (((-85)) 92 T ELT)) (-1713 (((-85)) 90 T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1055 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-358 |#1|) (-591 (-1055 |#2| |#1|)) (-10 -8 (-15 -3943 ($ (-1178 |#1|))))) (-311) (-831) (-584 (-1089)) (-1178 (-631 |#1|))) (T -44)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-14 *6 (-1178 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3399 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3792 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT) (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2908 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3439 (((-85) $ (-695)) NIL T ELT)) (-3024 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 34 (|has| $ (-6 -3993)) ELT)) (-3783 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT)) (-3786 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3793 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2230 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-3796 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2367 (($ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3440 (((-85) $) NIL T ELT)) (-3416 (((-484) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3611 (($ (-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-484) $) 39 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2855 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3515 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-484) $) 41 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3531 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3713 (((-85) $ (-695)) NIL T ELT)) (-3029 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) 50 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3795 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-584 |#1|) $) 23 T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2303 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT) (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3441 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3400 (((-85) $) 19 T ELT)) (-3562 (($) 15 T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-1464 (($) 14 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1569 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-3789 (($ $) NIL T ELT)) (-3787 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3788 (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3799 (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1221 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2683 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3954 (((-695) $) 26 (|has| $ (-6 -3992)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45)) -NIL -((-3934 (((-85) $) 12 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-347 (-484)) $) 25 T ELT) (($ $ (-347 (-484))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| |#2|) 79 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3945 ((|#2| $) 82 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3674 ((|#1| $ |#2|) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47)) -((-3172 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2892 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3674 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311))))) -(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3172 (|t#1| $)) (-15 -2893 ($ $)) (-15 -3945 (|t#2| $)) (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (-15 -3934 ((-85) $)) (-15 -2892 ($ |t#1| |t#2|)) (-15 -3956 ($ $)) (-15 -3674 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-311)) (-15 -3946 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (-6 (-38 (-347 (-484)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1214 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3186 (((-85) $) 9 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1598 (((-584 (-551 $)) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1215 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3181 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3155 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3154 (((-551 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 (-484))) (-631 $)) NIL T ELT)) (-3839 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2572 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3592 (((-86) (-86)) NIL T ELT)) (-2409 (((-85) $) 11 T ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2997 (((-1038 (-484) (-551 $)) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-3130 (((-1084 $) (-1084 $) (-551 $)) NIL T ELT) (((-1084 $) (-1084 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1595 (((-1084 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-1178 $) $) NIL T ELT) (((-631 (-347 (-484))) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) NIL T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-2602 (((-695) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2673 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2996 (((-1038 (-484) (-551 $)) $) NIL T ELT)) (-3183 (($ $) NIL (|has| $ (-962)) ELT)) (-3969 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-327)) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-551 $))) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-2589 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2253 (((-85) (-86)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 6 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-48) (-13 (-253) (-27) (-951 (-484)) (-951 (-347 (-484))) (-581 (-484)) (-934) (-581 (-347 (-484))) (-120) (-554 (-142 (-327))) (-190) (-556 (-1038 (-484) (-551 $))) (-10 -8 (-15 -2997 ((-1038 (-484) (-551 $)) $)) (-15 -2996 ((-1038 (-484) (-551 $)) $)) (-15 -3839 ($ $)) (-15 -3130 ((-1084 $) (-1084 $) (-551 $))) (-15 -3130 ((-1084 $) (-1084 $) (-584 (-551 $)))) (-15 -3130 ($ $ (-551 $))) (-15 -3130 ($ $ (-584 (-551 $))))))) (T -48)) -((-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) (-3839 (*1 *1 *1) (-5 *1 (-48))) (-3130 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3130 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1936 (((-584 (-444)) $) 17 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 7 T ELT)) (-3231 (((-1094) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1013) (-10 -8 (-15 -1936 ((-584 (-444)) $)) (-15 -3231 ((-1094) $))))) (T -49)) -((-1936 (*1 *2 *1) (-12 (-5 *2 (-584 (-444))) (-5 *1 (-49)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 86 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2663 (((-85) $) 31 T ELT)) (-3155 (((-3 |#1| #1#) $) 34 T ELT)) (-3154 ((|#1| $) 35 T ELT)) (-3956 (($ $) 41 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3172 ((|#1| $) 32 T ELT)) (-1453 (($ $) 75 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1452 (((-85) $) 44 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($ (-695)) 73 T ELT)) (-3940 (($ (-584 (-484))) 74 T ELT)) (-3945 (((-695) $) 45 T ELT)) (-3943 (((-773) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3674 ((|#1| $ $) 29 T ELT)) (-3124 (((-695)) 72 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 46 T CONST)) (-2665 (($) 17 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3172 (|#1| $)) (-15 -1453 ($ $)) (-15 -3956 ($ $)) (-15 -3674 (|#1| $ $)) (-15 -2408 ($ (-695))) (-15 -3940 ($ (-584 (-484)))) (-15 -1452 ((-85) $)) (-15 -2663 ((-85) $)) (-15 -3945 ((-695) $)) (-15 -3955 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1089))) (T -50)) -((-3172 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) (-3674 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1089)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1248 (((-697) $) 8 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1249 (((-1015) $) 10 T ELT)) (-3943 (((-773) $) 15 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1250 (($ (-1015) (-697)) 16 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1013) (-10 -8 (-15 -1250 ($ (-1015) (-697))) (-15 -1249 ((-1015) $)) (-15 -1248 ((-697) $))))) (T -51)) -((-1250 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) -((-2663 (((-85) (-51)) 18 T ELT)) (-3155 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3154 ((|#1| (-51)) 21 T ELT)) (-3943 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3943 ((-51) |#1|)) (-15 -3155 ((-3 |#1| "failed") (-51))) (-15 -2663 ((-85) (-51))) (-15 -3154 (|#1| (-51)))) (-1128)) (T -52)) -((-3154 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) (-3155 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128))))) -((-2544 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2544 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53)) -((-2544 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))) -((-1252 ((|#3| |#3| (-584 (-1089))) 44 T ELT)) (-1251 ((|#3| (-584 (-987 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1251 (|#3| (-584 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1251 (|#3| (-584 (-987 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1252 (|#3| |#3| (-584 (-1089))))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54)) -((-1252 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-1251 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-987 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1013)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-361 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1251 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 13 T ELT)) (-3155 (((-3 (-695) "failed") $) 31 T ELT)) (-3154 (((-695) $) NIL T ELT)) (-2409 (((-85) $) 15 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) 17 T ELT)) (-3943 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1253 (($) 10 T CONST)) (-3055 (((-85) $ $) 19 T ELT))) -(((-55) (-13 (-1013) (-951 (-695)) (-10 -8 (-15 -1253 ($) -3949) (-15 -3186 ((-85) $)) (-15 -2409 ((-85) $))))) (T -55)) -((-1253 (*1 *1) (-5 *1 (-55))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1255 (($ $ (-484) |#3|) 60 T ELT)) (-1254 (($ $ (-484) |#4|) 64 T ELT)) (-3110 ((|#3| $ (-484)) 73 T ELT)) (-2888 (((-584 |#2|) $) 41 T ELT)) (-3243 (((-85) |#2| $) 68 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2198 (($ $ |#2|) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3797 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 70 T ELT)) (-3397 (($ $) 45 T ELT)) (-3109 ((|#4| $ (-484)) 76 T ELT)) (-3943 (((-773) $) 82 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3055 (((-85) $ $) 67 T ELT)) (-3954 (((-695) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3955 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1254 (|#1| |#1| (-484) |#4|)) (-15 -1255 (|#1| |#1| (-484) |#3|)) (-15 -2888 ((-584 |#2|) |#1|)) (-15 -3109 (|#4| |#1| (-484))) (-15 -3110 (|#3| |#1| (-484))) (-15 -3797 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484) (-484))) (-15 -2198 (|#1| |#1| |#2|)) (-15 -3243 ((-85) |#2| |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3954 ((-695) |#1|)) (-15 -3397 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1128) (-321 |#2|) (-321 |#2|)) (T -56)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) 48 T ELT)) (-1255 (($ $ (-484) |#2|) 46 T ELT)) (-1254 (($ $ (-484) |#3|) 45 T ELT)) (-3721 (($) 7 T CONST)) (-3110 ((|#2| $ (-484)) 50 T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3111 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2888 (((-584 |#1|) $) 30 T ELT)) (-3113 (((-695) $) 55 T ELT)) (-3611 (($ (-695) (-695) |#1|) 61 T ELT)) (-3112 (((-695) $) 54 T ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3116 (((-484) $) 58 T ELT)) (-3114 (((-484) $) 56 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) 60 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3109 ((|#3| $ (-484)) 49 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1128) (-321 |t#1|) (-321 |t#1|)) (T -57)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3611 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2198 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-695)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-695)))) (-3797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1128)))) (-3111 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1128)))) (-3797 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-584 *3)))) (-3785 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1574 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-321 *4)) (-4 *5 (-321 *4)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *3 (-321 *4)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3955 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3955 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))))) -(-13 (-426 |t#1|) (-10 -8 (-6 -3993) (-6 -3992) (-15 -3611 ($ (-695) (-695) |t#1|)) (-15 -2198 ($ $ |t#1|)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-484) $)) (-15 -3113 ((-695) $)) (-15 -3112 ((-695) $)) (-15 -3797 (|t#1| $ (-484) (-484))) (-15 -3111 (|t#1| $ (-484) (-484))) (-15 -3797 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3110 (|t#2| $ (-484))) (-15 -3109 (|t#3| $ (-484))) (-15 -2888 ((-584 |t#1|) $)) (-15 -3785 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1574 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1255 ($ $ (-484) |t#2|)) (-15 -1254 ($ $ (-484) |t#3|)) (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) (-15 -3955 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3955 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1256 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3611 (($ (-695) |#1|) 13 T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 10 T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1256 ($ (-584 |#1|))) (-15 -1256 ($ (-695) |#1|)))) (-1128)) (T -58)) -((-1256 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))) (-1256 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1128))))) -((-3838 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3839 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3955 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3838 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3839 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3955 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1128) (-1128)) (T -59)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-59 *5 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1255 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3110 (((-58 |#1|) $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3113 (((-695) $) NIL T ELT)) (-3611 (($ (-695) (-695) |#1|) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3109 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3993))) (-1128)) (T -60)) -NIL -((-1258 (((-1178 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1257 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1259 (((-2 (|:| |minor| (-584 (-831))) (|:| -3264 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-311)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1257 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 (-584 (-831))))) |#2| (-831))) (-15 -1258 ((-1178 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-311)) (-15 -1259 ((-2 (|:| |minor| (-584 (-831))) (|:| -3264 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-495) (-601 |#1|)) (T -61)) -((-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3264 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1258 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1257 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3321 ((|#1| $) 42 T ELT)) (-3721 (($) NIL T CONST)) (-3323 ((|#1| |#1| $) 37 T ELT)) (-3322 ((|#1| $) 35 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-3606 (($ |#1| $) 38 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 36 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 20 T ELT)) (-3562 (($) 46 T ELT)) (-3320 (((-695) $) 33 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 19 T ELT)) (-3943 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1260 (($ (-584 |#1|)) 44 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 14 (|has| $ (-6 -3992)) ELT))) -(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1260 ($ (-584 |#1|))))) (-1013)) (T -62)) -((-1260 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) -((-3943 (((-773) $) 13 T ELT) (($ (-1094)) 9 T ELT) (((-1094) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3943 ((-1094) |#1|)) (-15 -3943 (|#1| (-1094))) (-15 -3943 ((-773) |#1|))) (-64)) (T -63)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +(-13 (-963) (-656 |t#1|) (-557 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3419 (((-346 |#1|) |#1|) 41 T ELT)) (-3733 (((-346 |#1|) |#1|) 30 T ELT) (((-346 |#1|) |#1| (-585 (-48))) 33 T ELT)) (-1225 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3733 ((-346 |#1|) |#1| (-585 (-48)))) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3419 ((-346 |#1|) |#1|)) (-15 -1225 ((-85) |#1|))) (-1156 (-48))) (T -39)) +((-1225 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3419 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1783 (((-632 (-348 |#2|)) (-1180 $)) NIL T ELT) (((-632 (-348 |#2|))) NIL T ELT)) (-3331 (((-348 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3138 (((-696)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-348 |#2|) (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-3 (-348 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-348 |#2|) (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-348 |#2|) $) NIL T ELT)) (-1793 (($ (-1180 (-348 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-348 |#2|))) 60 T ELT) (($ (-1180 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-348 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1782 (((-632 (-348 |#2|)) $ (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) (-632 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-348 |#3|)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-585 (-585 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-832)) NIL T ELT)) (-2996 (($) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2565 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1765 (($ $ (-696)) NIL (|has| (-348 |#2|) (-299)) ELT) (($ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3773 (((-832) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3378 (((-696)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) 105 T ELT)) (-3134 (((-348 |#2|) $) NIL T ELT)) (-1641 (((-585 (-859 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-348 |#2|) (-318)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-1180 $) $) NIL T ELT) (((-632 (-348 |#2|)) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1226 (((-1186) (-696)) 83 T ELT)) (-1649 (((-632 (-348 |#2|))) 55 T ELT)) (-1651 (((-632 (-348 |#2|))) 48 T ELT)) (-2486 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 131 T ELT)) (-1650 (((-632 (-348 |#2|))) 49 T ELT)) (-1652 (((-632 (-348 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1180 $)) 46 T ELT)) (-3919 (((-1180 $)) 45 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-348 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1667 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3733 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1608 (((-696) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3758 (((-348 |#2|) (-1180 $)) NIL T ELT) (((-348 |#2|)) 43 T ELT)) (-1766 (((-696) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2410 (((-632 (-348 |#2|)) (-1180 $) (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3187 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3226 (((-1180 (-348 |#2|)) $ (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-348 |#2|)) $) 61 T ELT) (((-632 (-348 |#2|)) (-1180 $)) 106 T ELT)) (-3973 (((-1180 (-348 |#2|)) $) NIL T ELT) (($ (-1180 (-348 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 |#2|)) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-348 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1664 (((-85)) 41 T ELT)) (-1663 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 27 T CONST)) (-2671 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 |#2|)) NIL T ELT) (($ (-348 |#2|) $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-485))) NIL (|has| (-348 |#2|) (-312)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1226 ((-1186) (-696))))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) |#3|) (T -40)) +((-1226 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-348 *5))) (-14 *7 *6)))) +((-1227 ((|#2| |#2|) 47 T ELT)) (-1232 ((|#2| |#2|) 136 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-952 (-485))))) ELT)) (-1231 ((|#2| |#2|) 100 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-952 (-485))))) ELT)) (-1230 ((|#2| |#2|) 101 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-952 (-485))))) ELT)) (-1233 ((|#2| (-86) |#2| (-696)) 80 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-13 (-390) (-952 (-485))))) ELT)) (-1229 (((-1086 |#2|) |#2|) 44 T ELT)) (-1228 ((|#2| |#2| (-585 (-552 |#2|))) 18 T ELT) ((|#2| |#2| (-585 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1228 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2| (-585 |#2|))) (-15 -1228 (|#2| |#2| (-585 (-552 |#2|)))) (-15 -1229 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-13 (-390) (-952 (-485)))) (IF (|has| |#2| (-362 |#1|)) (PROGN (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| (-86) |#2| (-696)))) |%noBranch|) |%noBranch|)) (-496) (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 |#1| (-552 $)) $)) (-15 -2999 ((-1040 |#1| (-552 $)) $)) (-15 -3947 ($ (-1040 |#1| (-552 $))))))) (T -41)) +((-1233 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-390) (-952 (-485)))) (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-362 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *5 (-552 $)) $)) (-15 -2999 ((-1040 *5 (-552 $)) $)) (-15 -3947 ($ (-1040 *5 (-552 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-362 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $))))))))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) (-15 -2999 ((-1040 *4 (-552 $)) $)) (-15 -3947 ($ (-1040 *4 (-552 $))))))))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-552 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) (-15 -2999 ((-1040 *4 (-552 $)) $)) (-15 -3947 ($ (-1040 *4 (-552 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) (-15 -2999 ((-1040 *4 (-552 $)) $)) (-15 -3947 ($ (-1040 *4 (-552 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) (-15 -2999 ((-1040 *3 (-552 $)) $)) (-15 -3947 ($ (-1040 *3 (-552 $)))))))))) +((-3733 (((-346 (-1086 |#3|)) (-1086 |#3|) (-585 (-48))) 23 T ELT) (((-346 |#3|) |#3| (-585 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-346 |#3|) |#3| (-585 (-48)))) (-15 -3733 ((-346 (-1086 |#3|)) (-1086 |#3|) (-585 (-48))))) (-758) (-719) (-863 (-48) |#2| |#1|)) (T -42)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-346 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5))))) +((-1237 (((-696) |#2|) 70 T ELT)) (-1235 (((-696) |#2|) 74 T ELT)) (-1250 (((-585 |#2|)) 37 T ELT)) (-1234 (((-696) |#2|) 73 T ELT)) (-1236 (((-696) |#2|) 69 T ELT)) (-1238 (((-696) |#2|) 72 T ELT)) (-1248 (((-585 (-632 |#1|))) 65 T ELT)) (-1243 (((-585 |#2|)) 60 T ELT)) (-1241 (((-585 |#2|) |#2|) 48 T ELT)) (-1245 (((-585 |#2|)) 62 T ELT)) (-1244 (((-585 |#2|)) 61 T ELT)) (-1247 (((-585 (-632 |#1|))) 53 T ELT)) (-1242 (((-585 |#2|)) 59 T ELT)) (-1240 (((-585 |#2|) |#2|) 47 T ELT)) (-1239 (((-585 |#2|)) 55 T ELT)) (-1249 (((-585 (-632 |#1|))) 66 T ELT)) (-1246 (((-585 |#2|)) 64 T ELT)) (-2014 (((-1180 |#2|) (-1180 |#2|)) 99 (|has| |#1| (-258)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1234 ((-696) |#2|)) (-15 -1235 ((-696) |#2|)) (-15 -1236 ((-696) |#2|)) (-15 -1237 ((-696) |#2|)) (-15 -1238 ((-696) |#2|)) (-15 -1239 ((-585 |#2|))) (-15 -1240 ((-585 |#2|) |#2|)) (-15 -1241 ((-585 |#2|) |#2|)) (-15 -1242 ((-585 |#2|))) (-15 -1243 ((-585 |#2|))) (-15 -1244 ((-585 |#2|))) (-15 -1245 ((-585 |#2|))) (-15 -1246 ((-585 |#2|))) (-15 -1247 ((-585 (-632 |#1|)))) (-15 -1248 ((-585 (-632 |#1|)))) (-15 -1249 ((-585 (-632 |#1|)))) (-15 -1250 ((-585 |#2|))) (IF (|has| |#1| (-258)) (-15 -2014 ((-1180 |#2|) (-1180 |#2|))) |%noBranch|)) (-496) (-359 |#1|)) (T -43)) +((-2014 (*1 *2 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-359 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) (-1250 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1239 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-632 |#1|)) (-1180 $)) NIL T ELT) (((-1180 (-632 |#1|))) 24 T ELT)) (-1730 (((-1180 $)) 52 T ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1789 (((-632 |#1|) (-1180 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1787 (((-632 |#1|) $ (-1180 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1901 (((-1086 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1086 |#1|) $) NIL T ELT)) (-1718 (((-85)) 99 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3110 (((-832)) 53 T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) 101 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1790 (((-632 |#1|) (-1180 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1788 (((-632 |#1|) $ (-1180 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-859 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1086 |#1|) $) NIL T ELT)) (-1719 (((-85)) 98 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) 106 T ELT)) (-1712 (((-85)) 105 T ELT)) (-1714 (((-85)) 107 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1717 (((-85)) 100 T ELT)) (-3801 ((|#1| $ (-485)) 55 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 48 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 28 T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1893 (((-585 (-859 |#1|)) (-1180 $)) NIL T ELT) (((-585 (-859 |#1|))) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) 95 T ELT)) (-3947 (((-774) $) 71 T ELT) (($ (-1180 |#1|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 51 T ELT)) (-1708 (((-585 (-1180 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) 91 T ELT)) (-2547 (($ (-632 |#1|) $) 18 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) 97 T ELT)) (-1720 (((-85)) 92 T ELT)) (-1716 (((-85)) 90 T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1057 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-359 |#1|) (-592 (-1057 |#2| |#1|)) (-10 -8 (-15 -3947 ($ (-1180 |#1|))))) (-312) (-832) (-585 (-1091)) (-1180 (-632 |#1|))) (T -44)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-632 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1091)))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT) (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1731 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3443 (((-85) $ (-696)) NIL T ELT)) (-3027 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 34 (|has| $ (-6 -3997)) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-3800 (($ $ (-696)) NIL T ELT) (($ $) 30 T ELT)) (-2370 (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-3615 (($ (-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3720 (((-85) $ (-696)) NIL T ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-485) $) 39 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT) (((-485) $) 41 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3717 (((-85) $ (-696)) NIL T ELT)) (-3032 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 50 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3799 (($ $ (-696)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2234 (((-585 |#1|) $) 23 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2306 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT) (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT) (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT) (($ $ (-696)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT) (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 15 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1572 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1224 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-758)) ELT)) (-3958 (((-696) $) 26 (|has| $ (-6 -3996)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1015) (-1015)) (T -45)) +NIL +((-3938 (((-85) $) 12 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-348 (-485)) $) 25 T ELT) (($ $ (-348 (-485))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-348 (-485)))) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 -3938 ((-85) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-47 |#2| |#3|) (-963) (-718)) (T -46)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-47 |#1| |#2|) (-113) (-963) (-718)) (T -47)) +((-3176 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312))))) +(-13 (-963) (-82 |t#1| |t#1|) (-10 -8 (-15 -3176 (|t#1| $)) (-15 -2896 ($ $)) (-15 -3949 (|t#2| $)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3938 ((-85) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-485)))) (-6 (-38 (-348 (-485)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-585 $) (-1086 $) (-1091)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3190 (((-85) $) 9 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1601 (((-585 (-552 $)) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1218 (((-585 $) (-1086 $) (-1091)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3159 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3158 (((-552 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-348 (-485)))) (|:| |vec| (-1180 (-348 (-485))))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-348 (-485))) (-632 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 11 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-3000 (((-1040 (-485) (-552 $)) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-552 $)) NIL T ELT) (((-1086 $) (-1086 $) (-585 (-552 $))) NIL T ELT) (($ $ (-552 $)) NIL T ELT) (($ $ (-585 (-552 $))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1598 (((-1086 $) (-552 $)) NIL (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-348 (-485)))) (|:| |vec| (-1180 (-348 (-485))))) (-1180 $) $) NIL T ELT) (((-632 (-348 (-485))) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-696) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2999 (((-1040 (-485) (-552 $)) $) NIL T ELT)) (-3187 (($ $) NIL (|has| $ (-963)) ELT)) (-3973 (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-328)) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-552 $))) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-348 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-48) (-13 (-254) (-27) (-952 (-485)) (-952 (-348 (-485))) (-582 (-485)) (-935) (-582 (-348 (-485))) (-120) (-555 (-142 (-328))) (-190) (-557 (-1040 (-485) (-552 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-552 $)) $)) (-15 -2999 ((-1040 (-485) (-552 $)) $)) (-15 -3843 ($ $)) (-15 -3134 ((-1086 $) (-1086 $) (-552 $))) (-15 -3134 ((-1086 $) (-1086 $) (-585 (-552 $)))) (-15 -3134 ($ $ (-552 $))) (-15 -3134 ($ $ (-585 (-552 $))))))) (T -48)) +((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-48)))) (-5 *1 (-48)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-48)))) (-5 *1 (-48)))) (-3843 (*1 *1 *1) (-5 *1 (-48))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1939 (((-585 (-445)) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 7 T ELT)) (-3235 (((-1096) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1015) (-10 -8 (-15 -1939 ((-585 (-445)) $)) (-15 -3235 ((-1096) $))))) (T -49)) +((-1939 (*1 *2 *1) (-12 (-5 *2 (-585 (-445))) (-5 *1 (-49)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2666 (((-85) $) 31 T ELT)) (-3159 (((-3 |#1| #1#) $) 34 T ELT)) (-3158 ((|#1| $) 35 T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3176 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) 44 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 73 T ELT)) (-3944 (($ (-585 (-485))) 74 T ELT)) (-3949 (((-696) $) 45 T ELT)) (-3947 (((-774) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3678 ((|#1| $ $) 29 T ELT)) (-3128 (((-696)) 72 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 46 T CONST)) (-2668 (($) 17 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 65 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-562 |#1|) (-952 |#1|) (-10 -8 (-15 -3176 (|#1| $)) (-15 -1456 ($ $)) (-15 -3960 ($ $)) (-15 -3678 (|#1| $ $)) (-15 -2411 ($ (-696))) (-15 -3944 ($ (-585 (-485)))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3949 ((-696) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)))) (-963) (-585 (-1091))) (T -50)) +((-3176 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1091))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1091))))) (-3678 (*1 *2 *1 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1091))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1091))))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1091))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) (-14 *4 (-585 (-1091))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-50 *3 *4)) (-14 *4 (-585 (-1091)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1251 (((-698) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1252 (((-1017) $) 10 T ELT)) (-3947 (((-774) $) 15 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1253 (($ (-1017) (-698)) 16 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1015) (-10 -8 (-15 -1253 ($ (-1017) (-698))) (-15 -1252 ((-1017) $)) (-15 -1251 ((-698) $))))) (T -51)) +((-1253 (*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) +((-2666 (((-85) (-51)) 18 T ELT)) (-3159 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3158 ((|#1| (-51)) 21 T ELT)) (-3947 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3947 ((-51) |#1|)) (-15 -3159 ((-3 |#1| "failed") (-51))) (-15 -2666 ((-85) (-51))) (-15 -3158 (|#1| (-51)))) (-1130)) (T -52)) +((-3158 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130))))) +((-2547 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2547 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-963) (-592 |#1|) (-763 |#1|)) (T -53)) +((-2547 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5))))) +((-1255 ((|#3| |#3| (-585 (-1091))) 44 T ELT)) (-1254 ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832)) 32 T ELT) ((|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1254 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3|)) (-15 -1254 (|#3| (-585 (-989 |#1| |#2| |#3|)) |#3| (-832))) (-15 -1255 (|#3| |#3| (-585 (-1091))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-362 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -54)) +((-1255 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) (-1254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) (-4 *2 (-13 (-362 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1254 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3159 (((-3 (-696) "failed") $) 31 T ELT)) (-3158 (((-696) $) NIL T ELT)) (-2412 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) 17 T ELT)) (-3947 (((-774) $) 22 T ELT) (($ (-696)) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1256 (($) 10 T CONST)) (-3058 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1015) (-952 (-696)) (-10 -8 (-15 -1256 ($) -3953) (-15 -3190 ((-85) $)) (-15 -2412 ((-85) $))))) (T -55)) +((-1256 (*1 *1) (-5 *1 (-55))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1258 (($ $ (-485) |#3|) 60 T ELT)) (-1257 (($ $ (-485) |#4|) 64 T ELT)) (-3113 ((|#3| $ (-485)) 73 T ELT)) (-2891 (((-585 |#2|) $) 41 T ELT)) (-3247 (((-85) |#2| $) 68 T ELT)) (-1950 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2201 (($ $ |#2|) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3801 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 35 T ELT) (((-696) |#2| $) 70 T ELT)) (-3401 (($ $) 45 T ELT)) (-3112 ((|#4| $ (-485)) 76 T ELT)) (-3947 (((-774) $) 82 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3058 (((-85) $ $) 67 T ELT)) (-3958 (((-696) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1950 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1257 (|#1| |#1| (-485) |#4|)) (-15 -1258 (|#1| |#1| (-485) |#3|)) (-15 -2891 ((-585 |#2|) |#1|)) (-15 -3112 (|#4| |#1| (-485))) (-15 -3113 (|#3| |#1| (-485))) (-15 -3801 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485))) (-15 -2201 (|#1| |#1| |#2|)) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1947 ((-696) |#2| |#1|)) (-15 -1947 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 ((-696) |#1|)) (-15 -3401 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1130) (-322 |#2|) (-322 |#2|)) (T -56)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 48 T ELT)) (-1258 (($ $ (-485) |#2|) 46 T ELT)) (-1257 (($ $ (-485) |#3|) 45 T ELT)) (-3725 (($) 7 T CONST)) (-3113 ((|#2| $ (-485)) 50 T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 47 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 52 T ELT)) (-2891 (((-585 |#1|) $) 30 T ELT)) (-3116 (((-696) $) 55 T ELT)) (-3615 (($ (-696) (-696) |#1|) 61 T ELT)) (-3115 (((-696) $) 54 T ELT)) (-3120 (((-485) $) 59 T ELT)) (-3118 (((-485) $) 57 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3119 (((-485) $) 58 T ELT)) (-3117 (((-485) $) 56 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) 60 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) (-485)) 53 T ELT) ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3112 ((|#3| $ (-485)) 49 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1130) (-322 |t#1|) (-322 |t#1|)) (T -57)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3615 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-696)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-696)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) (-4 *2 (-322 *4)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) (-4 *2 (-322 *4)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-585 *3)))) (-3789 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) (-4 *5 (-322 *2)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-322 *4)) (-4 *5 (-322 *4)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) (-4 *3 (-322 *4)))) (-1950 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3959 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3))))) +(-13 (-427 |t#1|) (-10 -8 (-6 -3997) (-6 -3996) (-15 -3615 ($ (-696) (-696) |t#1|)) (-15 -2201 ($ $ |t#1|)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-696) $)) (-15 -3115 ((-696) $)) (-15 -3801 (|t#1| $ (-485) (-485))) (-15 -3114 (|t#1| $ (-485) (-485))) (-15 -3801 (|t#1| $ (-485) (-485) |t#1|)) (-15 -3113 (|t#2| $ (-485))) (-15 -3112 (|t#3| $ (-485))) (-15 -2891 ((-585 |t#1|) $)) (-15 -3789 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1577 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1258 ($ $ (-485) |t#2|)) (-15 -1257 ($ $ (-485) |t#3|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -1950 ($ (-1 |t#1| |t#1|) $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1259 (($ (-585 |#1|)) 11 T ELT) (($ (-696) |#1|) 14 T ELT)) (-3615 (($ (-696) |#1|) 13 T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 10 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1259 ($ (-585 |#1|))) (-15 -1259 ($ (-696) |#1|)))) (-1130)) (T -58)) +((-1259 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3)))) (-1259 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1130))))) +((-3842 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3959 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3842 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3959 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1130) (-1130)) (T -59)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3113 (((-58 |#1|) $ (-485)) NIL T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3615 (($ (-696) (-696) |#1|) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3112 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3997))) (-1130)) (T -60)) +NIL +((-1261 (((-1180 (-632 |#1|)) (-632 |#1|)) 61 T ELT)) (-1260 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 (-585 (-832))))) |#2| (-832)) 49 T ELT)) (-1262 (((-2 (|:| |minor| (-585 (-832))) (|:| -3268 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832)) 72 (|has| |#1| (-312)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1260 ((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 (-585 (-832))))) |#2| (-832))) (-15 -1261 ((-1180 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-312)) (-15 -1262 ((-2 (|:| |minor| (-585 (-832))) (|:| -3268 |#2|) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 |#2|))) |#2| (-832))) |%noBranch|)) (-496) (-602 |#1|)) (T -61)) +((-1262 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-585 (-832))) (|:| -3268 *3) (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-632 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1180 (-585 (-832)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3327 ((|#1| |#1| $) 37 T ELT)) (-3326 ((|#1| $) 35 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-3610 (($ |#1| $) 38 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 46 T ELT)) (-3324 (((-696) $) 33 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 19 T ELT)) (-3947 (((-774) $) 32 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) NIL T ELT)) (-1263 (($ (-585 |#1|)) 44 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 14 (|has| $ (-6 -3996)) ELT))) +(((-62 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -1263 ($ (-585 |#1|))))) (-1015)) (T -62)) +((-1263 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) +((-3947 (((-774) $) 13 T ELT) (($ (-1096)) 9 T ELT) (((-1096) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3947 ((-1096) |#1|)) (-15 -3947 (|#1| (-1096))) (-15 -3947 ((-774) |#1|))) (-64)) (T -63)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) (((-64) (-113)) (T -64)) NIL -(-13 (-1013) (-427 (-1094))) -(((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3485 (($ $) 10 T ELT)) (-3486 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3486 (|#1| |#1|)) (-15 -3485 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1015) (-428 (-1096))) +(((-72) . T) ((-557 (-1096)) . T) ((-554 (-774)) . T) ((-554 (-1096)) . T) ((-428 (-1096)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3489 (($ $) 10 T ELT)) (-3490 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3483 (($ $) 11 T ELT)) (-3481 (($ $) 10 T ELT)) (-3485 (($ $) 9 T ELT)) (-3486 (($ $) 8 T ELT)) (-3484 (($ $) 7 T ELT)) (-3482 (($ $) 6 T ELT))) +((-3487 (($ $) 11 T ELT)) (-3485 (($ $) 10 T ELT)) (-3489 (($ $) 9 T ELT)) (-3490 (($ $) 8 T ELT)) (-3488 (($ $) 7 T ELT)) (-3486 (($ $) 6 T ELT))) (((-66) (-113)) (T -66)) -((-3483 (*1 *1 *1) (-4 *1 (-66))) (-3481 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66))) (-3482 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3482 ($ $)) (-15 -3484 ($ $)) (-15 -3486 ($ $)) (-15 -3485 ($ $)) (-15 -3481 ($ $)) (-15 -3483 ($ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3539 (((-1048) $) 11 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-995) (-10 -8 (-15 -3539 ((-1048) $))))) (T -67)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67))))) +((-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3486 ($ $)) (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3489 ($ $)) (-15 -3485 ($ $)) (-15 -3487 ($ $)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3543 (((-1050) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-997) (-10 -8 (-15 -3543 ((-1050) $))))) (T -67)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67))))) NIL (((-68) (-113)) (T -68)) NIL -(-13 (-10 -7 (-6 -3992) (-6 (-3994 "*")) (-6 -3993) (-6 -3989) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3990) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3981) (-6 -3980) (-6 -3988) (-6 -3991) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3979))) -((-2567 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1261 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 16 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $ |#1|) 13 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 8 T CONST)) (-3055 (((-85) $ $) 10 T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-410) (-241 |#1| |#1|) (-10 -8 (-15 -1261 ($ (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1| (-484)))))) (-962)) (T -69)) -((-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-69 *3))))) -((-1262 (((-345 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-345 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1262 ((-345 |#2|) |#2| |#2|)) (-15 -1262 ((-345 |#2|) |#2| (-584 |#2|)))) (-13 (-389) (-120)) (-1154 |#1|)) (T -70)) -((-1262 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3)))) (-1262 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) 13 T ELT)) (-1263 (((-85) $ $) 14 T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1263 ((-85) |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -3996) (-6 (-3998 "*")) (-6 -3997) (-6 -3993) (-6 -3991) (-6 -3990) (-6 -3989) (-6 -3994) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3992) (-6 -3995) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3983))) +((-2570 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1264 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#1| $ |#1|) 13 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) 10 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 30 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-411) (-241 |#1| |#1|) (-10 -8 (-15 -1264 ($ (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1| (-485)))))) (-963)) (T -69)) +((-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-963)) (-5 *1 (-69 *3))))) +((-1265 (((-346 |#2|) |#2| (-585 |#2|)) 10 T ELT) (((-346 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1265 ((-346 |#2|) |#2| |#2|)) (-15 -1265 ((-346 |#2|) |#2| (-585 |#2|)))) (-13 (-390) (-120)) (-1156 |#1|)) (T -70)) +((-1265 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *5 *3)))) (-1265 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) 13 T ELT)) (-1266 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1266 ((-85) |#1| |#1|)) (-15 -2570 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) (((-72) (-113)) (T -72)) -((-3055 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1263 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) -(-13 (-1128) (-10 -8 (-15 -3055 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -1263 ((-85) $ $)))) -(((-13) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) NIL T ELT)) (-3024 ((|#1| $ |#1|) 24 (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3993)) ELT)) (-1266 (($ $ (-584 |#1|)) 30 T ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3135 (($ $) 12 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 32 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1265 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1264 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3136 (($ $) 11 T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) 13 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 9 T ELT)) (-3562 (($) 31 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (($ (-695) |#1|) 33 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3992) (-6 -3993) (-15 -1267 ($ (-695) |#1|)) (-15 -1266 ($ $ (-584 |#1|))) (-15 -1265 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1265 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73)) -((-1267 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1265 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1265 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) -((-1268 ((|#3| |#2| |#2|) 34 T ELT)) (-1270 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3994 #1="*"))) ELT)) (-1269 ((|#3| |#2| |#2|) 36 T ELT)) (-1271 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3994 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1268 (|#3| |#2| |#2|)) (-15 -1269 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3994 "*"))) (PROGN (-15 -1270 (|#1| |#2| |#2|)) (-15 -1271 (|#1| |#2|))) |%noBranch|)) (-962) (-1154 |#1|) (-628 |#1| |#4| |#5|) (-321 |#1|) (-321 |#1|)) (T -74)) -((-1271 (*1 *2 *3) (-12 (|has| *2 (-6 (-3994 #1="*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1270 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3994 #1#))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) -((-1274 (($ (-584 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1274 (|#1| (-584 |#2|)))) (-76 |#2|) (-1128)) (T -75)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3721 (($) 7 T CONST)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-76 |#1|) (-113) (-1128)) (T -76)) -((-1274 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-3606 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) -(-13 (-426 |t#1|) (-10 -8 (-6 -3993) (-15 -1274 ($ (-584 |t#1|))) (-15 -1273 (|t#1| $)) (-15 -3606 ($ |t#1| $)) (-15 -1272 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3154 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-484) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3955 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-484) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2028 (($ (-347 (-484))) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3946 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-77) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 2)) (-10 -8 (-15 -3126 ((-347 (-484)) $)) (-15 -2028 ($ (-347 (-484))))))) (T -77)) -((-3126 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77))))) -((-1286 (((-584 (-877)) $) 14 T ELT)) (-3539 (((-444) $) 12 T ELT)) (-3943 (((-773) $) 21 T ELT)) (-1275 (($ (-444) (-584 (-877))) 16 T ELT))) -(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3539 ((-444) $)) (-15 -1286 ((-584 (-877)) $)) (-15 -1275 ($ (-444) (-584 (-877))))))) (T -78)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1275 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1276 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1276 ($ (-1 |#1| |#1| |#1|))))) (-1128)) (T -79)) -((-1276 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3))))) -((-3797 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-80 |#1|) (-113) (-1128)) (T -80)) +((-3058 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2570 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1266 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1130) (-10 -8 (-15 -3058 ((-85) $ $)) (-15 -2570 ((-85) $ $)) (-15 -1266 ((-85) $ $)))) +(((-13) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3027 ((|#1| $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1269 (($ $ (-585 |#1|)) 30 T ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3139 (($ $) 12 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1303 (($ $ |#1| $) 32 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1268 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1267 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 11 T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 31 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1270 (($ (-696) |#1|) 33 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3996) (-6 -3997) (-15 -1270 ($ (-696) |#1|)) (-15 -1269 ($ $ (-585 |#1|))) (-15 -1268 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|))))) (-1015)) (T -73)) +((-1270 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015)))) (-1268 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) +((-1271 ((|#3| |#2| |#2|) 34 T ELT)) (-1273 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-1272 ((|#3| |#2| |#2|) 36 T ELT)) (-1274 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3998 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1271 (|#3| |#2| |#2|)) (-15 -1272 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3998 "*"))) (PROGN (-15 -1273 (|#1| |#2| |#2|)) (-15 -1274 (|#1| |#2|))) |%noBranch|)) (-963) (-1156 |#1|) (-629 |#1| |#4| |#5|) (-322 |#1|) (-322 |#1|)) (T -74)) +((-1274 (*1 *2 *3) (-12 (|has| *2 (-6 (-3998 #1="*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3998 #1#))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-629 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) +((-1277 (($ (-585 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1277 (|#1| (-585 |#2|)))) (-76 |#2|) (-1130)) (T -75)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-76 |#1|) (-113) (-1130)) (T -76)) +((-1277 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-3610 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(-13 (-427 |t#1|) (-10 -8 (-6 -3997) (-15 -1277 ($ (-585 |t#1|))) (-15 -1276 (|t#1| $)) (-15 -3610 ($ |t#1| $)) (-15 -1275 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-485) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-485) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-348 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-485)) (-585 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-1091)) (-585 (-485))) NIL (|has| (-485) (-454 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-454 (-1091) (-485))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-485) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-485) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-485) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-485) (-935)) ELT) (((-179) $) NIL (|has| (-485) (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL T ELT) (((-919 2) $) 10 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-823))) (|has| (-485) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2031 (($ (-348 (-485))) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-77) (-13 (-906 (-485)) (-554 (-348 (-485))) (-554 (-919 2)) (-10 -8 (-15 -3130 ((-348 (-485)) $)) (-15 -2031 ($ (-348 (-485))))))) (T -77)) +((-3130 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-77)))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-77))))) +((-1289 (((-585 (-878)) $) 14 T ELT)) (-3543 (((-445) $) 12 T ELT)) (-3947 (((-774) $) 21 T ELT)) (-1278 (($ (-445) (-585 (-878))) 16 T ELT))) +(((-78) (-13 (-554 (-774)) (-10 -8 (-15 -3543 ((-445) $)) (-15 -1289 ((-585 (-878)) $)) (-15 -1278 ($ (-445) (-585 (-878))))))) (T -78)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-78)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1279 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1015) (-10 -8 (-15 -1279 ($ (-1 |#1| |#1| |#1|))))) (-1130)) (T -79)) +((-1279 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1130)) (T -80)) NIL (-13 (|MappingCategory| |t#1| |t#1| |t#1|)) -(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3319 (($ $ $) NIL T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3785 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3993)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-3403 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-3839 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-1574 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3993)) ELT)) (-3111 (((-85) $ (-484)) NIL T ELT)) (-3416 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2888 (((-584 (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2559 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3611 (($ (-695) (-85)) 10 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL T ELT)) (-3515 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2607 (((-584 (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2303 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-85) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2198 (($ $ (-85)) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-2204 (((-584 (-85)) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2304 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1944 (((-695) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT) (((-695) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-85) (-554 (-473))) ELT)) (-3527 (($ (-584 (-85))) NIL T ELT)) (-3799 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1767 (($ (-695) (-85)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1767 ($ (-695) (-85)))))) (T -81)) -((-1767 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82)) -NIL -(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3987) (-6 -3986))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1013) . T) ((-1128) . T)) -((-2560 (($ $ $) 12 T ELT)) (-2559 (($ $) 8 T ELT)) (-2561 (($ $ $) 10 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2560 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2312 (($ $) 8 T ELT)) (-2560 (($ $ $) 9 T ELT)) (-2559 (($ $) 11 T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-2311 (($ $ $) 7 T ELT))) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3323 (($ $ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3420 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1015)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1015)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2891 (((-585 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3615 (($ (-696) (-85)) 10 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-585 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-1950 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-85) $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) NIL T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1947 (((-696) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT) (((-696) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-85) (-555 (-474))) ELT)) (-3531 (($ (-585 (-85))) NIL T ELT)) (-3803 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1770 (($ (-696) (-85)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1770 ($ (-696) (-85)))))) (T -81)) +((-1770 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-82 |#1| |#2|) (-113) (-963) (-963)) (T -82)) +NIL +(-13 (-592 |t#1|) (-970 |t#2|) (-10 -7 (-6 -3991) (-6 -3990))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1130) . T)) +((-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-2564 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2315 (($ $) 8 T ELT)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) (((-84) (-113)) (T -84)) -((-2559 (*1 *1 *1) (-4 *1 (-84))) (-2561 (*1 *1 *1 *1) (-4 *1 (-84))) (-2560 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-605) (-10 -8 (-15 -2559 ($ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)))) -(((-13) . T) ((-605) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 9 T ELT)) (-3319 (($ $ $) 14 T ELT)) (-2854 (($) 6 T CONST)) (-3134 (((-695)) 23 T ELT)) (-2993 (($) 31 T ELT)) (-2560 (($ $ $) 12 T ELT)) (-2559 (($ $) 8 T ELT)) (-1298 (($ $ $) 15 T ELT)) (-1299 (($ $ $) 16 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) 29 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 27 T ELT)) (-2852 (($ $ $) 19 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2853 (($) 7 T CONST)) (-2851 (($ $ $) 20 T ELT)) (-3969 (((-473) $) 33 T ELT)) (-3943 (((-773) $) 35 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 13 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 21 T ELT)) (-2311 (($ $ $) 11 T ELT))) -(((-85) (-13 (-753) (-881) (-554 (-473)) (-10 -8 (-15 -3319 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $))))) (T -85)) -((-3319 (*1 *1 *1 *1) (-5 *1 (-85))) (-1299 (*1 *1 *1 *1) (-5 *1 (-85))) (-1298 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1284 (((-85) $) 42 T ELT)) (-1278 (($ $ (-1072) (-697)) 59 T ELT) (($ $ (-444) (-697)) 34 T ELT)) (-1277 (($ $ (-45 (-1072) (-697))) 16 T ELT)) (-2840 (((-3 (-697) "failed") $ (-1072)) 27 T ELT) (((-633 (-697)) $ (-444)) 33 T ELT)) (-1286 (((-45 (-1072) (-697)) $) 15 T ELT)) (-3592 (($ (-1089)) 20 T ELT) (($ (-1089) (-695)) 23 T ELT) (($ (-1089) (-55)) 24 T ELT)) (-1285 (((-85) $) 40 T ELT)) (-1283 (((-85) $) 44 T ELT)) (-3539 (((-1089) $) 8 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2632 (((-85) $ (-1089)) 11 T ELT)) (-2127 (($ $ (-1 (-473) (-584 (-473)))) 65 T ELT) (((-633 (-1 (-473) (-584 (-473)))) $) 69 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1280 (((-85) $ (-444)) 37 T ELT)) (-1282 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3614 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1279 (($ $ (-1072)) 56 T ELT) (($ $ (-444)) 57 T ELT)) (-3397 (($ $) 75 T ELT)) (-1281 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3943 (((-773) $) 61 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2791 (($ $ (-444)) 35 T ELT)) (-2520 (((-55) $) 70 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 88 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-757) (-748 (-1089)) (-10 -8 (-15 -1286 ((-45 (-1072) (-697)) $)) (-15 -3397 ($ $)) (-15 -3592 ($ (-1089))) (-15 -3592 ($ (-1089) (-695))) (-15 -3592 ($ (-1089) (-55))) (-15 -1285 ((-85) $)) (-15 -1284 ((-85) $)) (-15 -1283 ((-85) $)) (-15 -1520 ((-695) $)) (-15 -1520 ($ $ (-695))) (-15 -1282 ($ $ (-1 (-85) $ $))) (-15 -1281 ($ $ (-1 (-85) $ $))) (-15 -3614 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3614 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3614 ($ $ (-1 (-773) (-773)))) (-15 -2127 ($ $ (-1 (-473) (-584 (-473))))) (-15 -2127 ((-633 (-1 (-473) (-584 (-473)))) $)) (-15 -1280 ((-85) $ (-444))) (-15 -2791 ($ $ (-444))) (-15 -1279 ($ $ (-1072))) (-15 -1279 ($ $ (-444))) (-15 -2840 ((-3 (-697) "failed") $ (-1072))) (-15 -2840 ((-633 (-697)) $ (-444))) (-15 -1278 ($ $ (-1072) (-697))) (-15 -1278 ($ $ (-444) (-697))) (-15 -1277 ($ $ (-45 (-1072) (-697))))))) (T -86)) -((-1286 (*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86)))) (-3397 (*1 *1 *1) (-5 *1 (-86))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) (-3592 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3592 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1520 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-584 (-473)))) (-5 *1 (-86)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-473) (-584 (-473))))) (-5 *1 (-86)))) (-1280 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-2840 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2840 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86))))) -((-2517 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1287 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1288 (((-86) |#1|) 63 T ELT)) (-1289 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2517 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2517 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2517 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2517 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1287 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1287 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1287 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1288 ((-86) |#1|)) (-15 -1289 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87)) -((-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1288 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1287 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2517 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2517 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) -((-1290 (((-484) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1290 ((-484) |#2|))) (-13 (-311) (-951 (-347 (-484)))) (-1154 |#1|)) (T -88)) -((-1290 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-951 (-347 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2610 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2611 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3769 (((-695) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2613 (((-484)) NIL T ELT)) (-2612 (((-484) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3766 (($ $ (-484)) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-1068 (-484)) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-484) $ (-484)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-780 |#1|) (-484)) (T -89)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT)) (-3154 (((-89 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT)) (-3727 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-89 |#1|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-89 |#1|) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-89 |#1|) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| (-89 |#1|) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3955 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-1178 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-89 |#1|) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-3128 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-248 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-584 (-248 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-584 (-1089)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) ELT) (($ $ (-1089) (-89 |#1|)) NIL (|has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-89 |#1|) $) NIL T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2615 (((-148 (-347 (-484))) $) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-347 (-484)) $ (-484)) NIL T ELT)) (-3380 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3946 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3767 ((-347 (-484)) $ (-484))) (-15 -2615 ((-148 (-347 (-484))) $)) (-15 -3727 ($ $)) (-15 -3727 ($ (-484) $)))) (-484)) (T -90)) -((-3767 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3727 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3785 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3030 (((-584 $) $) 31 T ELT)) (-3026 (((-85) $ $) 36 T ELT)) (-3243 (((-85) |#2| $) 40 T ELT)) (-3029 (((-584 |#2|) $) 25 T ELT)) (-3524 (((-85) $) 18 T ELT)) (-3797 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3630 (((-85) $) 57 T ELT)) (-3943 (((-773) $) 47 T ELT)) (-3519 (((-584 $) $) 32 T ELT)) (-3055 (((-85) $ $) 38 T ELT)) (-3954 (((-695) $) 50 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3785 (|#1| |#1| #1="right" |#1|)) (-15 -3785 (|#1| |#1| #2="left" |#1|)) (-15 -3797 (|#1| |#1| #1#)) (-15 -3797 (|#1| |#1| #2#)) (-15 -3785 (|#2| |#1| #3="value" |#2|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3029 ((-584 |#2|) |#1|)) (-15 -3630 ((-85) |#1|)) (-15 -3797 (|#2| |#1| #3#)) (-15 -3524 ((-85) |#1|)) (-15 -3030 ((-584 |#1|) |#1|)) (-15 -3519 ((-584 |#1|) |#1|)) (-15 -3243 ((-85) |#2| |#1|)) (-15 -3954 ((-695) |#1|))) (-92 |#2|) (-1128)) (T -91)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3993)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-3135 (($ $) 63 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3136 (($ $) 65 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-92 |#1|) (-113) (-1128)) (T -92)) -((-3136 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3785 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3993)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1292 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3785 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3993)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1291 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3136 ($ $)) (-15 -3797 ($ $ "left")) (-15 -3135 ($ $)) (-15 -3797 ($ $ "right")) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3785 ($ $ "left" $)) (-15 -1292 ($ $ $)) (-15 -3785 ($ $ "right" $)) (-15 -1291 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-1295 (((-85) |#1|) 29 T ELT)) (-1294 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1293 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1293 ((-85) |#1|)) (-15 -1293 ((-85) |#1| (-85))) (-15 -1294 ((-695))) (-15 -1294 ((-695) (-695))) (-15 -1295 ((-85) |#1|))) (-1154 (-484))) (T -93)) -((-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1293 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1293 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 18 T ELT)) (-3415 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) 21 (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) 23 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3135 (($ $) 20 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 27 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3136 (($ $) 22 T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1296 (($ |#1| $) 28 T ELT)) (-3606 (($ |#1| $) 15 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 17 T ELT)) (-3562 (($) 11 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1297 (($ (-584 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3993) (-6 -3992) (-15 -1297 ($ (-584 |#1|))) (-15 -3606 ($ |#1| $)) (-15 -1296 ($ |#1| $)) (-15 -3415 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94)) -((-1297 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3606 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1296 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3415 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757))))) -((-2312 (($ $) 13 T ELT)) (-2559 (($ $) 11 T ELT)) (-1298 (($ $ $) 23 T ELT)) (-1299 (($ $ $) 21 T ELT)) (-2310 (($ $ $) 19 T ELT)) (-2311 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1298 (|#1| |#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2312 (($ $) 103 T ELT)) (-3319 (($ $ $) 31 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 66 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) 98 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1728 (($ $) 102 (-12 (|has| (-85) (-757)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) 97 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3785 (((-85) $ (-1145 (-484)) (-85)) 88 (|has| $ (-6 -3993)) ELT) (((-85) $ (-484) (-85)) 54 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 38 T CONST)) (-2296 (($ $) 100 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 90 T ELT)) (-1351 (($ $) 68 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3992)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3839 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3992))) ELT)) (-1574 (((-85) $ (-484) (-85)) 53 (|has| $ (-6 -3993)) ELT)) (-3111 (((-85) $ (-484)) 55 T ELT)) (-3416 (((-484) (-85) $ (-484)) 95 (|has| (-85) (-1013)) ELT) (((-484) (-85) $) 94 (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) 93 T ELT)) (-2888 (((-584 (-85)) $) 45 (|has| $ (-6 -3992)) ELT)) (-2560 (($ $ $) 108 T ELT)) (-2559 (($ $) 106 T ELT)) (-1298 (($ $ $) 32 T ELT)) (-3611 (($ (-695) (-85)) 78 T ELT)) (-1299 (($ $ $) 33 T ELT)) (-2199 (((-484) $) 63 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 23 T ELT)) (-3515 (($ $ $) 96 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2607 (((-584 (-85)) $) 46 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 62 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 22 T ELT)) (-1947 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2303 (($ $ $ (-484)) 87 T ELT) (($ (-85) $ (-484)) 86 T ELT)) (-2202 (((-584 (-484)) $) 60 T ELT)) (-2203 (((-85) (-484) $) 59 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-85) $) 64 (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2198 (($ $ (-85)) 65 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-85)) (-584 (-85))) 52 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) 50 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) 49 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) 34 T ELT)) (-2201 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-2204 (((-584 (-85)) $) 58 T ELT)) (-3400 (((-85) $) 37 T ELT)) (-3562 (($) 36 T ELT)) (-3797 (($ $ (-1145 (-484))) 77 T ELT) (((-85) $ (-484)) 57 T ELT) (((-85) $ (-484) (-85)) 56 T ELT)) (-2304 (($ $ (-1145 (-484))) 85 T ELT) (($ $ (-484)) 84 T ELT)) (-1944 (((-695) (-85) $) 47 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3992)) ELT)) (-1729 (($ $ $ (-484)) 99 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 35 T ELT)) (-3969 (((-473) $) 67 (|has| (-85) (-554 (-473))) ELT)) (-3527 (($ (-584 (-85))) 76 T ELT)) (-3799 (($ (-584 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3992)) ELT)) (-2561 (($ $ $) 107 T ELT)) (-2310 (($ $ $) 105 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-2311 (($ $ $) 104 T ELT)) (-3954 (((-695) $) 39 (|has| $ (-6 -3992)) ELT))) +((-2562 (*1 *1 *1) (-4 *1 (-84))) (-2564 (*1 *1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-606) (-10 -8 (-15 -2562 ($ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)))) +(((-13) . T) ((-606) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 9 T ELT)) (-3323 (($ $ $) 14 T ELT)) (-2857 (($) 6 T CONST)) (-3138 (((-696)) 23 T ELT)) (-2996 (($) 31 T ELT)) (-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-1301 (($ $ $) 15 T ELT)) (-1302 (($ $ $) 16 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 27 T ELT)) (-2855 (($ $ $) 19 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2856 (($) 7 T CONST)) (-2854 (($ $ $) 20 T ELT)) (-3973 (((-474) $) 33 T ELT)) (-3947 (((-774) $) 35 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 13 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)) (-2314 (($ $ $) 11 T ELT))) +(((-85) (-13 (-754) (-882) (-555 (-474)) (-10 -8 (-15 -3323 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $))))) (T -85)) +((-3323 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) 92 T ELT) (($ $ (-696)) 38 T ELT)) (-1287 (((-85) $) 42 T ELT)) (-1281 (($ $ (-1074) (-698)) 59 T ELT) (($ $ (-445) (-698)) 34 T ELT)) (-1280 (($ $ (-45 (-1074) (-698))) 16 T ELT)) (-2843 (((-3 (-698) "failed") $ (-1074)) 27 T ELT) (((-634 (-698)) $ (-445)) 33 T ELT)) (-1289 (((-45 (-1074) (-698)) $) 15 T ELT)) (-3596 (($ (-1091)) 20 T ELT) (($ (-1091) (-696)) 23 T ELT) (($ (-1091) (-55)) 24 T ELT)) (-1288 (((-85) $) 40 T ELT)) (-1286 (((-85) $) 44 T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-1091)) 11 T ELT)) (-2130 (($ $ (-1 (-474) (-585 (-474)))) 65 T ELT) (((-634 (-1 (-474) (-585 (-474)))) $) 69 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1283 (((-85) $ (-445)) 37 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3618 (((-634 (-1 (-774) (-585 (-774)))) $) 67 T ELT) (($ $ (-1 (-774) (-585 (-774)))) 52 T ELT) (($ $ (-1 (-774) (-774))) 54 T ELT)) (-1282 (($ $ (-1074)) 56 T ELT) (($ $ (-445)) 57 T ELT)) (-3401 (($ $) 75 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3947 (((-774) $) 61 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2794 (($ $ (-445)) 35 T ELT)) (-2523 (((-55) $) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 88 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-758) (-749 (-1091)) (-10 -8 (-15 -1289 ((-45 (-1074) (-698)) $)) (-15 -3401 ($ $)) (-15 -3596 ($ (-1091))) (-15 -3596 ($ (-1091) (-696))) (-15 -3596 ($ (-1091) (-55))) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1523 ((-696) $)) (-15 -1523 ($ $ (-696))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -3618 ((-634 (-1 (-774) (-585 (-774)))) $)) (-15 -3618 ($ $ (-1 (-774) (-585 (-774))))) (-15 -3618 ($ $ (-1 (-774) (-774)))) (-15 -2130 ($ $ (-1 (-474) (-585 (-474))))) (-15 -2130 ((-634 (-1 (-474) (-585 (-474)))) $)) (-15 -1283 ((-85) $ (-445))) (-15 -2794 ($ $ (-445))) (-15 -1282 ($ $ (-1074))) (-15 -1282 ($ $ (-445))) (-15 -2843 ((-3 (-698) "failed") $ (-1074))) (-15 -2843 ((-634 (-698)) $ (-445))) (-15 -1281 ($ $ (-1074) (-698))) (-15 -1281 ($ $ (-445) (-698))) (-15 -1280 ($ $ (-45 (-1074) (-698))))))) (T -86)) +((-1289 (*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-698))) (-5 *1 (-86)))) (-3401 (*1 *1 *1) (-5 *1 (-86))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1523 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-585 (-474)))) (-5 *1 (-86)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-474) (-585 (-474))))) (-5 *1 (-86)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-698)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-698)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-698))) (-5 *1 (-86))))) +((-2520 (((-3 (-1 |#1| (-585 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-585 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-585 |#1|)) 25 T ELT)) (-1290 (((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-585 (-1 |#1| (-585 |#1|)))) 30 T ELT)) (-1291 (((-86) |#1|) 63 T ELT)) (-1292 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2520 ((-3 |#1| #1="failed") (-86) (-585 |#1|))) (-15 -2520 ((-86) (-86) (-1 |#1| (-585 |#1|)))) (-15 -2520 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2520 ((-3 (-1 |#1| (-585 |#1|)) #1#) (-86))) (-15 -1290 ((-86) (-86) (-585 (-1 |#1| (-585 |#1|))))) (-15 -1290 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1290 ((-3 (-585 (-1 |#1| (-585 |#1|))) #1#) (-86))) (-15 -1291 ((-86) |#1|)) (-15 -1292 ((-3 |#1| #1#) (-86)))) (-1015)) (T -87)) +((-1292 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015)))) (-1291 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015)))) (-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1015)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) +((-1293 (((-485) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1293 ((-485) |#2|))) (-13 (-312) (-952 (-348 (-485)))) (-1156 |#1|)) (T -88)) +((-1293 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-952 (-348 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3773 (((-696) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-781 |#1|) (-485)) (T -89)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-89 |#1|) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-89 |#1|) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-89 |#1|) (-952 (-485))) ELT)) (-3158 (((-89 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-89 |#1|) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-89 |#1|) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-89 |#1|) (-952 (-485))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-89 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-89 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-89 |#1|)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-89 |#1|) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-89 |#1|) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-89 |#1|) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| (-89 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3959 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-89 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-89 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-1180 $) $) NIL T ELT) (((-632 (-89 |#1|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-89 |#1|) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-89 |#1|)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-585 (-1091)) (-585 (-89 |#1|))) NIL (|has| (-89 |#1|) (-454 (-1091) (-89 |#1|))) ELT) (($ $ (-1091) (-89 |#1|)) NIL (|has| (-89 |#1|) (-454 (-1091) (-89 |#1|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-89 |#1|) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-89 |#1|) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-89 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-935)) ELT)) (-2618 (((-148 (-348 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-89 |#1|) (-952 (-1091))) ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-823))) (|has| (-89 |#1|) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-348 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-89 |#1|) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-89 |#1|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-89 |#1|) (-758)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-906 (-89 |#1|)) (-10 -8 (-15 -3771 ((-348 (-485)) $ (-485))) (-15 -2618 ((-148 (-348 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485)) (T -90)) +((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3033 (((-585 $) $) 31 T ELT)) (-3029 (((-85) $ $) 36 T ELT)) (-3247 (((-85) |#2| $) 40 T ELT)) (-3032 (((-585 |#2|) $) 25 T ELT)) (-3528 (((-85) $) 18 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3634 (((-85) $) 57 T ELT)) (-3947 (((-774) $) 47 T ELT)) (-3523 (((-585 $) $) 32 T ELT)) (-3058 (((-85) $ $) 38 T ELT)) (-3958 (((-696) $) 50 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3789 (|#1| |#1| #1="right" |#1|)) (-15 -3789 (|#1| |#1| #2="left" |#1|)) (-15 -3801 (|#1| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3789 (|#2| |#1| #3="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3032 ((-585 |#2|) |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3528 ((-85) |#1|)) (-15 -3033 ((-585 |#1|) |#1|)) (-15 -3523 ((-585 |#1|) |#1|)) (-15 -3247 ((-85) |#2| |#1|)) (-15 -3958 ((-696) |#1|))) (-92 |#2|) (-1130)) (T -91)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3997)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3139 (($ $) 63 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3140 (($ $) 65 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-92 |#1|) (-113) (-1130)) (T -92)) +((-3140 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1295 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3140 ($ $)) (-15 -3801 ($ $ "left")) (-15 -3139 ($ $)) (-15 -3801 ($ $ "right")) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3789 ($ $ "left" $)) (-15 -1295 ($ $ $)) (-15 -3789 ($ $ "right" $)) (-15 -1294 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-1298 (((-85) |#1|) 29 T ELT)) (-1297 (((-696) (-696)) 28 T ELT) (((-696)) 27 T ELT)) (-1296 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1296 ((-85) |#1|)) (-15 -1296 ((-85) |#1| (-85))) (-15 -1297 ((-696))) (-15 -1297 ((-696) (-696))) (-15 -1298 ((-85) |#1|))) (-1156 (-485))) (T -93)) +((-1298 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3419 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3139 (($ $) 20 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1303 (($ $ |#1| $) 27 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 22 T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1299 (($ |#1| $) 28 T ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1300 (($ (-585 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3997) (-6 -3996) (-15 -1300 ($ (-585 |#1|))) (-15 -3610 ($ |#1| $)) (-15 -1299 ($ |#1| $)) (-15 -3419 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-758)) (T -94)) +((-1300 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-1299 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) (-3419 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-758))))) +((-2315 (($ $) 13 T ELT)) (-2562 (($ $) 11 T ELT)) (-1301 (($ $ $) 23 T ELT)) (-1302 (($ $ $) 21 T ELT)) (-2313 (($ $ $) 19 T ELT)) (-2314 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1301 (|#1| |#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-2315 (($ $) 103 T ELT)) (-3323 (($ $ $) 31 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 66 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) 98 (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1731 (($ $) 102 (-12 (|has| (-85) (-758)) (|has| $ (-6 -3997))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) 97 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) 88 (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) 54 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 38 T CONST)) (-2299 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 90 T ELT)) (-1354 (($ $) 68 (-12 (|has| (-85) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3996)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1015)) (|has| $ (-6 -3996))) ELT)) (-1577 (((-85) $ (-485) (-85)) 53 (|has| $ (-6 -3997)) ELT)) (-3114 (((-85) $ (-485)) 55 T ELT)) (-3420 (((-485) (-85) $ (-485)) 95 (|has| (-85) (-1015)) ELT) (((-485) (-85) $) 94 (|has| (-85) (-1015)) ELT) (((-485) (-1 (-85) (-85)) $) 93 T ELT)) (-2891 (((-585 (-85)) $) 45 (|has| $ (-6 -3996)) ELT)) (-2563 (($ $ $) 108 T ELT)) (-2562 (($ $) 106 T ELT)) (-1301 (($ $ $) 32 T ELT)) (-3615 (($ (-696) (-85)) 78 T ELT)) (-1302 (($ $ $) 33 T ELT)) (-2202 (((-485) $) 63 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 23 T ELT)) (-3519 (($ $ $) 96 (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2610 (((-585 (-85)) $) 46 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 62 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 22 T ELT)) (-1950 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2306 (($ $ $ (-485)) 87 T ELT) (($ (-85) $ (-485)) 86 T ELT)) (-2205 (((-585 (-485)) $) 60 T ELT)) (-2206 (((-85) (-485) $) 59 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-85) $) 64 (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2201 (($ $ (-85)) 65 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-85)) (-585 (-85))) 52 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) 50 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) 49 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1223 (((-85) $ $) 34 T ELT)) (-2204 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-2207 (((-585 (-85)) $) 58 T ELT)) (-3404 (((-85) $) 37 T ELT)) (-3566 (($) 36 T ELT)) (-3801 (($ $ (-1147 (-485))) 77 T ELT) (((-85) $ (-485)) 57 T ELT) (((-85) $ (-485) (-85)) 56 T ELT)) (-2307 (($ $ (-1147 (-485))) 85 T ELT) (($ $ (-485)) 84 T ELT)) (-1947 (((-696) (-85) $) 47 (-12 (|has| (-85) (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (($ $ $ (-485)) 99 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 35 T ELT)) (-3973 (((-474) $) 67 (|has| (-85) (-555 (-474))) ELT)) (-3531 (($ (-585 (-85))) 76 T ELT)) (-3803 (($ (-585 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3996)) ELT)) (-2564 (($ $ $) 107 T ELT)) (-2313 (($ $ $) 105 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 104 T ELT)) (-3958 (((-696) $) 39 (|has| $ (-6 -3996)) ELT))) (((-96) (-113)) (T -96)) -((-1299 (*1 *1 *1 *1) (-4 *1 (-96))) (-1298 (*1 *1 *1 *1) (-4 *1 (-96))) (-3319 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -3319 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-473)) |has| (-85) (-554 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-259 (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ((-321 (-85)) . T) ((-426 (-85)) . T) ((-539 (-484) (-85)) . T) ((-453 (-85) (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-1947 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3397 (($ $) 16 T ELT)) (-3954 (((-695) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3954 ((-695) |#1|)) (-15 -3397 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-3135 (($ $) 63 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 66 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3136 (($ $) 65 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-98 |#1|) (-113) (-1013)) (T -98)) -((-1300 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) -(-13 (-92 |t#1|) (-10 -8 (-6 -3993) (-6 -3992) (-15 -1300 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 18 T ELT)) (-3024 ((|#1| $ |#1|) 22 (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) 23 (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) 21 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3135 (($ $) 24 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3606 (($ |#1| $) 15 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 17 T ELT)) (-3562 (($) 11 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 20 T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ (-584 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3993) (-15 -1301 ($ (-584 |#1|))) (-15 -3606 ($ |#1| $)))) (-757)) (T -99)) -((-1301 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3606 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 31 T ELT)) (-3024 ((|#1| $ |#1|) 33 (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) 37 (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) 35 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3135 (($ $) 24 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 17 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3136 (($ $) 23 T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) 26 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 21 T ELT)) (-3562 (($) 13 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1302 ($ |#1|)) (-15 -1302 ($ $ |#1| $)))) (-1013)) (T -100)) -((-1302 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1302 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 32 T ELT)) (-3134 (((-695)) 17 T ELT)) (-3721 (($) 9 T CONST)) (-2993 (($) 27 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2009 (((-831) $) 25 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 23 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1303 (($ (-695)) 8 T ELT)) (-3722 (($ $ $) 29 T ELT)) (-3723 (($ $ $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 31 T ELT)) (-2565 (((-85) $ $) 14 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-3055 (((-85) $ $) 10 T ELT)) (-2683 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) 11 T ELT)) (-2311 (($ $ $) 30 T ELT))) -(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1303 ($ (-695))) (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949)))) (T -101)) -((-1303 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3723 (*1 *1 *1 *1) (-5 *1 (-101))) (-3722 (*1 *1 *1 *1) (-5 *1 (-101))) (-3721 (*1 *1) (-5 *1 (-101)))) -((-695) (|%ilt| |#1| 256)) -((-2567 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1728 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-101) (-757))) ELT)) (-2908 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3785 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3993)) ELT) (((-101) $ (-1145 (-484)) (-101)) NIL (|has| $ (-6 -3993)) ELT)) (-1304 (((-695) $ (-695)) 35 T ELT)) (-3707 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT)) (-3403 (($ (-101) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3992)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3993)) ELT)) (-3111 (((-101) $ (-484)) 20 T ELT)) (-3416 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-1013)) ELT)) (-2888 (((-584 (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) (-101)) 14 T ELT)) (-2199 (((-484) $) 27 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3515 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2607 (((-584 (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT)) (-2200 (((-484) $) 30 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-1947 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| (-101) (-1013)) ELT)) (-2303 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3798 (((-101) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2198 (($ $ (-101)) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-101)))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-248 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT)) (-2204 (((-584 (-101)) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 12 T ELT)) (-3797 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-101) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-101) (-554 (-473))) ELT)) (-3527 (($ (-584 (-101))) 41 T ELT)) (-3799 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-870 (-101)) $) 36 T ELT) (((-1072) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1305 (((-695) $) 18 T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-1263 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3055 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3954 (((-695) $) 15 (|has| $ (-6 -3992)) ELT))) -(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1072)) (-10 -8 (-15 -1306 ($ (-695))) (-15 -1305 ((-695) $)) (-15 -1304 ((-695) $ (-695))) (-6 -3992)))) (T -102)) -((-1306 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1304 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1307 (($) 6 T CONST)) (-1309 (($) 7 T CONST)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 14 T ELT)) (-1308 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1013) (-10 -8 (-15 -1309 ($) -3949) (-15 -1308 ($) -3949) (-15 -1307 ($) -3949)))) (T -103)) -((-1309 (*1 *1) (-5 *1 (-103))) (-1308 (*1 *1) (-5 *1 (-103))) (-1307 (*1 *1) (-5 *1 (-103)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT))) +((-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-3323 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-758) (-84) (-606) (-19 (-85)) (-10 -8 (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -3323 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-124 (-85)) . T) ((-555 (-474)) |has| (-85) (-555 (-474))) ((-241 (-485) (-85)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-322 (-85)) . T) ((-427 (-85)) . T) ((-540 (-485) (-85)) . T) ((-454 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ((-13) . T) ((-595 (-85)) . T) ((-606) . T) ((-19 (-85)) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-1950 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3401 (($ $) 16 T ELT)) (-3958 (((-696) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -1950 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 ((-696) |#1|)) (-15 -3401 (|#1| |#1|))) (-98 |#2|) (-1015)) (T -97)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3139 (($ $) 63 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-1303 (($ $ |#1| $) 66 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3140 (($ $) 65 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-98 |#1|) (-113) (-1015)) (T -98)) +((-1303 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) +(-13 (-92 |t#1|) (-10 -8 (-6 -3997) (-6 -3996) (-15 -1303 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3027 ((|#1| $ |#1|) 22 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1303 (($ $ |#1| $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) NIL T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 20 T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1304 (($ (-585 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3997) (-15 -1304 ($ (-585 |#1|))) (-15 -3610 ($ |#1| $)))) (-758)) (T -99)) +((-1304 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 31 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 37 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 35 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1303 (($ $ |#1| $) 17 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 26 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 21 T ELT)) (-3566 (($) 13 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1305 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ |#1|)) (-15 -1305 ($ $ |#1| $)))) (-1015)) (T -100)) +((-1305 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) (-1305 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 32 T ELT)) (-3138 (((-696)) 17 T ELT)) (-3725 (($) 9 T CONST)) (-2996 (($) 27 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2012 (((-832) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 23 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1306 (($ (-696)) 8 T ELT)) (-3726 (($ $ $) 29 T ELT)) (-3727 (($ $ $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 31 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 11 T ELT)) (-2314 (($ $ $) 30 T ELT))) +(((-101) (-13 (-754) (-606) (-10 -8 (-15 -1306 ($ (-696))) (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -101)) +((-1306 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101)))) (-3727 (*1 *1 *1 *1) (-5 *1 (-101))) (-3726 (*1 *1 *1 *1) (-5 *1 (-101))) (-3725 (*1 *1) (-5 *1 (-101)))) +((-696) (|%ilt| |#1| 256)) +((-2570 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-758)) ELT)) (-1731 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-101) (-758))) ELT)) (-2911 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-758)) ELT)) (-3789 (((-101) $ (-485) (-101)) 26 (|has| $ (-6 -3997)) ELT) (((-101) $ (-1147 (-485)) (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1307 (((-696) $ (-696)) 35 T ELT)) (-3711 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT)) (-3407 (($ (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3996)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-101) $ (-485) (-101)) 25 (|has| $ (-6 -3997)) ELT)) (-3114 (((-101) $ (-485)) 20 T ELT)) (-3420 (((-485) (-1 (-85) (-101)) $) NIL T ELT) (((-485) (-101) $) NIL (|has| (-101) (-1015)) ELT) (((-485) (-101) $ (-485)) NIL (|has| (-101) (-1015)) ELT)) (-2891 (((-585 (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) (-101)) 14 T ELT)) (-2202 (((-485) $) 27 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-3519 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-2610 (((-585 (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT)) (-2203 (((-485) $) 30 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-101) (-758)) ELT)) (-1950 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-101) (-1015)) ELT)) (-2306 (($ (-101) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| (-101) (-1015)) ELT)) (-3802 (((-101) $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2201 (($ $ (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT) (($ $ (-585 (-101)) (-585 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT)) (-2207 (((-585 (-101)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 12 T ELT)) (-3801 (((-101) $ (-485) (-101)) NIL T ELT) (((-101) $ (-485)) 23 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-101) (-555 (-474))) ELT)) (-3531 (($ (-585 (-101))) 41 T ELT)) (-3803 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-871 (-101)) $) 36 T ELT) (((-1074) $) 38 T ELT) (((-774) $) NIL (|has| (-101) (-554 (-774))) ELT)) (-1308 (((-696) $) 18 T ELT)) (-1309 (($ (-696)) 8 T ELT)) (-1266 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3058 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-101) (-758)) ELT)) (-3958 (((-696) $) 15 (|has| $ (-6 -3996)) ELT))) +(((-102) (-13 (-19 (-101)) (-554 (-871 (-101))) (-554 (-1074)) (-10 -8 (-15 -1309 ($ (-696))) (-15 -1308 ((-696) $)) (-15 -1307 ((-696) $ (-696))) (-6 -3996)))) (T -102)) +((-1309 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102)))) (-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1310 (($) 6 T CONST)) (-1312 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 14 T ELT)) (-1311 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1015) (-10 -8 (-15 -1312 ($) -3953) (-15 -1311 ($) -3953) (-15 -1310 ($) -3953)))) (T -103)) +((-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103)))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-104) (-113)) (T -104)) -((-1310 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1310 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-1311 (((-1184) $ (-695)) 17 T ELT)) (-3416 (((-695) $) 18 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +((-1313 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1313 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-1314 (((-1186) $ (-696)) 17 T ELT)) (-3420 (((-696) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) (((-105) (-113)) (T -105)) -((-3416 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1184))))) -(-13 (-1013) (-10 -8 (-15 -3416 ((-695) $)) (-15 -1311 ((-1184) $ (-695))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-584 (-1048)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-995) (-10 -8 (-15 -3231 ((-584 (-1048)) $))))) (T -106)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-106))))) -((-2567 (((-85) $ $) 49 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3154 (((-695) $) 58 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) 37 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1313 (((-85)) 61 T ELT)) (-1312 (((-85) (-85)) 63 T ELT)) (-2524 (((-85) $) 30 T ELT)) (-1314 (((-85) $) 57 T ELT)) (-3943 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 19 T CONST)) (-1315 (($ (-695)) 21 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) 40 T ELT)) (-3055 (((-85) $ $) 32 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 35 T ELT)) (-3834 (((-3 $ #1#) $ $) 42 T ELT)) (-3836 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3994 "*")) (-15 -3834 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1315 ($ (-695))) (-15 -2524 ((-85) $)) (-15 -1314 ((-85) $)) (-15 -1313 ((-85))) (-15 -1312 ((-85) (-85)))))) (T -107)) -((-3834 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1312 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1316 (($ (-584 |#3|)) 63 T ELT)) (-3411 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3721 (($) 20 T ELT)) (-3155 (((-3 |#3| "failed") $) 86 T ELT)) (-3154 ((|#3| $) NIL T ELT)) (-1320 (($ $ (-584 (-484))) 126 T ELT)) (-1317 (((-584 |#3|) $) 58 T ELT)) (-3107 (((-695) $) 68 T ELT)) (-3941 (($ $ $) 120 T ELT)) (-1318 (($) 67 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1319 (($) 19 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-584 (-484))) 76 T ELT)) (-3945 (((-695) $) 69 T ELT)) (-1980 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3943 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1055 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 96 T CONST)) (-2665 (($) 97 T CONST)) (-3055 (((-85) $ $) 107 T ELT)) (-3834 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3836 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-402 |#3| (-695)) (-407 (-484) (-695)) (-241 (-484) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1055 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3107 ((-695) $)) (-15 -3797 (|#3| $)) (-15 -3797 (|#3| $ (-484) (-484))) (-15 -3797 (|#3| $ (-484) (-484) (-484))) (-15 -3797 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3797 (|#3| $ (-584 (-484)))) (-15 -3941 ($ $ $)) (-15 * ($ $ $)) (-15 -1980 ($ $ (-484) $ (-484))) (-15 -1980 ($ $ (-484) (-484))) (-15 -3411 ($ $)) (-15 -3411 ($ $ (-484) (-484))) (-15 -1320 ($ $ (-584 (-484)))) (-15 -1319 ($)) (-15 -1318 ($)) (-15 -1317 ((-584 |#3|) $)) (-15 -1316 ($ (-584 |#3|))) (-15 -3721 ($)))) (-484) (-695) (-146)) (T -108)) -((-3941 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3797 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-695)))) (-3797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3797 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3797 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1980 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1980 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3411 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1319 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1318 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)))) (-3721 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))) -((-2414 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3955 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3955 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-695) (-146) (-146)) (T -109)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 (((-1048) $) 12 T ELT)) (-3526 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-995) (-10 -8 (-15 -3526 ((-1048) $)) (-15 -3525 ((-1048) $))))) (T -110)) -((-3526 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) 11 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-584 (-1048)) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-995) (-10 -8 (-15 -1424 ((-161) $)) (-15 -3231 ((-584 (-1048)) $))))) (T -111)) -((-1424 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-111))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3539 (((-444) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2632 (((-85) $ (-444)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-553 (-157)))) (T -112)) -NIL -((-1322 (((-584 (-158 (-112))) $) 13 T ELT)) (-1321 (((-584 (-158 (-112))) $) 14 T ELT)) (-1323 (((-584 (-750)) $) 10 T ELT)) (-1480 (((-112) $) 7 T ELT)) (-3943 (((-773) $) 16 T ELT))) -(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1480 ((-112) $)) (-15 -1323 ((-584 (-750)) $)) (-15 -1322 ((-584 (-158 (-112))) $)) (-15 -1321 ((-584 (-158 (-112))) $))))) (T -113)) -((-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3424 (($) 17 T CONST)) (-1800 (($) NIL (|has| (-117) (-317)) ELT)) (-3232 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3234 (($ $ $) NIL T ELT)) (-3233 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| (-117) (-317)) ELT)) (-3237 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1568 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-3402 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3992)) ELT)) (-3403 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-3839 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3992)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3992)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-2993 (($) NIL (|has| (-117) (-317)) ELT)) (-2888 (((-584 (-117)) $) 65 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) NIL T ELT)) (-2530 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2607 (((-584 (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-2856 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-1947 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3426 (($) 18 T CONST)) (-2009 (((-831) $) NIL (|has| (-117) (-317)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3236 (($ $ $) 32 T ELT)) (-1272 (((-117) $) 57 T ELT)) (-3606 (($ (-117) $) 55 T ELT)) (-2399 (($ (-831)) NIL (|has| (-117) (-317)) ELT)) (-1326 (($) 16 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1273 (((-117) $) 58 T ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 53 T ELT)) (-1327 (($) 15 T CONST)) (-3235 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1464 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-695) (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT) (((-695) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-1072) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-554 (-473))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3527 (($ (-584 (-117))) NIL T ELT)) (-1801 (($ $) 35 (|has| (-117) (-317)) ELT)) (-3943 (((-773) $) 51 T ELT)) (-1328 (($ (-1072)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1802 (((-695) $) NIL T ELT)) (-3238 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 (-117))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-1324 (($) 21 T CONST)) (-1325 (($) 20 T CONST)) (-3055 (((-85) $ $) 26 T ELT)) (-3954 (((-695) $) 52 (|has| $ (-6 -3992)) ELT))) -(((-114) (-13 (-1013) (-554 (-1072)) (-366 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1328 ($ (-1072))) (-15 -1328 ($ (-584 (-117)))) (-15 -1327 ($) -3949) (-15 -1326 ($) -3949) (-15 -3424 ($) -3949) (-15 -3426 ($) -3949) (-15 -1325 ($) -3949) (-15 -1324 ($) -3949)))) (T -114)) -((-1328 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))) (-3424 (*1 *1) (-5 *1 (-114))) (-3426 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))) (-1324 (*1 *1) (-5 *1 (-114)))) -((-3738 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3736 ((|#1| |#3|) 9 T ELT)) (-3737 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3736 (|#1| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3738 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-905 |#1|) (-321 |#2|)) (T -115)) -((-3738 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-321 *5)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-321 *4)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-321 *4))))) -((-1367 (($ $ $) 8 T ELT)) (-1365 (($ $) 7 T ELT)) (-3100 (($ $ $) 6 T ELT))) +((-3420 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) (-1314 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1186))))) +(-13 (-1015) (-10 -8 (-15 -3420 ((-696) $)) (-15 -1314 ((-1186) $ (-696))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-585 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-997) (-10 -8 (-15 -3235 ((-585 (-1050)) $))))) (T -106)) +((-3235 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-106))))) +((-2570 (((-85) $ $) 49 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-696) #1="failed") $) 60 T ELT)) (-3158 (((-696) $) 58 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) 37 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1316 (((-85)) 61 T ELT)) (-1315 (((-85) (-85)) 63 T ELT)) (-2527 (((-85) $) 30 T ELT)) (-1317 (((-85) $) 57 T ELT)) (-3947 (((-774) $) 28 T ELT) (($ (-696)) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 19 T CONST)) (-1318 (($ (-696)) 21 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 32 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 35 T ELT)) (-3838 (((-3 $ #1#) $ $) 42 T ELT)) (-3840 (($ $ $) 38 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-696) $) 48 T ELT) (($ (-832) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-758) (-23) (-665) (-952 (-696)) (-10 -8 (-6 (-3998 "*")) (-15 -3838 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1318 ($ (-696))) (-15 -2527 ((-85) $)) (-15 -1317 ((-85) $)) (-15 -1316 ((-85))) (-15 -1315 ((-85) (-85)))))) (T -107)) +((-3838 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1319 (($ (-585 |#3|)) 63 T ELT)) (-3415 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3725 (($) 20 T ELT)) (-3159 (((-3 |#3| "failed") $) 86 T ELT)) (-3158 ((|#3| $) NIL T ELT)) (-1323 (($ $ (-585 (-485))) 126 T ELT)) (-1320 (((-585 |#3|) $) 58 T ELT)) (-3110 (((-696) $) 68 T ELT)) (-3945 (($ $ $) 120 T ELT)) (-1321 (($) 67 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1322 (($) 19 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-585 (-485))) 76 T ELT)) (-3949 (((-696) $) 69 T ELT)) (-1983 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3947 (((-774) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1057 |#2| |#3|)) 105 T ELT) (($ (-585 |#3|)) 77 T ELT) (($ (-585 $)) 83 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 96 T CONST)) (-2668 (($) 97 T CONST)) (-3058 (((-85) $ $) 107 T ELT)) (-3838 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-403 |#3| (-696)) (-408 (-485) (-696)) (-241 (-485) |#3|) (-557 (-197 |#2| |#3|)) (-557 (-1057 |#2| |#3|)) (-557 (-585 |#3|)) (-557 (-585 $)) (-10 -8 (-15 -3110 ((-696) $)) (-15 -3801 (|#3| $)) (-15 -3801 (|#3| $ (-485) (-485))) (-15 -3801 (|#3| $ (-485) (-485) (-485))) (-15 -3801 (|#3| $ (-485) (-485) (-485) (-485))) (-15 -3801 (|#3| $ (-585 (-485)))) (-15 -3945 ($ $ $)) (-15 * ($ $ $)) (-15 -1983 ($ $ (-485) $ (-485))) (-15 -1983 ($ $ (-485) (-485))) (-15 -3415 ($ $)) (-15 -3415 ($ $ (-485) (-485))) (-15 -1323 ($ $ (-585 (-485)))) (-15 -1322 ($)) (-15 -1321 ($)) (-15 -1320 ((-585 |#3|) $)) (-15 -1319 ($ (-585 |#3|))) (-15 -3725 ($)))) (-485) (-696) (-146)) (T -108)) +((-3945 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) (-3801 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-696)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3801 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3801 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-696)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-485)) (-14 *5 (-696)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1983 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1983 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) (-3415 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-696)))) (-3725 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146))))) +((-2417 (((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3959 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-108 |#1| |#2| |#4|) (-585 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3959 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-485) (-696) (-146) (-146)) (T -109)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-997) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -110)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 11 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-585 (-1050)) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-997) (-10 -8 (-15 -1427 ((-161) $)) (-15 -3235 ((-585 (-1050)) $))))) (T -111)) +((-1427 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-111))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3543 (((-445) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-445)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-554 (-157)))) (T -112)) +NIL +((-1325 (((-585 (-158 (-112))) $) 13 T ELT)) (-1324 (((-585 (-158 (-112))) $) 14 T ELT)) (-1326 (((-585 (-751)) $) 10 T ELT)) (-1483 (((-112) $) 7 T ELT)) (-3947 (((-774) $) 16 T ELT))) +(((-113) (-13 (-554 (-774)) (-10 -8 (-15 -1483 ((-112) $)) (-15 -1326 ((-585 (-751)) $)) (-15 -1325 ((-585 (-158 (-112))) $)) (-15 -1324 ((-585 (-158 (-112))) $))))) (T -113)) +((-1483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3428 (($) 17 T CONST)) (-1803 (($) NIL (|has| (-117) (-318)) ELT)) (-3236 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3238 (($ $ $) NIL T ELT)) (-3237 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| (-117) (-318)) ELT)) (-3241 (($) NIL T ELT) (($ (-585 (-117))) NIL T ELT)) (-1571 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-3406 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3996)) ELT)) (-3407 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-2996 (($) NIL (|has| (-117) (-318)) ELT)) (-2891 (((-585 (-117)) $) 65 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-2610 (((-585 (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-2859 (((-117) $) NIL (|has| (-117) (-758)) ELT)) (-1950 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3430 (($) 18 T CONST)) (-2012 (((-832) $) NIL (|has| (-117) (-318)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 32 T ELT)) (-1275 (((-117) $) 57 T ELT)) (-3610 (($ (-117) $) 55 T ELT)) (-2402 (($ (-832)) NIL (|has| (-117) (-318)) ELT)) (-1329 (($) 16 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1276 (((-117) $) 58 T ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 53 T ELT)) (-1330 (($) 15 T CONST)) (-3239 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1467 (($ (-585 (-117))) NIL T ELT) (($) NIL T ELT)) (-1947 (((-696) (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT) (((-696) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-1074) $) 39 T ELT) (((-474) $) NIL (|has| (-117) (-555 (-474))) ELT) (((-585 (-117)) $) 37 T ELT)) (-3531 (($ (-585 (-117))) NIL T ELT)) (-1804 (($ $) 35 (|has| (-117) (-318)) ELT)) (-3947 (((-774) $) 51 T ELT)) (-1331 (($ (-1074)) 14 T ELT) (($ (-585 (-117))) 48 T ELT)) (-1805 (((-696) $) NIL T ELT)) (-3242 (($) 54 T ELT) (($ (-585 (-117))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-585 (-117))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1327 (($) 21 T CONST)) (-1328 (($) 20 T CONST)) (-3058 (((-85) $ $) 26 T ELT)) (-3958 (((-696) $) 52 (|has| $ (-6 -3996)) ELT))) +(((-114) (-13 (-1015) (-555 (-1074)) (-367 (-117)) (-555 (-585 (-117))) (-10 -8 (-15 -1331 ($ (-1074))) (-15 -1331 ($ (-585 (-117)))) (-15 -1330 ($) -3953) (-15 -1329 ($) -3953) (-15 -3428 ($) -3953) (-15 -3430 ($) -3953) (-15 -1328 ($) -3953) (-15 -1327 ($) -3953)))) (T -114)) +((-1331 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) (-1330 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-3428 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114)))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3740 ((|#1| |#3|) 9 T ELT)) (-3741 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-906 |#1|) (-322 |#2|)) (T -115)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-322 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-322 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-322 *4))))) +((-1370 (($ $ $) 8 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT))) (((-116) (-113)) (T -116)) -((-1367 (*1 *1 *1 *1) (-4 *1 (-116))) (-1365 (*1 *1 *1) (-4 *1 (-116))) (-3100 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3100 ($ $ $)) (-15 -1365 ($ $)) (-15 -1367 ($ $ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1336 (($) 30 T CONST)) (-1331 (((-85) $) 42 T ELT)) (-3424 (($ $) 52 T ELT)) (-1343 (($) 23 T CONST)) (-1516 (($) 21 T CONST)) (-3134 (((-695)) 13 T ELT)) (-2993 (($) 20 T ELT)) (-2578 (($) 22 T CONST)) (-1345 (((-695) $) 17 T ELT)) (-1342 (($) 24 T CONST)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1330 (((-85) $) 44 T ELT)) (-3426 (($ $) 53 T ELT)) (-2009 (((-831) $) 18 T ELT)) (-1340 (($) 26 T CONST)) (-3240 (((-1072) $) 50 T ELT)) (-2399 (($ (-831)) 16 T ELT)) (-1337 (($) 29 T CONST)) (-1333 (((-85) $) 40 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1339 (($) 27 T CONST)) (-1335 (($) 31 T CONST)) (-1334 (((-85) $) 38 T ELT)) (-3943 (((-773) $) 33 T ELT)) (-1344 (($ (-695)) 14 T ELT) (($ (-1072)) 51 T ELT)) (-1341 (($) 25 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1338 (($) 28 T CONST)) (-1329 (((-85) $) 48 T ELT)) (-1332 (((-85) $) 46 T ELT)) (-2565 (((-85) $ $) 11 T ELT)) (-2566 (((-85) $ $) 9 T ELT)) (-3055 (((-85) $ $) 7 T ELT)) (-2683 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-753) (-10 -8 (-15 -1345 ((-695) $)) (-15 -1344 ($ (-695))) (-15 -1344 ($ (-1072))) (-15 -1516 ($) -3949) (-15 -2578 ($) -3949) (-15 -1343 ($) -3949) (-15 -1342 ($) -3949) (-15 -1341 ($) -3949) (-15 -1340 ($) -3949) (-15 -1339 ($) -3949) (-15 -1338 ($) -3949) (-15 -1337 ($) -3949) (-15 -1336 ($) -3949) (-15 -1335 ($) -3949) (-15 -3424 ($ $)) (-15 -3426 ($ $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $)) (-15 -1329 ((-85) $))))) (T -117)) -((-1345 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) (-1516 (*1 *1) (-5 *1 (-117))) (-2578 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-1335 (*1 *1) (-5 *1 (-117))) (-3424 (*1 *1 *1) (-5 *1 (-117))) (-3426 (*1 *1 *1) (-5 *1 (-117))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-2701 (((-633 $) $) 45 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-1370 (*1 *1 *1 *1) (-4 *1 (-116))) (-1368 (*1 *1 *1) (-4 *1 (-116))) (-3103 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3103 ($ $ $)) (-15 -1368 ($ $)) (-15 -1370 ($ $ $)))) +((-2570 (((-85) $ $) NIL T ELT)) (-1339 (($) 30 T CONST)) (-1334 (((-85) $) 42 T ELT)) (-3428 (($ $) 52 T ELT)) (-1346 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3138 (((-696)) 13 T ELT)) (-2996 (($) 20 T ELT)) (-2581 (($) 22 T CONST)) (-1348 (((-696) $) 17 T ELT)) (-1345 (($) 24 T CONST)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1333 (((-85) $) 44 T ELT)) (-3430 (($ $) 53 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-1343 (($) 26 T CONST)) (-3244 (((-1074) $) 50 T ELT)) (-2402 (($ (-832)) 16 T ELT)) (-1340 (($) 29 T CONST)) (-1336 (((-85) $) 40 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1342 (($) 27 T CONST)) (-1338 (($) 31 T CONST)) (-1337 (((-85) $) 38 T ELT)) (-3947 (((-774) $) 33 T ELT)) (-1347 (($ (-696)) 14 T ELT) (($ (-1074)) 51 T ELT)) (-1344 (($) 25 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1341 (($) 28 T CONST)) (-1332 (((-85) $) 48 T ELT)) (-1335 (((-85) $) 46 T ELT)) (-2568 (((-85) $ $) 11 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-754) (-10 -8 (-15 -1348 ((-696) $)) (-15 -1347 ($ (-696))) (-15 -1347 ($ (-1074))) (-15 -1519 ($) -3953) (-15 -2581 ($) -3953) (-15 -1346 ($) -3953) (-15 -1345 ($) -3953) (-15 -1344 ($) -3953) (-15 -1343 ($) -3953) (-15 -1342 ($) -3953) (-15 -1341 ($) -3953) (-15 -1340 ($) -3953) (-15 -1339 ($) -3953) (-15 -1338 ($) -3953) (-15 -3428 ($ $)) (-15 -3430 ($ $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $))))) (T -117)) +((-1348 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) (-1519 (*1 *1) (-5 *1 (-117))) (-2581 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-3428 (*1 *1 *1) (-5 *1 (-117))) (-3430 (*1 *1 *1) (-5 *1 (-117))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2704 (((-634 $) $) 47 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-118) (-113)) (T -118)) -((-2701 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))) -(-13 (-962) (-10 -8 (-15 -2701 ((-633 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2448 ((|#1| (-631 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2448 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119)) -((-2448 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-2704 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118))))) +(-13 (-963) (-10 -8 (-15 -2704 ((-634 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2451 ((|#1| (-632 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2451 (|#1| (-632 |#1|) |#1|))) (-146)) (T -119)) +((-2451 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-120) (-113)) (T -120)) NIL -(-13 (-962)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-1348 (((-2 (|:| -2400 (-695)) (|:| -3951 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-695)) 76 T ELT)) (-1347 (((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1346 (((-2 (|:| -3951 (-347 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1349 ((|#1| |#3| |#3|) 44 T ELT)) (-3765 ((|#3| |#3| (-347 |#2|) (-347 |#2|)) 20 T ELT)) (-1350 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-2 (|:| -3951 (-347 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1347 ((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1348 ((-2 (|:| -2400 (-695)) (|:| -3951 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-695))) (-15 -1349 (|#1| |#3| |#3|)) (-15 -3765 (|#3| |#3| (-347 |#2|) (-347 |#2|))) (-15 -1350 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1133) (-1154 |#1|) (-1154 (-347 |#2|))) (T -121)) -((-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) (|:| |c2| (-347 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))) (-3765 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) (-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1154 *3)))) (-1347 (*1 *2 *3) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -3951 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5)))))) -((-2703 (((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2703 ((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)))) (-483) (-139 |#1|)) (T -122)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))) -((-3707 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1351 (($ $) 44 T ELT)) (-3403 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3839 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 18 T ELT) (((-695) |#2| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3954 (((-695) $) 12 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1351 (|#1| |#1|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3707 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3403 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3954 ((-695) |#1|))) (-124 |#2|) (-1128)) (T -123)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 44 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 53 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-124 |#1|) (-113) (-1128)) (T -124)) -((-3527 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) (-1352 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3839 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3839 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3707 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3839 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3403 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-1351 (*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))) -(-13 (-426 |t#1|) (-10 -8 (-15 -3527 ($ (-584 |t#1|))) (-15 -1352 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3839 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3839 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3403 ($ (-1 (-85) |t#1|) $)) (-15 -3707 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3839 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3403 ($ |t#1| $)) (-15 -1351 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) 113 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-584 (-831))) 72 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1353 (($ (-831)) 58 T ELT)) (-3908 (((-107)) 23 T ELT)) (-3943 (((-773) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3674 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3124 (((-695)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 48 T CONST)) (-2665 (($) 52 T CONST)) (-3055 (((-85) $ $) 34 T ELT)) (-3946 (($ $ |#2|) NIL T ELT)) (-3834 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3836 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1186 |#2|) (-10 -8 (-15 -1353 ($ (-831))) (-15 -2892 ($ |#2| (-584 (-831)))) (-15 -3674 (|#2| $ (-584 (-831)))) (-15 -3464 ((-3 $ "failed") $)))) (-831) (-311) (-907 |#1| |#2|)) (T -125)) -((-3464 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-311)) (-14 *4 (-907 *2 *3)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) (-14 *5 (-907 *3 *4)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-311)) (-14 *5 (-907 *4 *2)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))) -((-1355 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1354 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837)) 96 T ELT)) (-1508 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484)))) (-15 -1354 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837))) (-15 -1354 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484)))) (-15 -1355 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-855 (-179))))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126)) -((-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1355 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3179 (((-584 (-1048)) $) 20 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-995) (-10 -8 (-15 -3179 ((-584 (-1048)) $)) (-15 -3231 ((-1048) $))))) (T -127)) -((-3179 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-127)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127))))) -((-1408 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1408 ((-584 (-142 |#2|)) |#1| |#2|))) (-1154 (-142 (-484))) (-13 (-311) (-756))) (T -128)) -((-1408 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-311) (-756)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 (((-1129) $) 13 T ELT)) (-3526 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-995) (-10 -8 (-15 -3526 ((-1048) $)) (-15 -3525 ((-1129) $))))) (T -129)) -((-3526 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1357 (($) 38 T ELT)) (-3097 (($) 37 T ELT)) (-1356 (((-831)) 43 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2955 (((-484) $) 41 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3096 (($) 39 T ELT)) (-2954 (($ (-484)) 44 T ELT)) (-3943 (((-773) $) 50 T ELT)) (-3095 (($) 40 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-3836 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3836 ($ $ $)) (-15 -3097 ($)) (-15 -1357 ($)) (-15 -3096 ($)) (-15 -3095 ($)) (-15 -2955 ((-484) $)) (-15 -1356 ((-831))) (-15 -2954 ($ (-484)))))) (T -130)) -((-3836 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3097 (*1 *1) (-5 *1 (-130))) (-1357 (*1 *1) (-5 *1 (-130))) (-3096 (*1 *1) (-5 *1 (-130))) (-3095 (*1 *1) (-5 *1 (-130))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1356 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))) -((-1370 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1089)) 75 T ELT)) (-3941 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1089)) 74 T ELT)) (-1367 ((|#2| |#2| |#2|) 25 T ELT)) (-3592 (((-86) (-86)) 111 T ELT)) (-1364 ((|#2| (-584 |#2|)) 130 T ELT)) (-1361 ((|#2| (-584 |#2|)) 150 T ELT)) (-1360 ((|#2| (-584 |#2|)) 138 T ELT)) (-1358 ((|#2| |#2|) 136 T ELT)) (-1362 ((|#2| (-584 |#2|)) 124 T ELT)) (-1363 ((|#2| (-584 |#2|)) 125 T ELT)) (-1359 ((|#2| (-584 |#2|)) 148 T ELT)) (-1371 ((|#2| |#2| (-1089)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1365 ((|#2| |#2|) 21 T ELT)) (-3100 ((|#2| |#2| |#2|) 24 T ELT)) (-2253 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3100 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1371 (|#2| |#2| (-1089))) (-15 -1370 (|#2| |#2| (-1089))) (-15 -1370 (|#2| |#2| (-1004 |#2|))) (-15 -3941 (|#2| |#2| (-1089))) (-15 -3941 (|#2| |#2| (-1004 |#2|))) (-15 -1358 (|#2| |#2|)) (-15 -1359 (|#2| (-584 |#2|))) (-15 -1360 (|#2| (-584 |#2|))) (-15 -1361 (|#2| (-584 |#2|))) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|)))) (-495) (-361 |#1|)) (T -131)) -((-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1367 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3100 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-361 *4))))) -((-1369 ((|#1| |#1| |#1|) 66 T ELT)) (-1368 ((|#1| |#1| |#1|) 63 T ELT)) (-1367 ((|#1| |#1| |#1|) 57 T ELT)) (-2889 ((|#1| |#1|) 43 T ELT)) (-1366 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1365 ((|#1| |#1|) 47 T ELT)) (-3100 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3100 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1366 (|#1| |#1| (-584 |#1|))) (-15 -2889 (|#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|))) (-483)) (T -132)) -((-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2889 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1365 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3100 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -((-1370 (($ $ (-1089)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3941 (($ $ (-1089)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1367 (($ $ $) 8 T ELT)) (-1371 (($ $) 14 T ELT) (($ $ (-1089)) 13 T ELT)) (-1365 (($ $) 7 T ELT)) (-3100 (($ $ $) 6 T ELT))) +(-13 (-963)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-1351 (((-2 (|:| -2403 (-696)) (|:| -3955 (-348 |#2|)) (|:| |radicand| |#2|)) (-348 |#2|) (-696)) 76 T ELT)) (-1350 (((-3 (-2 (|:| |radicand| (-348 |#2|)) (|:| |deg| (-696))) "failed") |#3|) 56 T ELT)) (-1349 (((-2 (|:| -3955 (-348 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1352 ((|#1| |#3| |#3|) 44 T ELT)) (-3769 ((|#3| |#3| (-348 |#2|) (-348 |#2|)) 20 T ELT)) (-1353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| |deg| (-696))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-2 (|:| -3955 (-348 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1350 ((-3 (-2 (|:| |radicand| (-348 |#2|)) (|:| |deg| (-696))) "failed") |#3|)) (-15 -1351 ((-2 (|:| -2403 (-696)) (|:| -3955 (-348 |#2|)) (|:| |radicand| |#2|)) (-348 |#2|) (-696))) (-15 -1352 (|#1| |#3| |#3|)) (-15 -3769 (|#3| |#3| (-348 |#2|) (-348 |#2|))) (-15 -1353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| |deg| (-696))) |#3| |#3|))) (-1135) (-1156 |#1|) (-1156 (-348 |#2|))) (T -121)) +((-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-348 *5)) (|:| |c2| (-348 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-348 *5))))) (-3769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-348 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1156 (-348 *4))))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1156 *3)))) (-1350 (*1 *2 *3) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |radicand| (-348 *5)) (|:| |deg| (-696)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-348 *5))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -3955 (-348 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-348 *5)))))) +((-2706 (((-3 (-585 (-1086 |#2|)) "failed") (-585 (-1086 |#2|)) (-1086 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2706 ((-3 (-585 (-1086 |#2|)) "failed") (-585 (-1086 |#2|)) (-1086 |#2|)))) (-484) (-139 |#1|)) (T -122)) +((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) (-4 *4 (-484)) (-5 *1 (-122 *4 *5))))) +((-3711 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1354 (($ $) 44 T ELT)) (-3407 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 18 T ELT) (((-696) |#2| $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3958 (((-696) $) 12 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1354 (|#1| |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-696) |#2| |#1|)) (-15 -1947 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-696) |#1|))) (-124 |#2|) (-1130)) (T -123)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 45 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 44 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 53 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-124 |#1|) (-113) (-1130)) (T -124)) +((-3531 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) (-1355 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3843 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-1015)))) (-1354 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-1015))))) +(-13 (-427 |t#1|) (-10 -8 (-15 -3531 ($ (-585 |t#1|))) (-15 -1355 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1015)) (PROGN (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3407 ($ |t#1| $)) (-15 -1354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 113 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-585 (-832))) 72 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1356 (($ (-832)) 58 T ELT)) (-3912 (((-107)) 23 T ELT)) (-3947 (((-774) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3678 ((|#2| $ (-585 (-832))) 75 T ELT)) (-3128 (((-696)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 48 T CONST)) (-2668 (($) 52 T CONST)) (-3058 (((-85) $ $) 34 T ELT)) (-3950 (($ $ |#2|) NIL T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3840 (($ $ $) 39 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-963) (-38 |#2|) (-1188 |#2|) (-10 -8 (-15 -1356 ($ (-832))) (-15 -2895 ($ |#2| (-585 (-832)))) (-15 -3678 (|#2| $ (-585 (-832)))) (-15 -3468 ((-3 $ "failed") $)))) (-832) (-312) (-908 |#1| |#2|)) (T -125)) +((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) (-14 *4 (-908 *2 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-908 *3 *4)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) (-14 *5 (-908 *4 *2))))) +((-1358 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1357 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-348 (-485)) (-348 (-485))) 95 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-348 (-485)) (-348 (-485))) 89 T ELT) (((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-348 (-485)) (-348 (-485)))) (-15 -1357 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838))) (-15 -1357 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-838) (-348 (-485)) (-348 (-485)))) (-15 -1358 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-856 (-179))))) (-15 -1511 ((-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179)))) (-585 (-585 (-856 (-179)))))))) (T -126)) +((-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) (-1358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) (|:| |yValues| (-1003 *4)))) (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4)))))) (-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-348 (-485))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-838)) (-5 *4 (-348 (-485))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-585 (-1050)) $) 20 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-997) (-10 -8 (-15 -3183 ((-585 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -127)) +((-3183 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-127)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127))))) +((-1411 (((-585 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1411 ((-585 (-142 |#2|)) |#1| |#2|))) (-1156 (-142 (-485))) (-13 (-312) (-757))) (T -128)) +((-1411 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-757)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 (((-1131) $) 13 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-997) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1131) $))))) (T -129)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1360 (($) 38 T ELT)) (-3100 (($) 37 T ELT)) (-1359 (((-832)) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-485) $) 41 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3099 (($) 39 T ELT)) (-2957 (($ (-485)) 44 T ELT)) (-3947 (((-774) $) 50 T ELT)) (-3098 (($) 40 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-3840 (($ $ $) 32 T ELT)) (* (($ (-832) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-832) $)) (-15 * ($ (-179) $)) (-15 -3840 ($ $ $)) (-15 -3100 ($)) (-15 -1360 ($)) (-15 -3099 ($)) (-15 -3098 ($)) (-15 -2958 ((-485) $)) (-15 -1359 ((-832))) (-15 -2957 ($ (-485)))))) (T -130)) +((-3840 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3100 (*1 *1) (-5 *1 (-130))) (-1360 (*1 *1) (-5 *1 (-130))) (-3099 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) (-1359 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130))))) +((-1373 ((|#2| |#2| (-1006 |#2|)) 98 T ELT) ((|#2| |#2| (-1091)) 75 T ELT)) (-3945 ((|#2| |#2| (-1006 |#2|)) 97 T ELT) ((|#2| |#2| (-1091)) 74 T ELT)) (-1370 ((|#2| |#2| |#2|) 25 T ELT)) (-3596 (((-86) (-86)) 111 T ELT)) (-1367 ((|#2| (-585 |#2|)) 130 T ELT)) (-1364 ((|#2| (-585 |#2|)) 150 T ELT)) (-1363 ((|#2| (-585 |#2|)) 138 T ELT)) (-1361 ((|#2| |#2|) 136 T ELT)) (-1365 ((|#2| (-585 |#2|)) 124 T ELT)) (-1366 ((|#2| (-585 |#2|)) 125 T ELT)) (-1362 ((|#2| (-585 |#2|)) 148 T ELT)) (-1374 ((|#2| |#2| (-1091)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1368 ((|#2| |#2|) 21 T ELT)) (-3103 ((|#2| |#2| |#2|) 24 T ELT)) (-2256 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3103 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1374 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1006 |#2|))) (-15 -3945 (|#2| |#2| (-1091))) (-15 -3945 (|#2| |#2| (-1006 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -1362 (|#2| (-585 |#2|))) (-15 -1363 (|#2| (-585 |#2|))) (-15 -1364 (|#2| (-585 |#2|))) (-15 -1365 (|#2| (-585 |#2|))) (-15 -1366 (|#2| (-585 |#2|))) (-15 -1367 (|#2| (-585 |#2|)))) (-496) (-362 |#1|)) (T -131)) +((-1367 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-362 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-362 *4))))) +((-1372 ((|#1| |#1| |#1|) 66 T ELT)) (-1371 ((|#1| |#1| |#1|) 63 T ELT)) (-1370 ((|#1| |#1| |#1|) 57 T ELT)) (-2892 ((|#1| |#1|) 43 T ELT)) (-1369 ((|#1| |#1| (-585 |#1|)) 55 T ELT)) (-1368 ((|#1| |#1|) 47 T ELT)) (-3103 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-585 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|))) (-484)) (T -132)) +((-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-2892 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))) (-1368 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +((-1373 (($ $ (-1091)) 12 T ELT) (($ $ (-1006 $)) 11 T ELT)) (-3945 (($ $ (-1091)) 10 T ELT) (($ $ (-1006 $)) 9 T ELT)) (-1370 (($ $ $) 8 T ELT)) (-1374 (($ $) 14 T ELT) (($ $ (-1091)) 13 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT))) (((-133) (-113)) (T -133)) -((-1371 (*1 *1 *1) (-4 *1 (-133))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1370 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1371 ($ $)) (-15 -1371 ($ $ (-1089))) (-15 -1370 ($ $ (-1089))) (-15 -1370 ($ $ (-1004 $))) (-15 -3941 ($ $ (-1089))) (-15 -3941 ($ $ (-1004 $))))) +((-1374 (*1 *1 *1) (-4 *1 (-133))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1374 ($ $)) (-15 -1374 ($ $ (-1091))) (-15 -1373 ($ $ (-1091))) (-15 -1373 ($ $ (-1006 $))) (-15 -3945 ($ $ (-1091))) (-15 -3945 ($ $ (-1006 $))))) (((-116) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1372 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1013) (-10 -8 (-15 -1372 ($ (-484))) (-15 -1372 ($ $ $))))) (T -134)) -((-1372 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1372 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-584 (-1048)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-995) (-10 -8 (-15 -3231 ((-584 (-1048)) $))))) (T -135)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-135))))) -((-3592 (((-86) (-1089)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3592 ((-86) (-1089))))) (T -136)) -((-3592 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1593 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1593 (|#3| |#3|))) (-962) (-1154 |#1|) (-1154 |#2|)) (T -137)) -((-1593 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1154 *4))))) -((-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 222 T ELT)) (-3327 ((|#2| $) 102 T ELT)) (-3489 (($ $) 255 T ELT)) (-3636 (($ $) 249 T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 47 T ELT)) (-3487 (($ $) 253 T ELT)) (-3635 (($ $) 247 T ELT)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2563 (($ $ $) 228 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3839 (($ (-1084 |#2|)) 125 T ELT) (((-3 $ #1#) (-347 (-1084 |#2|))) NIL T ELT)) (-3464 (((-3 $ #1#) $) 213 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 203 T ELT)) (-3022 (((-85) $) 198 T ELT)) (-3021 (((-347 (-484)) $) 201 T ELT)) (-3107 (((-831)) 96 T ELT)) (-2562 (($ $ $) 230 T ELT)) (-1373 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3624 (($) 244 T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 192 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 197 T ELT)) (-3130 ((|#2| $) 100 T ELT)) (-2013 (((-1084 |#2|) $) 127 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3939 (($ $) 246 T ELT)) (-3078 (((-1084 |#2|) $) 126 T ELT)) (-2483 (($ $) 206 T ELT)) (-1375 (($) 103 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 95 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 64 T ELT)) (-3463 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3940 (($ $) 245 T ELT)) (-1605 (((-695) $) 225 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 234 T ELT)) (-3754 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3755 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3183 (((-1084 |#2|)) 120 T ELT)) (-3488 (($ $) 254 T ELT)) (-3631 (($ $) 248 T ELT)) (-3222 (((-1178 |#2|) $ (-1178 $)) 136 T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 116 T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-3969 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT) (($ (-1084 |#2|)) NIL T ELT) (((-801 (-484)) $) 183 T ELT) (((-801 (-327)) $) 187 T ELT) (((-142 (-327)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3008 (($ $) 104 T ELT)) (-3943 (((-773) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2448 (((-1084 |#2|) $) 32 T ELT)) (-3124 (((-695)) 106 T CONST)) (-1263 (((-85) $ $) 13 T ELT)) (-3495 (($ $) 258 T ELT)) (-3483 (($ $) 252 T ELT)) (-3493 (($ $) 256 T ELT)) (-3481 (($ $) 250 T ELT)) (-2235 ((|#2| $) 241 T ELT)) (-3494 (($ $) 257 T ELT)) (-3482 (($ $) 251 T ELT)) (-3380 (($ $) 162 T ELT)) (-3055 (((-85) $ $) 110 T ELT)) (-3834 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-347 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3943 (|#1| |#1|)) (-15 -3463 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3979 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3969 ((-473) |#1|)) (-15 -3969 ((-142 (-179)) |#1|)) (-15 -3969 ((-142 (-327)) |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3624 (|#1|)) (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -2705 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-3 (-584 (-1084 |#1|)) #1#) (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -3023 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3021 ((-347 (-484)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -1373 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2235 (|#2| |#1|)) (-15 -3380 (|#1| |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3008 (|#1| |#1|)) (-15 -1375 (|#1|)) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -2795 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -2795 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3839 ((-3 |#1| #1#) (-347 (-1084 |#2|)))) (-15 -3078 ((-1084 |#2|) |#1|)) (-15 -3969 (|#1| (-1084 |#2|))) (-15 -3839 (|#1| (-1084 |#2|))) (-15 -3183 ((-1084 |#2|))) (-15 -2278 ((-631 |#2|) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3969 ((-1084 |#2|) |#1|)) (-15 -3754 (|#2|)) (-15 -3969 (|#1| (-1178 |#2|))) (-15 -3969 ((-1178 |#2|) |#1|)) (-15 -3222 ((-631 |#2|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1|)) (-15 -2013 ((-1084 |#2|) |#1|)) (-15 -2448 ((-1084 |#2|) |#1|)) (-15 -3754 (|#2| (-1178 |#1|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -3130 (|#2| |#1|)) (-15 -3327 (|#2| |#1|)) (-15 -3107 ((-831))) (-15 -3943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3124 ((-695)) -3949) (-15 -3943 (|#1| (-484))) (-15 -3464 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3124 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3754 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3183 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2062 (($ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2060 (((-85) $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3327 ((|#1| $) 65 T ELT)) (-3489 (($ $) 248 (|has| |#1| (-1114)) ELT)) (-3636 (($ $) 231 (|has| |#1| (-1114)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 262 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3772 (($ $) 132 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3968 (((-345 $) $) 133 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3036 (($ $) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-2703 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 265 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1606 (((-85) $ $) 123 (|has| |#1| (-257)) ELT)) (-3134 (((-695)) 106 (|has| |#1| (-317)) ELT)) (-3487 (($ $) 247 (|has| |#1| (-1114)) ELT)) (-3635 (($ $) 232 (|has| |#1| (-1114)) ELT)) (-3491 (($ $) 246 (|has| |#1| (-1114)) ELT)) (-3634 (($ $) 233 (|has| |#1| (-1114)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 192 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3154 (((-484) $) 191 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 188 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2563 (($ $ $) 127 (|has| |#1| (-257)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 184 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 182 T ELT) (((-631 |#1|) (-631 $)) 181 T ELT)) (-3839 (($ (-1084 |#1|)) 176 T ELT) (((-3 $ "failed") (-347 (-1084 |#1|))) 173 (|has| |#1| (-311)) ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3640 ((|#1| $) 273 T ELT)) (-3023 (((-3 (-347 (-484)) "failed") $) 266 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 268 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 267 (|has| |#1| (-483)) ELT)) (-3107 (((-831)) 67 T ELT)) (-2993 (($) 109 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) 126 (|has| |#1| (-257)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 121 (|has| |#1| (-257)) ELT)) (-2832 (($) 167 (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3720 (((-85) $) 134 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 269 (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3624 (($) 258 (|has| |#1| (-1114)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 281 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 280 (|has| |#1| (-797 (-327))) ELT)) (-3769 (((-831) $) 170 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 156 (|has| |#1| (-298)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 260 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-3130 ((|#1| $) 64 T ELT)) (-3442 (((-633 $) $) 160 (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| |#1| (-257)) ELT)) (-2013 (((-1084 |#1|) $) 57 (|has| |#1| (-311)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 282 T ELT)) (-2009 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-3939 (($ $) 255 (|has| |#1| (-1114)) ELT)) (-3078 (((-1084 |#1|) $) 174 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 180 T ELT) (((-631 |#1|) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3443 (($) 161 (|has| |#1| (-298)) CONST)) (-2399 (($ (-831)) 107 (|has| |#1| (-317)) ELT)) (-1375 (($) 277 T ELT)) (-3641 ((|#1| $) 274 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2408 (($) 178 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 120 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3142 (($ (-584 $)) 117 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 116 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 164 (|has| |#1| (-298)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 264 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 263 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3729 (((-345 $) $) 131 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 128 (|has| |#1| (-257)) ELT)) (-3463 (((-3 $ "failed") $ |#1|) 272 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 111 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 122 (|has| |#1| (-257)) ELT)) (-3940 (($ $) 256 (|has| |#1| (-1114)) ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) 288 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 287 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 286 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 285 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 284 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 283 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) 124 (|has| |#1| (-257)) ELT)) (-3797 (($ $ |#1|) 289 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 125 (|has| |#1| (-257)) ELT)) (-3754 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1763 (((-695) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3755 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) 147 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) 146 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) 144 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) 154 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 152 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-2407 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3183 (((-1084 |#1|)) 177 T ELT)) (-3492 (($ $) 245 (|has| |#1| (-1114)) ELT)) (-3633 (($ $) 234 (|has| |#1| (-1114)) ELT)) (-1672 (($) 166 (|has| |#1| (-298)) ELT)) (-3490 (($ $) 244 (|has| |#1| (-1114)) ELT)) (-3632 (($ $) 235 (|has| |#1| (-1114)) ELT)) (-3488 (($ $) 243 (|has| |#1| (-1114)) ELT)) (-3631 (($ $) 236 (|has| |#1| (-1114)) ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3969 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT) (((-1084 |#1|) $) 193 T ELT) (($ (-1084 |#1|)) 175 T ELT) (((-801 (-484)) $) 279 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 278 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-142 (-327)) $) 230 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 229 (|has| |#1| (-934)) ELT) (((-473) $) 228 (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) 276 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 163 (OR (-2561 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-298))) ELT)) (-1374 (($ |#1| |#1|) 275 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2701 (($ $) 162 (|has| |#1| (-298)) ELT) (((-633 $) $) 56 (OR (-2561 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2448 (((-1084 |#1|) $) 58 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 81 T ELT)) (-3495 (($ $) 254 (|has| |#1| (-1114)) ELT)) (-3483 (($ $) 242 (|has| |#1| (-1114)) ELT)) (-2061 (((-85) $ $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3493 (($ $) 253 (|has| |#1| (-1114)) ELT)) (-3481 (($ $) 241 (|has| |#1| (-1114)) ELT)) (-3497 (($ $) 252 (|has| |#1| (-1114)) ELT)) (-3485 (($ $) 240 (|has| |#1| (-1114)) ELT)) (-2235 ((|#1| $) 270 (|has| |#1| (-1114)) ELT)) (-3498 (($ $) 251 (|has| |#1| (-1114)) ELT)) (-3486 (($ $) 239 (|has| |#1| (-1114)) ELT)) (-3496 (($ $) 250 (|has| |#1| (-1114)) ELT)) (-3484 (($ $) 238 (|has| |#1| (-1114)) ELT)) (-3494 (($ $) 249 (|has| |#1| (-1114)) ELT)) (-3482 (($ $) 237 (|has| |#1| (-1114)) ELT)) (-3380 (($ $) 271 (|has| |#1| (-973)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 141 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 140 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) 150 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) 149 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) 145 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) 155 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 153 (OR (-2561 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2561 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2561 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-347 (-484))) 259 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT) (($ $ $) 257 (|has| |#1| (-1114)) ELT) (($ $ (-484)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-311)) ELT))) +((-2570 (((-85) $ $) NIL T ELT)) (-1375 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1015) (-10 -8 (-15 -1375 ($ (-485))) (-15 -1375 ($ $ $))))) (T -134)) +((-1375 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))) (-1375 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-585 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-997) (-10 -8 (-15 -3235 ((-585 (-1050)) $))))) (T -135)) +((-3235 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-135))))) +((-3596 (((-86) (-1091)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3596 ((-86) (-1091))))) (T -136)) +((-3596 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1596 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#3| |#3|))) (-963) (-1156 |#1|) (-1156 |#2|)) (T -137)) +((-1596 (*1 *2 *2) (-12 (-4 *3 (-963)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1156 *4))))) +((-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 222 T ELT)) (-3331 ((|#2| $) 102 T ELT)) (-3493 (($ $) 255 T ELT)) (-3640 (($ $) 249 T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 47 T ELT)) (-3491 (($ $) 253 T ELT)) (-3639 (($ $) 247 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2566 (($ $ $) 228 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 160 T ELT) (((-632 |#2|) (-632 $)) 154 T ELT)) (-3843 (($ (-1086 |#2|)) 125 T ELT) (((-3 $ #1#) (-348 (-1086 |#2|))) NIL T ELT)) (-3468 (((-3 $ #1#) $) 213 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 203 T ELT)) (-3025 (((-85) $) 198 T ELT)) (-3024 (((-348 (-485)) $) 201 T ELT)) (-3110 (((-832)) 96 T ELT)) (-2565 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3628 (($) 244 T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 192 T ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 197 T ELT)) (-3134 ((|#2| $) 100 T ELT)) (-2016 (((-1086 |#2|) $) 127 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3943 (($ $) 246 T ELT)) (-3081 (((-1086 |#2|) $) 126 T ELT)) (-2486 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 95 T ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 64 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3944 (($ $) 245 T ELT)) (-1608 (((-696) $) 225 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 234 T ELT)) (-3758 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3187 (((-1086 |#2|)) 120 T ELT)) (-3492 (($ $) 254 T ELT)) (-3635 (($ $) 248 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) 136 T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 116 T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT) (($ (-1086 |#2|)) NIL T ELT) (((-802 (-485)) $) 183 T ELT) (((-802 (-328)) $) 187 T ELT) (((-142 (-328)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3011 (($ $) 104 T ELT)) (-3947 (((-774) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2451 (((-1086 |#2|) $) 32 T ELT)) (-3128 (((-696)) 106 T CONST)) (-1266 (((-85) $ $) 13 T ELT)) (-3499 (($ $) 258 T ELT)) (-3487 (($ $) 252 T ELT)) (-3497 (($ $) 256 T ELT)) (-3485 (($ $) 250 T ELT)) (-2238 ((|#2| $) 241 T ELT)) (-3498 (($ $) 257 T ELT)) (-3486 (($ $) 251 T ELT)) (-3384 (($ $) 162 T ELT)) (-3058 (((-85) $ $) 110 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-348 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3947 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2066 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -2881 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-348 (-485)))) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-142 (-179)) |#1|)) (-15 -3973 ((-142 (-328)) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3628 (|#1|)) (-15 ** (|#1| |#1| (-348 (-485)))) (-15 -2708 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-585 (-1086 |#1|)) #1#) (-585 (-1086 |#1|)) (-1086 |#1|))) (-15 -3026 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3024 ((-348 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2238 (|#2| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3011 (|#1| |#1|)) (-15 -1378 (|#1|)) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -2798 ((-800 (-328) |#1|) |#1| (-802 (-328)) (-800 (-328) |#1|))) (-15 -2798 ((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1#) (-348 (-1086 |#2|)))) (-15 -3081 ((-1086 |#2|) |#1|)) (-15 -3973 (|#1| (-1086 |#2|))) (-15 -3843 (|#1| (-1086 |#2|))) (-15 -3187 ((-1086 |#2|))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3973 ((-1086 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -3226 ((-632 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2016 ((-1086 |#2|) |#1|)) (-15 -2451 ((-1086 |#2|) |#1|)) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -3134 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -3110 ((-832))) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-696)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3110 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3758 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3187 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2065 (($ $) 115 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2063 (((-85) $) 117 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1783 (((-632 |#1|) (-1180 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-3493 (($ $) 250 (|has| |#1| (-1116)) ELT)) (-3640 (($ $) 233 (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3776 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3972 (((-346 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) 263 (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-585 (-1086 $)) "failed") (-585 (-1086 $)) (-1086 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3138 (((-696)) 108 (|has| |#1| (-318)) ELT)) (-3491 (($ $) 249 (|has| |#1| (-1116)) ELT)) (-3639 (($ $) 234 (|has| |#1| (-1116)) ELT)) (-3495 (($ $) 248 (|has| |#1| (-1116)) ELT)) (-3638 (($ $) 235 (|has| |#1| (-1116)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 192 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 191 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 186 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 185 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3843 (($ (-1086 |#1|)) 178 T ELT) (((-3 $ "failed") (-348 (-1086 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 275 T ELT)) (-3026 (((-3 (-348 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 270 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3110 (((-832)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-258)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-975)) (|has| |#1| (-1116))) ELT)) (-3628 (($) 260 (|has| |#1| (-1116)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 283 (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 282 (|has| |#1| (-798 (-328))) ELT)) (-3773 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 262 (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3446 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-258)) ELT)) (-2016 (((-1086 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-318)) ELT)) (-3943 (($ $) 257 (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) 176 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 188 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-632 |#1|) (-1180 $)) 181 T ELT)) (-1892 (($ (-585 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-318)) ELT)) (-1378 (($) 279 T ELT)) (-3645 ((|#1| $) 276 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3146 (($ (-585 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3733 (((-346 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-258)) ELT)) (-3944 (($ $) 258 (|has| |#1| (-1116)) ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 286 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 285 (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-1608 (((-696) $) 126 (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1766 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) 150 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) 149 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) 148 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-696)) 156 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2410 (((-632 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) 179 T ELT)) (-3496 (($ $) 247 (|has| |#1| (-1116)) ELT)) (-3637 (($ $) 236 (|has| |#1| (-1116)) ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3494 (($ $) 246 (|has| |#1| (-1116)) ELT)) (-3636 (($ $) 237 (|has| |#1| (-1116)) ELT)) (-3492 (($ $) 245 (|has| |#1| (-1116)) ELT)) (-3635 (($ $) 238 (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-632 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) (((-1086 |#1|) $) 195 T ELT) (($ (-1086 |#1|)) 177 T ELT) (((-802 (-485)) $) 281 (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) 280 (|has| |#1| (-555 (-802 (-328)))) ELT) (((-142 (-328)) $) 232 (|has| |#1| (-935)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-935)) ELT) (((-474) $) 230 (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) 278 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 165 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) 60 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-3499 (($ $) 256 (|has| |#1| (-1116)) ELT)) (-3487 (($ $) 244 (|has| |#1| (-1116)) ELT)) (-2064 (((-85) $ $) 116 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823)))) ELT)) (-3497 (($ $) 255 (|has| |#1| (-1116)) ELT)) (-3485 (($ $) 243 (|has| |#1| (-1116)) ELT)) (-3501 (($ $) 254 (|has| |#1| (-1116)) ELT)) (-3489 (($ $) 242 (|has| |#1| (-1116)) ELT)) (-2238 ((|#1| $) 272 (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 253 (|has| |#1| (-1116)) ELT)) (-3490 (($ $) 241 (|has| |#1| (-1116)) ELT)) (-3500 (($ $) 252 (|has| |#1| (-1116)) ELT)) (-3488 (($ $) 240 (|has| |#1| (-1116)) ELT)) (-3498 (($ $) 251 (|has| |#1| (-1116)) ELT)) (-3486 (($ $) 239 (|has| |#1| (-1116)) ELT)) (-3384 (($ $) 273 (|has| |#1| (-975)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) 153 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) 152 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) 151 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-696)) 157 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-348 (-485))) 261 (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT) (($ $ $) 259 (|has| |#1| (-1116)) ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-348 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-348 (-485))) 139 (|has| |#1| (-312)) ELT))) (((-139 |#1|) (-113) (-146)) (T -139)) -((-3130 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1375 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1374 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3380 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484)))))) -(-13 (-662 |t#1| (-1084 |t#1|)) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-340 |t#1|) (-795 |t#1|) (-326 |t#1|) (-146) (-10 -8 (-6 -1374) (-15 -1375 ($)) (-15 -3008 ($ $)) (-15 -1374 ($ |t#1| |t#1|)) (-15 -3641 (|t#1| $)) (-15 -3640 (|t#1| $)) (-15 -3130 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3463 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-257)) (-6 (-257)) |%noBranch|) (IF (|has| |t#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-327))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3380 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2235 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1373 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-257)) (-6 (-822)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-35) |has| |#1| (-1114)) ((-66) |has| |#1| (-1114)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-327))) |has| |#1| (-934)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-554 (-1084 |#1|)) . T) ((-186 $) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-298)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-239) |has| |#1| (-1114)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| (-1084 |#1|)) . T) ((-350 |#1| (-1084 |#1|)) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-430) |has| |#1| (-1114)) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-662 |#1| (-1084 |#1|)) . T) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-257)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-298)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1133) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822))))) -((-3729 (((-345 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3729 ((-345 |#2|) |#2|))) (-257) (-1154 (-142 |#1|))) (T -140)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) -((-1378 (((-1048) (-1048) (-246)) 8 T ELT)) (-1376 (((-584 (-633 (-235))) (-1072)) 81 T ELT)) (-1377 (((-633 (-235)) (-1048)) 76 T ELT))) -(((-141) (-13 (-1128) (-10 -7 (-15 -1378 ((-1048) (-1048) (-246))) (-15 -1377 ((-633 (-235)) (-1048))) (-15 -1376 ((-584 (-633 (-235))) (-1072)))))) (T -141)) -((-1378 (*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-246)) (-5 *1 (-141)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 15 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-1780 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3772 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3968 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3036 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-257)) ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3839 (($ (-1084 |#1|)) NIL T ELT) (((-3 $ #1#) (-347 (-1084 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3640 ((|#1| $) 20 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3107 (((-831)) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-257)) ELT)) (-2832 (($) NIL (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3720 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3624 (($) NIL (|has| |#1| (-1114)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#1| (-797 (-327))) ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-2409 (((-85) $) 17 T ELT)) (-3010 (($ $ (-484)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-3130 ((|#1| $) 30 T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-2013 (((-1084 |#1|) $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3078 (((-1084 |#1|) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3443 (($) NIL (|has| |#1| (-298)) CONST)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1375 (($) NIL T ELT)) (-3641 ((|#1| $) 21 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-257)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| |#1| (-298)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3729 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-257)) ELT)) (-3797 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3754 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3755 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-2407 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3183 (((-1084 |#1|)) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1672 (($) NIL (|has| |#1| (-298)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3969 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT) (($ (-1084 |#1|)) NIL T ELT) (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (((-142 (-327)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) 29 T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-298))) ELT)) (-1374 (($ |#1| |#1|) 19 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2701 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2448 (((-1084 |#1|) $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2235 ((|#1| $) NIL (|has| |#1| (-1114)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3380 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-347 (-484))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT) (($ $ $) NIL (|has| |#1| (-1114)) ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT))) +((-3134 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3011 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485)))))) +(-13 (-663 |t#1| (-1086 |t#1|)) (-353 |t#1|) (-184 |t#1|) (-288 |t#1|) (-341 |t#1|) (-796 |t#1|) (-327 |t#1|) (-146) (-10 -8 (-6 -1377) (-15 -1378 ($)) (-15 -3011 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3134 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-935)) (PROGN (-6 (-555 (-142 (-179)))) (-6 (-555 (-142 (-328))))) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3384 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-1116)) (-15 -2238 (|t#1| $)) (IF (|has| |t#1| (-917)) (-6 (-917)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-823)) (IF (|has| |t#1| (-258)) (-6 (-823)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1116)) ((-66) |has| |#1| (-1116)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-554 (-774)) . T) ((-146) . T) ((-555 (-142 (-179))) |has| |#1| (-935)) ((-555 (-142 (-328))) |has| |#1| (-935)) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-555 (-802 (-328))) |has| |#1| (-555 (-802 (-328)))) ((-555 (-802 (-485))) |has| |#1| (-555 (-802 (-485)))) ((-555 (-1086 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1116)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-343) |has| |#1| (-299)) ((-318) OR (|has| |#1| (-299)) (|has| |#1| (-318))) ((-299) |has| |#1| (-299)) ((-320 |#1| (-1086 |#1|)) . T) ((-351 |#1| (-1086 |#1|)) . T) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-431) |has| |#1| (-1116)) ((-454 (-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-663 |#1| (-1086 |#1|)) . T) ((-665) . T) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-798 (-328)) |has| |#1| (-798 (-328))) ((-798 (-485)) |has| |#1| (-798 (-485))) ((-796 |#1|) . T) ((-823) -12 (|has| |#1| (-258)) (|has| |#1| (-823))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-917) -12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| |#1| (-299)) ((-1116) |has| |#1| (-1116)) ((-1119) |has| |#1| (-1116)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-823))))) +((-3733 (((-346 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3733 ((-346 |#2|) |#2|))) (-258) (-1156 (-142 |#1|))) (T -140)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +((-1381 (((-1050) (-1050) (-247)) 8 T ELT)) (-1379 (((-585 (-634 (-235))) (-1074)) 81 T ELT)) (-1380 (((-634 (-235)) (-1050)) 76 T ELT))) +(((-141) (-13 (-1130) (-10 -7 (-15 -1381 ((-1050) (-1050) (-247))) (-15 -1380 ((-634 (-235)) (-1050))) (-15 -1379 ((-585 (-634 (-235))) (-1074)))))) (T -141)) +((-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-634 (-235))) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-1783 (((-632 |#1|) (-1180 $)) NIL T ELT) (((-632 |#1|)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3776 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3972 (((-346 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3843 (($ (-1086 |#1|)) NIL T ELT) (((-3 $ #1#) (-348 (-1086 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 20 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3110 (((-832)) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-258)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-975)) (|has| |#1| (-1116))) ELT)) (-3628 (($) NIL (|has| |#1| (-1116)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| |#1| (-798 (-328))) ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-3013 (($ $ (-485)) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 30 T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-2016 (((-1086 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1378 (($) NIL T ELT)) (-3645 ((|#1| $) 21 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-258)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) ELT)) (-3733 (((-346 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-258)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2410 (((-632 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) NIL T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT) (($ (-1086 |#1|)) NIL T ELT) (((-802 (-485)) $) NIL (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| |#1| (-555 (-802 (-328)))) ELT) (((-142 (-328)) $) NIL (|has| |#1| (-935)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-935)) ELT) (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) 29 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-823))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2238 ((|#1| $) NIL (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-975)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-348 (-485))) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-1116))) ELT) (($ $ $) NIL (|has| |#1| (-1116)) ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-312)) ELT))) (((-142 |#1|) (-139 |#1|) (-146)) (T -142)) NIL -((-3955 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3955 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-3969 (((-801 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3969 ((-801 |#1|) |#3|))) (-1013) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-3969 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1380 (((-85) $) 9 T ELT)) (-1379 (((-85) $ (-85)) 11 T ELT)) (-3611 (($) 13 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3397 (($ $) 14 T ELT)) (-3943 (((-773) $) 18 T ELT)) (-3699 (((-85) $) 8 T ELT)) (-3858 (((-85) $ (-85)) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1013) (-10 -8 (-15 -3611 ($)) (-15 -3699 ((-85) $)) (-15 -1380 ((-85) $)) (-15 -3858 ((-85) $ (-85))) (-15 -1379 ((-85) $ (-85))) (-15 -3397 ($ $))))) (T -145)) -((-3611 (*1 *1) (-5 *1 (-145))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3858 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1379 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3397 (*1 *1 *1) (-5 *1 (-145)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3959 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3959 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-3973 (((-802 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3973 ((-802 |#1|) |#3|))) (-1015) (-13 (-555 (-802 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-3973 (*1 *2 *3) (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1015)) (-4 *3 (-139 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1383 (((-85) $) 9 T ELT)) (-1382 (((-85) $ (-85)) 11 T ELT)) (-3615 (($) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3947 (((-774) $) 18 T ELT)) (-3703 (((-85) $) 8 T ELT)) (-3862 (((-85) $ (-85)) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1015) (-10 -8 (-15 -3615 ($)) (-15 -3703 ((-85) $)) (-15 -1383 ((-85) $)) (-15 -3862 ((-85) $ (-85))) (-15 -1382 ((-85) $ (-85))) (-15 -3401 ($ $))))) (T -145)) +((-3615 (*1 *1) (-5 *1 (-145))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3401 (*1 *1 *1) (-5 *1 (-145)))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-146) (-113)) (T -146)) NIL -(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3994 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-1698 (($ $) 6 T ELT))) +(-13 (-963) (-82 $ $) (-10 -7 (-6 (-3998 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-1701 (($ $) 6 T ELT))) (((-147) (-113)) (T -147)) -((-1698 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1698 ($ $)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) 79 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-1385 (($ $) 21 T ELT)) (-1389 (($ |#1| (-1068 |#1|)) 48 T ELT)) (-3464 (((-3 $ #1#) $) 123 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-1386 (((-1068 |#1|) $) 86 T ELT)) (-1388 (((-1068 |#1|) $) 83 T ELT)) (-1387 (((-1068 |#1|) $) 84 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1382 (((-1068 |#1|) $) 93 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3766 (($ $ (-484)) 96 T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1381 (((-1068 |#1|) $) 94 T ELT)) (-1383 (((-1068 (-347 |#1|)) $) 14 T ELT)) (-2615 (($ (-347 |#1|)) 17 T ELT) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-2890 (($ $) 98 T ELT)) (-3943 (((-773) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-347 |#1|)) 36 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3124 (((-695)) 67 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-1384 (((-1068 (-347 |#1|)) $) 20 T ELT)) (-2659 (($) 103 T CONST)) (-2665 (($) 28 T CONST)) (-3055 (((-85) $ $) 35 T ELT)) (-3946 (($ $ $) 121 T ELT)) (-3834 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3836 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-347 |#1|) $) 117 T ELT) (($ $ (-347 |#1|)) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-347 |#1|)) (-311) (-10 -8 (-15 -2615 ($ (-347 |#1|))) (-15 -2615 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1389 ($ |#1| (-1068 |#1|))) (-15 -1388 ((-1068 |#1|) $)) (-15 -1387 ((-1068 |#1|) $)) (-15 -1386 ((-1068 |#1|) $)) (-15 -3127 (|#1| $)) (-15 -1385 ($ $)) (-15 -1384 ((-1068 (-347 |#1|)) $)) (-15 -1383 ((-1068 (-347 |#1|)) $)) (-15 -1382 ((-1068 |#1|) $)) (-15 -1381 ((-1068 |#1|) $)) (-15 -3766 ($ $ (-484))) (-15 -2890 ($ $)))) (-257)) (T -148)) -((-2615 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) (-2615 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3127 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1385 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))) -((-1390 (($ (-78) $) 15 T ELT)) (-3219 (((-633 (-78)) (-444) $) 14 T ELT)) (-3943 (((-773) $) 18 T ELT)) (-1391 (((-584 (-78)) $) 8 T ELT))) -(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1391 ((-584 (-78)) $)) (-15 -1390 ($ (-78) $)) (-15 -3219 ((-633 (-78)) (-444) $))))) (T -149)) -((-1391 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3219 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))) -((-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1400 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1393 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1401 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1399 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1641 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1394 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1392 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1392 ((-855 |#1|) (-855 |#1|))) (-15 -1393 ((-855 |#1|) (-855 |#1|))) (-15 -1394 ((-855 |#1|) (-855 |#1|))) (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1641 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1399 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1400 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1401 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-311) (-1114) (-916))) (T -150)) -((-1405 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3))))) -((-2448 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2448 (|#2| |#3|))) (-146) (-1154 |#1|) (-662 |#1| |#2|)) (T -151)) -((-2448 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2))))) -((-2795 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2795 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1407 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1406 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2076 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1406 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2076 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2076 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1407 ((-584 |#1|) (-584 |#1|) |#1|))) (-257)) (T -153)) -((-1407 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))) (-2076 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257)) (-5 *1 (-153 *4)))) (-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) (-1406 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3316 (((-1129) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 11 T ELT)) (-3943 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $)) (-15 -3316 ((-1129) $))))) (T -154)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))) -((-1416 (((-2 (|:| |start| |#2|) (|:| -1777 (-345 |#2|))) |#2|) 66 T ELT)) (-1415 ((|#1| |#1|) 58 T ELT)) (-1414 (((-142 |#1|) |#2|) 94 T ELT)) (-1413 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1412 ((|#2| |#2|) 91 T ELT)) (-1411 (((-345 |#2|) |#2| |#1|) 119 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3130 ((|#1| |#2|) 118 T ELT)) (-1410 ((|#2| |#2|) 131 T ELT)) (-3729 (((-345 |#2|) |#2|) 154 T ELT) (((-345 |#2|) |#2| |#1|) 33 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1409 (((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1408 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1408 ((-584 (-142 |#1|)) |#2|)) (-15 -1408 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1409 ((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85))) (-15 -1409 ((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2|)) (-15 -3729 ((-345 |#2|) |#2| |#1| (-85))) (-15 -3729 ((-345 |#2|) |#2| |#1|)) (-15 -3729 ((-345 |#2|) |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -3130 (|#1| |#2|)) (-15 -1411 ((-345 |#2|) |#2| |#1| (-85))) (-15 -1411 ((-345 |#2|) |#2| |#1|)) (-15 -1412 (|#2| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#2|)) (-15 -1414 ((-142 |#1|) |#2|)) (-15 -1415 (|#1| |#1|)) (-15 -1416 ((-2 (|:| |start| |#2|) (|:| -1777 (-345 |#2|))) |#2|))) (-13 (-311) (-756)) (-1154 (-142 |#1|))) (T -155)) -((-1416 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-345 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1415 (*1 *2 *2) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-756))) (-4 *3 (-1154 *2)))) (-1413 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1413 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3130 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3729 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) (-1408 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) -((-1417 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1418 (((-695) |#2|) 18 T ELT)) (-1419 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1417 ((-3 |#2| "failed") |#2|)) (-15 -1418 ((-695) |#2|)) (-15 -1419 (|#2| |#2| |#2|))) (-1128) (-617 |#1|)) (T -156)) -((-1419 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1418 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1417 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3539 (((-444) $) 8 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) 10 T ELT)) (-2632 (((-85) $ (-444)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1420 (((-633 $) (-444)) 17 T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 12 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1420 ((-633 $) (-444)))))) (T -157)) -((-1420 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1480 ((|#1| $) 7 T ELT)) (-3943 (((-773) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1421 (((-584 (-1094)) $) 10 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1480 (|#1| $)) (-15 -1421 ((-584 (-1094)) $)))) (-160)) (T -158)) -((-1480 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1422 (((-584 (-775)) $) 16 T ELT)) (-1424 (((-161) $) 8 T ELT)) (-1423 (((-584 (-85)) $) 13 T ELT)) (-2520 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1422 ((-584 (-775)) |#1|)) (-15 -1423 ((-584 (-85)) |#1|)) (-15 -1424 ((-161) |#1|)) (-15 -2520 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1422 (((-584 (-775)) $) 22 T ELT)) (-3539 (((-444) $) 19 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1424 (((-161) $) 24 T ELT)) (-2632 (((-85) $ (-444)) 17 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1423 (((-584 (-85)) $) 23 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2520 (((-55) $) 18 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) +((-1701 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1701 ($ $)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 79 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1070 |#1|)) 48 T ELT)) (-3468 (((-3 $ #1#) $) 123 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1389 (((-1070 |#1|) $) 86 T ELT)) (-1391 (((-1070 |#1|) $) 83 T ELT)) (-1390 (((-1070 |#1|) $) 84 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1385 (((-1070 |#1|) $) 93 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1892 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3770 (($ $ (-485)) 96 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1384 (((-1070 |#1|) $) 94 T ELT)) (-1386 (((-1070 (-348 |#1|)) $) 14 T ELT)) (-2618 (($ (-348 |#1|)) 17 T ELT) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-2893 (($ $) 98 T ELT)) (-3947 (((-774) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-348 |#1|)) 36 T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-696)) 67 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-1387 (((-1070 (-348 |#1|)) $) 20 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 35 T ELT)) (-3950 (($ $ $) 121 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3840 (($ $ $) 107 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-348 |#1|) $) 117 T ELT) (($ $ (-348 |#1|)) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-348 |#1|)) (-312) (-10 -8 (-15 -2618 ($ (-348 |#1|))) (-15 -2618 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -1392 ($ |#1| (-1070 |#1|))) (-15 -1391 ((-1070 |#1|) $)) (-15 -1390 ((-1070 |#1|) $)) (-15 -1389 ((-1070 |#1|) $)) (-15 -3131 (|#1| $)) (-15 -1388 ($ $)) (-15 -1387 ((-1070 (-348 |#1|)) $)) (-15 -1386 ((-1070 (-348 |#1|)) $)) (-15 -1385 ((-1070 |#1|) $)) (-15 -1384 ((-1070 |#1|) $)) (-15 -3770 ($ $ (-485))) (-15 -2893 ($ $)))) (-258)) (T -148)) +((-2618 (*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2618 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1070 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1070 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2893 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) +((-1393 (($ (-78) $) 15 T ELT)) (-3223 (((-634 (-78)) (-445) $) 14 T ELT)) (-3947 (((-774) $) 18 T ELT)) (-1394 (((-585 (-78)) $) 8 T ELT))) +(((-149) (-13 (-554 (-774)) (-10 -8 (-15 -1394 ((-585 (-78)) $)) (-15 -1393 ($ (-78) $)) (-15 -3223 ((-634 (-78)) (-445) $))))) (T -149)) +((-1394 (*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-78))) (-5 *1 (-149))))) +((-1407 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 38 T ELT)) (-1398 (((-856 |#1|) (-856 |#1|)) 22 T ELT)) (-1403 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 34 T ELT)) (-1396 (((-856 |#1|) (-856 |#1|)) 20 T ELT)) (-1401 (((-856 |#1|) (-856 |#1|)) 28 T ELT)) (-1400 (((-856 |#1|) (-856 |#1|)) 27 T ELT)) (-1399 (((-856 |#1|) (-856 |#1|)) 26 T ELT)) (-1404 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 32 T ELT)) (-1397 (((-856 |#1|) (-856 |#1|)) 21 T ELT)) (-1408 (((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-856 |#1|) (-856 |#1|)) 8 T ELT)) (-1406 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-856 |#1|) (-856 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1395 ((-856 |#1|) (-856 |#1|))) (-15 -1396 ((-856 |#1|) (-856 |#1|))) (-15 -1397 ((-856 |#1|) (-856 |#1|))) (-15 -1398 ((-856 |#1|) (-856 |#1|))) (-15 -1399 ((-856 |#1|) (-856 |#1|))) (-15 -1400 ((-856 |#1|) (-856 |#1|))) (-15 -1401 ((-856 |#1|) (-856 |#1|))) (-15 -1644 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1402 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1403 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1404 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1405 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1406 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1407 ((-1 (-856 |#1|) (-856 |#1|)) |#1|)) (-15 -1408 ((-1 (-856 |#1|) (-856 |#1|)) |#1| |#1|))) (-13 (-312) (-1116) (-917))) (T -150)) +((-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-917))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) +((-2451 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2451 (|#2| |#3|))) (-146) (-1156 |#1|) (-663 |#1| |#2|)) (T -151)) +((-2451 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-663 *4 *2))))) +((-2798 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 44 (|has| (-859 |#2|) (-798 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-859 |#2|) (-798 |#1|)) (-15 -2798 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) |%noBranch|)) (-1015) (-13 (-798 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1410 (((-585 |#1|) (-585 |#1|) |#1|) 41 T ELT)) (-1409 (((-585 |#1|) |#1| (-585 |#1|)) 20 T ELT)) (-2079 (((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|)) 36 T ELT) ((|#1| (-585 |#1|) (-585 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1409 ((-585 |#1|) |#1| (-585 |#1|))) (-15 -2079 (|#1| (-585 |#1|) (-585 |#1|))) (-15 -2079 ((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|))) (-15 -1410 ((-585 |#1|) (-585 |#1|) |#1|))) (-258)) (T -153)) +((-1410 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2079 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3947 (((-774) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -154)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154))))) +((-1419 (((-2 (|:| |start| |#2|) (|:| -1780 (-346 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-142 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-346 |#2|) |#2| |#1|) 119 T ELT) (((-346 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3134 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3733 (((-346 |#2|) |#2|) 154 T ELT) (((-346 |#2|) |#2| |#1|) 33 T ELT) (((-346 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1412 (((-585 (-2 (|:| -1780 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-585 (-2 (|:| -1780 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1411 (((-585 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-585 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1411 ((-585 (-142 |#1|)) |#2|)) (-15 -1411 ((-585 (-142 |#1|)) |#2| |#1|)) (-15 -1412 ((-585 (-2 (|:| -1780 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85))) (-15 -1412 ((-585 (-2 (|:| -1780 (-585 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-15 -3733 ((-346 |#2|) |#2| |#1| (-85))) (-15 -3733 ((-346 |#2|) |#2| |#1|)) (-15 -3733 ((-346 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3134 (|#1| |#2|)) (-15 -1414 ((-346 |#2|) |#2| |#1| (-85))) (-15 -1414 ((-346 |#2|) |#2| |#1|)) (-15 -1415 (|#2| |#2|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -1416 (|#1| |#2|)) (-15 -1417 ((-142 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1780 (-346 |#2|))) |#2|))) (-13 (-312) (-757)) (-1156 (-142 |#1|))) (T -155)) +((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-2 (|:| |start| *3) (|:| -1780 (-346 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) (-4 *3 (-1156 *2)))) (-1416 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1416 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3134 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3733 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1780 (-585 *3)) (|:| -1597 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) (-5 *2 (-585 (-2 (|:| -1780 (-585 *3)) (|:| -1597 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-696) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1420 ((-3 |#2| "failed") |#2|)) (-15 -1421 ((-696) |#2|)) (-15 -1422 (|#2| |#2| |#2|))) (-1130) (-618 |#1|)) (T -156)) +((-1422 (*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4)))) (-1420 (*1 *2 *2) (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3543 (((-445) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 10 T ELT)) (-2635 (((-85) $ (-445)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1423 (((-634 $) (-445)) 17 T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 12 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1423 ((-634 $) (-445)))))) (T -157)) +((-1423 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3947 (((-774) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1424 (((-585 (-1096)) $) 10 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1015) (-10 -8 (-15 -1483 (|#1| $)) (-15 -1424 ((-585 (-1096)) $)))) (-160)) (T -158)) +((-1483 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1425 (((-585 (-776)) $) 16 T ELT)) (-1427 (((-161) $) 8 T ELT)) (-1426 (((-585 (-85)) $) 13 T ELT)) (-2523 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1425 ((-585 (-776)) |#1|)) (-15 -1426 ((-585 (-85)) |#1|)) (-15 -1427 ((-161) |#1|)) (-15 -2523 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-1425 (((-585 (-776)) $) 22 T ELT)) (-3543 (((-445) $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1427 (((-161) $) 24 T ELT)) (-2635 (((-85) $ (-445)) 17 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1426 (((-585 (-85)) $) 23 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) (((-160) (-113)) (T -160)) -((-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) -(-13 (-748 (-444)) (-10 -8 (-15 -1424 ((-161) $)) (-15 -1423 ((-584 (-85)) $)) (-15 -1422 ((-584 (-775)) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-444)) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3943 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3949) (-15 -8 ($) -3949) (-15 -7 ($) -3949)))) (T -161)) +((-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85))))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) +(-13 (-749 (-445)) (-10 -8 (-15 -1427 ((-161) $)) (-15 -1426 ((-585 (-85)) $)) (-15 -1425 ((-585 (-776)) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-749 (-445)) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3947 (((-774) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1015) (-10 -8 (-15 -9 ($) -3953) (-15 -8 ($) -3953) (-15 -7 ($) -3953)))) (T -161)) ((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3639 ((|#2| |#2|) 28 T ELT)) (-3642 (((-85) |#2|) 19 T ELT)) (-3640 (((-264 |#1|) |#2|) 12 T ELT)) (-3641 (((-264 |#1|) |#2|) 14 T ELT)) (-3637 ((|#2| |#2| (-1089)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3643 (((-142 (-264 |#1|)) |#2|) 10 T ELT)) (-3638 ((|#2| |#2| (-1089)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3637 (|#2| |#2|)) (-15 -3637 (|#2| |#2| (-1089))) (-15 -3638 (|#2| |#2|)) (-15 -3638 (|#2| |#2| (-1089))) (-15 -3640 ((-264 |#1|) |#2|)) (-15 -3641 ((-264 |#1|) |#2|)) (-15 -3642 ((-85) |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3643 ((-142 (-264 |#1|)) |#2|))) (-13 (-495) (-951 (-484))) (-13 (-27) (-1114) (-361 (-142 |#1|)))) (T -162)) -((-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-142 (-264 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3641 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3))))))) -((-1428 (((-1178 (-631 (-858 |#1|))) (-1178 (-631 |#1|))) 26 T ELT)) (-3943 (((-1178 (-631 (-347 (-858 |#1|)))) (-1178 (-631 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1428 ((-1178 (-631 (-858 |#1|))) (-1178 (-631 |#1|)))) (-15 -3943 ((-1178 (-631 (-347 (-858 |#1|)))) (-1178 (-631 |#1|))))) (-146)) (T -163)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-631 (-347 (-858 *4))))) (-5 *1 (-163 *4)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) -((-1436 (((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 93 T ELT)) (-1438 (((-1091 (-347 (-484))) (-584 (-484)) (-584 (-484))) 106 T ELT)) (-1429 (((-1091 (-347 (-484))) (-831)) 54 T ELT)) (-3851 (((-1091 (-347 (-484))) (-831)) 79 T ELT)) (-3765 (((-347 (-484)) (-1091 (-347 (-484)))) 89 T ELT)) (-1430 (((-1091 (-347 (-484))) (-831)) 37 T ELT)) (-1433 (((-1091 (-347 (-484))) (-831)) 66 T ELT)) (-1432 (((-1091 (-347 (-484))) (-831)) 61 T ELT)) (-1435 (((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 87 T ELT)) (-2890 (((-1091 (-347 (-484))) (-831)) 29 T ELT)) (-1434 (((-347 (-484)) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 91 T ELT)) (-1431 (((-1091 (-347 (-484))) (-831)) 35 T ELT)) (-1437 (((-1091 (-347 (-484))) (-584 (-831))) 100 T ELT))) -(((-164) (-10 -7 (-15 -2890 ((-1091 (-347 (-484))) (-831))) (-15 -1429 ((-1091 (-347 (-484))) (-831))) (-15 -1430 ((-1091 (-347 (-484))) (-831))) (-15 -1431 ((-1091 (-347 (-484))) (-831))) (-15 -1432 ((-1091 (-347 (-484))) (-831))) (-15 -1433 ((-1091 (-347 (-484))) (-831))) (-15 -3851 ((-1091 (-347 (-484))) (-831))) (-15 -1434 ((-347 (-484)) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -1435 ((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -3765 ((-347 (-484)) (-1091 (-347 (-484))))) (-15 -1436 ((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -1437 ((-1091 (-347 (-484))) (-584 (-831)))) (-15 -1438 ((-1091 (-347 (-484))) (-584 (-484)) (-584 (-484)))))) (T -164)) -((-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3 *3) (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -((-1440 (((-345 (-1084 (-484))) (-484)) 38 T ELT)) (-1439 (((-584 (-1084 (-484))) (-484)) 33 T ELT)) (-2800 (((-1084 (-484)) (-484)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1439 ((-584 (-1084 (-484))) (-484))) (-15 -2800 ((-1084 (-484)) (-484))) (-15 -1440 ((-345 (-1084 (-484))) (-484))))) (T -165)) -((-1440 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1439 (*1 *2 *3) (-12 (-5 *2 (-584 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1441 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3111 ((|#2| $ (-695)) 10 T ELT)) (-3611 (($) 8 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 23 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3611 ($)) (-15 -3111 (|#2| $ (-695))) (-15 -1441 (|#2| $ (-695) |#2|)))) (-831) (-1013)) (T -166)) -((-3611 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1013)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1441 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1962 (((-1184) $) 36 T ELT) (((-1184) $ (-831) (-831)) 40 T ELT)) (-3797 (($ $ (-903)) 19 T ELT) (((-203 (-1072)) $ (-1089)) 15 T ELT)) (-3614 (((-1184) $) 34 T ELT)) (-3943 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $ $) 26 T ELT)) (-3836 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1013) (-556 (-584 |#1|)) (-10 -8 (-15 -3797 ($ $ (-903))) (-15 -3797 ((-203 (-1072)) $ (-1089))) (-15 -3836 ($ $ $)) (-15 -3834 ($ $ $)) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $)) (-15 -1962 ((-1184) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))) (T -167)) -((-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ *3)) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3834 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) (-15 -1962 (*2 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 10 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2850 (($ (-578 |#1|)) 11 T ELT)) (-3943 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2850 ($ (-578 |#1|))))) (-584 (-1089))) (T -168)) -((-2850 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-168 *3))))) -((-1442 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1442 (|#2| |#4| (-1 |#2| |#2|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -169)) -((-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1154 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6))))) -((-1446 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1445 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2370 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2574 |#2|)))) 79 T ELT)) (-1444 (((-584 (-2 (|:| |deg| (-695)) (|:| -2574 |#2|))) |#2|) 72 T ELT)) (-1447 (((-85) |#2|) 70 T ELT)) (-3730 (((-345 |#2|) |#2|) 92 T ELT)) (-3729 (((-345 |#2|) |#2|) 91 T ELT)) (-2371 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1443 (((-2 (|:| |cont| |#1|) (|:| -1777 (-584 (-2 (|:| |irr| |#2|) (|:| -2394 (-484)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3729 ((-345 |#2|) |#2|)) (-15 -3730 ((-345 |#2|) |#2|)) (-15 -1443 ((-2 (|:| |cont| |#1|) (|:| -1777 (-584 (-2 (|:| |irr| |#2|) (|:| -2394 (-484)))))) |#2| (-85))) (-15 -1444 ((-584 (-2 (|:| |deg| (-695)) (|:| -2574 |#2|))) |#2|)) (-15 -2370 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2574 |#2|))))) (-15 -2371 (|#2| |#2| (-695) |#2|)) (-15 -1445 (|#2| |#2| (-695) |#2|)) (-15 -1446 (|#2| |#2| (-695) |#2|)) (-15 -1447 ((-85) |#2|))) (-298) (-1154 |#1|)) (T -170)) -((-1447 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1446 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2371 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2574 *5)))) (-4 *5 (-1154 *4)) (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2574 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3154 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-484) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3955 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-484) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-1448 (($ (-347 (-484))) 9 T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3946 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-171) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 10)) (-10 -8 (-15 -3126 ((-347 (-484)) $)) (-15 -1448 ($ (-347 (-484))))))) (T -171)) -((-3126 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171)))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1028) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3176 (((-420) $) 11 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-995) (-10 -8 (-15 -3176 ((-420) $)) (-15 -3317 ((-1028) $)) (-15 -3231 ((-1048) $))))) (T -172)) -((-3176 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172))))) -((-3809 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-751 |#2|)) (-1072)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-751 |#2|))) 25 T ELT)) (-1449 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3809 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-751 |#2|)))) (-15 -3809 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-751 |#2|)) (-1072))) (-15 -1449 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -173)) -((-1449 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1089)) (-5 *6 (-85)) (-4 *7 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-1114) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-751 *3))) (-5 *5 (-1072)) (-4 *3 (-13 (-1114) (-872) (-29 *6))) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-751 *3))) (-4 *3 (-13 (-1114) (-872) (-29 *5))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3809 (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))) (-1072)) 49 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))) (-1072)) 50 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3809 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))))) (-15 -3809 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))) (-1072))) (-15 -3809 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))))) (-15 -3809 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))) (-1072)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (T -174)) -((-3809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-751 (-347 (-858 *6))))) (-5 *5 (-1072)) (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-751 (-347 (-858 *5))))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1004 (-751 (-264 *6)))) (-5 *5 (-1072)) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1004 (-751 (-264 *5)))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3839 (((-2 (|:| -2003 (-1084 |#1|)) (|:| |deg| (-831))) (-1084 |#1|)) 26 T ELT)) (-3960 (((-584 (-264 |#2|)) (-264 |#2|) (-831)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3839 ((-2 (|:| -2003 (-1084 |#1|)) (|:| |deg| (-831))) (-1084 |#1|))) (-15 -3960 ((-584 (-264 |#2|)) (-264 |#2|) (-831)))) (-962) (-495)) (T -175)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-495)) (-5 *2 (-584 (-264 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962)))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2003 (-1084 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) NIL T ELT)) (-3321 ((|#1| $) 31 T ELT)) (-3721 (($) NIL T CONST)) (-3001 (($ $) NIL T ELT)) (-2296 (($ $) 40 T ELT)) (-3323 ((|#1| |#1| $) NIL T ELT)) (-3322 ((|#1| $) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3830 (((-695) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-1491 ((|#1| |#1| $) 36 T ELT)) (-1490 ((|#1| |#1| $) 38 T ELT)) (-3606 (($ |#1| $) NIL T ELT)) (-2602 (((-695) $) 34 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3000 ((|#1| $) NIL T ELT)) (-1489 ((|#1| $) 32 T ELT)) (-1488 ((|#1| $) 30 T ELT)) (-1273 ((|#1| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3003 ((|#1| |#1| $) NIL T ELT)) (-3400 (((-85) $) 9 T ELT)) (-3562 (($) NIL T ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1494 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3320 (((-695) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1492 ((|#1| $) 14 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-2999 ((|#1| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1494 ($ (-584 |#1|))))) (-1013)) (T -176)) -((-1494 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1451 (($ (-264 |#1|)) 24 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2663 (((-85) $) NIL T ELT)) (-3155 (((-3 (-264 |#1|) #1#) $) NIL T ELT)) (-3154 (((-264 |#1|) $) NIL T ELT)) (-3956 (($ $) 32 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3955 (($ (-1 (-264 |#1|) (-264 |#1|)) $) NIL T ELT)) (-3172 (((-264 |#1|) $) NIL T ELT)) (-1453 (($ $) 31 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1452 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($ (-695)) NIL T ELT)) (-1450 (($ $) 33 T ELT)) (-3945 (((-484) $) NIL T ELT)) (-3943 (((-773) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-264 |#1|)) NIL T ELT)) (-3674 (((-264 |#1|) $ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 26 T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) 29 T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-264 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-561 (-264 |#1|)) (-951 (-264 |#1|)) (-10 -8 (-15 -3172 ((-264 |#1|) $)) (-15 -1453 ($ $)) (-15 -3956 ($ $)) (-15 -3674 ((-264 |#1|) $ $)) (-15 -2408 ($ (-695))) (-15 -1452 ((-85) $)) (-15 -2663 ((-85) $)) (-15 -3945 ((-484) $)) (-15 -3955 ($ (-1 (-264 |#1|) (-264 |#1|)) $)) (-15 -1451 ($ (-264 |#1|))) (-15 -1450 ($ $)))) (-13 (-962) (-757)) (-584 (-1089))) (T -177)) -((-3172 (*1 *2 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089))))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089))))) (-3674 (*1 *2 *1 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089))))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089))))) (-1450 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089)))))) -((-1454 (((-85) (-1072)) 26 T ELT)) (-1455 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1456 (((-3 (-85) #1#) (-1084 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1089) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1454 ((-85) (-1072))) (-15 -1455 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-858 |#1|) (-1089) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-1084 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-29 |#1|))) (T -178)) -((-1456 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *5 *6)))) (-1456 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1089)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1455 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *6 *4)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 86 T ELT)) (-3127 (((-484) $) 18 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3768 (($ $) NIL T ELT)) (-3489 (($ $) 73 T ELT)) (-3636 (($ $) 61 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-3036 (($ $) 52 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3487 (($ $) 71 T ELT)) (-3635 (($ $) 59 T ELT)) (-3620 (((-484) $) 83 T ELT)) (-3491 (($ $) 76 T ELT)) (-3634 (($ $) 63 T ELT)) (-3721 (($) NIL T CONST)) (-3125 (($ $) NIL T ELT)) (-3155 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-347 (-484)) #1#) $) 113 T ELT)) (-3154 (((-484) $) 114 T ELT) (((-347 (-484)) $) 111 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 91 T ELT)) (-1742 (((-347 (-484)) $ (-695)) 106 T ELT) (((-347 (-484)) $ (-695) (-695)) 105 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-1766 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3983)) ELT)) (-3184 (((-85) $) 107 T ELT)) (-3624 (($) 31 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL T ELT)) (-3769 (((-484) $) 25 T ELT)) (-2409 (((-85) $) 87 T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3185 (((-85) $) 85 T ELT)) (-1457 (((-85) $) 140 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) 49 T ELT) (($) 21 (-12 (-2559 (|has| $ (-6 -3975))) (-2559 (|has| $ (-6 -3983)))) ELT)) (-2856 (($ $ $) 48 T ELT) (($) 20 (-12 (-2559 (|has| $ (-6 -3975))) (-2559 (|has| $ (-6 -3983)))) ELT)) (-1768 (((-484) $) 10 T ELT)) (-1741 (($ $) 16 T ELT)) (-1740 (($ $) 53 T ELT)) (-3939 (($ $) 58 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-1765 (((-831) (-484)) NIL (|has| $ (-6 -3983)) ELT)) (-3241 (((-1033) $) 89 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL T ELT)) (-3128 (($ $) NIL T ELT)) (-3252 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-831)) 98 T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2400 (((-484) $) 11 T ELT)) (-1739 (($) 30 T ELT)) (-3940 (($ $) 57 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3983)) ELT)) (-3755 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1764 (((-831) (-484)) NIL (|has| $ (-6 -3983)) ELT)) (-3492 (($ $) 74 T ELT)) (-3633 (($ $) 64 T ELT)) (-3490 (($ $) 75 T ELT)) (-3632 (($ $) 62 T ELT)) (-3488 (($ $) 72 T ELT)) (-3631 (($ $) 60 T ELT)) (-3969 (((-327) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-327)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3943 (((-773) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (($ $) NIL T ELT)) (-1767 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3983)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-831)) 7 T ELT)) (-3495 (($ $) 79 T ELT)) (-3483 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 77 T ELT)) (-3481 (($ $) 65 T ELT)) (-3497 (($ $) 82 T ELT)) (-3485 (($ $) 70 T ELT)) (-3498 (($ $) 80 T ELT)) (-3486 (($ $) 68 T ELT)) (-3496 (($ $) 81 T ELT)) (-3484 (($ $) 69 T ELT)) (-3494 (($ $) 78 T ELT)) (-3482 (($ $) 66 T ELT)) (-3380 (($ $) 108 T ELT)) (-2659 (($) 27 T CONST)) (-2665 (($) 28 T CONST)) (-3384 (($ $) 95 T ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3381 (($ $ $) 97 T ELT)) (-2565 (((-85) $ $) 42 T ELT)) (-2566 (((-85) $ $) 40 T ELT)) (-3055 (((-85) $ $) 50 T ELT)) (-2683 (((-85) $ $) 41 T ELT)) (-2684 (((-85) $ $) 39 T ELT)) (-3946 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3834 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3836 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-347 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-179) (-13 (-344) (-190) (-1114) (-554 (-473)) (-10 -8 (-15 -3946 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1739 ($)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -3483 ($ $ $)) (-15 -3384 ($ $)) (-15 -3381 ($ $ $)) (-15 -1742 ((-347 (-484)) $ (-695))) (-15 -1742 ((-347 (-484)) $ (-695) (-695))) (-15 -1457 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1739 (*1 *1) (-5 *1 (-179))) (-1741 (*1 *1 *1) (-5 *1 (-179))) (-1740 (*1 *1 *1) (-5 *1 (-179))) (-3483 (*1 *1 *1 *1) (-5 *1 (-179))) (-3384 (*1 *1 *1) (-5 *1 (-179))) (-3381 (*1 *1 *1 *1) (-5 *1 (-179))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3383 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1458 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1459 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3382 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3386 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3390 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3389 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3384 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3381 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3384 ((-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)))) (-15 -3381 ((-179) (-179) (-179))) (-15 -3381 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1458 ((-179) (-179))) (-15 -1458 ((-142 (-179)) (-142 (-179)))) (-15 -3382 ((-179) (-179))) (-15 -3382 ((-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-695) (-179))) (-15 -3383 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179))) (-15 -3390 ((-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)))) (-15 -1459 ((-179) (-179) (-179))) (-15 -1459 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3382 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3381 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3381 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695) (-695)) NIL T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3411 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3870 (($ |#1| |#1| |#1|) 33 T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484)) NIL T ELT)) (-2346 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2351 (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2345 (($ $ (-484) (-484) $) NIL T ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3844 (($ |#1| |#1| |#1|) 32 T ELT)) (-3330 (($ (-695) |#1|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-1460 (($ |#1|) 31 T ELT)) (-1461 (($ |#1|) 30 T ELT)) (-1462 (($ |#1|) 29 T ELT)) (-3107 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3106 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-3105 (((-584 (-1178 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3113 (((-695) $) NIL T ELT)) (-3611 (($ (-695) (-695) |#1|) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3324 ((|#1| $) NIL (|has| |#1| (-6 (-3994 #1="*"))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-3122 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3591 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3587 (((-3 $ #2="failed") $) NIL (|has| |#1| (-311)) ELT)) (-1463 (($) 12 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-3463 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3329 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3325 ((|#1| $) NIL (|has| |#1| (-6 (-3994 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3109 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3943 (($ (-1178 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) 15 T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-181 |#1|) (-13 (-628 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1463 ($)) (-15 -1462 ($ |#1|)) (-15 -1461 ($ |#1|)) (-15 -1460 ($ |#1|)) (-15 -3844 ($ |#1| |#1| |#1|)) (-15 -3870 ($ |#1| |#1| |#1|)))) (-13 (-311) (-1114))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114))) (-5 *1 (-181 *3)))) (-1463 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1460 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-3844 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-3870 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))) -((-1568 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3402 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3402 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -1464 (|#1| (-584 |#2|))) (-15 -1464 (|#1|))) (-183 |#2|) (-1013)) (T -182)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-183 |#1|) (-113) (-1013)) (T -183)) +((-3643 ((|#2| |#2|) 28 T ELT)) (-3646 (((-85) |#2|) 19 T ELT)) (-3644 (((-265 |#1|) |#2|) 12 T ELT)) (-3645 (((-265 |#1|) |#2|) 14 T ELT)) (-3641 ((|#2| |#2| (-1091)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3647 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3642 ((|#2| |#2| (-1091)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1091))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3644 ((-265 |#1|) |#2|)) (-15 -3645 ((-265 |#1|) |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3647 ((-142 (-265 |#1|)) |#2|))) (-13 (-496) (-952 (-485))) (-13 (-27) (-1116) (-362 (-142 |#1|)))) (T -162)) +((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3)))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3))))))) +((-1431 (((-1180 (-632 (-859 |#1|))) (-1180 (-632 |#1|))) 26 T ELT)) (-3947 (((-1180 (-632 (-348 (-859 |#1|)))) (-1180 (-632 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1431 ((-1180 (-632 (-859 |#1|))) (-1180 (-632 |#1|)))) (-15 -3947 ((-1180 (-632 (-348 (-859 |#1|)))) (-1180 (-632 |#1|))))) (-146)) (T -163)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-1180 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-632 (-348 (-859 *4))))) (-5 *1 (-163 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1180 (-632 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) +((-1439 (((-1093 (-348 (-485))) (-1093 (-348 (-485))) (-1093 (-348 (-485)))) 93 T ELT)) (-1441 (((-1093 (-348 (-485))) (-585 (-485)) (-585 (-485))) 106 T ELT)) (-1432 (((-1093 (-348 (-485))) (-832)) 54 T ELT)) (-3855 (((-1093 (-348 (-485))) (-832)) 79 T ELT)) (-3769 (((-348 (-485)) (-1093 (-348 (-485)))) 89 T ELT)) (-1433 (((-1093 (-348 (-485))) (-832)) 37 T ELT)) (-1436 (((-1093 (-348 (-485))) (-832)) 66 T ELT)) (-1435 (((-1093 (-348 (-485))) (-832)) 61 T ELT)) (-1438 (((-1093 (-348 (-485))) (-1093 (-348 (-485))) (-1093 (-348 (-485)))) 87 T ELT)) (-2893 (((-1093 (-348 (-485))) (-832)) 29 T ELT)) (-1437 (((-348 (-485)) (-1093 (-348 (-485))) (-1093 (-348 (-485)))) 91 T ELT)) (-1434 (((-1093 (-348 (-485))) (-832)) 35 T ELT)) (-1440 (((-1093 (-348 (-485))) (-585 (-832))) 100 T ELT))) +(((-164) (-10 -7 (-15 -2893 ((-1093 (-348 (-485))) (-832))) (-15 -1432 ((-1093 (-348 (-485))) (-832))) (-15 -1433 ((-1093 (-348 (-485))) (-832))) (-15 -1434 ((-1093 (-348 (-485))) (-832))) (-15 -1435 ((-1093 (-348 (-485))) (-832))) (-15 -1436 ((-1093 (-348 (-485))) (-832))) (-15 -3855 ((-1093 (-348 (-485))) (-832))) (-15 -1437 ((-348 (-485)) (-1093 (-348 (-485))) (-1093 (-348 (-485))))) (-15 -1438 ((-1093 (-348 (-485))) (-1093 (-348 (-485))) (-1093 (-348 (-485))))) (-15 -3769 ((-348 (-485)) (-1093 (-348 (-485))))) (-15 -1439 ((-1093 (-348 (-485))) (-1093 (-348 (-485))) (-1093 (-348 (-485))))) (-15 -1440 ((-1093 (-348 (-485))) (-585 (-832)))) (-15 -1441 ((-1093 (-348 (-485))) (-585 (-485)) (-585 (-485)))))) (T -164)) +((-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-1093 (-348 (-485)))) (-5 *2 (-348 (-485))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1093 (-348 (-485)))) (-5 *2 (-348 (-485))) (-5 *1 (-164)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +((-1443 (((-346 (-1086 (-485))) (-485)) 38 T ELT)) (-1442 (((-585 (-1086 (-485))) (-485)) 33 T ELT)) (-2803 (((-1086 (-485)) (-485)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1442 ((-585 (-1086 (-485))) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -1443 ((-346 (-1086 (-485))) (-485))))) (T -165)) +((-1443 (*1 *2 *3) (-12 (-5 *2 (-346 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-585 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1444 ((|#2| $ (-696) |#2|) 11 T ELT)) (-3114 ((|#2| $ (-696)) 10 T ELT)) (-3615 (($) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 23 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3615 ($)) (-15 -3114 (|#2| $ (-696))) (-15 -1444 (|#2| $ (-696) |#2|)))) (-832) (-1015)) (T -166)) +((-3615 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) (-1444 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1965 (((-1186) $) 36 T ELT) (((-1186) $ (-832) (-832)) 40 T ELT)) (-3801 (($ $ (-904)) 19 T ELT) (((-203 (-1074)) $ (-1091)) 15 T ELT)) (-3618 (((-1186) $) 34 T ELT)) (-3947 (((-774) $) 31 T ELT) (($ (-585 |#1|)) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) 26 T ELT)) (-3840 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1015) (-557 (-585 |#1|)) (-10 -8 (-15 -3801 ($ $ (-904))) (-15 -3801 ((-203 (-1074)) $ (-1091))) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $)) (-15 -1965 ((-1186) $ (-832) (-832))))) (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))) (T -167)) +((-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ *3)) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1965 (*2 $))))))) (-1965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1965 (*2 $)))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 10 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2853 (($ (-579 |#1|)) 11 T ELT)) (-3947 (((-774) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-754) (-10 -8 (-15 -2853 ($ (-579 |#1|))))) (-585 (-1091))) (T -168)) +((-2853 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1091))) (-5 *1 (-168 *3))))) +((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) +((-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-348 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) +((-1449 ((|#2| |#2| (-696) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-696) |#2|) 51 T ELT)) (-2373 (((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2577 |#2|)))) 79 T ELT)) (-1447 (((-585 (-2 (|:| |deg| (-696)) (|:| -2577 |#2|))) |#2|) 72 T ELT)) (-1450 (((-85) |#2|) 70 T ELT)) (-3734 (((-346 |#2|) |#2|) 92 T ELT)) (-3733 (((-346 |#2|) |#2|) 91 T ELT)) (-2374 ((|#2| |#2| (-696) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1780 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-485)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3733 ((-346 |#2|) |#2|)) (-15 -3734 ((-346 |#2|) |#2|)) (-15 -1446 ((-2 (|:| |cont| |#1|) (|:| -1780 (-585 (-2 (|:| |irr| |#2|) (|:| -2397 (-485)))))) |#2| (-85))) (-15 -1447 ((-585 (-2 (|:| |deg| (-696)) (|:| -2577 |#2|))) |#2|)) (-15 -2373 ((-585 |#2|) (-585 (-2 (|:| |deg| (-696)) (|:| -2577 |#2|))))) (-15 -2374 (|#2| |#2| (-696) |#2|)) (-15 -1448 (|#2| |#2| (-696) |#2|)) (-15 -1449 (|#2| |#2| (-696) |#2|)) (-15 -1450 ((-85) |#2|))) (-299) (-1156 |#1|)) (T -170)) +((-1450 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2374 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2577 *5)))) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2577 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-485) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-485) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-348 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-485)) (-585 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-1091)) (-585 (-485))) NIL (|has| (-485) (-454 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-454 (-1091) (-485))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-1451 (($ (-348 (-485))) 9 T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-485) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-485) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-485) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-485) (-935)) ELT) (((-179) $) NIL (|has| (-485) (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL T ELT) (((-919 10) $) 10 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-823))) (|has| (-485) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-171) (-13 (-906 (-485)) (-554 (-348 (-485))) (-554 (-919 10)) (-10 -8 (-15 -3130 ((-348 (-485)) $)) (-15 -1451 ($ (-348 (-485))))))) (T -171)) +((-3130 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-171)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-171))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1030) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-421) $) 11 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-997) (-10 -8 (-15 -3180 ((-421) $)) (-15 -3321 ((-1030) $)) (-15 -3235 ((-1050) $))))) (T -172)) +((-3180 (*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-172)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172))))) +((-3813 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)) (-1074)) 29 T ELT) (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-752 |#2|) (-752 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1006 (-752 |#2|)))) (-15 -3813 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1006 (-752 |#2|)) (-1074))) (-15 -1452 ((-3 (|:| |f1| (-752 |#2|)) (|:| |f2| (-585 (-752 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-873) (-29 |#1|))) (T -173)) +((-1452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1091)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-4 *3 (-13 (-1116) (-873) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1074)) (-4 *3 (-13 (-1116) (-873) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1116) (-873) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3813 (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-348 (-859 |#1|)) (-1006 (-752 (-348 (-859 |#1|)))) (-1074)) 49 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-348 (-859 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1074)) 50 T ELT) (((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-265 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-348 (-859 |#1|)) (-1006 (-752 (-265 |#1|))))) (-15 -3813 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-265 |#1|))) (-1074))) (-15 -3813 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-348 (-859 |#1|)))))) (-15 -3813 ((-3 (|:| |f1| (-752 (-265 |#1|))) (|:| |f2| (-585 (-752 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-348 (-859 |#1|)) (-1006 (-752 (-348 (-859 |#1|)))) (-1074)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (T -174)) +((-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-752 (-348 (-859 *6))))) (-5 *5 (-1074)) (-5 *3 (-348 (-859 *6))) (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-752 (-348 (-859 *5))))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3843 (((-2 (|:| -2006 (-1086 |#1|)) (|:| |deg| (-832))) (-1086 |#1|)) 26 T ELT)) (-3964 (((-585 (-265 |#2|)) (-265 |#2|) (-832)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3843 ((-2 (|:| -2006 (-1086 |#1|)) (|:| |deg| (-832))) (-1086 |#1|))) (-15 -3964 ((-585 (-265 |#2|)) (-265 |#2|) (-832)))) (-963) (-496)) (T -175)) +((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *6 (-496)) (-5 *2 (-585 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1086 *4)) (|:| |deg| (-832)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3325 ((|#1| $) 31 T ELT)) (-3725 (($) NIL T CONST)) (-3004 (($ $) NIL T ELT)) (-2299 (($ $) 40 T ELT)) (-3327 ((|#1| |#1| $) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-696) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3610 (($ |#1| $) NIL T ELT)) (-2605 (((-696) $) 34 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) NIL T ELT)) (-3005 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-585 |#1|)) 17 T ELT)) (-3324 (((-696) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) NIL T ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1497 ($ (-585 |#1|))))) (-1015)) (T -176)) +((-1497 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1454 (($ (-265 |#1|)) 24 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3158 (((-265 |#1|) $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3959 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3176 (((-265 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3949 (((-485) $) NIL T ELT)) (-3947 (((-774) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3678 (((-265 |#1|) $ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) 29 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-562 (-265 |#1|)) (-952 (-265 |#1|)) (-10 -8 (-15 -3176 ((-265 |#1|) $)) (-15 -1456 ($ $)) (-15 -3960 ($ $)) (-15 -3678 ((-265 |#1|) $ $)) (-15 -2411 ($ (-696))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3949 ((-485) $)) (-15 -3959 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1454 ($ (-265 |#1|))) (-15 -1453 ($ $)))) (-13 (-963) (-758)) (-585 (-1091))) (T -177)) +((-3176 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1091))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1091))))) (-3678 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) (-14 *4 (-585 (-1091))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1091))))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1091))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) (-14 *3 (-585 (-1091)))))) +((-1457 (((-85) (-1074)) 26 T ELT)) (-1458 (((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85)) 35 T ELT)) (-1459 (((-3 (-85) #1#) (-1086 |#2|) (-752 |#2|) (-752 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-859 |#1|) (-1091) (-752 |#2|) (-752 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1457 ((-85) (-1074))) (-15 -1458 ((-3 (-752 |#2|) #1="failed") (-552 |#2|) |#2| (-752 |#2|) (-752 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-859 |#1|) (-1091) (-752 |#2|) (-752 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-1086 |#2|) (-752 |#2|) (-752 |#2|) (-85)))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-29 |#1|))) (T -178)) +((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-752 *6)) (-4 *6 (-13 (-1116) (-29 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-178 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1091)) (-5 *5 (-752 *7)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1116) (-29 *6))) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-178 *6 *4)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-3131 (((-485) $) 18 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3493 (($ $) 73 T ELT)) (-3640 (($ $) 61 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-3039 (($ $) 52 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 71 T ELT)) (-3639 (($ $) 59 T ELT)) (-3624 (((-485) $) 83 T ELT)) (-3495 (($ $) 76 T ELT)) (-3638 (($ $) 63 T ELT)) (-3725 (($) NIL T CONST)) (-3129 (($ $) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-348 (-485)) #1#) $) 113 T ELT)) (-3158 (((-485) $) 114 T ELT) (((-348 (-485)) $) 111 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 91 T ELT)) (-1745 (((-348 (-485)) $ (-696)) 106 T ELT) (((-348 (-485)) $ (-696) (-696)) 105 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1769 (((-832)) 12 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3987)) ELT)) (-3188 (((-85) $) 107 T ELT)) (-3628 (($) 31 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL T ELT)) (-3773 (((-485) $) 25 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 87 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 85 T ELT)) (-1460 (((-85) $) 140 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) 49 T ELT) (($) 21 (-12 (-2562 (|has| $ (-6 -3979))) (-2562 (|has| $ (-6 -3987)))) ELT)) (-2859 (($ $ $) 48 T ELT) (($) 20 (-12 (-2562 (|has| $ (-6 -3979))) (-2562 (|has| $ (-6 -3987)))) ELT)) (-1771 (((-485) $) 10 T ELT)) (-1744 (($ $) 16 T ELT)) (-1743 (($ $) 53 T ELT)) (-3943 (($ $) 58 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-1768 (((-832) (-485)) NIL (|has| $ (-6 -3987)) ELT)) (-3245 (((-1035) $) 89 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3256 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-832)) 98 T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-485) $) 11 T ELT)) (-1742 (($) 30 T ELT)) (-3944 (($ $) 57 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-832)) NIL T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 92 T ELT) (($ $ (-696)) NIL T ELT)) (-1767 (((-832) (-485)) NIL (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) 74 T ELT)) (-3637 (($ $) 64 T ELT)) (-3494 (($ $) 75 T ELT)) (-3636 (($ $) 62 T ELT)) (-3492 (($ $) 72 T ELT)) (-3635 (($ $) 60 T ELT)) (-3973 (((-328) $) 102 T ELT) (((-179) $) 99 T ELT) (((-802 (-328)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3947 (((-774) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-348 (-485))) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (($ $) NIL T ELT)) (-1770 (((-832)) 19 T ELT) (((-832) (-832)) NIL (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-832)) 7 T ELT)) (-3499 (($ $) 79 T ELT)) (-3487 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 77 T ELT)) (-3485 (($ $) 65 T ELT)) (-3501 (($ $) 82 T ELT)) (-3489 (($ $) 70 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 80 T ELT)) (-3490 (($ $) 68 T ELT)) (-3500 (($ $) 81 T ELT)) (-3488 (($ $) 69 T ELT)) (-3498 (($ $) 78 T ELT)) (-3486 (($ $) 66 T ELT)) (-3384 (($ $) 108 T ELT)) (-2662 (($) 27 T CONST)) (-2668 (($) 28 T CONST)) (-3388 (($ $) 95 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3385 (($ $ $) 97 T ELT)) (-2568 (((-85) $ $) 42 T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) 41 T ELT)) (-2687 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3840 (($ $ $) 44 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-348 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-179) (-13 (-345) (-190) (-1116) (-555 (-474)) (-10 -8 (-15 -3950 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -1742 ($)) (-15 -1744 ($ $)) (-15 -1743 ($ $)) (-15 -3487 ($ $ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -1745 ((-348 (-485)) $ (-696))) (-15 -1745 ((-348 (-485)) $ (-696) (-696))) (-15 -1460 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) (-1742 (*1 *1) (-5 *1 (-179))) (-1744 (*1 *1 *1) (-5 *1 (-179))) (-1743 (*1 *1 *1) (-5 *1 (-179))) (-3487 (*1 *1 *1 *1) (-5 *1 (-179))) (-3388 (*1 *1 *1) (-5 *1 (-179))) (-3385 (*1 *1 *1 *1) (-5 *1 (-179))) (-1745 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-179)))) (-1745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-179)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3387 (((-142 (-179)) (-696) (-142 (-179))) 11 T ELT) (((-179) (-696) (-179)) 12 T ELT)) (-1461 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1462 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3386 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3394 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3393 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3388 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3388 ((-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-696) (-179))) (-15 -3387 ((-142 (-179)) (-696) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179))) (-15 -3394 ((-179) (-179))) (-15 -3394 ((-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696) (-696)) NIL T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3415 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3874 (($ |#1| |#1| |#1|) 33 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2351 (($ $ (-485) (-485)) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2348 (($ $ (-485) (-485) $) NIL T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3848 (($ |#1| |#1| |#1|) 32 T ELT)) (-3334 (($ (-696) |#1|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3110 (((-696) $) NIL (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3109 (((-696) $) NIL (|has| |#1| (-496)) ELT)) (-3108 (((-585 (-1180 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3116 (((-696) $) NIL T ELT)) (-3615 (($ (-696) (-696) |#1|) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3328 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-585 (-585 |#1|))) 11 T ELT) (($ (-696) (-696) (-1 |#1| (-485) (-485))) NIL T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-585 (-585 |#1|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3591 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1466 (($) 12 T ELT)) (-2353 (($ $ $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485))) NIL T ELT)) (-3333 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3947 (($ (-1180 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) 15 T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT) (((-856 |#1|) $ (-856 |#1|)) 21 T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-181 |#1|) (-13 (-629 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 * ((-856 |#1|) $ (-856 |#1|))) (-15 -1466 ($)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3848 ($ |#1| |#1| |#1|)) (-15 -3874 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1116))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) (-1466 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3848 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3874 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +((-1571 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 |#2|)) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -1467 (|#1| (-585 |#2|))) (-15 -1467 (|#1|))) (-183 |#2|) (-1015)) (T -182)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-183 |#1|) (-113) (-1015)) (T -183)) NIL (-13 (-193 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-1 |#1| |#1|) (-695)) 63 T ELT) (($ $ (-1 |#1| |#1|)) 62 T ELT) (($ $ (-1089)) 61 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 59 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 58 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 57 (|has| |#1| (-812 (-1089))) ELT) (($ $) 53 (|has| |#1| (-189)) ELT) (($ $ (-695)) 51 (|has| |#1| (-189)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1089)) 60 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 56 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 55 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 54 (|has| |#1| (-812 (-1089))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-695)) 50 (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-184 |#1|) (-113) (-962)) (T -184)) -NIL -(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2668 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2668 (|#2| |#1|))) (-186 |#2|) (-1128)) (T -185)) -NIL -((-3755 ((|#1| $) 7 T ELT)) (-2668 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1128)) (T -186)) -((-3755 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))) -(-13 (-1128) (-10 -8 (-15 -3755 (|t#1| $)) (-15 -2668 (|t#1| $)))) -(((-13) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-695)) 42 T ELT) (($ $) 40 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2668 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-187 |#1|) (-113) (-962)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-3755 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2668 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-695))) (-15 -2668 (|#1| |#1|)) (-15 -3755 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3755 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2668 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-1 |#1| |#1|) (-696)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1091)) 63 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 61 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 60 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 59 (|has| |#1| (-813 (-1091))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-696)) 53 (|has| |#1| (-189)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|) (-696)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1091)) 62 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 58 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 57 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 56 (|has| |#1| (-813 (-1091))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-696)) 52 (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-184 |#1|) (-113) (-963)) (T -184)) +NIL +(-13 (-963) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-811 (-1091))) (-6 (-811 (-1091))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2671 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2671 (|#2| |#1|))) (-186 |#2|) (-1130)) (T -185)) +NIL +((-3759 ((|#1| $) 7 T ELT)) (-2671 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1130)) (T -186)) +((-3759 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 (|t#1| $)) (-15 -2671 (|t#1| $)))) +(((-13) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-696)) 43 T ELT) (($ $) 41 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-696)) 44 T ELT) (($ $) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-187 |#1|) (-113) (-963)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-3759 (($ $) NIL T ELT) (($ $ (-696)) 9 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2671 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-696))) (-15 -2671 (|#1| |#1|)) (-15 -3759 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3759 (($ $) 7 T ELT) (($ $ (-696)) 10 T ELT)) (-2671 (($ $) 6 T ELT) (($ $ (-696)) 9 T ELT))) (((-189) (-113)) (T -189)) -((-3755 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2668 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))) -(-13 (-186 $) (-10 -8 (-15 -3755 ($ $ (-695))) (-15 -2668 ($ $ (-695))))) -(((-186 $) . T) ((-13) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-695)) 48 T ELT) (($ $) 46 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-695)) 49 T ELT) (($ $) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696))))) +(-13 (-186 $) (-10 -8 (-15 -3759 ($ $ (-696))) (-15 -2671 ($ $ (-696))))) +(((-186 $) . T) ((-13) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-696)) 50 T ELT) (($ $) 48 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-696)) 51 T ELT) (($ $) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-190) (-113)) (T -190)) NIL -(-13 (-962) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-3721 (($) 30 T CONST)) (-3464 (((-3 $ "failed") $) 35 T ELT)) (-3184 (((-85) $) 28 T ELT)) (-2409 (((-85) $) 37 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2665 (($) 38 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 36 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 40 T ELT))) +(-13 (-963) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 36 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-832)) 40 T ELT) (($ $ (-696)) 37 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ $ $) 41 T ELT))) (((-191) (-113)) (T -191)) NIL -(-13 (-717) (-1060)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-1464 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3397 (($ $) 14 T ELT)) (-3527 (($ (-584 |#2|)) 10 T ELT)) (-3943 (((-773) $) 21 T ELT))) -(((-192 |#1| |#2|) (-10 -7 (-15 -3943 ((-773) |#1|)) (-15 -1464 (|#1| (-584 |#2|))) (-15 -1464 (|#1|)) (-15 -3527 (|#1| (-584 |#2|))) (-15 -3397 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-193 |#1|) (-113) (-1013)) (T -193)) -((-1464 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3402 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-193 *3)) (-4 *3 (-1013))))) -(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1464 ($)) (-15 -1464 ($ (-584 |t#1|))) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3402 ($ |t#1| $)) (-15 -3402 ($ (-1 (-85) |t#1|) $)) (-15 -1568 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-1465 (((-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695))))) (-248 (-858 (-484)))) 42 T ELT))) -(((-194) (-10 -7 (-15 -1465 ((-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695))))) (-248 (-858 (-484))))))) (T -194)) -((-1465 (*1 *2 *3) (-12 (-5 *3 (-248 (-858 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695)))))) (-5 *1 (-194))))) -((-3134 (((-695)) 56 T ELT)) (-2278 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3908 (((-107)) 62 T ELT)) (-3755 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3943 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3124 (((-695)) 15 T CONST)) (-3946 (($ $ |#3|) 59 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 (|#1| (-484))) (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3943 ((-773) |#1|)) (-15 -3124 ((-695)) -3949) (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -3943 (|#1| |#3|)) (-15 -3755 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2278 ((-631 |#3|) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 |#1|) (-1178 |#1|))) (-15 -3134 ((-695))) (-15 -3946 (|#1| |#1| |#3|)) (-15 -3908 ((-107))) (-15 -3943 ((-1178 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1128)) (T -195)) -((-3908 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3134 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3124 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) -((-2567 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3186 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3704 (($ (-831)) 134 (|has| |#2| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) 130 (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3134 (((-695)) 119 (|has| |#2| (-317)) ELT)) (-3785 ((|#2| $ (-484) |#2|) 56 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 75 (-2561 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) 72 (-2561 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1013)) ELT)) (-3154 (((-484) $) 74 (-2561 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) 71 (-2561 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 70 (|has| |#2| (-1013)) ELT)) (-2278 (((-631 (-484)) (-631 $)) 116 (-2561 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 115 (-2561 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 114 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 113 (|has| |#2| (-962)) ELT)) (-3464 (((-3 $ "failed") $) 93 (|has| |#2| (-962)) ELT)) (-2993 (($) 122 (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ (-484)) 55 T ELT)) (-3184 (((-85) $) 129 (|has| |#2| (-718)) ELT)) (-2888 (((-584 |#2|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) 91 (|has| |#2| (-962)) ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 123 (|has| |#2| (-757)) ELT)) (-2607 (((-584 |#2|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 124 (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2009 (((-831) $) 121 (|has| |#2| (-317)) ELT)) (-2279 (((-631 (-484)) (-1178 $)) 118 (-2561 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 117 (-2561 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 112 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) 111 (|has| |#2| (-962)) ELT)) (-3240 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-2399 (($ (-831)) 120 (|has| |#2| (-317)) ELT)) (-3241 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3798 ((|#2| $) 46 (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#2|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#2| $ (-484) |#2|) 54 T ELT) ((|#2| $ (-484)) 53 T ELT)) (-3833 ((|#2| $ $) 133 (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) 135 T ELT)) (-3908 (((-107)) 132 (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-695)) 109 (-2561 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 107 (-2561 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 103 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) 102 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) 101 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) 99 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 97 (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-1178 |#2|) $) 136 T ELT) (($ (-484)) 76 (OR (-2561 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) 73 (-2561 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 68 (|has| |#2| (-1013)) ELT) (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-3124 (((-695)) 94 (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2659 (($) 79 (|has| |#2| (-23)) CONST)) (-2665 (($) 90 (|has| |#2| (-962)) CONST)) (-2668 (($ $ (-695)) 110 (-2561 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 108 (-2561 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 106 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) 105 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) 104 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) 100 (-2561 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 95 (|has| |#2| (-962)) ELT)) (-2565 (((-85) $ $) 125 (|has| |#2| (-757)) ELT)) (-2566 (((-85) $ $) 127 (|has| |#2| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) 126 (|has| |#2| (-757)) ELT)) (-2684 (((-85) $ $) 128 (|has| |#2| (-757)) ELT)) (-3946 (($ $ |#2|) 131 (|has| |#2| (-311)) ELT)) (-3834 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3836 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 92 (|has| |#2| (-962)) ELT) (($ $ (-831)) 88 (|has| |#2| (-962)) ELT)) (* (($ $ $) 89 (|has| |#2| (-962)) ELT) (($ $ |#2|) 87 (|has| |#2| (-664)) ELT) (($ |#2| $) 86 (|has| |#2| (-664)) ELT) (($ (-484) $) 83 (|has| |#2| (-21)) ELT) (($ (-695) $) 81 (|has| |#2| (-23)) ELT) (($ (-831) $) 78 (|has| |#2| (-25)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-196 |#1| |#2|) (-113) (-695) (-1128)) (T -196)) -((-1466 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1128)))) (-3833 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-962))))) -(-13 (-539 (-484) |t#2|) (-553 (-1178 |t#2|)) (-10 -8 (-6 -3992) (-15 -1466 ($ (-1178 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-352 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-326 |t#2|)) (-15 -3704 ($ (-831))) (-15 -3833 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-311)) (-6 (-1186 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ((-556 (-484)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013)))) ((-556 |#2|) |has| |#2| (-1013)) ((-553 (-773)) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1178 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-317) |has| |#2| (-317)) ((-326 |#2|) |has| |#2| (-962)) ((-352 |#2|) |has| |#2| (-1013)) ((-426 |#2|) . T) ((-539 (-484) |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-589 (-484)) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-581 (-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-311)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1089)) OR (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) ((-810 (-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) ((-812 (-1089)) OR (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) ((-951 (-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ((-951 (-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ((-951 |#2|) |has| |#2| (-1013)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-970) |has| |#2| (-962)) ((-1025) |has| |#2| (-962)) ((-1060) |has| |#2| (-962)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1128) . T) ((-1186 |#2|) |has| |#2| (-311))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3704 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3134 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3785 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3154 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3464 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2993 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ (-484)) 57 T ELT)) (-3184 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2888 (((-584 |#2|) $) 14 (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-484) $) 20 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2607 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3240 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3241 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3798 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3833 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) 18 T ELT)) (-3908 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3124 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) 37 (|has| |#2| (-23)) CONST)) (-2665 (($) 41 (|has| |#2| (-962)) CONST)) (-2668 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3055 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2684 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3836 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1128)) (T -197)) -NIL -((-3838 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3839 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3955 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) -(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3838 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3839 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3955 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1128) (-1128)) (T -198)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) -((-1470 (((-484) (-584 (-1072))) 36 T ELT) (((-484) (-1072)) 29 T ELT)) (-1469 (((-1184) (-584 (-1072))) 40 T ELT) (((-1184) (-1072)) 39 T ELT)) (-1467 (((-1072)) 16 T ELT)) (-1468 (((-1072) (-484) (-1072)) 23 T ELT)) (-3770 (((-584 (-1072)) (-584 (-1072)) (-484) (-1072)) 37 T ELT) (((-1072) (-1072) (-484) (-1072)) 35 T ELT)) (-2619 (((-584 (-1072)) (-584 (-1072))) 15 T ELT) (((-584 (-1072)) (-1072)) 11 T ELT))) -(((-199) (-10 -7 (-15 -2619 ((-584 (-1072)) (-1072))) (-15 -2619 ((-584 (-1072)) (-584 (-1072)))) (-15 -1467 ((-1072))) (-15 -1468 ((-1072) (-484) (-1072))) (-15 -3770 ((-1072) (-1072) (-484) (-1072))) (-15 -3770 ((-584 (-1072)) (-584 (-1072)) (-484) (-1072))) (-15 -1469 ((-1184) (-1072))) (-15 -1469 ((-1184) (-584 (-1072)))) (-15 -1470 ((-484) (-1072))) (-15 -1470 ((-484) (-584 (-1072)))))) (T -199)) -((-1470 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) (-3770 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) (-3770 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1468 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1467 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072))))) -((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-484)) $) 25 T ELT) (($ $ (-347 (-484))) NIL T ELT))) -(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 53 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 57 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 54 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-484)) $) 56 T ELT) (($ $ (-347 (-484))) 55 T ELT))) +(-13 (-718) (-1062)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-1467 (($) 12 T ELT) (($ (-585 |#2|)) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3531 (($ (-585 |#2|)) 10 T ELT)) (-3947 (((-774) $) 21 T ELT))) +(((-192 |#1| |#2|) (-10 -7 (-15 -3947 ((-774) |#1|)) (-15 -1467 (|#1| (-585 |#2|))) (-15 -1467 (|#1|)) (-15 -3531 (|#1| (-585 |#2|))) (-15 -3401 (|#1| |#1|))) (-193 |#2|) (-1015)) (T -192)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-193 |#1|) (-113) (-1015)) (T -193)) +((-1467 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) (-3406 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) (-4 *3 (-1015)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) (-4 *3 (-1015))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1467 ($)) (-15 -1467 ($ (-585 |t#1|))) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -1571 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-1468 (((-2 (|:| |varOrder| (-585 (-1091))) (|:| |inhom| (-3 (-585 (-1180 (-696))) "failed")) (|:| |hom| (-585 (-1180 (-696))))) (-249 (-859 (-485)))) 42 T ELT))) +(((-194) (-10 -7 (-15 -1468 ((-2 (|:| |varOrder| (-585 (-1091))) (|:| |inhom| (-3 (-585 (-1180 (-696))) "failed")) (|:| |hom| (-585 (-1180 (-696))))) (-249 (-859 (-485))))))) (T -194)) +((-1468 (*1 *2 *3) (-12 (-5 *3 (-249 (-859 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-585 (-1091))) (|:| |inhom| (-3 (-585 (-1180 (-696))) "failed")) (|:| |hom| (-585 (-1180 (-696)))))) (-5 *1 (-194))))) +((-3138 (((-696)) 56 T ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 $) (-1180 $)) 53 T ELT) (((-632 |#3|) (-632 $)) 44 T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3912 (((-107)) 62 T ELT)) (-3759 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-774) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-348 (-485))) NIL T ELT)) (-3128 (((-696)) 15 T CONST)) (-3950 (($ $ |#3|) 59 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 (|#1| (-485))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3947 ((-774) |#1|)) (-15 -3128 ((-696)) -3953) (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 |#1|) (-1180 |#1|))) (-15 -3138 ((-696))) (-15 -3950 (|#1| |#1| |#3|)) (-15 -3912 ((-107))) (-15 -3947 ((-1180 |#3|) |#1|))) (-196 |#2| |#3|) (-696) (-1130)) (T -195)) +((-3912 (*1 *2) (-12 (-14 *4 (-696)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3138 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3128 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) +((-2570 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3708 (($ (-832)) 136 (|has| |#2| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) 132 (|has| |#2| (-719)) ELT)) (-1313 (((-3 $ "failed") $ $) 83 (|has| |#2| (-104)) ELT)) (-3138 (((-696)) 121 (|has| |#2| (-318)) ELT)) (-3789 ((|#2| $ (-485) |#2|) 56 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 75 (-2564 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) 72 (-2564 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1015)) ELT)) (-3158 (((-485) $) 74 (-2564 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-348 (-485)) $) 71 (-2564 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 70 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-485)) (-632 $)) 118 (-2564 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 117 (-2564 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 116 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) 115 (|has| |#2| (-963)) ELT)) (-3468 (((-3 $ "failed") $) 95 (|has| |#2| (-963)) ELT)) (-2996 (($) 124 (|has| |#2| (-318)) ELT)) (-1577 ((|#2| $ (-485) |#2|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ (-485)) 55 T ELT)) (-3188 (((-85) $) 131 (|has| |#2| (-719)) ELT)) (-2891 (((-585 |#2|) $) 30 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 82 (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) 93 (|has| |#2| (-963)) ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 125 (|has| |#2| (-758)) ELT)) (-2610 (((-585 |#2|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 126 (|has| |#2| (-758)) ELT)) (-1950 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2012 (((-832) $) 123 (|has| |#2| (-318)) ELT)) (-2282 (((-632 (-485)) (-1180 $)) 120 (-2564 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 119 (-2564 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 114 (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1180 $)) 113 (|has| |#2| (-963)) ELT)) (-3244 (((-1074) $) 22 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-2402 (($ (-832)) 122 (|has| |#2| (-318)) ELT)) (-3245 (((-1035) $) 21 (|has| |#2| (-1015)) ELT)) (-3802 ((|#2| $) 46 (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#2|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ (-485) |#2|) 54 T ELT) ((|#2| $ (-485)) 53 T ELT)) (-3837 ((|#2| $ $) 135 (|has| |#2| (-963)) ELT)) (-1469 (($ (-1180 |#2|)) 137 T ELT)) (-3912 (((-107)) 134 (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-696)) 111 (-2564 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 109 (-2564 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 105 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) 104 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) 103 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) 101 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 100 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 99 (|has| |#2| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) 28 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-1180 |#2|) $) 138 T ELT) (($ (-485)) 76 (OR (-2564 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-348 (-485))) 73 (-2564 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 68 (|has| |#2| (-1015)) ELT) (((-774) $) 17 (|has| |#2| (-554 (-774))) ELT)) (-3128 (((-696)) 96 (|has| |#2| (-963)) CONST)) (-1266 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) 91 (|has| |#2| (-963)) ELT)) (-2662 (($) 79 (|has| |#2| (-23)) CONST)) (-2668 (($) 92 (|has| |#2| (-963)) CONST)) (-2671 (($ $ (-696)) 112 (-2564 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) 110 (-2564 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 108 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) 107 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) 106 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) 102 (-2564 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) 97 (|has| |#2| (-963)) ELT)) (-2568 (((-85) $ $) 127 (|has| |#2| (-758)) ELT)) (-2569 (((-85) $ $) 129 (|has| |#2| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) 128 (|has| |#2| (-758)) ELT)) (-2687 (((-85) $ $) 130 (|has| |#2| (-758)) ELT)) (-3950 (($ $ |#2|) 133 (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) 86 (|has| |#2| (-21)) ELT) (($ $) 85 (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) 94 (|has| |#2| (-963)) ELT) (($ $ (-832)) 89 (|has| |#2| (-963)) ELT)) (* (($ $ $) 90 (|has| |#2| (-963)) ELT) (($ $ |#2|) 88 (|has| |#2| (-665)) ELT) (($ |#2| $) 87 (|has| |#2| (-665)) ELT) (($ (-485) $) 84 (|has| |#2| (-21)) ELT) (($ (-696) $) 81 (|has| |#2| (-23)) ELT) (($ (-832) $) 78 (|has| |#2| (-25)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-196 |#1| |#2|) (-113) (-696) (-1130)) (T -196)) +((-1469 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1130)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-963))))) +(-13 (-540 (-485) |t#2|) (-554 (-1180 |t#2|)) (-10 -8 (-6 -3996) (-15 -1469 ($ (-1180 |t#2|))) (IF (|has| |t#2| (-1015)) (-6 (-353 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-963)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-327 |t#2|)) (-15 -3708 ($ (-832))) (-15 -3837 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-665)) (-6 (-584 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#2| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#2| (-719)) (-6 (-719)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1188 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-963)) (|has| |#2| (-719)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-557 (-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ((-557 (-485)) OR (|has| |#2| (-963)) (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015)))) ((-557 |#2|) |has| |#2| (-1015)) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-554 (-774))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-554 (-1180 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-184 |#2|) |has| |#2| (-963)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-963))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) (-12 (|has| |#2| (-190)) (|has| |#2| (-963)))) ((-225 |#2|) |has| |#2| (-963)) ((-241 (-485) |#2|) . T) ((-243 (-485) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-318) |has| |#2| (-318)) ((-327 |#2|) |has| |#2| (-963)) ((-353 |#2|) |has| |#2| (-1015)) ((-427 |#2|) . T) ((-540 (-485) |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-485)) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-590 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-963)) ((-592 (-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ((-592 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-592 $) |has| |#2| (-963)) ((-584 |#2|) OR (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-582 (-485)) -12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ((-582 |#2|) |has| |#2| (-963)) ((-656 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-665) |has| |#2| (-963)) ((-718) |has| |#2| (-719)) ((-719) |has| |#2| (-719)) ((-720) |has| |#2| (-719)) ((-723) |has| |#2| (-719)) ((-758) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-761) OR (|has| |#2| (-758)) (|has| |#2| (-719))) ((-808 $ (-1091)) OR (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963)))) ((-811 (-1091)) -12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963))) ((-813 (-1091)) OR (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) (-12 (|has| |#2| (-811 (-1091))) (|has| |#2| (-963)))) ((-952 (-348 (-485))) -12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ((-952 (-485)) -12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ((-952 |#2|) |has| |#2| (-1015)) ((-965 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-665)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-970 |#2|) OR (|has| |#2| (-963)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-963) |has| |#2| (-963)) ((-972) |has| |#2| (-963)) ((-1027) |has| |#2| (-963)) ((-1062) |has| |#2| (-963)) ((-1015) OR (|has| |#2| (-1015)) (|has| |#2| (-963)) (|has| |#2| (-758)) (|has| |#2| (-719)) (|has| |#2| (-665)) (|has| |#2| (-318)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1130) . T) ((-1188 |#2|) |has| |#2| (-312))) +((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-832)) 63 (|has| |#2| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) 69 (|has| |#2| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3138 (((-696)) NIL (|has| |#2| (-318)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1015)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) ((|#2| $) 29 (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3468 (((-3 $ #1#) $) 59 (|has| |#2| (-963)) ELT)) (-2996 (($) NIL (|has| |#2| (-318)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ (-485)) 57 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-2891 (((-585 |#2|) $) 14 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-485) $) 20 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2610 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-1950 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-318)) ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1180 $)) NIL (|has| |#2| (-963)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-318)) ELT)) (-3245 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1180 |#2|)) 18 T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (($ |#2|) 12 (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3128 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2662 (($) 37 (|has| |#2| (-23)) CONST)) (-2668 (($) 41 (|has| |#2| (-963)) CONST)) (-2671 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3058 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2687 (((-85) $ $) 67 (|has| |#2| (-758)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) 47 (|has| |#2| (-963)) ELT) (($ $ |#2|) 45 (|has| |#2| (-665)) ELT) (($ |#2| $) 46 (|has| |#2| (-665)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-197 |#1| |#2|) (-196 |#1| |#2|) (-696) (-1130)) (T -197)) +NIL +((-3842 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3843 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3959 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) +(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3842 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3843 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3959 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-696) (-1130) (-1130)) (T -198)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) +((-1473 (((-485) (-585 (-1074))) 36 T ELT) (((-485) (-1074)) 29 T ELT)) (-1472 (((-1186) (-585 (-1074))) 40 T ELT) (((-1186) (-1074)) 39 T ELT)) (-1470 (((-1074)) 16 T ELT)) (-1471 (((-1074) (-485) (-1074)) 23 T ELT)) (-3774 (((-585 (-1074)) (-585 (-1074)) (-485) (-1074)) 37 T ELT) (((-1074) (-1074) (-485) (-1074)) 35 T ELT)) (-2622 (((-585 (-1074)) (-585 (-1074))) 15 T ELT) (((-585 (-1074)) (-1074)) 11 T ELT))) +(((-199) (-10 -7 (-15 -2622 ((-585 (-1074)) (-1074))) (-15 -2622 ((-585 (-1074)) (-585 (-1074)))) (-15 -1470 ((-1074))) (-15 -1471 ((-1074) (-485) (-1074))) (-15 -3774 ((-1074) (-1074) (-485) (-1074))) (-15 -3774 ((-585 (-1074)) (-585 (-1074)) (-485) (-1074))) (-15 -1472 ((-1186) (-1074))) (-15 -1472 ((-1186) (-585 (-1074)))) (-15 -1473 ((-485) (-1074))) (-15 -1473 ((-485) (-585 (-1074)))))) (T -199)) +((-1473 (*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-485)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1470 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-199)))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074))))) +((** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-348 (-485)) $) 25 T ELT) (($ $ (-348 (-485))) NIL T ELT))) +(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-348 (-485)))) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-201)) (T -200)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 55 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 59 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-348 (-485)) $) 58 T ELT) (($ $ (-348 (-485))) 57 T ELT))) (((-201) (-113)) (T -201)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2483 (*1 *1 *1) (-4 *1 (-201)))) -(-13 (-245) (-38 (-347 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2483 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-245) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-655 (-347 (-484))) . T) ((-664) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3794 (($ $) 63 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-1472 (($ $ $) 59 (|has| $ (-6 -3993)) ELT)) (-1471 (($ $ $) 58 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-1474 (($ $) 62 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1473 (($ $) 61 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) 65 T ELT)) (-3176 (($ $) 64 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3788 (($ $ $) 60 (|has| $ (-6 -3993)) ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-202 |#1|) (-113) (-1128)) (T -202)) -((-3795 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3788 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1472 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3795 (|t#1| $)) (-15 -3176 ($ $)) (-15 -3794 ($ $)) (-15 -1474 ($ $)) (-15 -1473 ($ $)) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3788 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -1471 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) NIL T ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3439 (((-85) $ (-695)) NIL T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) NIL (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-3796 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2367 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 7 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3440 (((-85) $) NIL T ELT)) (-3416 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3515 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3531 (($ |#1|) NIL T ELT)) (-3713 (((-85) $ (-695)) NIL T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3606 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2303 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3441 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2304 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1475 (($ (-584 |#1|)) 22 T ELT)) (-3630 (((-85) $) NIL T ELT)) (-3789 (($ $) NIL T ELT)) (-3787 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3788 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3799 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3943 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 14 (|has| $ (-6 -3992)) ELT))) -(((-203 |#1|) (-13 (-609 |#1|) (-427 (-584 |#1|)) (-10 -8 (-15 -1475 ($ (-584 |#1|))) (-15 -3797 ($ $ "unique")) (-15 -3797 ($ $ "sort")) (-15 -3797 ((-695) $ "count")))) (-757)) (T -203)) -((-1475 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))) -((-1476 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT))) -(((-204 |#1|) (-10 -7 (-15 -1476 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-317) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204)) -((-1476 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-317) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 55 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 53 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 52 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 51 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2668 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-695)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 54 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 50 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 49 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 48 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-205 |#1|) (-113) (-962)) (T -205)) -NIL -(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1089))) (-6 (-809 |t#1| (-1089))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1089)) |has| |#1| (-812 (-1089))) ((-809 |#1| (-1089)) |has| |#1| (-812 (-1089))) ((-812 (-1089)) |has| |#1| (-812 (-1089))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3082 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3753 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-197 (-3954 |#1|) (-695)) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-197 (-3954 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2819 (((-197 (-3954 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-197 (-3954 |#1|) (-695)) (-197 (-3954 |#1|) (-695))) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3754 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3755 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3945 (((-197 (-3954 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-197 (-3954 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3954 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962)) (T -206)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1089))) (-4 *4 (-962))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1477 (((-1184) $) 17 T ELT)) (-1479 (((-158 (-208)) $) 11 T ELT)) (-1478 (($ (-158 (-208))) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1480 (((-208) $) 7 T ELT)) (-3943 (((-773) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-207) (-13 (-1013) (-10 -8 (-15 -1480 ((-208) $)) (-15 -1479 ((-158 (-208)) $)) (-15 -1478 ($ (-158 (-208)))) (-15 -1477 ((-1184) $))))) (T -207)) -((-1480 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3539 (((-444) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2632 (((-85) $ (-444)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1481 (((-281) $) 7 T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1481 ((-281) $))))) (T -208)) -((-1481 (*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 (((-1094) $ (-695)) 14 T ELT)) (-3943 (((-773) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT)) (-3954 (((-695) $) 11 T ELT))) -(((-209) (-13 (-1013) (-241 (-695) (-1094)) (-10 -8 (-15 -3954 ((-695) $))))) (T -209)) -((-3954 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3704 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#4| (-317)) ELT)) (-3785 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-3154 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1178 |#4|))) (-631 $) (-1178 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2993 (($) NIL (|has| |#4| (-317)) ELT)) (-1574 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#4| $ (-484)) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-2888 (((-584 |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2607 (((-584 |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#4| (-317)) ELT)) (-2279 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1178 |#4|))) (-1178 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1178 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#4| (-317)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 ((|#4| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#4|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-2204 (((-584 |#4|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3833 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1466 (($ (-1178 |#4|)) NIL T ELT)) (-3908 (((-107)) NIL (|has| |#4| (-311)) ELT)) (-3755 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1944 (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-773) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-3124 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL (|has| |#4| (-962)) CONST)) (-2668 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3946 (($ $ |#4|) NIL (|has| |#4| (-311)) ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3704 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#3| (-317)) ELT)) (-3785 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-3154 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2993 (($) NIL (|has| |#3| (-317)) ELT)) (-1574 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#3| $ (-484)) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2888 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2607 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#3| (-317)) ELT)) (-2279 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#3| (-317)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 ((|#3| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-2204 (((-584 |#3|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3833 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1466 (($ (-1178 |#3|)) NIL T ELT)) (-3908 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3755 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1944 (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-773) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-3124 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL (|has| |#3| (-962)) CONST)) (-2668 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3946 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211)) -NIL -((-1486 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1520 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1482 (($ $) 76 T ELT)) (-3155 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3769 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1521 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1484 ((|#4| $) 69 T ELT)) (-1485 (((-85) $) 67 T ELT)) (-1483 (($ $) 75 T ELT)) (-3765 (($ $ (-584 (-248 $))) 111 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3755 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1487 (((-584 |#3|) $) 86 T ELT)) (-3945 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT))) -(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3943 (|#1| |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3765 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3765 (|#1| |#1| |#3| |#2|)) (-15 -3765 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#3| |#1|)) (-15 -1521 ((-1 |#1| (-695)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1484 (|#4| |#1|)) (-15 -1485 ((-85) |#1|)) (-15 -1520 ((-695) |#1| |#3|)) (-15 -1486 ((-584 (-695)) |#1| |#3|)) (-15 -1520 ((-695) |#1|)) (-15 -1486 ((-584 (-695)) |#1|)) (-15 -3945 ((-695) |#1| |#3|)) (-15 -3769 ((-695) |#1|)) (-15 -3769 ((-695) |#1| |#3|)) (-15 -1487 ((-584 |#3|) |#1|)) (-15 -1521 ((-1 |#1| (-695)) |#3|)) (-15 -3943 (|#1| |#3|)) (-15 -3155 ((-3 |#3| #1="failed") |#1|)) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3945 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3945 ((-695) |#1| |#4|)) (-15 -3943 (|#1| |#4|)) (-15 -3155 ((-3 |#4| #1#) |#1|)) (-15 -3765 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#4| |#1|)) (-15 -3765 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3765 (|#1| |#1| |#4| |#2|)) (-15 -3765 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#1| |#1|)) (-15 -3765 (|#1| |#1| (-248 |#1|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3945 (|#5| |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3755 (|#1| |#1| |#4|)) (-15 -3755 (|#1| |#1| (-584 |#4|))) (-15 -3755 (|#1| |#1| |#4| (-695))) (-15 -3755 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1486 (((-584 (-695)) $) 249 T ELT) (((-584 (-695)) $ |#2|) 247 T ELT)) (-1520 (((-695) $) 248 T ELT) (((-695) $ |#2|) 246 T ELT)) (-3080 (((-584 |#3|) $) 121 T ELT)) (-3082 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3772 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-1482 (($ $) 242 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 |#2| #2#) $) 256 T ELT)) (-3154 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT) ((|#2| $) 257 T ELT)) (-3753 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3956 (($ $) 169 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3500 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) 120 T ELT)) (-3720 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| |#4| $) 187 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ |#2|) 252 T ELT) (((-695) $) 251 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2419 (((-695) $) 184 T ELT)) (-3083 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2820 (((-584 $) $) 137 T ELT)) (-3934 (((-85) $) 167 T ELT)) (-2892 (($ |#1| |#4|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 131 T ELT)) (-2819 ((|#4| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-1623 (($ (-1 |#4| |#4|) $) 186 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1521 (((-1 $ (-695)) |#2|) 254 T ELT) (((-1 $ (-695)) $) 241 (|has| |#1| (-190)) ELT)) (-3081 (((-3 |#3| #3="failed") $) 134 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2893 (($ $) 164 T ELT)) (-3172 ((|#1| $) 163 T ELT)) (-1484 ((|#3| $) 244 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1485 (((-85) $) 245 T ELT)) (-2822 (((-3 (-584 $) #3#) $) 125 T ELT)) (-2821 (((-3 (-584 $) #3#) $) 126 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-695))) #3#) $) 124 T ELT)) (-1483 (($ $) 243 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT) (($ $ |#2| $) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 239 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 238 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 237 (|has| |#1| (-190)) ELT)) (-3754 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 236 (|has| |#1| (-189)) ELT) (($ $ (-695)) 234 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 232 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 230 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 229 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 228 (|has| |#1| (-812 (-1089))) ELT)) (-1487 (((-584 |#2|) $) 253 T ELT)) (-3945 ((|#4| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT) (((-695) $ |#2|) 250 T ELT)) (-3969 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2561 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ |#2|) 255 T ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) 183 T ELT)) (-3674 ((|#1| $ |#4|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2701 (((-633 $) $) 90 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT) (($ $ (-1 |#1| |#1|)) 259 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 258 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-695)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 231 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 227 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 226 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 225 (|has| |#1| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213)) -((-1521 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3945 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1486 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1520 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1521 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))) -(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1521 ((-1 $ (-695)) |t#2|)) (-15 -1487 ((-584 |t#2|) $)) (-15 -3769 ((-695) $ |t#2|)) (-15 -3769 ((-695) $)) (-15 -3945 ((-695) $ |t#2|)) (-15 -1486 ((-584 (-695)) $)) (-15 -1520 ((-695) $)) (-15 -1486 ((-584 (-695)) $ |t#2|)) (-15 -1520 ((-695) $ |t#2|)) (-15 -1485 ((-85) $)) (-15 -1484 (|t#3| $)) (-15 -1483 ($ $)) (-15 -1482 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-453 |t#2| |t#1|)) (-6 (-453 |t#2| $)) (-6 (-259 $)) (-15 -1521 ((-1 $ (-695)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#4|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#2| |#1|) |has| |#1| (-190)) ((-453 |#2| $) |has| |#1| (-190)) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-807 $ |#3|) . T) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-810 |#3|) . T) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) 58 T ELT)) (-3321 ((|#1| $) 48 T ELT)) (-3721 (($) 7 T CONST)) (-3001 (($ $) 64 T ELT)) (-2296 (($ $) 52 T ELT)) (-3323 ((|#1| |#1| $) 50 T ELT)) (-3322 ((|#1| $) 49 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3830 (((-695) $) 65 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-1491 ((|#1| |#1| $) 56 T ELT)) (-1490 ((|#1| |#1| $) 55 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-2602 (((-695) $) 59 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3000 ((|#1| $) 66 T ELT)) (-1489 ((|#1| $) 54 T ELT)) (-1488 ((|#1| $) 53 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3003 ((|#1| |#1| $) 62 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3002 ((|#1| $) 63 T ELT)) (-1494 (($) 61 T ELT) (($ (-584 |#1|)) 60 T ELT)) (-3320 (((-695) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-2999 ((|#1| $) 67 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-214 |#1|) (-113) (-1128)) (T -214)) -((-1494 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1491 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1490 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(-13 (-1034 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1494 ($)) (-15 -1494 ($ (-584 |t#1|))) (-15 -2602 ((-695) $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| |t#1| $)) (-15 -1490 (|t#1| |t#1| $)) (-15 -1489 (|t#1| $)) (-15 -1488 (|t#1| $)) (-15 -2296 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-909 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1034 |#1|) . T) ((-1128) . T)) -((-1495 (((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327))) 75 T ELT) (((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 74 T ELT) (((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327))) 65 T ELT) (((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 64 T ELT) (((-1046 (-179)) (-790 |#1|) (-1004 (-327))) 56 T ELT) (((-1046 (-179)) (-790 |#1|) (-1004 (-327)) (-584 (-221))) 55 T ELT)) (-1502 (((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327))) 78 T ELT) (((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 77 T ELT) (((-1182) |#1| (-1004 (-327)) (-1004 (-327))) 68 T ELT) (((-1182) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 67 T ELT) (((-1182) (-790 |#1|) (-1004 (-327))) 60 T ELT) (((-1182) (-790 |#1|) (-1004 (-327)) (-584 (-221))) 59 T ELT) (((-1181) (-788 |#1|) (-1004 (-327))) 47 T ELT) (((-1181) (-788 |#1|) (-1004 (-327)) (-584 (-221))) 46 T ELT) (((-1181) |#1| (-1004 (-327))) 38 T ELT) (((-1181) |#1| (-1004 (-327)) (-584 (-221))) 36 T ELT))) -(((-215 |#1|) (-10 -7 (-15 -1502 ((-1181) |#1| (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) |#1| (-1004 (-327)))) (-15 -1502 ((-1181) (-788 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-788 |#1|) (-1004 (-327)))) (-15 -1502 ((-1182) (-790 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-790 |#1|) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) (-790 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-790 |#1|) (-1004 (-327)))) (-15 -1502 ((-1182) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) |#1| (-1004 (-327)) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)))) (-15 -1502 ((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327))))) (-13 (-554 (-473)) (-1013))) (T -215)) -((-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013)))))) -((-1496 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1495 (((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327))) 178 T ELT) (((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 176 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 181 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 177 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 169 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 168 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327))) 150 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221))) 148 T ELT) (((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327))) 149 T ELT) (((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 146 T ELT)) (-1502 (((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327))) 180 T ELT) (((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 179 T ELT) (((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 183 T ELT) (((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 182 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 171 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 170 T ELT) (((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327))) 156 T ELT) (((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221))) 155 T ELT) (((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327))) 154 T ELT) (((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 153 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327))) 118 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 117 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-327))) 112 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-327)) (-584 (-221))) 110 T ELT))) -(((-216) (-10 -7 (-15 -1502 ((-1181) (-1 (-179) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-1 (-179) (-179)) (-1001 (-327)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1502 ((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1502 ((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)))) (-15 -1496 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) -((-1496 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))) -((-1502 (((-1181) (-248 |#2|) (-1089) (-1089) (-584 (-221))) 102 T ELT))) -(((-217 |#1| |#2|) (-10 -7 (-15 -1502 ((-1181) (-248 |#2|) (-1089) (-1089) (-584 (-221))))) (-13 (-495) (-757) (-951 (-484))) (-361 |#1|)) (T -217)) -((-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-1089)) (-5 *5 (-584 (-221))) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-757) (-951 (-484)))) (-5 *2 (-1181)) (-5 *1 (-217 *6 *7))))) -((-1499 (((-484) (-484)) 71 T ELT)) (-1500 (((-484) (-484)) 72 T ELT)) (-1501 (((-179) (-179)) 73 T ELT)) (-1498 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1497 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT))) -(((-218) (-10 -7 (-15 -1497 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1498 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1499 ((-484) (-484))) (-15 -1500 ((-484) (-484))) (-15 -1501 ((-179) (-179))))) (T -218)) -((-1501 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1182)) (-5 *1 (-218)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218))))) -((-3943 (((-1004 (-327)) (-1004 (-264 |#1|))) 16 T ELT))) -(((-219 |#1|) (-10 -7 (-15 -3943 ((-1004 (-327)) (-1004 (-264 |#1|))))) (-13 (-757) (-495) (-554 (-327)))) (T -219)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-1004 (-264 *4))) (-4 *4 (-13 (-757) (-495) (-554 (-327)))) (-5 *2 (-1004 (-327))) (-5 *1 (-219 *4))))) -((-1502 (((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1181) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1181) (-584 (-855 (-179)))) 17 T ELT) (((-1181) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1181) (-584 (-179)) (-584 (-179))) 21 T ELT))) -(((-220) (-10 -7 (-15 -1502 ((-1181) (-584 (-179)) (-584 (-179)))) (-15 -1502 ((-1181) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1502 ((-1181) (-584 (-855 (-179))))) (-15 -1502 ((-1181) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1502 ((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1502 ((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220)) -((-1502 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1181)) (-5 *1 (-220))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3878 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1515 (($ (-831)) 81 T ELT)) (-1514 (($ (-831)) 80 T ELT)) (-1770 (($ (-584 (-327))) 87 T ELT)) (-1518 (($ (-327)) 66 T ELT)) (-1517 (($ (-831)) 82 T ELT)) (-1511 (($ (-85)) 33 T ELT)) (-3880 (($ (-1072)) 28 T ELT)) (-1510 (($ (-1072)) 29 T ELT)) (-1516 (($ (-1046 (-179))) 76 T ELT)) (-1926 (($ (-584 (-1001 (-327)))) 72 T ELT)) (-1504 (($ (-584 (-1001 (-327)))) 68 T ELT) (($ (-584 (-1001 (-347 (-484))))) 71 T ELT)) (-1507 (($ (-327)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1503 (((-85) (-584 $) (-1089)) 100 T ELT)) (-1519 (((-3 (-51) "failed") (-584 $) (-1089)) 102 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1506 (($ (-327)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3222 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2265 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1505 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3943 (((-773) $) 93 T ELT)) (-1508 (($ (-85)) 34 T ELT) (($ (-584 (-1001 (-327)))) 60 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1921 (($ (-85)) 35 T ELT)) (-3055 (((-85) $ $) 97 T ELT))) -(((-221) (-13 (-1013) (-10 -8 (-15 -1921 ($ (-85))) (-15 -1508 ($ (-85))) (-15 -3878 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3880 ($ (-1072))) (-15 -1510 ($ (-1072))) (-15 -1511 ($ (-85))) (-15 -1508 ($ (-584 (-1001 (-327))))) (-15 -3222 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1507 ($ (-327))) (-15 -1507 ($ (-784))) (-15 -1506 ($ (-327))) (-15 -1506 ($ (-784))) (-15 -1505 ($ (-1 (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1518 ($ (-327))) (-15 -1504 ($ (-584 (-1001 (-327))))) (-15 -1504 ($ (-584 (-1001 (-347 (-484)))))) (-15 -1926 ($ (-584 (-1001 (-327))))) (-15 -1516 ($ (-1046 (-179)))) (-15 -1514 ($ (-831))) (-15 -1515 ($ (-831))) (-15 -1517 ($ (-831))) (-15 -2265 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1770 ($ (-584 (-327)))) (-15 -1519 ((-3 (-51) "failed") (-584 $) (-1089))) (-15 -1503 ((-85) (-584 $) (-1089)))))) (T -221)) -((-1921 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-347 (-484))))) (-5 *1 (-221)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-221)))) (-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221))))) -((-3878 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1515 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1514 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3848 (((-584 (-327)) (-584 (-221)) (-584 (-327))) 68 T ELT)) (-1518 (((-327) (-584 (-221)) (-327)) 57 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1511 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3880 (((-1072) (-584 (-221)) (-1072)) 19 T ELT)) (-1510 (((-1072) (-584 (-221)) (-1072)) 26 T ELT)) (-1516 (((-1046 (-179)) (-584 (-221))) 46 T ELT)) (-1926 (((-584 (-1001 (-327))) (-584 (-221)) (-584 (-1001 (-327)))) 40 T ELT)) (-1512 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1513 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2265 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1509 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1921 (((-85) (-584 (-221)) (-85)) 13 T ELT))) -(((-222) (-10 -7 (-15 -1921 ((-85) (-584 (-221)) (-85))) (-15 -1509 ((-85) (-584 (-221)) (-85))) (-15 -3878 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3880 ((-1072) (-584 (-221)) (-1072))) (-15 -1510 ((-1072) (-584 (-221)) (-1072))) (-15 -1511 ((-85) (-584 (-221)) (-85))) (-15 -1512 ((-784) (-584 (-221)) (-784))) (-15 -1513 ((-784) (-584 (-221)) (-784))) (-15 -1926 ((-584 (-1001 (-327))) (-584 (-221)) (-584 (-1001 (-327))))) (-15 -1514 ((-831) (-584 (-221)) (-831))) (-15 -1515 ((-831) (-584 (-221)) (-831))) (-15 -1516 ((-1046 (-179)) (-584 (-221)))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-327) (-584 (-221)) (-327))) (-15 -2265 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3848 ((-584 (-327)) (-584 (-221)) (-584 (-327)))))) (T -222)) -((-3848 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-327))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2265 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1926 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3880 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3878 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -((-1519 (((-3 |#1| "failed") (-584 (-221)) (-1089)) 17 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -1519 ((-3 |#1| "failed") (-584 (-221)) (-1089)))) (-1128)) (T -223)) -((-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) (-4 *2 (-1128))))) -((-3755 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2668 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3755 (|#1| |#1|)) (-15 -2668 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -2668 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -2668 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2668 (|#1| |#1| (-584 (-1089)))) (-15 -2668 (|#1| |#1| (-1089) (-695))) (-15 -2668 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2668 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2668 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1128)) (T -224)) -NIL -((-3755 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 16 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 15 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 14 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089)) 12 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2668 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 19 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 18 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 17 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089)) 13 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-225 |#1|) (-113) (-1128)) (T -225)) -((-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-3755 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))) -(-13 (-1128) (-10 -8 (-15 -3755 ($ $ (-1 |t#1| |t#1|))) (-15 -3755 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2668 ($ $ (-1 |t#1| |t#1|))) (-15 -2668 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1089))) (-6 (-812 (-1089))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1089)) |has| |#1| (-812 (-1089))) ((-812 (-1089)) |has| |#1| (-812 (-1089))) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3080 (((-584 |#3|) $) NIL T ELT)) (-3082 (((-1084 $) $ |#3|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 23 T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3753 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ELT)) (-3769 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#1|) |#3|) NIL T ELT) (($ (-1084 $) |#3|) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) NIL T ELT)) (-2819 (((-469 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1623 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 |#3| #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1484 ((|#3| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3754 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 |#2|) $) NIL T ELT)) (-3945 (((-469 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#1| |#2|)) 32 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-951 (-1038 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226)) -NIL -((-1520 (((-695) $) 37 T ELT)) (-3155 (((-3 |#2| "failed") $) 22 T ELT)) (-3154 ((|#2| $) 33 T ELT)) (-3755 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3943 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3055 (((-85) $ $) 26 T ELT)) (-2684 (((-85) $ $) 36 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1520 ((-695) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3155 ((-3 |#2| "failed") |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -2684 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1520 (((-695) $) 26 T ELT)) (-3828 ((|#1| $) 27 T ELT)) (-3155 (((-3 |#1| "failed") $) 31 T ELT)) (-3154 ((|#1| $) 32 T ELT)) (-3769 (((-695) $) 28 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-1521 (($ |#1| (-695)) 29 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2668 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-228 |#1|) (-113) (-757)) (T -228)) -((-1521 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) -(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1521 ($ |t#1| (-695))) (-15 -3769 ((-695) $)) (-15 -3828 (|t#1| $)) (-15 -1520 ((-695) $)))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1523 (((-584 (-484)) $) 28 T ELT)) (-3945 (((-695) $) 26 T ELT)) (-3943 (((-773) $) 32 T ELT) (($ (-584 (-484))) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1522 (($ (-695)) 29 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-229) (-13 (-757) (-10 -8 (-15 -3943 ($ (-584 (-484)))) (-15 -3945 ((-695) $)) (-15 -1523 ((-584 (-484)) $)) (-15 -1522 ($ (-695)))))) (T -229)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) -((-3489 ((|#2| |#2|) 77 T ELT)) (-3636 ((|#2| |#2|) 65 T ELT)) (-1552 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3487 ((|#2| |#2|) 75 T ELT)) (-3635 ((|#2| |#2|) 63 T ELT)) (-3491 ((|#2| |#2|) 79 T ELT)) (-3634 ((|#2| |#2|) 67 T ELT)) (-3624 ((|#2|) 46 T ELT)) (-3592 (((-86) (-86)) 97 T ELT)) (-3939 ((|#2| |#2|) 61 T ELT)) (-1553 (((-85) |#2|) 146 T ELT)) (-1542 ((|#2| |#2|) 193 T ELT)) (-1530 ((|#2| |#2|) 169 T ELT)) (-1525 ((|#2|) 59 T ELT)) (-1524 ((|#2|) 58 T ELT)) (-1540 ((|#2| |#2|) 189 T ELT)) (-1528 ((|#2| |#2|) 165 T ELT)) (-1544 ((|#2| |#2|) 197 T ELT)) (-1532 ((|#2| |#2|) 173 T ELT)) (-1527 ((|#2| |#2|) 161 T ELT)) (-1526 ((|#2| |#2|) 163 T ELT)) (-1545 ((|#2| |#2|) 199 T ELT)) (-1533 ((|#2| |#2|) 175 T ELT)) (-1543 ((|#2| |#2|) 195 T ELT)) (-1531 ((|#2| |#2|) 171 T ELT)) (-1541 ((|#2| |#2|) 191 T ELT)) (-1529 ((|#2| |#2|) 167 T ELT)) (-1548 ((|#2| |#2|) 205 T ELT)) (-1536 ((|#2| |#2|) 181 T ELT)) (-1546 ((|#2| |#2|) 201 T ELT)) (-1534 ((|#2| |#2|) 177 T ELT)) (-1550 ((|#2| |#2|) 209 T ELT)) (-1538 ((|#2| |#2|) 185 T ELT)) (-1551 ((|#2| |#2|) 211 T ELT)) (-1539 ((|#2| |#2|) 187 T ELT)) (-1549 ((|#2| |#2|) 207 T ELT)) (-1537 ((|#2| |#2|) 183 T ELT)) (-1547 ((|#2| |#2|) 203 T ELT)) (-1535 ((|#2| |#2|) 179 T ELT)) (-3940 ((|#2| |#2|) 62 T ELT)) (-3492 ((|#2| |#2|) 80 T ELT)) (-3633 ((|#2| |#2|) 68 T ELT)) (-3490 ((|#2| |#2|) 78 T ELT)) (-3632 ((|#2| |#2|) 66 T ELT)) (-3488 ((|#2| |#2|) 76 T ELT)) (-3631 ((|#2| |#2|) 64 T ELT)) (-2253 (((-85) (-86)) 95 T ELT)) (-3495 ((|#2| |#2|) 83 T ELT)) (-3483 ((|#2| |#2|) 71 T ELT)) (-3493 ((|#2| |#2|) 81 T ELT)) (-3481 ((|#2| |#2|) 69 T ELT)) (-3497 ((|#2| |#2|) 85 T ELT)) (-3485 ((|#2| |#2|) 73 T ELT)) (-3498 ((|#2| |#2|) 86 T ELT)) (-3486 ((|#2| |#2|) 74 T ELT)) (-3496 ((|#2| |#2|) 84 T ELT)) (-3484 ((|#2| |#2|) 72 T ELT)) (-3494 ((|#2| |#2|) 82 T ELT)) (-3482 ((|#2| |#2|) 70 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -3940 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3624 (|#2|)) (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 -1524 (|#2|)) (-15 -1525 (|#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1553 ((-85) |#2|))) (-495) (-13 (-361 |#1|) (-916))) (T -230)) -((-1553 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-361 *4) (-916))))) (-1552 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-361 *4) (-916))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1525 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1524 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-361 *3) (-916))))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-361 *4) (-916))))) (-3624 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) -((-1556 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1089)) 151 T ELT)) (-1558 ((|#2| (-347 (-484)) |#2|) 49 T ELT)) (-1557 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1554 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1089)) 143 T ELT)) (-1555 ((|#2| |#2| (-1089)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2442 ((|#2| |#2| (-1089)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-231 |#1| |#2|) (-10 -7 (-15 -2442 (|#2| |#2|)) (-15 -2442 (|#2| |#2| (-1089))) (-15 -1554 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1089))) (-15 -1555 (|#2| |#2|)) (-15 -1555 (|#2| |#2| (-1089))) (-15 -1556 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1089))) (-15 -1557 (|#2| |#2| (-551 |#2|))) (-15 -1558 (|#2| (-347 (-484)) |#2|))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -231)) -((-1558 (*1 *2 *3 *2) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)))) (-1556 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1089)) (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *5 *2)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2442 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3)))))) -((-2974 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3489 ((|#3| |#3|) 142 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3636 ((|#3| |#3|) 132 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3487 ((|#3| |#3|) 140 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3635 ((|#3| |#3|) 130 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3491 ((|#3| |#3|) 144 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3634 ((|#3| |#3|) 134 T ELT)) (-2957 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3939 ((|#3| |#3|) 129 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3940 ((|#3| |#3|) 128 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3492 ((|#3| |#3|) 145 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3633 ((|#3| |#3|) 135 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3490 ((|#3| |#3|) 143 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3632 ((|#3| |#3|) 133 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3488 ((|#3| |#3|) 141 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3631 ((|#3| |#3|) 131 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3495 ((|#3| |#3|) 148 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3483 ((|#3| |#3|) 152 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3493 ((|#3| |#3|) 146 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3481 ((|#3| |#3|) 136 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3497 ((|#3| |#3|) 150 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3485 ((|#3| |#3|) 138 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3498 ((|#3| |#3|) 151 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3486 ((|#3| |#3|) 139 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3496 ((|#3| |#3|) 149 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3484 ((|#3| |#3|) 153 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3494 ((|#3| |#3|) 147 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3482 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-347 (-484))) 47 (|has| |#1| (-311)) ELT))) -(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-484)))) |%noBranch|) (-15 -3940 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)))) (-38 (-347 (-484))) (-1171 |#1|) (-1142 |#1| |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4))))) -((-2974 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3489 ((|#3| |#3|) 137 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3636 ((|#3| |#3|) 125 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3487 ((|#3| |#3|) 135 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3635 ((|#3| |#3|) 123 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3491 ((|#3| |#3|) 139 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3634 ((|#3| |#3|) 127 T ELT)) (-2957 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3939 ((|#3| |#3|) 111 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3940 ((|#3| |#3|) 122 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3492 ((|#3| |#3|) 140 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3633 ((|#3| |#3|) 128 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3490 ((|#3| |#3|) 138 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3632 ((|#3| |#3|) 126 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3488 ((|#3| |#3|) 136 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3631 ((|#3| |#3|) 124 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3495 ((|#3| |#3|) 143 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3483 ((|#3| |#3|) 131 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3493 ((|#3| |#3|) 141 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3481 ((|#3| |#3|) 129 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3497 ((|#3| |#3|) 145 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3485 ((|#3| |#3|) 133 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3498 ((|#3| |#3|) 146 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3486 ((|#3| |#3|) 134 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3496 ((|#3| |#3|) 144 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3484 ((|#3| |#3|) 132 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3494 ((|#3| |#3|) 142 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3482 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-347 (-484))) 44 (|has| |#1| (-311)) ELT))) -(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-484)))) |%noBranch|) (-15 -3940 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)))) (-38 (-347 (-484))) (-1140 |#1|) (-1163 |#1| |#2|) (-897 |#2|)) (T -233)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-897 *5)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))) -((-1561 (((-85) $) 20 T ELT)) (-1563 (((-1094) $) 9 T ELT)) (-3566 (((-3 (-444) #1="failed") $) 15 T ELT)) (-3565 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1560 (((-3 (-444) #1#) $) 21 T ELT)) (-1562 (((-3 (-1015) #1#) $) 19 T ELT)) (-3950 (((-85) $) 17 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1559 (((-85) $) 10 T ELT))) -(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1563 ((-1094) $)) (-15 -3950 ((-85) $)) (-15 -1562 ((-3 (-1015) #1="failed") $)) (-15 -1561 ((-85) $)) (-15 -1560 ((-3 (-444) #1#) $)) (-15 -1559 ((-85) $)) (-15 -3566 ((-3 (-444) #1#) $)) (-15 -3565 ((-3 (-584 $) #1#) $))))) (T -234)) -((-1563 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3566 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-3565 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))) -((-1565 (((-532) $) 10 T ELT)) (-1566 (((-522) $) 8 T ELT)) (-1564 (((-246) $) 12 T ELT)) (-1567 (($ (-522) (-532) (-246)) NIL T ELT)) (-3943 (((-773) $) 19 T ELT))) -(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1567 ($ (-522) (-532) (-246))) (-15 -1566 ((-522) $)) (-15 -1565 ((-532) $)) (-15 -1564 ((-246) $))))) (T -235)) -((-1567 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-246)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235))))) -((-3707 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1351 (($ $) 38 T ELT)) (-3402 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3403 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2855 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2303 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2304 (($ $ (-484)) 11 T ELT) (($ $ (-1145 (-484))) 14 T ELT)) (-3788 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3799 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT))) -(((-236 |#1| |#2|) (-10 -7 (-15 -2855 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -2855 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -2303 (|#1| |#1| |#1| (-484))) (-15 -2303 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| (-1145 (-484)))) (-15 -2304 (|#1| |#1| (-484))) (-15 -3799 (|#1| (-584 |#1|))) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3799 (|#1| |#2| |#1|)) (-15 -3799 (|#1| |#1| |#2|)) (-15 -3403 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3707 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -1351 (|#1| |#1|))) (-237 |#2|) (-1128)) (T -236)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2367 (($ $) 92 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1013)) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2855 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3606 (($ |#1| $ (-484)) 97 T ELT) (($ $ $ (-484)) 96 T ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1569 (($ $ (-484)) 100 T ELT) (($ $ (-1145 (-484))) 99 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3788 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-237 |#1|) (-113) (-1128)) (T -237)) -((-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3606 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3606 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-2855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3402 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2855 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))) -(-13 (-594 |t#1|) (-10 -8 (-6 -3993) (-15 -3788 ($ $ |t#1|)) (-15 -3788 ($ $ $)) (-15 -1569 ($ $ (-484))) (-15 -1569 ($ $ (-1145 (-484)))) (-15 -3402 ($ (-1 (-85) |t#1|) $)) (-15 -3606 ($ |t#1| $ (-484))) (-15 -3606 ($ $ $ (-484))) (-15 -2855 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1568 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3402 ($ |t#1| $)) (-15 -2367 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2855 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) (-2486 (*1 *1 *1) (-4 *1 (-201)))) +(-13 (-246) (-38 (-348 (-485))) (-10 -8 (-15 ** ($ $ (-485))) (-15 -2486 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-246) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-656 (-348 (-485))) . T) ((-665) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3798 (($ $) 63 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1475 (($ $ $) 59 (|has| $ (-6 -3997)) ELT)) (-1474 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-1477 (($ $) 62 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-1476 (($ $) 61 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) 65 T ELT)) (-3180 (($ $) 64 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3792 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-202 |#1|) (-113) (-1130)) (T -202)) +((-3799 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1475 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3799 (|t#1| $)) (-15 -3180 ($ $)) (-15 -3798 ($ $)) (-15 -1477 ($ $)) (-15 -1476 ($ $)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3792 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1474 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) 10 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-696)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-1015)) ELT)) (-1354 (($ $) 7 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1015)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-3720 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-696)) NIL T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-696) $ "count") 16 T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1478 (($ (-585 |#1|)) 22 T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (($ (-585 |#1|)) 17 T ELT) (((-585 |#1|) $) 18 T ELT) (((-774) $) 21 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 14 (|has| $ (-6 -3996)) ELT))) +(((-203 |#1|) (-13 (-610 |#1|) (-428 (-585 |#1|)) (-10 -8 (-15 -1478 ($ (-585 |#1|))) (-15 -3801 ($ $ "unique")) (-15 -3801 ($ $ "sort")) (-15 -3801 ((-696) $ "count")))) (-758)) (T -203)) +((-1478 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758))))) +((-1479 (((-3 (-696) "failed") |#1| |#1| (-696)) 40 T ELT))) +(((-204 |#1|) (-10 -7 (-15 -1479 ((-3 (-696) "failed") |#1| |#1| (-696)))) (-13 (-665) (-318) (-10 -7 (-15 ** (|#1| |#1| (-485)))))) (T -204)) +((-1479 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-696)) (-4 *3 (-13 (-665) (-318) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-696)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 56 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 54 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 53 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 52 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-696)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 55 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 51 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 50 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 49 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-696)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-205 |#1|) (-113) (-963)) (T -205)) +NIL +(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-813 (-1091))) (-6 (-810 |t#1| (-1091))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-656 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-813 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-808 $ (-1091)) |has| |#1| (-813 (-1091))) ((-810 |#1| (-1091)) |has| |#1| (-813 (-1091))) ((-813 (-1091)) |has| |#1| (-813 (-1091))) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-775 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-585 (-485))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-197 (-3958 |#1|) (-696)) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1086 $) (-775 |#1|)) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-197 (-3958 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2822 (((-197 (-3958 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-197 (-3958 |#1|) (-696)) (-197 (-3958 |#1|) (-696))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3758 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3949 (((-197 (-3958 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-775 |#1|) (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-197 (-3958 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-206 |#1| |#2|) (-13 (-863 |#2| (-197 (-3958 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1938 ($ $ (-585 (-485)))))) (-585 (-1091)) (-963)) (T -206)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1091))) (-4 *4 (-963))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1480 (((-1186) $) 17 T ELT)) (-1482 (((-158 (-208)) $) 11 T ELT)) (-1481 (($ (-158 (-208))) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1483 (((-208) $) 7 T ELT)) (-3947 (((-774) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT))) +(((-207) (-13 (-1015) (-10 -8 (-15 -1483 ((-208) $)) (-15 -1482 ((-158 (-208)) $)) (-15 -1481 ($ (-158 (-208)))) (-15 -1480 ((-1186) $))))) (T -207)) +((-1483 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-585 (-776)) $) NIL T ELT)) (-3543 (((-445) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-445)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1484 (((-282) $) 7 T ELT)) (-1426 (((-585 (-85)) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-208) (-13 (-160) (-554 (-157)) (-10 -8 (-15 -1484 ((-282) $))))) (T -208)) +((-1484 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 (((-1096) $ (-696)) 14 T ELT)) (-3947 (((-774) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)) (-3958 (((-696) $) 11 T ELT))) +(((-209) (-13 (-1015) (-241 (-696) (-1096)) (-10 -8 (-15 -3958 ((-696) $))))) (T -209)) +((-3958 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3708 (($ (-832)) NIL (|has| |#4| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) NIL (|has| |#4| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#4| (-318)) ELT)) (-3789 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1015)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#4| (-952 (-485))) (|has| |#4| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#4| (-952 (-348 (-485)))) (|has| |#4| (-1015))) ELT)) (-3158 ((|#4| $) NIL (|has| |#4| (-1015)) ELT) (((-485) $) NIL (-12 (|has| |#4| (-952 (-485))) (|has| |#4| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#4| (-952 (-348 (-485)))) (|has| |#4| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1180 |#4|))) (-632 $) (-1180 $)) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963))) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#4| (-963)) ELT)) (-2996 (($) NIL (|has| |#4| (-318)) ELT)) (-1577 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#4| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#4| (-719)) ELT)) (-2891 (((-585 |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#4| (-963)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-2610 (((-585 |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#4| (-758)) ELT)) (-1950 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#4| (-318)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#4|)) (|:| |vec| (-1180 |#4|))) (-1180 $) $) NIL (|has| |#4| (-963)) ELT) (((-632 |#4|) (-1180 $)) NIL (|has| |#4| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#4| (-582 (-485))) (|has| |#4| (-963))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#4| (-318)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 ((|#4| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-2207 (((-585 |#4|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3837 ((|#4| $ $) NIL (|has| |#4| (-963)) ELT)) (-1469 (($ (-1180 |#4|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3759 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-1947 (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#4| (-952 (-485))) (|has| |#4| (-1015))) (|has| |#4| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#4| (-952 (-348 (-485)))) (|has| |#4| (-1015))) ELT)) (-3128 (((-696)) NIL (|has| |#4| (-963)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#4| (-963)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#4| (-963)) CONST)) (-2671 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-963)) ELT) (($ $ (-1 |#4| |#4|) (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-811 (-1091))) (|has| |#4| (-963))) (-12 (|has| |#4| (-813 (-1091))) (|has| |#4| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-963))) (-12 (|has| |#4| (-189)) (|has| |#4| (-963)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#4| (-758)) ELT)) (-3950 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#4| (-963)) ELT) (($ $ (-832)) NIL (|has| |#4| (-963)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-665)) ELT) (($ |#4| $) NIL (|has| |#4| (-665)) ELT) (($ $ $) NIL (|has| |#4| (-963)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-592 |#2|) (-592 |#3|)) (-832) (-963) (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-592 |#2|)) (T -210)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3708 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#3| (-318)) ELT)) (-3789 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT)) (-3158 ((|#3| $) NIL (|has| |#3| (-1015)) ELT) (((-485) $) NIL (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 $) (-1180 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2996 (($) NIL (|has| |#3| (-318)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#3| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-2891 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2610 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-1950 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-318)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1180 $)) NIL (|has| |#3| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-318)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 ((|#3| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-1947 (((-696) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT)) (-3128 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#3| (-963)) CONST)) (-2671 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-811 (-1091))) (|has| |#3| (-963))) (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-963))) (-12 (|has| |#3| (-189)) (|has| |#3| (-963)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ $ $) NIL (|has| |#3| (-963)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-592 |#2|)) (-696) (-963) (-592 |#2|)) (T -211)) +NIL +((-1489 (((-585 (-696)) $) 56 T ELT) (((-585 (-696)) $ |#3|) 59 T ELT)) (-1523 (((-696) $) 58 T ELT) (((-696) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3773 (((-696) $ |#3|) 43 T ELT) (((-696) $) 38 T ELT)) (-1524 (((-1 $ (-696)) |#3|) 15 T ELT) (((-1 $ (-696)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-85) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3769 (($ $ (-585 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 97 T ELT)) (-3759 (($ $ (-585 |#4|) (-585 (-696))) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-1490 (((-585 |#3|) $) 86 T ELT)) (-3949 ((|#5| $) NIL T ELT) (((-696) $ |#4|) NIL T ELT) (((-585 (-696)) $ (-585 |#4|)) NIL T ELT) (((-696) $ |#3|) 49 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3769 (|#1| |#1| (-585 |#3|) (-585 |#2|))) (-15 -3769 (|#1| |#1| |#3| |#2|)) (-15 -3769 (|#1| |#1| (-585 |#3|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#3| |#1|)) (-15 -1524 ((-1 |#1| (-696)) |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#4| |#1|)) (-15 -1488 ((-85) |#1|)) (-15 -1523 ((-696) |#1| |#3|)) (-15 -1489 ((-585 (-696)) |#1| |#3|)) (-15 -1523 ((-696) |#1|)) (-15 -1489 ((-585 (-696)) |#1|)) (-15 -3949 ((-696) |#1| |#3|)) (-15 -3773 ((-696) |#1|)) (-15 -3773 ((-696) |#1| |#3|)) (-15 -1490 ((-585 |#3|) |#1|)) (-15 -1524 ((-1 |#1| (-696)) |#3|)) (-15 -3947 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3949 ((-585 (-696)) |#1| (-585 |#4|))) (-15 -3949 ((-696) |#1| |#4|)) (-15 -3947 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3769 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3949 (|#5| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| (-585 |#4|))) (-15 -3759 (|#1| |#1| |#4| (-696))) (-15 -3759 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-963) (-758) (-228 |#3|) (-719)) (T -212)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1489 (((-585 (-696)) $) 251 T ELT) (((-585 (-696)) $ |#2|) 249 T ELT)) (-1523 (((-696) $) 250 T ELT) (((-696) $ |#2|) 248 T ELT)) (-3083 (((-585 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-823)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-823)) ELT)) (-1485 (($ $) 244 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-485)) #2#) $) 178 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-952 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-348 (-485)) $) 179 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-952 (-485))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 149 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 148 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| |#4| $) 189 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 97 (-12 (|has| |#3| (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 96 (-12 (|has| |#3| (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ |#2|) 254 T ELT) (((-696) $) 253 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-585 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#4| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1524 (((-1 $ (-696)) |#2|) 256 T ELT) (((-1 $ (-696)) $) 243 (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 151 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-632 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1487 ((|#3| $) 246 T ELT)) (-1892 (($ (-585 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1488 (((-85) $) 247 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 126 T ELT)) (-1486 (($ $) 245 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 112 (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-696)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 234 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 232 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 231 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 230 (|has| |#1| (-813 (-1091))) ELT)) (-1490 (((-585 |#2|) $) 255 T ELT)) (-3949 ((|#4| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT) (((-696) $ |#2|) 252 T ELT)) (-3973 (((-802 (-328)) $) 95 (-12 (|has| |#3| (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) 94 (-12 (|has| |#3| (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-348 (-485))) 91 (OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2704 (((-634 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-696)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 229 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 228 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 227 (|has| |#1| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 175 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 174 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-213 |#1| |#2| |#3| |#4|) (-113) (-963) (-758) (-228 |t#2|) (-719)) (T -213)) +((-1524 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) (-4 *2 (-228 *4)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-228 *3)) (-4 *5 (-719)))) (-1524 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6))))) +(-13 (-863 |t#1| |t#4| |t#3|) (-184 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1524 ((-1 $ (-696)) |t#2|)) (-15 -1490 ((-585 |t#2|) $)) (-15 -3773 ((-696) $ |t#2|)) (-15 -3773 ((-696) $)) (-15 -3949 ((-696) $ |t#2|)) (-15 -1489 ((-585 (-696)) $)) (-15 -1523 ((-696) $)) (-15 -1489 ((-585 (-696)) $ |t#2|)) (-15 -1523 ((-696) $ |t#2|)) (-15 -1488 ((-85) $)) (-15 -1487 (|t#3| $)) (-15 -1486 ($ $)) (-15 -1485 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-454 |t#2| |t#1|)) (-6 (-454 |t#2| $)) (-6 (-260 $)) (-15 -1524 ((-1 $ (-696)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-555 (-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#3| (-555 (-474)))) ((-555 (-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#3| (-555 (-802 (-328))))) ((-555 (-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#3| (-555 (-802 (-485))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-823)) (|has| |#1| (-390))) ((-454 |#2| |#1|) |has| |#1| (-190)) ((-454 |#2| $) |has| |#1| (-190)) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-496) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-665) . T) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-808 $ |#3|) . T) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-811 |#3|) . T) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-813 |#3|) . T) ((-798 (-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#3| (-798 (-328)))) ((-798 (-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#3| (-798 (-485)))) ((-863 |#1| |#4| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) |has| |#1| (-823))) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) 58 T ELT)) (-3325 ((|#1| $) 48 T ELT)) (-3725 (($) 7 T CONST)) (-3004 (($ $) 64 T ELT)) (-2299 (($ $) 52 T ELT)) (-3327 ((|#1| |#1| $) 50 T ELT)) (-3326 ((|#1| $) 49 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3834 (((-696) $) 65 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-1494 ((|#1| |#1| $) 56 T ELT)) (-1493 ((|#1| |#1| $) 55 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-2605 (((-696) $) 59 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3003 ((|#1| $) 66 T ELT)) (-1492 ((|#1| $) 54 T ELT)) (-1491 ((|#1| $) 53 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3006 ((|#1| |#1| $) 62 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3005 ((|#1| $) 63 T ELT)) (-1497 (($) 61 T ELT) (($ (-585 |#1|)) 60 T ELT)) (-3324 (((-696) $) 47 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1495 ((|#1| $) 57 T ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-3002 ((|#1| $) 67 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-214 |#1|) (-113) (-1130)) (T -214)) +((-1497 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(-13 (-1036 |t#1|) (-910 |t#1|) (-10 -8 (-15 -1497 ($)) (-15 -1497 ($ (-585 |t#1|))) (-15 -2605 ((-696) $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2299 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-910 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1036 |#1|) . T) ((-1130) . T)) +((-1498 (((-1048 (-179)) (-794 |#1|) (-1006 (-328)) (-1006 (-328))) 75 T ELT) (((-1048 (-179)) (-794 |#1|) (-1006 (-328)) (-1006 (-328)) (-585 (-221))) 74 T ELT) (((-1048 (-179)) |#1| (-1006 (-328)) (-1006 (-328))) 65 T ELT) (((-1048 (-179)) |#1| (-1006 (-328)) (-1006 (-328)) (-585 (-221))) 64 T ELT) (((-1048 (-179)) (-791 |#1|) (-1006 (-328))) 56 T ELT) (((-1048 (-179)) (-791 |#1|) (-1006 (-328)) (-585 (-221))) 55 T ELT)) (-1505 (((-1184) (-794 |#1|) (-1006 (-328)) (-1006 (-328))) 78 T ELT) (((-1184) (-794 |#1|) (-1006 (-328)) (-1006 (-328)) (-585 (-221))) 77 T ELT) (((-1184) |#1| (-1006 (-328)) (-1006 (-328))) 68 T ELT) (((-1184) |#1| (-1006 (-328)) (-1006 (-328)) (-585 (-221))) 67 T ELT) (((-1184) (-791 |#1|) (-1006 (-328))) 60 T ELT) (((-1184) (-791 |#1|) (-1006 (-328)) (-585 (-221))) 59 T ELT) (((-1183) (-789 |#1|) (-1006 (-328))) 47 T ELT) (((-1183) (-789 |#1|) (-1006 (-328)) (-585 (-221))) 46 T ELT) (((-1183) |#1| (-1006 (-328))) 38 T ELT) (((-1183) |#1| (-1006 (-328)) (-585 (-221))) 36 T ELT))) +(((-215 |#1|) (-10 -7 (-15 -1505 ((-1183) |#1| (-1006 (-328)) (-585 (-221)))) (-15 -1505 ((-1183) |#1| (-1006 (-328)))) (-15 -1505 ((-1183) (-789 |#1|) (-1006 (-328)) (-585 (-221)))) (-15 -1505 ((-1183) (-789 |#1|) (-1006 (-328)))) (-15 -1505 ((-1184) (-791 |#1|) (-1006 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-791 |#1|) (-1006 (-328)))) (-15 -1498 ((-1048 (-179)) (-791 |#1|) (-1006 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-791 |#1|) (-1006 (-328)))) (-15 -1505 ((-1184) |#1| (-1006 (-328)) (-1006 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) |#1| (-1006 (-328)) (-1006 (-328)))) (-15 -1498 ((-1048 (-179)) |#1| (-1006 (-328)) (-1006 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) |#1| (-1006 (-328)) (-1006 (-328)))) (-15 -1505 ((-1184) (-794 |#1|) (-1006 (-328)) (-1006 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-794 |#1|) (-1006 (-328)) (-1006 (-328)))) (-15 -1498 ((-1048 (-179)) (-794 |#1|) (-1006 (-328)) (-1006 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-794 |#1|) (-1006 (-328)) (-1006 (-328))))) (-13 (-555 (-474)) (-1015))) (T -215)) +((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-328))) (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-328))) (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-328))) (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-328))) (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-328))) (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015)))))) +((-1499 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1498 (((-1048 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328))) 178 T ELT) (((-1048 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 176 T ELT) (((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328))) 181 T ELT) (((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 177 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328))) 169 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 168 T ELT) (((-1048 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-328))) 150 T ELT) (((-1048 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-328)) (-585 (-221))) 148 T ELT) (((-1048 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-328))) 149 T ELT) (((-1048 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221))) 146 T ELT)) (-1505 (((-1184) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328))) 180 T ELT) (((-1184) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 179 T ELT) (((-1184) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328))) 183 T ELT) (((-1184) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 182 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328))) 171 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221))) 170 T ELT) (((-1184) (-1 (-856 (-179)) (-179)) (-1003 (-328))) 156 T ELT) (((-1184) (-1 (-856 (-179)) (-179)) (-1003 (-328)) (-585 (-221))) 155 T ELT) (((-1184) (-791 (-1 (-179) (-179))) (-1003 (-328))) 154 T ELT) (((-1184) (-791 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221))) 153 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1003 (-328))) 118 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221))) 117 T ELT) (((-1183) (-1 (-179) (-179)) (-1003 (-328))) 112 T ELT) (((-1183) (-1 (-179) (-179)) (-1003 (-328)) (-585 (-221))) 110 T ELT))) +(((-216) (-10 -7 (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1003 (-328)))) (-15 -1505 ((-1183) (-789 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1183) (-789 (-1 (-179) (-179))) (-1003 (-328)))) (-15 -1505 ((-1184) (-791 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-791 (-1 (-179) (-179))) (-1003 (-328)))) (-15 -1505 ((-1184) (-1 (-856 (-179)) (-179)) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-1 (-856 (-179)) (-179)) (-1003 (-328)))) (-15 -1498 ((-1048 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-791 (-1 (-179) (-179))) (-1003 (-328)))) (-15 -1498 ((-1048 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-856 (-179)) (-179)) (-1003 (-328)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1003 (-328)) (-1003 (-328)))) (-15 -1505 ((-1184) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)))) (-15 -1498 ((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-328)) (-1003 (-328)))) (-15 -1505 ((-1184) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1505 ((-1184) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)))) (-15 -1498 ((-1048 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)) (-585 (-221)))) (-15 -1498 ((-1048 (-179)) (-794 (-1 (-179) (-179) (-179))) (-1003 (-328)) (-1003 (-328)))) (-15 -1499 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) +((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))) +((-1505 (((-1183) (-249 |#2|) (-1091) (-1091) (-585 (-221))) 102 T ELT))) +(((-217 |#1| |#2|) (-10 -7 (-15 -1505 ((-1183) (-249 |#2|) (-1091) (-1091) (-585 (-221))))) (-13 (-496) (-758) (-952 (-485))) (-362 |#1|)) (T -217)) +((-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-585 (-221))) (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-758) (-952 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7))))) +((-1502 (((-485) (-485)) 71 T ELT)) (-1503 (((-485) (-485)) 72 T ELT)) (-1504 (((-179) (-179)) 73 T ELT)) (-1501 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179))) 70 T ELT)) (-1500 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85)) 68 T ELT))) +(((-218) (-10 -7 (-15 -1500 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)) (-85))) (-15 -1501 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -1502 ((-485) (-485))) (-15 -1503 ((-485) (-485))) (-15 -1504 ((-179) (-179))))) (T -218)) +((-1504 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *2 (-1184)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) +((-3947 (((-1006 (-328)) (-1006 (-265 |#1|))) 16 T ELT))) +(((-219 |#1|) (-10 -7 (-15 -3947 ((-1006 (-328)) (-1006 (-265 |#1|))))) (-13 (-758) (-496) (-555 (-328)))) (T -219)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-496) (-555 (-328)))) (-5 *2 (-1006 (-328))) (-5 *1 (-219 *4))))) +((-1505 (((-1184) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221))) 23 T ELT) (((-1184) (-585 (-179)) (-585 (-179)) (-585 (-179))) 24 T ELT) (((-1183) (-585 (-856 (-179))) (-585 (-221))) 16 T ELT) (((-1183) (-585 (-856 (-179)))) 17 T ELT) (((-1183) (-585 (-179)) (-585 (-179)) (-585 (-221))) 20 T ELT) (((-1183) (-585 (-179)) (-585 (-179))) 21 T ELT))) +(((-220) (-10 -7 (-15 -1505 ((-1183) (-585 (-179)) (-585 (-179)))) (-15 -1505 ((-1183) (-585 (-179)) (-585 (-179)) (-585 (-221)))) (-15 -1505 ((-1183) (-585 (-856 (-179))))) (-15 -1505 ((-1183) (-585 (-856 (-179))) (-585 (-221)))) (-15 -1505 ((-1184) (-585 (-179)) (-585 (-179)) (-585 (-179)))) (-15 -1505 ((-1184) (-585 (-179)) (-585 (-179)) (-585 (-179)) (-585 (-221)))))) (T -220)) +((-1505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3882 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1518 (($ (-832)) 81 T ELT)) (-1517 (($ (-832)) 80 T ELT)) (-1773 (($ (-585 (-328))) 87 T ELT)) (-1521 (($ (-328)) 66 T ELT)) (-1520 (($ (-832)) 82 T ELT)) (-1514 (($ (-85)) 33 T ELT)) (-3884 (($ (-1074)) 28 T ELT)) (-1513 (($ (-1074)) 29 T ELT)) (-1519 (($ (-1048 (-179))) 76 T ELT)) (-1929 (($ (-585 (-1003 (-328)))) 72 T ELT)) (-1507 (($ (-585 (-1003 (-328)))) 68 T ELT) (($ (-585 (-1003 (-348 (-485))))) 71 T ELT)) (-1510 (($ (-328)) 38 T ELT) (($ (-785)) 42 T ELT)) (-1506 (((-85) (-585 $) (-1091)) 100 T ELT)) (-1522 (((-3 (-51) "failed") (-585 $) (-1091)) 102 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1509 (($ (-328)) 43 T ELT) (($ (-785)) 44 T ELT)) (-3226 (($ (-1 (-856 (-179)) (-856 (-179)))) 65 T ELT)) (-2268 (($ (-1 (-856 (-179)) (-856 (-179)))) 83 T ELT)) (-1508 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3947 (((-774) $) 93 T ELT)) (-1511 (($ (-85)) 34 T ELT) (($ (-585 (-1003 (-328)))) 60 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1924 (($ (-85)) 35 T ELT)) (-3058 (((-85) $ $) 97 T ELT))) +(((-221) (-13 (-1015) (-10 -8 (-15 -1924 ($ (-85))) (-15 -1511 ($ (-85))) (-15 -3882 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ($ (-1074))) (-15 -1513 ($ (-1074))) (-15 -1514 ($ (-85))) (-15 -1511 ($ (-585 (-1003 (-328))))) (-15 -3226 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1510 ($ (-328))) (-15 -1510 ($ (-785))) (-15 -1509 ($ (-328))) (-15 -1509 ($ (-785))) (-15 -1508 ($ (-1 (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1521 ($ (-328))) (-15 -1507 ($ (-585 (-1003 (-328))))) (-15 -1507 ($ (-585 (-1003 (-348 (-485)))))) (-15 -1929 ($ (-585 (-1003 (-328))))) (-15 -1519 ($ (-1048 (-179)))) (-15 -1517 ($ (-832))) (-15 -1518 ($ (-832))) (-15 -1520 ($ (-832))) (-15 -2268 ($ (-1 (-856 (-179)) (-856 (-179))))) (-15 -1773 ($ (-585 (-328)))) (-15 -1522 ((-3 (-51) "failed") (-585 $) (-1091))) (-15 -1506 ((-85) (-585 $) (-1091)))))) (T -221)) +((-1924 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-348 (-485))))) (-5 *1 (-221)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-221)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) +((-3882 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1518 (((-832) (-585 (-221)) (-832)) 52 T ELT)) (-1517 (((-832) (-585 (-221)) (-832)) 51 T ELT)) (-3852 (((-585 (-328)) (-585 (-221)) (-585 (-328))) 68 T ELT)) (-1521 (((-328) (-585 (-221)) (-328)) 57 T ELT)) (-1520 (((-832) (-585 (-221)) (-832)) 53 T ELT)) (-1514 (((-85) (-585 (-221)) (-85)) 27 T ELT)) (-3884 (((-1074) (-585 (-221)) (-1074)) 19 T ELT)) (-1513 (((-1074) (-585 (-221)) (-1074)) 26 T ELT)) (-1519 (((-1048 (-179)) (-585 (-221))) 46 T ELT)) (-1929 (((-585 (-1003 (-328))) (-585 (-221)) (-585 (-1003 (-328)))) 40 T ELT)) (-1515 (((-785) (-585 (-221)) (-785)) 32 T ELT)) (-1516 (((-785) (-585 (-221)) (-785)) 33 T ELT)) (-2268 (((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179)))) 63 T ELT)) (-1512 (((-85) (-585 (-221)) (-85)) 14 T ELT)) (-1924 (((-85) (-585 (-221)) (-85)) 13 T ELT))) +(((-222) (-10 -7 (-15 -1924 ((-85) (-585 (-221)) (-85))) (-15 -1512 ((-85) (-585 (-221)) (-85))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-585 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ((-1074) (-585 (-221)) (-1074))) (-15 -1513 ((-1074) (-585 (-221)) (-1074))) (-15 -1514 ((-85) (-585 (-221)) (-85))) (-15 -1515 ((-785) (-585 (-221)) (-785))) (-15 -1516 ((-785) (-585 (-221)) (-785))) (-15 -1929 ((-585 (-1003 (-328))) (-585 (-221)) (-585 (-1003 (-328))))) (-15 -1517 ((-832) (-585 (-221)) (-832))) (-15 -1518 ((-832) (-585 (-221)) (-832))) (-15 -1519 ((-1048 (-179)) (-585 (-221)))) (-15 -1520 ((-832) (-585 (-221)) (-832))) (-15 -1521 ((-328) (-585 (-221)) (-328))) (-15 -2268 ((-1 (-856 (-179)) (-856 (-179))) (-585 (-221)) (-1 (-856 (-179)) (-856 (-179))))) (-15 -3852 ((-585 (-328)) (-585 (-221)) (-585 (-328)))))) (T -222)) +((-3852 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-328))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-2268 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-328)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3884 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) (-1924 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +((-1522 (((-3 |#1| "failed") (-585 (-221)) (-1091)) 17 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1522 ((-3 |#1| "failed") (-585 (-221)) (-1091)))) (-1130)) (T -223)) +((-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) (-4 *2 (-1130))))) +((-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) 11 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) 19 T ELT) (($ $ (-696)) NIL T ELT) (($ $) 16 T ELT)) (-2671 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-696)) 14 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -2671 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -2671 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -2671 (|#1| |#1| (-585 (-1091)))) (-15 -2671 (|#1| |#1| (-1091) (-696))) (-15 -2671 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1130)) (T -224)) +NIL +((-3759 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 22 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) 16 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 15 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 14 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091)) 12 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-696)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2671 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 20 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) 19 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 18 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 17 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091)) 13 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-696)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-225 |#1|) (-113) (-1130)) (T -225)) +((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 ($ $ (-1 |t#1| |t#1|))) (-15 -3759 ($ $ (-1 |t#1| |t#1|) (-696))) (-15 -2671 ($ $ (-1 |t#1| |t#1|))) (-15 -2671 ($ $ (-1 |t#1| |t#1|) (-696))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-813 (-1091))) (-6 (-813 (-1091))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-808 $ (-1091)) |has| |#1| (-813 (-1091))) ((-813 (-1091)) |has| |#1| (-813 (-1091))) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ |#2|) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3083 (((-585 |#3|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#3|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 |#3|)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 23 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#3|) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| |#1| (-798 (-328))) (|has| |#3| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| |#1| (-798 (-485))) (|has| |#3| (-798 (-485)))) ELT)) (-3773 (((-696) $ |#2|) NIL T ELT) (((-696) $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) |#3|) NIL T ELT) (($ (-1086 $) |#3|) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#3|) NIL T ELT)) (-2822 (((-470 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) |#2|) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-585 |#3|) (-585 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-585 |#3|) (-585 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 |#2|) $) NIL T ELT)) (-3949 (((-470 |#3|) $) NIL T ELT) (((-696) $ |#3|) NIL T ELT) (((-585 (-696)) $ (-585 |#3|)) NIL T ELT) (((-696) $ |#2|) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#3| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#3| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-555 (-474))) (|has| |#3| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ |#3|) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#1| |#2|)) 32 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 |#3|) (-585 (-696))) NIL T ELT) (($ $ |#3| (-696)) NIL T ELT) (($ $ (-585 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-470 |#3|)) (-952 (-1040 |#1| |#2|))) (-963) (-758) (-228 |#2|)) (T -226)) +NIL +((-1523 (((-696) $) 37 T ELT)) (-3159 (((-3 |#2| "failed") $) 22 T ELT)) (-3158 ((|#2| $) 33 T ELT)) (-3759 (($ $ (-696)) 18 T ELT) (($ $) 14 T ELT)) (-3947 (((-774) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 36 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -1523 ((-696) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3159 ((-3 |#2| "failed") |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-228 |#2|) (-758)) (T -227)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-1523 (((-696) $) 26 T ELT)) (-3832 ((|#1| $) 27 T ELT)) (-3159 (((-3 |#1| "failed") $) 31 T ELT)) (-3158 ((|#1| $) 32 T ELT)) (-3773 (((-696) $) 28 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-696)) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-696)) 35 T ELT) (($ $) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2671 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) +(((-228 |#1|) (-113) (-758)) (T -228)) +((-1524 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) +(-13 (-758) (-189) (-952 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| (-696))) (-15 -3773 ((-696) $)) (-15 -3832 (|t#1| $)) (-15 -1523 ((-696) $)))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1526 (((-585 (-485)) $) 28 T ELT)) (-3949 (((-696) $) 26 T ELT)) (-3947 (((-774) $) 32 T ELT) (($ (-585 (-485))) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1525 (($ (-696)) 29 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 18 T ELT))) +(((-229) (-13 (-758) (-10 -8 (-15 -3947 ($ (-585 (-485)))) (-15 -3949 ((-696) $)) (-15 -1526 ((-585 (-485)) $)) (-15 -1525 ($ (-696)))))) (T -229)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-229)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-229)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) +((-3493 ((|#2| |#2|) 77 T ELT)) (-3640 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3491 ((|#2| |#2|) 75 T ELT)) (-3639 ((|#2| |#2|) 63 T ELT)) (-3495 ((|#2| |#2|) 79 T ELT)) (-3638 ((|#2| |#2|) 67 T ELT)) (-3628 ((|#2|) 46 T ELT)) (-3596 (((-86) (-86)) 97 T ELT)) (-3943 ((|#2| |#2|) 61 T ELT)) (-1556 (((-85) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3944 ((|#2| |#2|) 62 T ELT)) (-3496 ((|#2| |#2|) 80 T ELT)) (-3637 ((|#2| |#2|) 68 T ELT)) (-3494 ((|#2| |#2|) 78 T ELT)) (-3636 ((|#2| |#2|) 66 T ELT)) (-3492 ((|#2| |#2|) 76 T ELT)) (-3635 ((|#2| |#2|) 64 T ELT)) (-2256 (((-85) (-86)) 95 T ELT)) (-3499 ((|#2| |#2|) 83 T ELT)) (-3487 ((|#2| |#2|) 71 T ELT)) (-3497 ((|#2| |#2|) 81 T ELT)) (-3485 ((|#2| |#2|) 69 T ELT)) (-3501 ((|#2| |#2|) 85 T ELT)) (-3489 ((|#2| |#2|) 73 T ELT)) (-3502 ((|#2| |#2|) 86 T ELT)) (-3490 ((|#2| |#2|) 74 T ELT)) (-3500 ((|#2| |#2|) 84 T ELT)) (-3488 ((|#2| |#2|) 72 T ELT)) (-3498 ((|#2| |#2|) 82 T ELT)) (-3486 ((|#2| |#2|) 70 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3628 (|#2|)) (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1527 (|#2|)) (-15 -1528 (|#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 ((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1556 ((-85) |#2|))) (-496) (-13 (-362 |#1|) (-917))) (T -230)) +((-1556 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-362 *4) (-917))))) (-1555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-362 *4) (-917))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-362 *3) (-917))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-362 *4) (-917))))) (-3628 (*1 *2) (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) +((-1559 (((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1091)) 151 T ELT)) (-1561 ((|#2| (-348 (-485)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-552 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1091)) 143 T ELT)) (-1558 ((|#2| |#2| (-1091)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2445 ((|#2| |#2| (-1091)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2445 (|#2| |#2|)) (-15 -2445 (|#2| |#2| (-1091))) (-15 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-552 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1091))) (-15 -1558 (|#2| |#2|)) (-15 -1558 (|#2| |#2| (-1091))) (-15 -1559 ((-3 |#2| "failed") (-585 (-552 |#2|)) |#2| (-1091))) (-15 -1560 (|#2| |#2| (-552 |#2|))) (-15 -1561 (|#2| (-348 (-485)) |#2|))) (-13 (-496) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -231)) +((-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-348 (-485))) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1091)) (-4 *2 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *5 *2)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3))))) (-1557 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-2445 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3)))))) +((-2977 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3493 ((|#3| |#3|) 142 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3640 ((|#3| |#3|) 132 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3491 ((|#3| |#3|) 140 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3639 ((|#3| |#3|) 130 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3495 ((|#3| |#3|) 144 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3638 ((|#3| |#3|) 134 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-696)) 41 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3943 ((|#3| |#3|) 129 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3944 ((|#3| |#3|) 128 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3496 ((|#3| |#3|) 145 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3637 ((|#3| |#3|) 135 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3494 ((|#3| |#3|) 143 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3636 ((|#3| |#3|) 133 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3492 ((|#3| |#3|) 141 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3635 ((|#3| |#3|) 131 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3499 ((|#3| |#3|) 148 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3487 ((|#3| |#3|) 152 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3497 ((|#3| |#3|) 146 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3485 ((|#3| |#3|) 136 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3501 ((|#3| |#3|) 150 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3489 ((|#3| |#3|) 138 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3502 ((|#3| |#3|) 151 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3490 ((|#3| |#3|) 139 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3500 ((|#3| |#3|) 149 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3488 ((|#3| |#3|) 153 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3498 ((|#3| |#3|) 147 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3486 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-348 (-485))) 47 (|has| |#1| (-312)) ELT))) +(((-232 |#1| |#2| |#3|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-348 (-485)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-348 (-485))) (-1173 |#1|) (-1144 |#1| |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4))))) +((-2977 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3493 ((|#3| |#3|) 137 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3640 ((|#3| |#3|) 125 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3491 ((|#3| |#3|) 135 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3639 ((|#3| |#3|) 123 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3495 ((|#3| |#3|) 139 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3638 ((|#3| |#3|) 127 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-696)) 38 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3943 ((|#3| |#3|) 111 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3944 ((|#3| |#3|) 122 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3496 ((|#3| |#3|) 140 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3637 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3494 ((|#3| |#3|) 138 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3636 ((|#3| |#3|) 126 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3492 ((|#3| |#3|) 136 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3635 ((|#3| |#3|) 124 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3499 ((|#3| |#3|) 143 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3487 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3497 ((|#3| |#3|) 141 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3485 ((|#3| |#3|) 129 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3501 ((|#3| |#3|) 145 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3489 ((|#3| |#3|) 133 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3502 ((|#3| |#3|) 146 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3490 ((|#3| |#3|) 134 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3500 ((|#3| |#3|) 144 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3488 ((|#3| |#3|) 132 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3498 ((|#3| |#3|) 142 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3486 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-348 (-485))) 44 (|has| |#1| (-312)) ELT))) +(((-233 |#1| |#2| |#3| |#4|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-348 (-485)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-348 (-485))) (-1142 |#1|) (-1165 |#1| |#2|) (-898 |#2|)) (T -233)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-348 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-898 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4))))) +((-1564 (((-85) $) 20 T ELT)) (-1566 (((-1096) $) 9 T ELT)) (-3570 (((-3 (-445) #1="failed") $) 15 T ELT)) (-3569 (((-3 (-585 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-445) #1#) $) 21 T ELT)) (-1565 (((-3 (-1017) #1#) $) 19 T ELT)) (-3954 (((-85) $) 17 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1562 (((-85) $) 10 T ELT))) +(((-234) (-13 (-554 (-774)) (-10 -8 (-15 -1566 ((-1096) $)) (-15 -3954 ((-85) $)) (-15 -1565 ((-3 (-1017) #1="failed") $)) (-15 -1564 ((-85) $)) (-15 -1563 ((-3 (-445) #1#) $)) (-15 -1562 ((-85) $)) (-15 -3570 ((-3 (-445) #1#) $)) (-15 -3569 ((-3 (-585 $) #1#) $))))) (T -234)) +((-1566 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) (-3569 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234))))) +((-1568 (((-533) $) 10 T ELT)) (-1569 (((-523) $) 8 T ELT)) (-1567 (((-247) $) 12 T ELT)) (-1570 (($ (-523) (-533) (-247)) NIL T ELT)) (-3947 (((-774) $) 19 T ELT))) +(((-235) (-13 (-554 (-774)) (-10 -8 (-15 -1570 ($ (-523) (-533) (-247))) (-15 -1569 ((-523) $)) (-15 -1568 ((-533) $)) (-15 -1567 ((-247) $))))) (T -235)) +((-1570 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) +((-3711 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1354 (($ $) 38 T ELT)) (-3406 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3407 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2858 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2306 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2307 (($ $ (-485)) 11 T ELT) (($ $ (-1147 (-485))) 14 T ELT)) (-3792 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-585 $)) NIL T ELT))) +(((-236 |#1| |#2|) (-10 -7 (-15 -2858 (|#1| |#1| |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2306 (|#1| |#1| |#1| (-485))) (-15 -2306 (|#1| |#2| |#1| (-485))) (-15 -2307 (|#1| |#1| (-1147 (-485)))) (-15 -2307 (|#1| |#1| (-485))) (-15 -3803 (|#1| (-585 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -1354 (|#1| |#1|))) (-237 |#2|) (-1130)) (T -236)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2370 (($ $) 92 (|has| |#1| (-1015)) ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1015)) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2858 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3610 (($ |#1| $ (-485)) 97 T ELT) (($ $ $ (-485)) 96 T ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1572 (($ $ (-485)) 100 T ELT) (($ $ (-1147 (-485))) 99 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3792 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-237 |#1|) (-113) (-1130)) (T -237)) +((-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3610 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-2858 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1015)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1015)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-758))))) +(-13 (-595 |t#1|) (-10 -8 (-6 -3997) (-15 -3792 ($ $ |t#1|)) (-15 -3792 ($ $ $)) (-15 -1572 ($ $ (-485))) (-15 -1572 ($ $ (-1147 (-485)))) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3610 ($ |t#1| $ (-485))) (-15 -3610 ($ $ $ (-485))) (-15 -2858 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1571 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1015)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -2370 ($ $))) |%noBranch|) (IF (|has| |t#1| (-758)) (-15 -2858 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) ((** (($ $ $) 10 T ELT))) (((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) NIL -((-3939 (($ $) 6 T ELT)) (-3940 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3943 (($ $) 6 T ELT)) (-3944 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-239) (-113)) (T -239)) -((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3940 (*1 *1 *1) (-4 *1 (-239))) (-3939 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-10 -8 (-15 -3939 ($ $)) (-15 -3940 ($ $)) (-15 ** ($ $ $)))) -((-1573 (((-584 (-1068 |#1|)) (-1068 |#1|) |#1|) 35 T ELT)) (-1570 ((|#2| |#2| |#1|) 39 T ELT)) (-1572 ((|#2| |#2| |#1|) 41 T ELT)) (-1571 ((|#2| |#2| |#1|) 40 T ELT))) -(((-240 |#1| |#2|) (-10 -7 (-15 -1570 (|#2| |#2| |#1|)) (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 ((-584 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-311) (-1171 |#1|)) (T -240)) -((-1573 (*1 *2 *3 *4) (-12 (-4 *4 (-311)) (-5 *2 (-584 (-1068 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) -((-3797 ((|#2| $ |#1|) 6 T ELT))) -(((-241 |#1| |#2|) (-113) (-1128) (-1128)) (T -241)) -((-3797 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128))))) -(-13 (-1128) (-10 -8 (-15 -3797 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1128) . T)) -((-1574 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3111 ((|#3| $ |#2|) 10 T ELT))) -(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1574 (|#3| |#1| |#2| |#3|)) (-15 -3111 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1128)) (T -242)) -NIL -((-3785 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3993)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) 11 T ELT)) (-3797 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-243 |#1| |#2|) (-113) (-1013) (-1128)) (T -243)) -((-3797 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3785 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-1574 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))) -(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3797 (|t#2| $ |t#1| |t#2|)) (-15 -3111 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3785 (|t#2| $ |t#1| |t#2|)) (-15 -1574 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-241 |#1| |#2|) . T) ((-13) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 37 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 44 T ELT)) (-2062 (($ $) 41 T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) 35 T ELT)) (-3839 (($ |#2| |#3|) 18 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2613 ((|#3| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 19 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-695) $) 36 T ELT)) (-3797 ((|#2| $ |#2|) 46 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 23 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 31 T CONST)) (-2665 (($) 39 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-257) (-241 |#2| |#2|) (-10 -8 (-15 -2613 (|#3| $)) (-15 -3943 (|#2| $)) (-15 -3839 ($ |#2| |#3|)) (-15 -2401 ((-3 $ #1="failed") $ $)) (-15 -3464 ((-3 $ #1#) $)) (-15 -2483 ($ $)))) (-146) (-1154 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) -((-3464 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2613 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3943 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3839 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-245) (-113)) (T -245)) -NIL -(-13 (-962) (-82 $ $) (-10 -7 (-6 -3985))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-1582 (((-584 (-997)) $) 10 T ELT)) (-1580 (($ (-444) (-444) (-1015) $) 19 T ELT)) (-1578 (($ (-444) (-584 (-877)) $) 23 T ELT)) (-1576 (($) 25 T ELT)) (-1581 (((-633 (-1015)) (-444) (-444) $) 18 T ELT)) (-1579 (((-584 (-877)) (-444) $) 22 T ELT)) (-3562 (($) 7 T ELT)) (-1577 (($) 24 T ELT)) (-3943 (((-773) $) 29 T ELT)) (-1575 (($) 26 T ELT))) -(((-246) (-13 (-553 (-773)) (-10 -8 (-15 -3562 ($)) (-15 -1582 ((-584 (-997)) $)) (-15 -1581 ((-633 (-1015)) (-444) (-444) $)) (-15 -1580 ($ (-444) (-444) (-1015) $)) (-15 -1579 ((-584 (-877)) (-444) $)) (-15 -1578 ($ (-444) (-584 (-877)) $)) (-15 -1577 ($)) (-15 -1576 ($)) (-15 -1575 ($))))) (T -246)) -((-3562 (*1 *1) (-5 *1 (-246))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-584 (-997))) (-5 *1 (-246)))) (-1581 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-1015))) (-5 *1 (-246)))) (-1580 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-246)))) (-1579 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-584 (-877))) (-5 *1 (-246)))) (-1578 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-246)))) (-1577 (*1 *1) (-5 *1 (-246))) (-1576 (*1 *1) (-5 *1 (-246))) (-1575 (*1 *1) (-5 *1 (-246)))) -((-1586 (((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))) 103 T ELT)) (-1585 (((-584 (-631 (-347 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|)))))) (-631 (-347 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1587 (((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))) 100 T ELT)) (-1584 (((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|)))) 76 T ELT)) (-1583 (((-584 (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (-631 (-347 (-858 |#1|)))) 75 T ELT)) (-2448 (((-858 |#1|) (-631 (-347 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-347 (-858 |#1|))) (-1089)) 57 T ELT))) -(((-247 |#1|) (-10 -7 (-15 -2448 ((-858 |#1|) (-631 (-347 (-858 |#1|))) (-1089))) (-15 -2448 ((-858 |#1|) (-631 (-347 (-858 |#1|))))) (-15 -1583 ((-584 (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (-631 (-347 (-858 |#1|))))) (-15 -1584 ((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))))) (-15 -1585 ((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))) (-695) (-695))) (-15 -1585 ((-584 (-631 (-347 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|)))))) (-631 (-347 (-858 |#1|))))) (-15 -1586 ((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|))))) (-15 -1587 ((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))))) (-389)) (T -247)) -((-1587 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-347 (-858 *5)))))) (-1585 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-347 (-858 *6)) (-1079 (-1089) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *6))))) (-5 *1 (-247 *6)) (-5 *4 (-631 (-347 (-858 *6)))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-347 (-858 *5)))))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-4 *4 (-389)) (-5 *2 (-584 (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4))))) (-5 *1 (-247 *4)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4)) (-4 *4 (-389)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-858 *5)))) (-5 *4 (-1089)) (-5 *2 (-858 *5)) (-5 *1 (-247 *5)) (-4 *5 (-389))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1593 (($ $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1602 (($ $ $) 95 (|has| |#1| (-253)) ELT)) (-3721 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1591 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1589 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3525 ((|#1| $) 11 T ELT)) (-3464 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3526 ((|#1| $) 10 T ELT)) (-1592 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1590 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2483 (($ $) 64 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1588 (((-584 $) $) 85 (|has| |#1| (-495)) ELT)) (-3765 (($ $ $) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1089) |#1|) 17 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 21 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3224 (($ |#1| |#1|) 9 T ELT)) (-3908 (((-107)) 90 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 87 (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-810 (-1089))) ELT)) (-3008 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2434 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3943 (($ (-484)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-773) $) 36 (|has| |#1| (-1013)) ELT)) (-3124 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2659 (($) 47 (|has| |#1| (-21)) CONST)) (-2665 (($) 57 (|has| |#1| (-664)) CONST)) (-2668 (($ $ (-1089)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-810 (-1089))) ELT)) (-3055 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 92 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3834 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3836 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-410)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT))) -(((-248 |#1|) (-13 (-1128) (-10 -8 (-15 -3055 ($ |#1| |#1|)) (-15 -3224 ($ |#1| |#1|)) (-15 -1593 ($ $)) (-15 -3526 (|#1| $)) (-15 -3525 (|#1| $)) (-15 -3955 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-453 (-1089) |#1|)) (-6 (-453 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-553 (-85))) (IF (|has| |#1| (-259 |#1|)) (PROGN (-15 -3765 ($ $ $)) (-15 -3765 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3836 ($ |#1| $)) (-15 -3836 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1592 ($ $)) (-15 -1591 ($ $)) (-15 -3834 ($ |#1| $)) (-15 -3834 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1590 ((-3 $ #1="failed") $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-410)) (PROGN (-6 (-410)) (-15 -1590 ((-3 $ #1#) $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1588 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-1186 |#1|)) (-15 -3946 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-253)) (-15 -1602 ($ $ $)) |%noBranch|))) (-1128)) (T -248)) -((-3055 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3224 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3526 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3525 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-248 *3)))) (-3765 (*1 *1 *1 *1) (-12 (-4 *2 (-259 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-248 *2)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)) (-5 *1 (-248 *3)))) (-3836 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3834 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3834 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1590 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))) (-1589 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-495)) (-4 *3 (-1128)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (-3946 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128))))) (-2483 (*1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128)))))) -((-3955 (((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)) 14 T ELT))) -(((-249 |#1| |#2|) (-10 -7 (-15 -3955 ((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)))) (-1128) (-1128)) (T -249)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-250 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3992))) (-1013) (-1013)) (T -250)) -NIL -((-1594 (((-261) (-1072) (-584 (-1072))) 17 T ELT) (((-261) (-1072) (-1072)) 16 T ELT) (((-261) (-584 (-1072))) 15 T ELT) (((-261) (-1072)) 14 T ELT))) -(((-251) (-10 -7 (-15 -1594 ((-261) (-1072))) (-15 -1594 ((-261) (-584 (-1072)))) (-15 -1594 ((-261) (-1072) (-1072))) (-15 -1594 ((-261) (-1072) (-584 (-1072)))))) (T -251)) -((-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1072))) (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251))))) -((-1598 (((-584 (-551 $)) $) 27 T ELT)) (-1602 (($ $ (-248 $)) 78 T ELT) (($ $ (-584 (-248 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3155 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3154 (((-551 $) $) 127 T ELT)) (-2572 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1597 (((-584 (-86)) $) 35 T ELT)) (-3592 (((-86) (-86)) 89 T ELT)) (-2672 (((-85) $) 151 T ELT)) (-3955 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1600 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2234 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2632 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1089)) 132 T ELT)) (-2602 (((-695) $) 44 T ELT)) (-1596 (((-85) $ $) 57 T ELT) (((-85) $ (-1089)) 49 T ELT)) (-2673 (((-85) $) 149 T ELT)) (-3765 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) 138 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1089) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3797 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1601 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2589 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2253 (((-85) (-86)) 21 T ELT))) -(((-252 |#1|) (-10 -7 (-15 -2672 ((-85) |#1|)) (-15 -2673 ((-85) |#1|)) (-15 -3765 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3765 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3765 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3765 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3765 (|#1| |#1| (-1089) (-1 |#1| (-584 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| |#1|)))) (-15 -1596 ((-85) |#1| (-1089))) (-15 -1596 ((-85) |#1| |#1|)) (-15 -3955 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2234 (|#1| (-86) (-584 |#1|))) (-15 -2234 (|#1| (-86) |#1|)) (-15 -2632 ((-85) |#1| (-1089))) (-15 -2632 ((-85) |#1| (-86))) (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 -1597 ((-584 (-86)) |#1|)) (-15 -1598 ((-584 (-551 |#1|)) |#1|)) (-15 -1600 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2602 ((-695) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -2572 (|#1| (-584 |#1|))) (-15 -2572 (|#1| |#1|)) (-15 -2589 (|#1| (-584 |#1|))) (-15 -2589 (|#1| |#1|)) (-15 -1602 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1602 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -1602 (|#1| |#1| (-248 |#1|))) (-15 -3797 (|#1| (-86) (-584 |#1|))) (-15 -3797 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1|)) (-15 -3765 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#1| |#1|)) (-15 -3765 (|#1| |#1| (-248 |#1|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3765 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3155 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3154 ((-551 |#1|) |#1|))) (-253)) (T -252)) -((-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253))))) -((-2567 (((-85) $ $) 7 T ELT)) (-1598 (((-584 (-551 $)) $) 42 T ELT)) (-1602 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3155 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3154 (((-551 $) $) 68 T ELT)) (-2572 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1597 (((-584 (-86)) $) 41 T ELT)) (-3592 (((-86) (-86)) 40 T ELT)) (-2672 (((-85) $) 20 (|has| $ (-951 (-484))) ELT)) (-1595 (((-1084 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 43 T ELT)) (-2234 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2632 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2602 (((-695) $) 45 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-2673 (((-85) $) 21 (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3797 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3183 (($ $) 22 (|has| $ (-962)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2589 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2253 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-253) (-113)) (T -253)) -((-3797 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3797 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3797 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3797 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3797 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-2589 (*1 *1 *1) (-4 *1 (-253))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-2572 (*1 *1 *1) (-4 *1 (-253))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1) (-4 *1 (-253))) (-1601 (*1 *1 *1 *1) (-4 *1 (-253))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-695)))) (-1600 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-253)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-584 (-86))))) (-3592 (*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2253 (*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-2234 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-3955 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253)))) (-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1084 *1)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-253)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85))))) -(-13 (-1013) (-951 (-551 $)) (-453 (-551 $) $) (-259 $) (-10 -8 (-15 -3797 ($ (-86) $)) (-15 -3797 ($ (-86) $ $)) (-15 -3797 ($ (-86) $ $ $)) (-15 -3797 ($ (-86) $ $ $ $)) (-15 -3797 ($ (-86) (-584 $))) (-15 -1602 ($ $ (-248 $))) (-15 -1602 ($ $ (-584 (-248 $)))) (-15 -1602 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2589 ($ $)) (-15 -2589 ($ (-584 $))) (-15 -2572 ($ $)) (-15 -2572 ($ (-584 $))) (-15 -1601 ($ $)) (-15 -1601 ($ $ $)) (-15 -2602 ((-695) $)) (-15 -1600 ((-3 (-551 $) "failed") $)) (-15 -1599 ((-584 (-551 $)) $)) (-15 -1598 ((-584 (-551 $)) $)) (-15 -1597 ((-584 (-86)) $)) (-15 -3592 ((-86) (-86))) (-15 -2253 ((-85) (-86))) (-15 -2632 ((-85) $ (-86))) (-15 -2632 ((-85) $ (-1089))) (-15 -2234 ($ (-86) $)) (-15 -2234 ($ (-86) (-584 $))) (-15 -3955 ($ (-1 $ $) (-551 $))) (-15 -1596 ((-85) $ $)) (-15 -1596 ((-85) $ (-1089))) (-15 -3765 ($ $ (-584 (-1089)) (-584 (-1 $ $)))) (-15 -3765 ($ $ (-584 (-1089)) (-584 (-1 $ (-584 $))))) (-15 -3765 ($ $ (-1089) (-1 $ (-584 $)))) (-15 -3765 ($ $ (-1089) (-1 $ $))) (-15 -3765 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3765 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3765 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3765 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1595 ((-1084 $) (-551 $))) (-15 -3183 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-484))) (PROGN (-15 -2673 ((-85) $)) (-15 -2672 ((-85) $))) |%noBranch|))) -(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-259 $) . T) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1013) . T) ((-1128) . T)) -((-3955 ((|#2| (-1 |#2| |#1|) (-1072) (-551 |#1|)) 18 T ELT))) -(((-254 |#1| |#2|) (-10 -7 (-15 -3955 (|#2| (-1 |#2| |#1|) (-1072) (-551 |#1|)))) (-253) (-1128)) (T -254)) -((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-551 *6)) (-4 *6 (-253)) (-4 *2 (-1128)) (-5 *1 (-254 *6 *2))))) -((-3955 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3955 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-253) (-253)) (T -255)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253)) (-5 *1 (-255 *5 *2))))) -((-1606 (((-85) $ $) 14 T ELT)) (-2563 (($ $ $) 18 T ELT)) (-2562 (($ $ $) 17 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 50 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3142 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3463 (((-3 $ #1#) $ $) 21 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 55 T ELT))) -(((-256 |#1|) (-10 -7 (-15 -1603 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1604 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1604 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -1606 ((-85) |#1| |#1|)) (-15 -2739 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2740 ((-2 (|:| -3951 (-584 |#1|)) (|:| -2408 |#1|)) (-584 |#1|))) (-15 -3142 (|#1| (-584 |#1|))) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1| |#1|))) (-257)) (T -256)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) "failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-257) (-113)) (T -257)) -((-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-695)))) (-2878 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-257)))) (-2562 (*1 *1 *1 *1) (-4 *1 (-257))) (-2563 (*1 *1 *1 *1) (-4 *1 (-257))) (-1604 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-257)))) (-1604 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-257)))) (-1603 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-257))))) -(-13 (-833) (-10 -8 (-15 -1606 ((-85) $ $)) (-15 -1605 ((-695) $)) (-15 -2878 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2562 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -1604 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -1604 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1603 ((-3 (-584 $) "failed") (-584 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3765 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-248 |#2|)) 11 T ELT) (($ $ (-584 (-248 |#2|))) NIL T ELT))) -(((-258 |#1| |#2|) (-10 -7 (-15 -3765 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3765 (|#1| |#1| (-248 |#2|))) (-15 -3765 (|#1| |#1| |#2| |#2|)) (-15 -3765 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-259 |#2|) (-1013)) (T -258)) -NIL -((-3765 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-248 |#1|)) 13 T ELT) (($ $ (-584 (-248 |#1|))) 12 T ELT))) -(((-259 |#1|) (-113) (-1013)) (T -259)) -((-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1013)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1013))))) -(-13 (-453 |t#1| |t#1|) (-10 -8 (-15 -3765 ($ $ (-248 |t#1|))) (-15 -3765 ($ $ (-584 (-248 |t#1|)))))) -(((-453 |#1| |#1|) . T)) -((-3765 ((|#1| (-1 |#1| (-484)) (-1091 (-347 (-484)))) 26 T ELT))) -(((-260 |#1|) (-10 -7 (-15 -3765 (|#1| (-1 |#1| (-484)) (-1091 (-347 (-484)))))) (-38 (-347 (-484)))) (T -260)) -((-3765 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-347 (-484)))) (-5 *1 (-260 *2)) (-4 *2 (-38 (-347 (-484))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-261) (-1013)) (T -261)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3503 (((-484) $) 13 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 10 T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-262) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $)) (-15 -3503 ((-484) $))))) (T -262)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-262)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-262))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 60 T ELT)) (-3127 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-1165 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3154 (((-1165 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1089) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-1165 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-1165 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3442 (((-633 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3955 (($ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3781 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-1178 $) $) NIL T ELT) (((-631 (-1165 |#1| |#2| |#3| |#4|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-3128 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-1165 |#1| |#2| |#3| |#4|)) (-584 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-248 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-248 (-1165 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1089)) (-584 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1089) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-1165 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (($ (-1159 |#2| |#3| |#4|)) 37 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1165 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3946 (($ $ $) 35 T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-263 |#1| |#2| |#3| |#4|) (-13 (-905 (-1165 |#1| |#2| |#3| |#4|)) (-951 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3781 ((-3 (-751 |#2|) "failed") $)) (-15 -3943 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -263)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4) (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *1 (-263 *3 *4 *5 *6)))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) $) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-1214 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3186 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3080 (((-584 (-1089)) $) 365 T ELT)) (-3082 (((-347 (-1084 $)) $ (-551 $)) NIL (|has| |#1| (-495)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1598 (((-584 (-551 $)) $) NIL T ELT)) (-3489 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3636 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1370 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 227 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 305 (-12 (|has| |#1| (-389)) (|has| |#1| (-495))) ELT)) (-3772 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-495)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3487 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1607 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3491 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3634 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3721 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) (|has| |#1| (-1025))) CONST)) (-1215 (((-584 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) $) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3181 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) 133 (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-347 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3154 (((-551 $) $) 12 T ELT) (((-1089) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-858 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-347 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT)) (-3839 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3941 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-495)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3383 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3624 (($) 136 (|has| |#1| (-495)) ELT)) (-1367 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 389 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 396 (|has| |#1| (-797 (-327))) ELT)) (-2572 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3592 (((-86) (-86)) 275 T ELT)) (-2409 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2995 (($ $) 73 (|has| |#1| (-962)) ELT)) (-2997 (((-1038 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1608 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-495)) ELT)) (-1595 (((-1084 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3939 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2256 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2279 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) 51 T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-484))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2821 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $ (-1089)) NIL (|has| |#1| (-962)) ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) 53 T ELT)) (-2483 (($ $) NIL (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-2831 (($ $ (-1089)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2602 (((-695) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 45 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 298 (|has| |#1| (-495)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-1371 (($ $ (-1089)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1365 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 303 (-12 (|has| |#1| (-389)) (|has| |#1| (-495))) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-495)) ELT)) (-3940 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2673 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-554 (-473))) ELT) (($ $) NIL (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 363 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 362 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-2254 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3797 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2255 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3382 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3755 (($ $ (-1089)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2994 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3183 (($ $) 314 (|has| $ (-962)) ELT)) (-3492 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3633 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3490 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3632 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3631 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3969 (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (($ (-345 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2434 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3943 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1089)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (($ (-1038 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-347 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-858 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-951 (-484))) (|has| |#1| (-962))) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2589 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3100 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3386 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3388 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3385 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3387 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2253 (((-85) (-86)) 10 T ELT)) (-1263 (((-85) $ $) 85 T ELT)) (-3495 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3483 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3481 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1793 (($ (-1089) $) NIL T ELT) (($ (-1089) $ $) NIL T ELT) (($ (-1089) $ $ $) NIL T ELT) (($ (-1089) $ $ $ $) NIL T ELT) (($ (-1089) (-584 $)) NIL T ELT)) (-3390 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3389 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3498 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3486 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3494 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3482 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3380 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) CONST)) (-2258 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2665 (($) 25 (|has| |#1| (-1025)) CONST)) (-3384 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2259 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2668 (($ $ (-1089)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2257 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3381 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3055 (((-85) $ $) 87 T ELT)) (-3946 (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-3834 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3836 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-347 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT))) -(((-264 |#1|) (-13 (-361 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-133)) (-6 (-570)) (-6 (-1052)) (-15 -3839 ($ $)) (-15 -1608 ((-85) $)) (-15 -1607 ($ $ (-484))) (IF (|has| |#1| (-389)) (PROGN (-15 -2705 ((-345 (-1084 $)) (-1084 $))) (-15 -2706 ((-345 (-1084 $)) (-1084 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-484))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -264)) -((-3839 (*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013))))) -((-3955 (((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)) 13 T ELT))) -(((-265 |#1| |#2|) (-10 -7 (-15 -3955 ((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)))) (-1013) (-1013)) (T -265)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6))))) -((-3726 (((-51) |#2| (-248 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-248 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1089)) 26 T ELT)) (-3815 (((-51) |#2| (-248 |#2|) (-347 (-484))) 59 T ELT) (((-51) |#2| (-248 |#2|)) 56 T ELT) (((-51) |#2| (-347 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1089)) 55 T ELT)) (-3779 (((-51) |#2| (-248 |#2|) (-347 (-484))) 54 T ELT) (((-51) |#2| (-248 |#2|)) 51 T ELT) (((-51) |#2| (-347 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1089)) 50 T ELT)) (-3776 (((-51) |#2| (-248 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-248 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1089)) 43 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -3726 ((-51) (-1089))) (-15 -3726 ((-51) |#2|)) (-15 -3726 ((-51) |#2| (-695))) (-15 -3726 ((-51) |#2| (-248 |#2|))) (-15 -3726 ((-51) |#2| (-248 |#2|) (-695))) (-15 -3776 ((-51) (-1089))) (-15 -3776 ((-51) |#2|)) (-15 -3776 ((-51) |#2| (-484))) (-15 -3776 ((-51) |#2| (-248 |#2|))) (-15 -3776 ((-51) |#2| (-248 |#2|) (-484))) (-15 -3779 ((-51) (-1089))) (-15 -3779 ((-51) |#2|)) (-15 -3779 ((-51) |#2| (-347 (-484)))) (-15 -3779 ((-51) |#2| (-248 |#2|))) (-15 -3779 ((-51) |#2| (-248 |#2|) (-347 (-484)))) (-15 -3815 ((-51) (-1089))) (-15 -3815 ((-51) |#2|)) (-15 -3815 ((-51) |#2| (-347 (-484)))) (-15 -3815 ((-51) |#2| (-248 |#2|))) (-15 -3815 ((-51) |#2| (-248 |#2|) (-347 (-484))))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -266)) -((-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3779 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 *5) (-581 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-389) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3776 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4)))))) -((-1609 (((-51) |#2| (-86) (-248 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-248 |#2|) (-248 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-248 |#2|) |#2|) 87 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|))) 82 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|)) 86 T ELT))) -(((-267 |#1| |#2|) (-10 -7 (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|))) (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|)))) (-15 -1609 ((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|)))) (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) (-248 |#2|))) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) (-584 |#2|)))) (-13 (-495) (-554 (-473))) (-361 |#1|)) (T -267)) -((-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))) (-1609 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-248 *8))) (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *8)) (-5 *6 (-584 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) (-4 *5 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6))))) -((-1611 (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072)) 67 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072)) 64 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1610 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-268) (-10 -7 (-15 -1610 ((-1 (-179) (-179)) (-179))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072))))) (T -268)) -((-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 26 T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) 36 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3184 (((-85) $) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) 16 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-347 (-484))) NIL T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1612 (((-347 (-484)) $) 17 T ELT)) (-3089 (($ (-1159 |#1| |#2| |#3|)) 11 T ELT)) (-2400 (((-1159 |#1| |#2| |#3|) $) 12 T ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3945 (((-347 (-484)) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 10 T ELT)) (-3943 (((-773) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) 34 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 28 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 37 T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-269 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-717) (-10 -8 (-15 -3089 ($ (-1159 |#1| |#2| |#3|))) (-15 -2400 ((-1159 |#1| |#2| |#3|) $)) (-15 -1612 ((-347 (-484)) $)))) (-311) (-1089) |#1|) (T -269)) -((-3089 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-269 *3 *4 *5)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3)))) -((-3010 (((-2 (|:| -2400 (-695)) (|:| -3951 |#1|) (|:| |radicand| (-584 |#1|))) (-345 |#1|) (-695)) 35 T ELT)) (-3939 (((-584 (-2 (|:| -3951 (-695)) (|:| |logand| |#1|))) (-345 |#1|)) 40 T ELT))) -(((-270 |#1|) (-10 -7 (-15 -3010 ((-2 (|:| -2400 (-695)) (|:| -3951 |#1|) (|:| |radicand| (-584 |#1|))) (-345 |#1|) (-695))) (-15 -3939 ((-584 (-2 (|:| -3951 (-695)) (|:| |logand| |#1|))) (-345 |#1|)))) (-495)) (T -270)) -((-3939 (*1 *2 *3) (-12 (-5 *3 (-345 *4)) (-4 *4 (-495)) (-5 *2 (-584 (-2 (|:| -3951 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-270 *5)) (-5 *4 (-695))))) -((-3080 (((-584 |#2|) (-1084 |#4|)) 45 T ELT)) (-1617 ((|#3| (-484)) 48 T ELT)) (-1615 (((-1084 |#4|) (-1084 |#3|)) 30 T ELT)) (-1616 (((-1084 |#4|) (-1084 |#4|) (-484)) 67 T ELT)) (-1614 (((-1084 |#3|) (-1084 |#4|)) 21 T ELT)) (-3945 (((-584 (-695)) (-1084 |#4|) (-584 |#2|)) 41 T ELT)) (-1613 (((-1084 |#3|) (-1084 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT))) -(((-271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1084 |#3|) (-1084 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3945 ((-584 (-695)) (-1084 |#4|) (-584 |#2|))) (-15 -3080 ((-584 |#2|) (-1084 |#4|))) (-15 -1614 ((-1084 |#3|) (-1084 |#4|))) (-15 -1615 ((-1084 |#4|) (-1084 |#3|))) (-15 -1616 ((-1084 |#4|) (-1084 |#4|) (-484))) (-15 -1617 (|#3| (-484)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -271)) -((-1617 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1616 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1084 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1084 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-271 *5 *6 *7 *8)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1084 *8)) (-5 *1 (-271 *6 *7 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 19 T ELT)) (-3771 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-484)))) $) 21 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2298 ((|#1| $ (-484)) NIL T ELT)) (-1620 (((-484) $ (-484)) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-484) (-717)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3674 (((-484) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3834 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3836 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT))) -(((-272 |#1|) (-13 (-21) (-655 (-484)) (-273 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1013)) (T -272)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3771 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|))) $) 33 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3134 (((-695) $) 34 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| "failed") $) 38 T ELT)) (-3154 ((|#1| $) 39 T ELT)) (-2298 ((|#1| $ (-484)) 31 T ELT)) (-1620 ((|#2| $ (-484)) 32 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1618 (($ $ $) 27 (|has| |#2| (-717)) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3674 ((|#2| |#1| $) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-273 |#1| |#2|) (-113) (-1013) (-104)) (T -273)) -((-3836 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))))) (-1620 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3674 (*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1618 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-717))))) -(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3836 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3134 ((-695) $)) (-15 -3771 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3940 |t#2|))) $)) (-15 -1620 (|t#2| $ (-484))) (-15 -2298 (|t#1| $ (-484))) (-15 -3674 (|t#2| |t#1| $)) (-15 -1619 ($ (-1 |t#2| |t#2|) $)) (-15 -2289 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1618 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-695)))) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2298 ((|#1| $ (-484)) NIL T ELT)) (-1620 (((-695) $ (-484)) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3674 (((-695) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT))) -(((-274 |#1|) (-273 |#1| (-695)) (-1013)) (T -274)) -NIL -((-3500 (($ $) 72 T ELT)) (-1622 (($ $ |#2| |#3| $) 14 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1795 (((-85) $) 42 T ELT)) (-1794 ((|#2| $) 44 T ELT)) (-3463 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2816 ((|#2| $) 68 T ELT)) (-3814 (((-584 |#2|) $) 56 T ELT)) (-1621 (($ $ $ (-695)) 37 T ELT)) (-3946 (($ $ |#2|) 60 T ELT))) -(((-275 |#1| |#2| |#3|) (-10 -7 (-15 -3500 (|#1| |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3463 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1621 (|#1| |#1| |#1| (-695))) (-15 -1622 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1623 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3814 ((-584 |#2|) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3946 (|#1| |#1| |#2|))) (-276 |#2| |#3|) (-962) (-717)) (T -275)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 107 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 105 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 102 T ELT)) (-3154 (((-484) $) 106 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 104 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 103 T ELT)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3500 (($ $) 91 (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| |#2| $) 95 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2419 (((-695) $) 98 T ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| |#2|) 79 T ELT)) (-2819 ((|#2| $) 97 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 96 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 101 T ELT)) (-1794 ((|#1| $) 100 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 93 (|has| |#1| (-495)) ELT)) (-3945 ((|#2| $) 82 T ELT)) (-2816 ((|#1| $) 92 (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 T ELT) (($ (-347 (-484))) 75 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3814 (((-584 |#1|) $) 99 T ELT)) (-3674 ((|#1| $ |#2|) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 94 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-276 |#1| |#2|) (-113) (-962) (-717)) (T -276)) -((-1795 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1622 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1621 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-495)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-389)))) (-3500 (*1 *1 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-389))))) -(-13 (-47 |t#1| |t#2|) (-352 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3814 ((-584 |t#1|) $)) (-15 -2419 ((-695) $)) (-15 -2819 (|t#2| $)) (-15 -1623 ($ (-1 |t#2| |t#2|) $)) (-15 -1622 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1621 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3463 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2816 (|t#1| $)) (-15 -3500 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-352 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1985 (((-85) (-85)) NIL T ELT)) (-3785 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-2367 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1986 (($ $ (-484)) NIL T ELT)) (-1987 (((-695) $) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3606 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1988 (($ (-584 |#1|)) NIL T ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3788 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-277 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1988 ($ (-584 |#1|))) (-15 -1987 ((-695) $)) (-15 -1986 ($ $ (-484))) (-15 -1985 ((-85) (-85))))) (-1128)) (T -277)) -((-1988 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-277 *3)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1128))))) -((-3929 (((-85) $) 47 T ELT)) (-3926 (((-695)) 23 T ELT)) (-3327 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3134 (((-695)) 124 T ELT)) (-1790 (($ (-1178 |#2|)) 20 T ELT)) (-2010 (((-85) $) 136 T ELT)) (-3130 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2013 (((-1084 |#2|) $) NIL T ELT) (((-1084 $) $ (-831)) 111 T ELT)) (-1625 (((-1084 |#2|) $) 95 T ELT)) (-1624 (((-1084 |#2|) $) 91 T ELT) (((-3 (-1084 |#2|) "failed") $ $) 88 T ELT)) (-1626 (($ $ (-1084 |#2|)) 58 T ELT)) (-3927 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3908 (((-107)) 27 T ELT)) (-3945 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1627 (($) 130 T ELT)) (-3222 (((-1178 |#2|) $) NIL T ELT) (((-631 |#2|) (-1178 $)) 42 T ELT)) (-2701 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3930 (((-85) $) 45 T ELT))) -(((-278 |#1| |#2|) (-10 -7 (-15 -2701 ((-633 |#1|) |#1|)) (-15 -3134 ((-695))) (-15 -2701 (|#1| |#1|)) (-15 -1624 ((-3 (-1084 |#2|) "failed") |#1| |#1|)) (-15 -1624 ((-1084 |#2|) |#1|)) (-15 -1625 ((-1084 |#2|) |#1|)) (-15 -1626 (|#1| |#1| (-1084 |#2|))) (-15 -2010 ((-85) |#1|)) (-15 -1627 (|#1|)) (-15 -3327 (|#1| |#1| (-831))) (-15 -3130 (|#1| |#1| (-831))) (-15 -2013 ((-1084 |#1|) |#1| (-831))) (-15 -3327 (|#2| |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3945 ((-831) |#1|)) (-15 -3927 ((-831))) (-15 -2013 ((-1084 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1|)) (-15 -3926 ((-695))) (-15 -3927 ((-744 (-831)))) (-15 -3945 ((-744 (-831)) |#1|)) (-15 -3929 ((-85) |#1|)) (-15 -3930 ((-85) |#1|)) (-15 -3908 ((-107)))) (-279 |#2|) (-311)) (T -278)) -((-3908 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3927 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3926 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3927 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3134 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-3929 (((-85) $) 112 T ELT)) (-3926 (((-695)) 108 T ELT)) (-3327 ((|#1| $) 160 T ELT) (($ $ (-831)) 157 (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 142 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3134 (((-695)) 132 (|has| |#1| (-317)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| "failed") $) 119 T ELT)) (-3154 ((|#1| $) 120 T ELT)) (-1790 (($ (-1178 |#1|)) 166 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 148 (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2993 (($) 129 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-2832 (($) 144 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) 145 (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) 87 T ELT)) (-3769 (((-831) $) 147 (|has| |#1| (-317)) ELT) (((-744 (-831)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2012 (($) 155 (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) 154 (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) 161 T ELT) (($ $ (-831)) 158 (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) 133 (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2013 (((-1084 |#1|) $) 165 T ELT) (((-1084 $) $ (-831)) 159 (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) 130 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) 151 (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) 150 (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) "failed") $ $) 149 (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) 152 (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3443 (($) 134 (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) 131 (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) 111 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2408 (($) 153 (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 141 (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-3927 (((-744 (-831))) 109 T ELT) (((-831)) 163 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-1763 (((-695) $) 146 (|has| |#1| (-317)) ELT) (((-3 (-695) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) 117 T ELT)) (-3755 (($ $ (-695)) 137 (|has| |#1| (-317)) ELT) (($ $) 135 (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) 110 T ELT) (((-831) $) 162 T ELT)) (-3183 (((-1084 |#1|)) 164 T ELT)) (-1672 (($) 143 (|has| |#1| (-317)) ELT)) (-1627 (($) 156 (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) 168 T ELT) (((-631 |#1|) (-1178 $)) 167 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 140 (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2701 (($ $) 139 (|has| |#1| (-317)) ELT) (((-633 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 170 T ELT) (((-1178 $) (-831)) 169 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3930 (((-85) $) 113 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3925 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-695)) 106 (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) 138 (|has| |#1| (-317)) ELT) (($ $) 136 (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) -(((-279 |#1|) (-113) (-311)) (T -279)) -((-2011 (*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *3)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *4)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1178 *3)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) (-3183 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) (-3927 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1084 *1)) (-4 *1 (-279 *4)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-1627 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2012 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) (-2408 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))) (-1624 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3))))) -(-13 (-1197 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2011 ((-1178 $))) (-15 -2011 ((-1178 $) (-831))) (-15 -3222 ((-1178 |t#1|) $)) (-15 -3222 ((-631 |t#1|) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -2013 ((-1084 |t#1|) $)) (-15 -3183 ((-1084 |t#1|))) (-15 -3927 ((-831))) (-15 -3945 ((-831) $)) (-15 -3130 (|t#1| $)) (-15 -3327 (|t#1| $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-298)) (-15 -2013 ((-1084 $) $ (-831))) (-15 -3130 ($ $ (-831))) (-15 -3327 ($ $ (-831))) (-15 -1627 ($)) (-15 -2012 ($)) (-15 -2010 ((-85) $)) (-15 -2408 ($)) (-15 -1626 ($ $ (-1084 |t#1|))) (-15 -1625 ((-1084 |t#1|) $)) (-15 -1624 ((-1084 |t#1|) $)) (-15 -1624 ((-3 (-1084 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-317)) ((-190) |has| |#1| (-317)) ((-189) |has| |#1| (-317)) ((-201) . T) ((-245) . T) ((-257) . T) ((-1197 |#1|) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-317) |has| |#1| (-317)) ((-298) |has| |#1| (-317)) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-317)) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1628 (((-85) $) 13 T ELT)) (-3635 (($ |#1|) 10 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3631 (($ |#1|) 12 T ELT)) (-3943 (((-773) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2235 ((|#1| $) 14 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 21 T ELT))) -(((-280 |#1|) (-13 (-757) (-10 -8 (-15 -3635 ($ |#1|)) (-15 -3631 ($ |#1|)) (-15 -1628 ((-85) $)) (-15 -2235 (|#1| $)))) (-757)) (T -280)) -((-3635 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-3631 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-757)))) (-2235 (*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1629 (((-444) $) 20 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1630 (((-870 (-695)) $) 18 T ELT)) (-1632 (((-209) $) 7 T ELT)) (-3943 (((-773) $) 26 T ELT)) (-2205 (((-870 (-158 (-112))) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1631 (((-584 (-783 (-1094) (-695))) $) 12 T ELT)) (-3055 (((-85) $ $) 22 T ELT))) -(((-281) (-13 (-1013) (-10 -8 (-15 -1632 ((-209) $)) (-15 -1631 ((-584 (-783 (-1094) (-695))) $)) (-15 -1630 ((-870 (-695)) $)) (-15 -2205 ((-870 (-158 (-112))) $)) (-15 -1629 ((-444) $))))) (T -281)) -((-1632 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1094) (-695)))) (-5 *1 (-281)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-281)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-281)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3839 (($ $) 34 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1633 (((-1178 |#4|) $) 133 T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 32 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (((-3 |#4| #1#) $) 37 T ELT)) (-1634 (((-1178 |#4|) $) 125 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3432 (((-2 (|:| -2335 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3943 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-3055 (((-85) $ $) 21 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 24 T ELT))) -(((-282 |#1| |#2| |#3| |#4|) (-13 (-285 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1634 ((-1178 |#4|) $)) (-15 -1633 ((-1178 |#4|) $)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -282)) -((-1634 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))) (-1633 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) -((-3955 (((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-283 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3955 ((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-311) (-1154 |#5|) (-1154 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -283)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *9 (-311)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-347 *10))) (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-290 *9 *10 *11))))) -((-1635 (((-85) $) 14 T ELT))) -(((-284 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1635 ((-85) |#1|))) (-285 |#2| |#3| |#4| |#5|) (-311) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -284)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3839 (($ $) 34 T ELT)) (-1635 (((-85) $) 33 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 40 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2408 (((-3 |#4| "failed") $) 32 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-484)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3432 (((-2 (|:| -2335 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT))) -(((-285 |#1| |#2| |#3| |#4|) (-113) (-311) (-1154 |t#1|) (-1154 (-347 |t#2|)) (-290 |t#1| |t#2| |t#3|)) (T -285)) -((-1967 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-353 *4 (-347 *4) *5 *6)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) (-4 *1 (-285 *3 *4 *5 *6)))) (-1636 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) (-1636 (*1 *1 *2 *2) (-12 (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))) (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) (-1636 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-311)) (-4 *4 (-1154 *2)) (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) (-4 *6 (-290 *2 *4 *5)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-2 (|:| -2335 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))) (-2408 (*1 *2 *1) (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) (-1636 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-311)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1967 ((-353 |t#2| (-347 |t#2|) |t#3| |t#4|) $)) (-15 -1636 ($ (-353 |t#2| (-347 |t#2|) |t#3| |t#4|))) (-15 -1636 ($ |t#4|)) (-15 -1636 ($ |t#1| |t#1|)) (-15 -1636 ($ |t#1| |t#1| (-484))) (-15 -3432 ((-2 (|:| -2335 (-353 |t#2| (-347 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3839 ($ $)) (-15 -1635 ((-85) $)) (-15 -2408 ((-3 |t#4| "failed") $)) (-15 -1636 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1013) . T) ((-1128) . T)) -((-3765 (($ $ (-1089) |#2|) NIL T ELT) (($ $ (-584 (-1089)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-248 |#2|))) 15 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3797 (($ $ |#2|) 11 T ELT))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3797 (|#1| |#1| |#2|)) (-15 -3765 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3765 (|#1| |#1| |#2| |#2|)) (-15 -3765 (|#1| |#1| (-248 |#2|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 |#2|))) (-15 -3765 (|#1| |#1| (-1089) |#2|))) (-287 |#2|) (-1013)) (T -286)) -NIL -((-3955 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3765 (($ $ (-1089) |#1|) 17 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 16 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 15 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 14 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-259 |#1|)) ELT)) (-3797 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) -(((-287 |#1|) (-113) (-1013)) (T -287)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1013))))) -(-13 (-10 -8 (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-453 (-1089) |t#1|)) (-6 (-453 (-1089) |t#1|)) |%noBranch|))) -(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1128) |has| |#1| (-241 |#1| |#1|))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3154 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2010 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3130 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3222 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-288 |#1| |#2|) (-279 (-818 |#1|)) (-831) (-831)) (T -288)) -NIL -((-1645 (((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1790 (($ (-1178 (-347 |#3|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#3|))) NIL T ELT) (($ (-1178 |#3|) |#3|) 172 T ELT)) (-1650 (((-1178 $) (-1178 $)) 156 T ELT)) (-1637 (((-584 (-584 |#2|))) 126 T ELT)) (-1662 (((-85) |#2| |#2|) 76 T ELT)) (-3500 (($ $) 148 T ELT)) (-3374 (((-695)) 171 T ELT)) (-1651 (((-1178 $) (-1178 $)) 219 T ELT)) (-1638 (((-584 (-858 |#2|)) (-1089)) 115 T ELT)) (-1654 (((-85) $) 168 T ELT)) (-1653 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1640 (((-3 |#3| #1="failed")) 52 T ELT)) (-1664 (((-695)) 183 T ELT)) (-3797 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1641 (((-3 |#3| #1#)) 71 T ELT)) (-3755 (($ $ (-1 (-347 |#3|) (-347 |#3|))) NIL T ELT) (($ $ (-1 (-347 |#3|) (-347 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) 162 T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1663 (((-85)) 34 T ELT))) -(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -1637 ((-584 (-584 |#2|)))) (-15 -1638 ((-584 (-858 |#2|)) (-1089))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1640 ((-3 |#3| #1="failed"))) (-15 -1641 ((-3 |#3| #1#))) (-15 -3797 (|#2| |#1| |#2| |#2|)) (-15 -3500 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1653 ((-85) |#1| |#3|)) (-15 -1653 ((-85) |#1| |#2|)) (-15 -1790 (|#1| (-1178 |#3|) |#3|)) (-15 -1645 ((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1650 ((-1178 |#1|) (-1178 |#1|))) (-15 -1651 ((-1178 |#1|) (-1178 |#1|))) (-15 -1652 ((-1178 |#1|) (-1178 |#1|))) (-15 -1653 ((-85) |#1|)) (-15 -1654 ((-85) |#1|)) (-15 -1662 ((-85) |#2| |#2|)) (-15 -1663 ((-85))) (-15 -1664 ((-695))) (-15 -3374 ((-695))) (-15 -3755 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)) (-695))) (-15 -3755 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)))) (-15 -1790 (|#1| (-1178 (-347 |#3|)))) (-15 -1790 (|#1| (-1178 (-347 |#3|)) (-1178 |#1|)))) (-290 |#2| |#3| |#4|) (-1133) (-1154 |#2|) (-1154 (-347 |#3|))) (T -289)) -((-3374 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1664 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1663 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) (-1641 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1640 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) (-1637 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 112 (|has| (-347 |#2|) (-311)) ELT)) (-2062 (($ $) 113 (|has| (-347 |#2|) (-311)) ELT)) (-2060 (((-85) $) 115 (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) 59 T ELT) (((-631 (-347 |#2|))) 75 T ELT)) (-3327 (((-347 |#2|) $) 65 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 132 (|has| (-347 |#2|) (-311)) ELT)) (-3968 (((-345 $) $) 133 (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) 123 (|has| (-347 |#2|) (-311)) ELT)) (-3134 (((-695)) 106 (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) 240 T ELT)) (-1658 (((-85) |#1|) 239 T ELT) (((-85) |#2|) 238 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 192 (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) 187 T ELT)) (-3154 (((-484) $) 191 (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) 188 T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) 61 T ELT) (($ (-1178 (-347 |#2|))) 78 T ELT) (($ (-1178 |#2|) |#2|) 222 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| (-347 |#2|) (-298)) ELT)) (-2563 (($ $ $) 127 (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) 66 T ELT) (((-631 (-347 |#2|)) $) 73 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 184 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) 182 T ELT) (((-631 (-347 |#2|)) (-631 $)) 181 T ELT)) (-1650 (((-1178 $) (-1178 $)) 228 T ELT)) (-3839 (($ |#3|) 176 T ELT) (((-3 $ "failed") (-347 |#3|)) 173 (|has| (-347 |#2|) (-311)) ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-1637 (((-584 (-584 |#1|))) 209 (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) 244 T ELT)) (-3107 (((-831)) 67 T ELT)) (-2993 (($) 109 (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) 237 T ELT)) (-1656 (((-85) |#1|) 236 T ELT) (((-85) |#2|) 235 T ELT)) (-2562 (($ $ $) 126 (|has| (-347 |#2|) (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 121 (|has| (-347 |#2|) (-311)) ELT)) (-3500 (($ $) 215 T ELT)) (-2832 (($) 167 (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) 168 (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| (-347 |#2|) (-298)) ELT) (($ $) 158 (|has| (-347 |#2|) (-298)) ELT)) (-3720 (((-85) $) 134 (|has| (-347 |#2|) (-311)) ELT)) (-3769 (((-831) $) 170 (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) 156 (|has| (-347 |#2|) (-298)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-3374 (((-695)) 247 T ELT)) (-1651 (((-1178 $) (-1178 $)) 229 T ELT)) (-3130 (((-347 |#2|) $) 64 T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) 210 (|has| |#1| (-311)) ELT)) (-3442 (((-633 $) $) 160 (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| (-347 |#2|) (-311)) ELT)) (-2013 ((|#3| $) 57 (|has| (-347 |#2|) (-311)) ELT)) (-2009 (((-831) $) 108 (|has| (-347 |#2|) (-317)) ELT)) (-3078 ((|#3| $) 174 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 186 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) 180 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 118 (|has| (-347 |#2|) (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1646 (((-631 (-347 |#2|))) 224 T ELT)) (-1648 (((-631 (-347 |#2|))) 226 T ELT)) (-2483 (($ $) 135 (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 220 T ELT)) (-1647 (((-631 (-347 |#2|))) 225 T ELT)) (-1649 (((-631 (-347 |#2|))) 227 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 219 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 221 T ELT)) (-1655 (((-1178 $)) 233 T ELT)) (-3915 (((-1178 $)) 234 T ELT)) (-1654 (((-85) $) 232 T ELT)) (-1653 (((-85) $) 231 T ELT) (((-85) $ |#1|) 218 T ELT) (((-85) $ |#2|) 217 T ELT)) (-3443 (($) 161 (|has| (-347 |#2|) (-298)) CONST)) (-2399 (($ (-831)) 107 (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| "failed")) 212 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1664 (((-695)) 246 T ELT)) (-2408 (($) 178 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 120 (|has| (-347 |#2|) (-311)) ELT)) (-3142 (($ (-584 $)) 117 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 116 (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 164 (|has| (-347 |#2|) (-298)) ELT)) (-3729 (((-345 $) $) 131 (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 128 (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ "failed") $ $) 111 (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 122 (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) 124 (|has| (-347 |#2|) (-311)) ELT)) (-3797 ((|#1| $ |#1| |#1|) 214 T ELT)) (-1641 (((-3 |#2| "failed")) 213 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 125 (|has| (-347 |#2|) (-311)) ELT)) (-3754 (((-347 |#2|) (-1178 $)) 60 T ELT) (((-347 |#2|)) 74 T ELT)) (-1763 (((-695) $) 169 (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| (-347 |#2|) (-298)) ELT)) (-3755 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 143 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) 142 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 216 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089) (-695)) 147 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-584 (-1089))) 146 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089)) 144 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-695)) 154 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2561 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 152 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2561 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2407 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) 172 (|has| (-347 |#2|) (-311)) ELT)) (-3183 ((|#3|) 177 T ELT)) (-1672 (($) 166 (|has| (-347 |#2|) (-298)) ELT)) (-3222 (((-1178 (-347 |#2|)) $ (-1178 $)) 63 T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 (-347 |#2|)) $) 80 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 79 T ELT)) (-3969 (((-1178 (-347 |#2|)) $) 77 T ELT) (($ (-1178 (-347 |#2|))) 76 T ELT) ((|#3| $) 193 T ELT) (($ |#3|) 175 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 163 (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) 230 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 |#2|)) 50 T ELT) (($ (-347 (-484))) 105 (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) 110 (|has| (-347 |#2|) (-311)) ELT)) (-2701 (($ $) 162 (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) 56 (|has| (-347 |#2|) (-118)) ELT)) (-2448 ((|#3| $) 58 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1661 (((-85)) 243 T ELT)) (-1660 (((-85) |#1|) 242 T ELT) (((-85) |#2|) 241 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 81 T ELT)) (-2061 (((-85) $ $) 114 (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 211 T ELT)) (-1663 (((-85)) 245 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 141 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) 140 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089) (-695)) 150 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-584 (-1089))) 149 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089)) 145 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2561 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-695)) 155 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2561 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 153 (OR (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2561 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2561 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 139 (|has| (-347 |#2|) (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 136 (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 |#2|)) 52 T ELT) (($ (-347 |#2|) $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| (-347 |#2|) (-311)) ELT))) -(((-290 |#1| |#2| |#3|) (-113) (-1133) (-1154 |t#1|) (-1154 (-347 |t#2|))) (T -290)) -((-3374 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))) (-1664 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))) (-1663 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-1657 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-3915 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1655 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1646 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1643 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-3500 (*1 *1 *1) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))))) (-3797 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))))) (-1641 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))) (-1640 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-290 *4 *5 *6)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *4 (-311)) (-5 *2 (-584 (-858 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-584 (-584 *3)))))) -(-13 (-662 (-347 |t#2|) |t#3|) (-10 -8 (-15 -3374 ((-695))) (-15 -1664 ((-695))) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1| |t#1|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -1657 ((-85))) (-15 -1656 ((-85) |t#1|)) (-15 -1656 ((-85) |t#2|)) (-15 -3915 ((-1178 $))) (-15 -1655 ((-1178 $))) (-15 -1654 ((-85) $)) (-15 -1653 ((-85) $)) (-15 -1652 ((-1178 $) (-1178 $))) (-15 -1651 ((-1178 $) (-1178 $))) (-15 -1650 ((-1178 $) (-1178 $))) (-15 -1649 ((-631 (-347 |t#2|)))) (-15 -1648 ((-631 (-347 |t#2|)))) (-15 -1647 ((-631 (-347 |t#2|)))) (-15 -1646 ((-631 (-347 |t#2|)))) (-15 -1645 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1790 ($ (-1178 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1643 ($ (-1178 |t#2|) |t#2|)) (-15 -1642 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1653 ((-85) $ |t#1|)) (-15 -1653 ((-85) $ |t#2|)) (-15 -3755 ($ $ (-1 |t#2| |t#2|))) (-15 -3500 ($ $)) (-15 -3797 (|t#1| $ |t#1| |t#1|)) (-15 -1641 ((-3 |t#2| "failed"))) (-15 -1640 ((-3 |t#2| "failed"))) (-15 -1639 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-311)) (-15 -1638 ((-584 (-858 |t#1|)) (-1089))) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1637 ((-584 (-584 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-38 (-347 |#2|)) . T) ((-38 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-82 (-347 |#2|) (-347 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-118))) ((-120) |has| (-347 |#2|) (-120)) ((-556 (-347 (-484))) OR (|has| (-347 |#2|) (-951 (-347 (-484)))) (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-556 (-347 |#2|)) . T) ((-556 (-484)) . T) ((-556 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-184 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-190) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-189) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-225 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-201) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-245) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-257) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-311) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-342) |has| (-347 |#2|) (-298)) ((-317) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-317))) ((-298) |has| (-347 |#2|) (-298)) ((-319 (-347 |#2|) |#3|) . T) ((-350 (-347 |#2|) |#3|) . T) ((-326 (-347 |#2|)) . T) ((-352 (-347 |#2|)) . T) ((-389) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-495) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-589 (-347 |#2|)) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-591 (-347 |#2|)) . T) ((-591 (-484)) |has| (-347 |#2|) (-581 (-484))) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-583 (-347 |#2|)) . T) ((-583 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-581 (-347 |#2|)) . T) ((-581 (-484)) |has| (-347 |#2|) (-581 (-484))) ((-655 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-655 (-347 |#2|)) . T) ((-655 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-662 (-347 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1089)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089))))) ((-810 (-1089)) -12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) ((-812 (-1089)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089))))) ((-833) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-951 (-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) ((-951 (-347 |#2|)) . T) ((-951 (-484)) |has| (-347 |#2|) (-951 (-484))) ((-964 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-964 (-347 |#2|)) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-969 (-347 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| (-347 |#2|) (-298)) ((-1128) . T) ((-1133) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311)))) -((-3955 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-291 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3955 (|#8| (-1 |#5| |#1|) |#4|))) (-1133) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-1133) (-1154 |#5|) (-1154 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -291)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-290 *8 *9 *10)) (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) (-4 *10 (-1154 (-347 *9)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3154 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2010 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3130 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) NIL T ELT)) (-2408 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3222 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-292 |#1| |#2|) (-13 (-279 (-818 |#1|)) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-831) (-831)) (T -292)) -((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-292 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 58 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 56 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 139 T ELT)) (-3154 ((|#1| $) 111 T ELT)) (-1790 (($ (-1178 |#1|)) 128 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 122 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) 155 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) 65 (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) 60 (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) 62 T ELT)) (-2012 (($) 157 (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) 115 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) 165 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 172 T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) 94 (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) 142 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) 57 T ELT)) (-2408 (($) 153 (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 117 (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) 156 (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 |#1|)) 120 T ELT)) (-1672 (($) 154 (|has| |#1| (-317)) ELT)) (-1627 (($) 162 (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) 76 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) 150 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 141 T ELT) (((-1178 $) (-831)) 96 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) 66 T CONST)) (-2665 (($) 101 T CONST)) (-3925 (($ $) 105 (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) 64 T ELT)) (-3946 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3834 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-293 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-298) (-1084 |#1|)) (T -293)) -((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) (-14 *4 (-1084 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-294 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-298) (-831)) (T -294)) -((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831))))) -((-1675 (((-695) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) 61 T ELT)) (-1666 (((-870 (-1033)) (-1084 |#1|)) 112 T ELT)) (-1667 (((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) (-1084 |#1|)) 103 T ELT)) (-1668 (((-631 |#1|) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) 113 T ELT)) (-1669 (((-3 (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) "failed") (-831)) 13 T ELT)) (-1670 (((-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) (-831)) 18 T ELT))) -(((-295 |#1|) (-10 -7 (-15 -1666 ((-870 (-1033)) (-1084 |#1|))) (-15 -1667 ((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) (-1084 |#1|))) (-15 -1668 ((-631 |#1|) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))))) (-15 -1675 ((-695) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))))) (-15 -1669 ((-3 (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) "failed") (-831))) (-15 -1670 ((-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) (-831)))) (-298)) (T -295)) -((-1670 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1084 *4) (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033))))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) (-5 *1 (-295 *4)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1033))) (-5 *1 (-295 *4))))) -((-3943 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3943 (|#3| |#1|)) (-15 -3943 (|#1| |#3|))) (-279 |#2|) (-298) (-279 |#2|)) (T -296)) -((-3943 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) (-4 *3 (-279 *4)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) (-4 *3 (-279 *4))))) -((-1678 (((-85) $) 65 T ELT)) (-3769 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3442 (((-633 $) $) 21 T ELT)) (-3443 (($) 9 T CONST)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 120 T ELT)) (-1763 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3755 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1672 (($) 58 T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 41 T ELT)) (-2701 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-297 |#1|) (-10 -7 (-15 -3769 ((-831) |#1|)) (-15 -1763 ((-695) |#1|)) (-15 -1678 ((-85) |#1|)) (-15 -1672 (|#1|)) (-15 -2702 ((-3 (-1178 |#1|) #1="failed") (-631 |#1|))) (-15 -2701 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -3443 (|#1|) -3949) (-15 -3442 ((-633 |#1|) |#1|)) (-15 -1763 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3769 ((-744 (-831)) |#1|)) (-15 -2701 ((-633 |#1|) |#1|)) (-15 -2707 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-298)) (T -297)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 111 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3134 (((-695)) 121 T ELT)) (-3721 (($) 22 T CONST)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 105 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2993 (($) 124 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-2832 (($) 109 T ELT)) (-1678 (((-85) $) 108 T ELT)) (-1762 (($ $) 95 T ELT) (($ $ (-695)) 94 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-3769 (((-744 (-831)) $) 97 T ELT) (((-831) $) 106 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3442 (((-633 $) $) 120 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2009 (((-831) $) 123 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3443 (($) 119 T CONST)) (-2399 (($ (-831)) 122 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 112 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 96 T ELT) (((-695) $) 107 T ELT)) (-3755 (($ $) 118 T ELT) (($ $ (-695)) 116 T ELT)) (-1672 (($) 110 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 113 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-2701 (((-633 $) $) 98 T ELT) (($ $) 114 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $) 117 T ELT) (($ $ (-695)) 115 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) -(((-298) (-113)) (T -298)) -((-2701 (*1 *1 *1) (-4 *1 (-298))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1178 *1)))) (-1674 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-484)) (-5 *2 (-1101 (-831) (-695))))) (-1672 (*1 *1) (-4 *1 (-298))) (-2832 (*1 *1) (-4 *1 (-298))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-695)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-831)))) (-1671 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-342) (-317) (-1065) (-190) (-10 -8 (-15 -2701 ($ $)) (-15 -2702 ((-3 (-1178 $) "failed") (-631 $))) (-15 -1674 ((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484)))))) (-15 -1673 ((-1101 (-831) (-695)) (-484))) (-15 -1672 ($)) (-15 -2832 ($)) (-15 -1678 ((-85) $)) (-15 -1763 ((-695) $)) (-15 -3769 ((-831) $)) (-15 -1671 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) . T) ((-317) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T)) -((-3916 (((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3915 (((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT))) -(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -3915 ((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3916 ((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $)))) (-1154 |#1|) (-350 |#1| |#2|)) (T -299)) -((-3916 (*1 *2 *3) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3915 (*1 *2) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3154 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2010 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3130 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3399 (-818 |#1|)) (|:| -2399 (-1033)))))) NIL T ELT)) (-1676 (((-631 (-818 |#1|))) NIL T ELT)) (-2408 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3222 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) -(((-300 |#1| |#2|) (-13 (-279 (-818 |#1|)) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3399 (-818 |#1|)) (|:| -2399 (-1033))))))) (-15 -1676 ((-631 (-818 |#1|)))) (-15 -1675 ((-695))))) (-831) (-831)) (T -300)) -((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 (-818 *3)) (|:| -2399 (-1033)))))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) -((-2567 (((-85) $ $) 72 T ELT)) (-3186 (((-85) $) 87 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 168 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) 102 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) 185 (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 126 T ELT)) (-3154 ((|#1| $) 104 T ELT)) (-1790 (($ (-1178 |#1|)) 70 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 180 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) 169 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 112 (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) 198 (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) 212 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) 146 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) 86 (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) 83 (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) 95 (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) 82 (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 216 T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) 148 (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) 122 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) 96 T ELT)) (-1676 (((-631 |#1|)) 100 T ELT)) (-2408 (($) 109 (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 171 (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3183 (((-1084 |#1|)) 173 T ELT)) (-1672 (($) 145 (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) 120 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) 178 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 195 T ELT) (((-1178 $) (-831)) 115 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) 184 T CONST)) (-2665 (($) 159 T CONST)) (-3925 (($ $) 121 (|has| |#1| (-317)) ELT) (($ $ (-695)) 113 (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) 206 T ELT)) (-3946 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3834 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3836 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-301 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))))) (-15 -1676 ((-631 |#1|))) (-15 -1675 ((-695))))) (-298) (-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))))) (T -301)) -((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033)))))) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) *2)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033))))))))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033)))))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033)))))) NIL T ELT)) (-1676 (((-631 |#1|)) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-302 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))))) (-15 -1676 ((-631 |#1|))) (-15 -1675 ((-695))))) (-298) (-831)) (T -302)) -((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 130 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) 156 (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 104 T ELT)) (-3154 ((|#1| $) 101 T ELT)) (-1790 (($ (-1178 |#1|)) 96 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) 93 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) 52 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 131 (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) 85 (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) 76 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) 106 (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) 158 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) 45 (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 125 (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3183 (((-1084 |#1|)) 99 T ELT)) (-1672 (($) 136 (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) 64 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) 160 T CONST)) (-1263 (((-85) $ $) 162 T ELT)) (-2011 (((-1178 $)) 120 T ELT) (((-1178 $) (-831)) 59 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) 122 T CONST)) (-2665 (($) 40 T CONST)) (-3925 (($ $) 79 (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) 118 T ELT)) (-3946 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3834 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3836 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-303 |#1| |#2|) (-279 |#1|) (-298) (-1084 |#1|)) (T -303)) -NIL -((-1693 (((-870 (-1084 |#1|)) (-1084 |#1|)) 49 T ELT)) (-2993 (((-1084 |#1|) (-831) (-831)) 159 T ELT) (((-1084 |#1|) (-831)) 155 T ELT)) (-1678 (((-85) (-1084 |#1|)) 110 T ELT)) (-1680 (((-831) (-831)) 85 T ELT)) (-1681 (((-831) (-831)) 94 T ELT)) (-1679 (((-831) (-831)) 83 T ELT)) (-2010 (((-85) (-1084 |#1|)) 114 T ELT)) (-1688 (((-3 (-1084 |#1|) #1="failed") (-1084 |#1|)) 139 T ELT)) (-1691 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 144 T ELT)) (-1690 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 143 T ELT)) (-1689 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 142 T ELT)) (-1687 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 134 T ELT)) (-1692 (((-1084 |#1|) (-1084 |#1|)) 71 T ELT)) (-1683 (((-1084 |#1|) (-831)) 149 T ELT)) (-1686 (((-1084 |#1|) (-831)) 152 T ELT)) (-1685 (((-1084 |#1|) (-831)) 151 T ELT)) (-1684 (((-1084 |#1|) (-831)) 150 T ELT)) (-1682 (((-1084 |#1|) (-831)) 147 T ELT))) -(((-304 |#1|) (-10 -7 (-15 -1678 ((-85) (-1084 |#1|))) (-15 -2010 ((-85) (-1084 |#1|))) (-15 -1679 ((-831) (-831))) (-15 -1680 ((-831) (-831))) (-15 -1681 ((-831) (-831))) (-15 -1682 ((-1084 |#1|) (-831))) (-15 -1683 ((-1084 |#1|) (-831))) (-15 -1684 ((-1084 |#1|) (-831))) (-15 -1685 ((-1084 |#1|) (-831))) (-15 -1686 ((-1084 |#1|) (-831))) (-15 -1687 ((-3 (-1084 |#1|) #1="failed") (-1084 |#1|))) (-15 -1688 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1689 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1690 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1691 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -2993 ((-1084 |#1|) (-831))) (-15 -2993 ((-1084 |#1|) (-831) (-831))) (-15 -1692 ((-1084 |#1|) (-1084 |#1|))) (-15 -1693 ((-870 (-1084 |#1|)) (-1084 |#1|)))) (-298)) (T -304)) -((-1693 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-870 (-1084 *4))) (-5 *1 (-304 *4)) (-5 *3 (-1084 *4)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-2993 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))) -((-1694 ((|#1| (-1084 |#2|)) 60 T ELT))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1694 (|#1| (-1084 |#2|)))) (-13 (-342) (-10 -7 (-15 -3943 (|#1| |#2|)) (-15 -2009 ((-831) |#1|)) (-15 -2011 ((-1178 |#1|) (-831))) (-15 -3925 (|#1| |#1|)))) (-298)) (T -305)) -((-1694 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-4 *2 (-13 (-342) (-10 -7 (-15 -3943 (*2 *4)) (-15 -2009 ((-831) *2)) (-15 -2011 ((-1178 *2) (-831))) (-15 -3925 (*2 *2))))) (-5 *1 (-305 *2 *4))))) -((-2703 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT))) -(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -2703 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-298) (-1154 |#1|) (-1154 |#2|)) (T -306)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| |#1| (-317)) ELT)) (-2010 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3130 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| |#1| (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) NIL (|has| |#1| (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3222 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2701 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-307 |#1| |#2|) (-279 |#1|) (-298) (-831)) (T -307)) -NIL -((-2248 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2250 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2249 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2248 ((-85) (-584 (-858 |#1|)))) (-15 -2249 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2250 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-389) (-584 (-1089))) (T -308)) -((-2250 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-584 (-1089))))) (-2249 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-584 (-1089))))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-85)) (-5 *1 (-308 *4 *5)) (-14 *5 (-584 (-1089)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) 17 T ELT)) (-2298 ((|#1| $ (-484)) NIL T ELT)) (-2299 (((-484) $ (-484)) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2290 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 28 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-484)))) $) 30 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-309 |#1|) (-13 (-410) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3134 ((-695) $)) (-15 -2299 ((-484) $ (-484))) (-15 -2298 (|#1| $ (-484))) (-15 -2290 ($ (-1 (-484) (-484)) $)) (-15 -2289 ($ (-1 |#1| |#1|) $)) (-15 -1777 ((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-484)))) $)))) (-1013)) (T -309)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2299 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-309 *3)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 (-484))))) (-5 *1 (-309 *3)) (-4 *3 (-1013))))) -((-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 13 T ELT)) (-2062 (($ $) 14 T ELT)) (-3968 (((-345 $) $) 31 T ELT)) (-3720 (((-85) $) 27 T ELT)) (-2483 (($ $) 19 T ELT)) (-3142 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3729 (((-345 $) $) 32 T ELT)) (-3463 (((-3 $ "failed") $ $) 21 T ELT)) (-1605 (((-695) $) 25 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 36 T ELT)) (-2061 (((-85) $ $) 16 T ELT)) (-3946 (($ $ $) 34 T ELT))) -(((-310 |#1|) (-10 -7 (-15 -3946 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3720 ((-85) |#1|)) (-15 -3968 ((-345 |#1|) |#1|)) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -3142 (|#1| (-584 |#1|))) (-15 -3142 (|#1| |#1| |#1|)) (-15 -2061 ((-85) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3979 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) -(((-311) (-113)) (T -311)) -((-3946 (*1 *1 *1 *1) (-4 *1 (-311)))) -(-13 (-257) (-1133) (-201) (-10 -8 (-15 -3946 ($ $ $)) (-6 -3990) (-6 -3984))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-1695 ((|#1| $ |#1|) 35 T ELT)) (-1699 (($ $ (-1072)) 23 T ELT)) (-3616 (((-3 |#1| "failed") $) 34 T ELT)) (-1696 ((|#1| $) 32 T ELT)) (-1700 (($ (-335)) 22 T ELT) (($ (-335) (-1072)) 21 T ELT)) (-3539 (((-335) $) 25 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1697 (((-1072) $) 26 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT)) (-1698 (($ $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 19 T ELT))) -(((-312 |#1|) (-13 (-313 (-335) |#1|) (-10 -8 (-15 -3616 ((-3 |#1| "failed") $)))) (-1013)) (T -312)) -((-3616 (*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1013))))) -((-2567 (((-85) $ $) 7 T ELT)) (-1695 ((|#2| $ |#2|) 17 T ELT)) (-1699 (($ $ (-1072)) 22 T ELT)) (-1696 ((|#2| $) 18 T ELT)) (-1700 (($ |#1|) 24 T ELT) (($ |#1| (-1072)) 23 T ELT)) (-3539 ((|#1| $) 20 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1697 (((-1072) $) 19 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1698 (($ $) 21 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-313 |#1| |#2|) (-113) (-1013) (-1013)) (T -313)) -((-1700 (*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1695 (*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(-13 (-1013) (-10 -8 (-15 -1700 ($ |t#1|)) (-15 -1700 ($ |t#1| (-1072))) (-15 -1699 ($ $ (-1072))) (-15 -1698 ($ $)) (-15 -3539 (|t#1| $)) (-15 -1697 ((-1072) $)) (-15 -1696 (|t#2| $)) (-15 -1695 (|t#2| $ |t#2|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3221 (((-1178 (-631 |#2|)) (-1178 $)) 67 T ELT)) (-1786 (((-631 |#2|) (-1178 $)) 139 T ELT)) (-1725 ((|#2| $) 36 T ELT)) (-1784 (((-631 |#2|) $ (-1178 $)) 142 T ELT)) (-2403 (((-3 $ #1="failed") $) 89 T ELT)) (-1723 ((|#2| $) 39 T ELT)) (-1703 (((-1084 |#2|) $) 98 T ELT)) (-1788 ((|#2| (-1178 $)) 122 T ELT)) (-1721 (((-1084 |#2|) $) 32 T ELT)) (-1715 (((-85)) 116 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) 132 T ELT)) (-3464 (((-3 $ #1#) $) 93 T ELT)) (-1708 (((-85)) 111 T ELT)) (-1706 (((-85)) 106 T ELT)) (-1710 (((-85)) 58 T ELT)) (-1787 (((-631 |#2|) (-1178 $)) 137 T ELT)) (-1726 ((|#2| $) 35 T ELT)) (-1785 (((-631 |#2|) $ (-1178 $)) 141 T ELT)) (-2404 (((-3 $ #1#) $) 87 T ELT)) (-1724 ((|#2| $) 38 T ELT)) (-1704 (((-1084 |#2|) $) 97 T ELT)) (-1789 ((|#2| (-1178 $)) 120 T ELT)) (-1722 (((-1084 |#2|) $) 30 T ELT)) (-1716 (((-85)) 115 T ELT)) (-1707 (((-85)) 108 T ELT)) (-1709 (((-85)) 56 T ELT)) (-1711 (((-85)) 103 T ELT)) (-1714 (((-85)) 117 T ELT)) (-3222 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) 128 T ELT)) (-1720 (((-85)) 113 T ELT)) (-1705 (((-584 (-1178 |#2|))) 102 T ELT)) (-1718 (((-85)) 114 T ELT)) (-1719 (((-85)) 112 T ELT)) (-1717 (((-85)) 51 T ELT)) (-1713 (((-85)) 118 T ELT))) -(((-314 |#1| |#2|) (-10 -7 (-15 -1703 ((-1084 |#2|) |#1|)) (-15 -1704 ((-1084 |#2|) |#1|)) (-15 -1705 ((-584 (-1178 |#2|)))) (-15 -2403 ((-3 |#1| #1="failed") |#1|)) (-15 -2404 ((-3 |#1| #1#) |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1|)) (-15 -1706 ((-85))) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-1084 |#2|) |#1|)) (-15 -1722 ((-1084 |#2|) |#1|)) (-15 -1786 ((-631 |#2|) (-1178 |#1|))) (-15 -1787 ((-631 |#2|) (-1178 |#1|))) (-15 -1788 (|#2| (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1723 (|#2| |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1784 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -3221 ((-1178 (-631 |#2|)) (-1178 |#1|)))) (-315 |#2|) (-146)) (T -314)) -((-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1178 *4))) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1770 (((-3 $ "failed")) 47 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3221 (((-1178 (-631 |#1|)) (-1178 $)) 88 T ELT)) (-1727 (((-1178 $)) 91 T ELT)) (-3721 (($) 22 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) "failed")) 50 (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) 75 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) 86 T ELT)) (-2403 (((-3 $ "failed") $) 55 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-831)) 36 T ELT)) (-1723 ((|#1| $) 82 T ELT)) (-1703 (((-1084 |#1|) $) 52 (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) 77 T ELT)) (-1721 (((-1084 |#1|) $) 73 T ELT)) (-1715 (((-85)) 67 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 79 T ELT)) (-3464 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-3107 (((-831)) 90 T ELT)) (-1712 (((-85)) 64 T ELT)) (-2432 (($ $ (-831)) 43 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1706 (((-85)) 58 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) 76 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) 87 T ELT)) (-2404 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2405 (($ $ (-831)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1711 (((-85)) 63 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1714 (((-85)) 66 T ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 81 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 80 T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) 89 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1705 (((-584 (-1178 |#1|))) 54 (|has| |#1| (-495)) ELT)) (-2435 (($ $ $ $) 34 T ELT)) (-1718 (((-85)) 70 T ELT)) (-2433 (($ $ $) 32 T ELT)) (-1719 (((-85)) 71 T ELT)) (-1717 (((-85)) 69 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-315 |#1|) (-113) (-146)) (T -315)) -((-1727 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-315 *3)))) (-3107 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) (-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1720 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1706 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3464 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2403 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1705 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-584 (-1178 *3))))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1905 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-584 *1)))) (-4 *1 (-315 *3)))) (-1904 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-584 *1)))) (-4 *1 (-315 *3)))) (-1702 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1701 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1770 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) -(-13 (-684 |t#1|) (-10 -8 (-15 -1727 ((-1178 $))) (-15 -3107 ((-831))) (-15 -1890 ((-584 (-858 |t#1|)) (-1178 $))) (-15 -3221 ((-1178 (-631 |t#1|)) (-1178 $))) (-15 -1785 ((-631 |t#1|) $ (-1178 $))) (-15 -1784 ((-631 |t#1|) $ (-1178 $))) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -1723 (|t#1| $)) (-15 -3222 ((-1178 |t#1|) $ (-1178 $))) (-15 -3222 ((-631 |t#1|) (-1178 $) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|) (-1178 $))) (-15 -1789 (|t#1| (-1178 $))) (-15 -1788 (|t#1| (-1178 $))) (-15 -1787 ((-631 |t#1|) (-1178 $))) (-15 -1786 ((-631 |t#1|) (-1178 $))) (-15 -1722 ((-1084 |t#1|) $)) (-15 -1721 ((-1084 |t#1|) $)) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (-15 -1706 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3464 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)) (-15 -1705 ((-584 (-1178 |t#1|)))) (-15 -1704 ((-1084 |t#1|) $)) (-15 -1703 ((-1084 |t#1|) $)) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) "failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) "failed"))) (-15 -1702 ((-3 $ "failed"))) (-15 -1701 ((-3 $ "failed"))) (-15 -1770 ((-3 $ "failed"))) (-6 -3989)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2993 (($) 15 T ELT))) -(((-316 |#1|) (-10 -7 (-15 -2993 (|#1|))) (-317)) (T -316)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3134 (((-695)) 20 T ELT)) (-2993 (($) 17 T ELT)) (-2009 (((-831) $) 18 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2399 (($ (-831)) 19 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-317) (-113)) (T -317)) -((-3134 (*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-695)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-317)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-831)))) (-2993 (*1 *1) (-4 *1 (-317)))) -(-13 (-1013) (-10 -8 (-15 -3134 ((-695))) (-15 -2399 ($ (-831))) (-15 -2009 ((-831) $)) (-15 -2993 ($)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-1780 (((-631 |#2|) (-1178 $)) 45 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) 39 T ELT)) (-1779 (((-631 |#2|) $ (-1178 $)) 47 T ELT)) (-3754 ((|#2| (-1178 $)) 13 T ELT)) (-3222 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) 27 T ELT))) -(((-318 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-631 |#2|) (-1178 |#1|))) (-15 -3754 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1779 ((-631 |#2|) |#1| (-1178 |#1|)))) (-319 |#2| |#3|) (-146) (-1154 |#2|)) (T -318)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT)) (-3327 ((|#1| $) 65 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3107 (((-831)) 67 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3130 ((|#1| $) 64 T ELT)) (-2013 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3754 ((|#1| (-1178 $)) 60 T ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2701 (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 58 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-319 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -319)) -((-3107 (*1 *2) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-831)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) (-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-319 *4 *5)) (-4 *5 (-1154 *4)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1154 *2)) (-4 *2 (-146)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1154 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3107 ((-831))) (-15 -1779 ((-631 |t#1|) $ (-1178 $))) (-15 -3327 (|t#1| $)) (-15 -3130 (|t#1| $)) (-15 -3222 ((-1178 |t#1|) $ (-1178 $))) (-15 -3222 ((-631 |t#1|) (-1178 $) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|) (-1178 $))) (-15 -3754 (|t#1| (-1178 $))) (-15 -1780 ((-631 |t#1|) (-1178 $))) (-15 -2448 (|t#2| $)) (IF (|has| |t#1| (-311)) (-15 -2013 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-1730 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2908 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2297 (($ $) 25 T ELT)) (-3416 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3515 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-320 |#1| |#2|) (-10 -7 (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3416 ((-484) |#2| |#1| (-484))) (-15 -3416 ((-484) |#2| |#1|)) (-15 -3416 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2908 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -3515 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-321 |#2|) (-1128)) (T -320)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3993)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-321 |#1|) (-113) (-1128)) (T -321)) -((-3515 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-1730 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3416 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) (-3416 (*1 *2 *3 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) (-3416 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) (-3515 (*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) (-2908 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1729 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3993)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-2296 (*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-321 *2)) (-4 *2 (-1128)))) (-1728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3993)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-1728 (*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))) -(-13 (-594 |t#1|) (-10 -8 (-6 -3992) (-15 -3515 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2297 ($ $)) (-15 -2908 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1730 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3416 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3416 ((-484) |t#1| $)) (-15 -3416 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3515 ($ $ $)) (-15 -2908 ($ $)) (-15 -1730 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3993)) (PROGN (-15 -1729 ($ $ $ (-484))) (-15 -2296 ($ $)) (-15 -1728 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1728 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T)) -((-3838 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3839 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3955 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3839 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3838 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-321 |#1|) (-1128) (-321 |#3|)) (T -322)) -((-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-321 *5)) (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-321 *6)) (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3931 (((-584 |#1|) $) 42 T ELT)) (-3944 (($ $ (-695)) 43 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3936 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 46 T ELT)) (-3933 (($ $) 44 T ELT)) (-3937 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3765 (($ $ |#1| $) 41 T ELT) (($ $ (-584 |#1|) (-584 $)) 40 T ELT)) (-3945 (((-695) $) 48 T ELT)) (-3527 (($ $ $) 39 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1194 |#1| |#2|) $) 50 T ELT) (((-1203 |#1| |#2|) $) 49 T ELT)) (-3951 ((|#2| (-1203 |#1| |#2|) $) 52 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-1731 (($ (-615 |#1|)) 45 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#2|) 38 (|has| |#2| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-323 |#1| |#2|) (-113) (-757) (-146)) (T -323)) -((-3951 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3943 (*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1194 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1203 *3 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3937 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3936 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))) (-3933 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3765 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146))))) -(-13 (-575 |t#2|) (-10 -8 (-15 -3951 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -3943 ($ |t#1|)) (-15 -3943 ((-1194 |t#1| |t#2|) $)) (-15 -3943 ((-1203 |t#1| |t#2|) $)) (-15 -3945 ((-695) $)) (-15 -3937 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3936 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -1731 ($ (-615 |t#1|))) (-15 -3933 ($ $)) (-15 -3944 ($ $ (-695))) (-15 -3931 ((-584 |t#1|) $)) (-15 -3765 ($ $ |t#1| $)) (-15 -3765 ($ $ (-584 |t#1|) (-584 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1013) . T) ((-1128) . T)) -((-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1732 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-324 |#1| |#2|) (-10 -7 (-15 -1732 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1128) (-13 (-321 |#1|) (-10 -7 (-6 -3993)))) (T -324)) -((-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993)))))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993)))))) (-1732 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993))))))) -((-2278 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 22 T ELT) (((-631 (-484)) (-631 $)) 14 T ELT))) -(((-325 |#1| |#2|) (-10 -7 (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-631 |#2|) (-631 |#1|)))) (-326 |#2|) (-962)) (T -325)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2278 (((-631 |#1|) (-631 $)) 35 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 34 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 46 (|has| |#1| (-581 (-484))) ELT) (((-631 (-484)) (-631 $)) 45 (|has| |#1| (-581 (-484))) ELT)) (-2279 (((-631 |#1|) (-1178 $)) 37 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 36 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 44 (|has| |#1| (-581 (-484))) ELT) (((-631 (-484)) (-1178 $)) 43 (|has| |#1| (-581 (-484))) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-326 |#1|) (-113) (-962)) (T -326)) -NIL -(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-484))) (-6 (-581 (-484))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 16 T ELT)) (-3127 (((-484) $) 44 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3768 (($ $) 120 T ELT)) (-3489 (($ $) 81 T ELT)) (-3636 (($ $) 72 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-3036 (($ $) 28 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3487 (($ $) 79 T ELT)) (-3635 (($ $) 67 T ELT)) (-3620 (((-484) $) 60 T ELT)) (-2440 (($ $ (-484)) 55 T ELT)) (-3491 (($ $) NIL T ELT)) (-3634 (($ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3125 (($ $) 122 T ELT)) (-3155 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-347 (-484)) #1#) $) 213 T ELT)) (-3154 (((-484) $) 215 T ELT) (((-347 (-484)) $) 211 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-1743 (((-484) $ $) 110 T ELT)) (-3464 (((-3 $ #1#) $) 125 T ELT)) (-1742 (((-347 (-484)) $ (-695)) 218 T ELT) (((-347 (-484)) $ (-695) (-695)) 210 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-1766 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3983)) ELT)) (-3184 (((-85) $) 38 T ELT)) (-3624 (($) 22 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL T ELT)) (-1735 (((-1184) (-695)) 177 T ELT)) (-1736 (((-1184)) 182 T ELT) (((-1184) (-695)) 183 T ELT)) (-1738 (((-1184)) 184 T ELT) (((-1184) (-695)) 185 T ELT)) (-1737 (((-1184)) 180 T ELT) (((-1184) (-695)) 181 T ELT)) (-3769 (((-484) $) 50 T ELT)) (-2409 (((-85) $) 21 T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-2442 (($ $) 32 T ELT)) (-3130 (($ $) NIL T ELT)) (-3185 (((-85) $) 18 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL (-12 (-2559 (|has| $ (-6 -3975))) (-2559 (|has| $ (-6 -3983)))) ELT)) (-2856 (($ $ $) NIL T ELT) (($) NIL (-12 (-2559 (|has| $ (-6 -3975))) (-2559 (|has| $ (-6 -3983)))) ELT)) (-1768 (((-484) $) 112 T ELT)) (-1741 (($) 90 T ELT) (($ $) 97 T ELT)) (-1740 (($) 96 T ELT) (($ $) 98 T ELT)) (-3939 (($ $) 84 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 127 T ELT)) (-1765 (((-831) (-484)) 27 (|has| $ (-6 -3983)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) 41 T ELT)) (-3128 (($ $) 119 T ELT)) (-3252 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-831)) 116 T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2400 (((-484) $) 113 T ELT)) (-1739 (($) 99 T ELT)) (-3940 (($ $) 78 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3983)) ELT)) (-3755 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1764 (((-831) (-484)) 31 (|has| $ (-6 -3983)) ELT)) (-3492 (($ $) NIL T ELT)) (-3633 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3632 (($ $) NIL T ELT)) (-3488 (($ $) 80 T ELT)) (-3631 (($ $) 71 T ELT)) (-3969 (((-327) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-327)) $) NIL T ELT) (((-1072) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3943 (((-773) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-347 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (($ $) 121 T ELT)) (-1767 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3983)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-831)) 111 T ELT)) (-3495 (($ $) 87 T ELT)) (-3483 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 85 T ELT)) (-3481 (($ $) 20 T ELT)) (-3497 (($ $) NIL T ELT)) (-3485 (($ $) NIL T ELT)) (-3498 (($ $) NIL T ELT)) (-3486 (($ $) NIL T ELT)) (-3496 (($ $) NIL T ELT)) (-3484 (($ $) NIL T ELT)) (-3494 (($ $) 86 T ELT)) (-3482 (($ $) 33 T ELT)) (-3380 (($ $) 39 T ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 24 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2565 (((-85) $ $) 189 T ELT)) (-2566 (((-85) $ $) 26 T ELT)) (-3055 (((-85) $ $) 37 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 43 T ELT)) (-3946 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3834 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3836 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-347 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-327) (-13 (-344) (-190) (-554 (-1072)) (-553 (-179)) (-1114) (-554 (-473)) (-558 (-179)) (-10 -8 (-15 -3946 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2442 ($ $)) (-15 -1743 ((-484) $ $)) (-15 -2440 ($ $ (-484))) (-15 -1742 ((-347 (-484)) $ (-695))) (-15 -1742 ((-347 (-484)) $ (-695) (-695))) (-15 -1741 ($)) (-15 -1740 ($)) (-15 -1739 ($)) (-15 -3483 ($ $ $)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -1738 ((-1184))) (-15 -1738 ((-1184) (-695))) (-15 -1737 ((-1184))) (-15 -1737 ((-1184) (-695))) (-15 -1736 ((-1184))) (-15 -1736 ((-1184) (-695))) (-15 -1735 ((-1184) (-695))) (-6 -3983) (-6 -3975)))) (T -327)) -((** (*1 *1 *1 *1) (-5 *1 (-327))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-2442 (*1 *1 *1) (-5 *1 (-327))) (-1743 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-2440 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))) (-1741 (*1 *1) (-5 *1 (-327))) (-1740 (*1 *1) (-5 *1 (-327))) (-1739 (*1 *1) (-5 *1 (-327))) (-3483 (*1 *1 *1 *1) (-5 *1 (-327))) (-1741 (*1 *1 *1) (-5 *1 (-327))) (-1740 (*1 *1 *1) (-5 *1 (-327))) (-1738 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1737 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1736 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327))))) -((-1744 (((-584 (-248 (-858 (-142 |#1|)))) (-248 (-347 (-858 (-142 (-484))))) |#1|) 52 T ELT) (((-584 (-248 (-858 (-142 |#1|)))) (-347 (-858 (-142 (-484)))) |#1|) 51 T ELT) (((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-248 (-347 (-858 (-142 (-484)))))) |#1|) 48 T ELT) (((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-347 (-858 (-142 (-484))))) |#1|) 42 T ELT)) (-1745 (((-584 (-584 (-142 |#1|))) (-584 (-347 (-858 (-142 (-484))))) (-584 (-1089)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-347 (-858 (-142 (-484)))) |#1|) 18 T ELT))) -(((-328 |#1|) (-10 -7 (-15 -1744 ((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-347 (-858 (-142 (-484))))) |#1|)) (-15 -1744 ((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-248 (-347 (-858 (-142 (-484)))))) |#1|)) (-15 -1744 ((-584 (-248 (-858 (-142 |#1|)))) (-347 (-858 (-142 (-484)))) |#1|)) (-15 -1744 ((-584 (-248 (-858 (-142 |#1|)))) (-248 (-347 (-858 (-142 (-484))))) |#1|)) (-15 -1745 ((-584 (-142 |#1|)) (-347 (-858 (-142 (-484)))) |#1|)) (-15 -1745 ((-584 (-584 (-142 |#1|))) (-584 (-347 (-858 (-142 (-484))))) (-584 (-1089)) |#1|))) (-13 (-311) (-756))) (T -328)) -((-1745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-328 *5)) (-4 *5 (-13 (-311) (-756))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 (-142 (-484)))))) (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 (-142 (-484))))))) (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756)))))) -((-3570 (((-584 (-248 (-858 |#1|))) (-248 (-347 (-858 (-484)))) |#1|) 47 T ELT) (((-584 (-248 (-858 |#1|))) (-347 (-858 (-484))) |#1|) 46 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-347 (-858 (-484))))) |#1|) 43 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-347 (-858 (-484)))) |#1|) 37 T ELT)) (-1746 (((-584 |#1|) (-347 (-858 (-484))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-347 (-858 (-484)))) (-584 (-1089)) |#1|) 30 T ELT))) -(((-329 |#1|) (-10 -7 (-15 -3570 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-347 (-858 (-484)))) |#1|)) (-15 -3570 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-347 (-858 (-484))))) |#1|)) (-15 -3570 ((-584 (-248 (-858 |#1|))) (-347 (-858 (-484))) |#1|)) (-15 -3570 ((-584 (-248 (-858 |#1|))) (-248 (-347 (-858 (-484)))) |#1|)) (-15 -1746 ((-584 (-584 |#1|)) (-584 (-347 (-858 (-484)))) (-584 (-1089)) |#1|)) (-15 -1746 ((-584 |#1|) (-347 (-858 (-484))) |#1|))) (-13 (-756) (-311))) (T -329)) -((-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-756) (-311))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 (-484))))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 (-484)))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) NIL T ELT)) (-3943 (((-773) $) 34 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-330 |#1| |#2|) (-13 (-82 |#1| |#1|) (-447 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -330)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) 29 T ELT)) (-3154 ((|#2| $) 31 T ELT)) (-3956 (($ $) NIL T ELT)) (-2419 (((-695) $) 13 T ELT)) (-2820 (((-584 $) $) 23 T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ |#2| |#1|) 21 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2893 ((|#2| $) 18 T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3814 (((-584 |#1|) $) 20 T ELT)) (-3674 ((|#1| $ |#2|) 54 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 32 T CONST)) (-2664 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-331 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -331)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#2| "failed") $) 54 T ELT)) (-3154 ((|#2| $) 55 T ELT)) (-3956 (($ $) 40 T ELT)) (-2419 (((-695) $) 44 T ELT)) (-2820 (((-584 $) $) 45 T ELT)) (-3934 (((-85) $) 48 T ELT)) (-3935 (($ |#2| |#1|) 49 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2893 ((|#2| $) 43 T ELT)) (-3172 ((|#1| $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3814 (((-584 |#1|) $) 46 T ELT)) (-3674 ((|#1| $ |#2|) 51 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2664 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-332 |#1| |#2|) (-113) (-962) (-1013)) (T -332)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013)))) (-3674 (*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)))) (-3935 (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-332 *3 *4)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-695)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013))))) -(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3674 (|t#1| $ |t#2|)) (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (-15 -3935 ($ |t#2| |t#1|)) (-15 -3934 ((-85) $)) (-15 -2664 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3814 ((-584 |t#1|) $)) (-15 -2820 ((-584 $) $)) (-15 -2419 ((-695) $)) (-15 -2893 (|t#2| $)) (-15 -3172 (|t#1| $)) (-15 -1747 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3956 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3134 (((-695) $) 40 T ELT)) (-3721 (($) 23 T CONST)) (-3936 (((-3 $ "failed") $ $) 43 T ELT)) (-3155 (((-3 |#1| "failed") $) 51 T ELT)) (-3154 ((|#1| $) 52 T ELT)) (-3464 (((-3 $ "failed") $) 20 T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-2298 ((|#1| $ (-484)) 37 T ELT)) (-2299 (((-695) $ (-484)) 38 T ELT)) (-2530 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2290 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3937 (((-3 $ "failed") $ $) 44 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1749 (($ $ $) 45 T ELT)) (-1750 (($ $ $) 46 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-695)))) $) 39 T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-333 |#1|) (-113) (-1013)) (T -333)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-3937 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-3936 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-2878 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-1748 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 (-695))))))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *4)) (-4 *4 (-1013)) (-5 *2 (-695)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-333 *3)) (-4 *3 (-1013)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1013))))) -(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1750 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -3937 ((-3 $ "failed") $ $)) (-15 -3936 ((-3 $ "failed") $ $)) (-15 -2878 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1748 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3134 ((-695) $)) (-15 -1777 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3940 (-695)))) $)) (-15 -2299 ((-695) $ (-484))) (-15 -2298 (|t#1| $ (-484))) (-15 -2290 ($ (-1 (-695) (-695)) $)) (-15 -2289 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695) $) 74 T ELT)) (-3721 (($) NIL T CONST)) (-3936 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2409 (((-85) $) 17 T ELT)) (-2298 ((|#1| $ (-484)) NIL T ELT)) (-2299 (((-695) $ (-484)) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2289 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2290 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3937 (((-3 $ #1#) $ $) 60 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1749 (($ $ $) 28 T ELT)) (-1750 (($ $ $) 26 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-695)))) $) 34 T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3943 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-334 |#1|) (-333 |#1|) (-1013)) (T -334)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1751 (((-85) $) 25 T ELT)) (-1752 (((-85) $) 22 T ELT)) (-3611 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-3539 (((-1072) $) 16 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1756 (($ (-1072) (-1072) (-1072)) 14 T ELT)) (-1754 (((-1072) $) 17 T ELT)) (-1753 (((-85) $) 18 T ELT)) (-1755 (((-1072) $) 15 T ELT)) (-3943 (((-773) $) 12 T ELT) (($ (-1072)) 13 T ELT) (((-1072) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-335) (-336)) (T -335)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-1751 (((-85) $) 20 T ELT)) (-1752 (((-85) $) 21 T ELT)) (-3611 (($ (-1072) (-1072) (-1072)) 19 T ELT)) (-3539 (((-1072) $) 24 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1756 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-1754 (((-1072) $) 23 T ELT)) (-1753 (((-85) $) 22 T ELT)) (-1755 (((-1072) $) 25 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-1072)) 28 T ELT) (((-1072) $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-336) (-113)) (T -336)) -((-1756 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-3611 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336))))) -(-13 (-1013) (-427 (-1072)) (-10 -8 (-15 -1756 ($ (-1072) (-1072) (-1072))) (-15 -1755 ((-1072) $)) (-15 -3539 ((-1072) $)) (-15 -1754 ((-1072) $)) (-15 -1753 ((-85) $)) (-15 -1752 ((-85) $)) (-15 -1751 ((-85) $)) (-15 -3611 ($ (-1072) (-1072) (-1072))))) -(((-72) . T) ((-556 (-1072)) . T) ((-553 (-773)) . T) ((-553 (-1072)) . T) ((-427 (-1072)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (((-773) $) 64 T ELT)) (-3721 (($) NIL T CONST)) (-2406 (($ $ (-831)) NIL T ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($ (-695)) 38 T ELT)) (-3908 (((-695)) 18 T ELT)) (-1758 (((-773) $) 66 T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-2659 (($) 24 T CONST)) (-3055 (((-85) $ $) 41 T ELT)) (-3834 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3836 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-337 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3908 ((-695))) (-15 -1758 ((-773) $)) (-15 -1757 ((-773) $)) (-15 -2408 ($ (-695))))) (-695) (-695) (-146)) (T -337)) -((-3908 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-3769 (((-695) (-282 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-338 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3769 ((-695) (-282 |#1| |#2| |#3| |#4|)))) (-13 (-317) (-311)) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -338)) -((-3769 (*1 *2 *3) (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-338 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1760 ((|#2| $) 38 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1761 (($ (-347 |#2|)) 93 T ELT)) (-1759 (((-584 (-2 (|:| -2400 (-695)) (|:| -3770 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3755 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3969 (((-347 |#2|) $) 49 T ELT)) (-3527 (($ (-584 (-2 (|:| -2400 (-695)) (|:| -3770 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3943 (((-773) $) 131 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3836 (($ |#2| $) 41 T ELT))) -(((-339 |#1| |#2|) (-13 (-1013) (-189) (-554 (-347 |#2|)) (-10 -8 (-15 -3836 ($ |#2| $)) (-15 -1761 ($ (-347 |#2|))) (-15 -1760 (|#2| $)) (-15 -1759 ((-584 (-2 (|:| -2400 (-695)) (|:| -3770 |#2|) (|:| |num| |#2|))) $)) (-15 -3527 ($ (-584 (-2 (|:| -2400 (-695)) (|:| -3770 |#2|) (|:| |num| |#2|))))))) (-13 (-311) (-120)) (-1154 |#1|)) (T -339)) -((-3836 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1154 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) (-1760 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))) (-1759 (*1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *2 (-584 (-2 (|:| -2400 (-695)) (|:| -3770 *4) (|:| |num| *4)))) (-5 *1 (-339 *3 *4)) (-4 *4 (-1154 *3)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2400 (-695)) (|:| -3770 *4) (|:| |num| *4)))) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4))))) -((-2567 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 16 (|has| |#1| (-797 (-327))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 15 (|has| |#1| (-797 (-484))) ELT)) (-3240 (((-1072) $) 14 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3241 (((-1033) $) 13 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3943 (((-773) $) 12 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-1263 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3055 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT))) -(((-340 |#1|) (-113) (-1128)) (T -340)) -NIL -(-13 (-1128) (-10 -7 (IF (|has| |t#1| (-797 (-484))) (-6 (-797 (-484))) |%noBranch|) (IF (|has| |t#1| (-797 (-327))) (-6 (-797 (-327))) |%noBranch|))) -(((-72) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-553 (-773)) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-13) . T) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-1013) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-1128) . T)) -((-1762 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT))) -(((-341 |#1|) (-10 -7 (-15 -1762 (|#1| |#1| (-695))) (-15 -1762 (|#1| |#1|))) (-342)) (T -341)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-1762 (($ $) 95 T ELT) (($ $ (-695)) 94 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-3769 (((-744 (-831)) $) 97 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 96 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-2701 (((-633 $) $) 98 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) -(((-342) (-113)) (T -342)) -((-3769 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-744 (-831))))) (-1763 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-695)))) (-1762 (*1 *1 *1) (-4 *1 (-342))) (-1762 (*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-695))))) -(-13 (-311) (-118) (-10 -8 (-15 -3769 ((-744 (-831)) $)) (-15 -1763 ((-3 (-695) "failed") $ $)) (-15 -1762 ($ $)) (-15 -1762 ($ $ (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-3252 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-831)) NIL T ELT)) (-2614 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT))) -(((-343 |#1|) (-10 -7 (-15 -2614 ((-831) (-831))) (-15 -2614 ((-831))) (-15 -3252 (|#1| (-484) (-484) (-831))) (-15 -3252 (|#1| (-484) (-484)))) (-344)) (T -343)) -((-2614 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3127 (((-484) $) 106 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-3768 (($ $) 104 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-3036 (($ $) 114 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3620 (((-484) $) 131 T ELT)) (-3721 (($) 22 T CONST)) (-3125 (($ $) 103 T ELT)) (-3155 (((-3 (-484) #1="failed") $) 119 T ELT) (((-3 (-347 (-484)) #1#) $) 116 T ELT)) (-3154 (((-484) $) 120 T ELT) (((-347 (-484)) $) 117 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-1766 (((-831)) 147 T ELT) (((-831) (-831)) 144 (|has| $ (-6 -3983)) ELT)) (-3184 (((-85) $) 129 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 110 T ELT)) (-3769 (((-484) $) 153 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 113 T ELT)) (-3130 (($ $) 109 T ELT)) (-3185 (((-85) $) 130 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-2530 (($ $ $) 123 T ELT) (($) 141 (-12 (-2559 (|has| $ (-6 -3983))) (-2559 (|has| $ (-6 -3975)))) ELT)) (-2856 (($ $ $) 124 T ELT) (($) 140 (-12 (-2559 (|has| $ (-6 -3983))) (-2559 (|has| $ (-6 -3975)))) ELT)) (-1768 (((-484) $) 150 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-1765 (((-831) (-484)) 143 (|has| $ (-6 -3983)) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3126 (($ $) 105 T ELT)) (-3128 (($ $) 107 T ELT)) (-3252 (($ (-484) (-484)) 155 T ELT) (($ (-484) (-484) (-831)) 154 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-2400 (((-484) $) 151 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-2614 (((-831)) 148 T ELT) (((-831) (-831)) 145 (|has| $ (-6 -3983)) ELT)) (-1764 (((-831) (-484)) 142 (|has| $ (-6 -3983)) ELT)) (-3969 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-801 (-327)) $) 111 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-484)) 118 T ELT) (($ (-347 (-484))) 115 T ELT)) (-3124 (((-695)) 38 T CONST)) (-3129 (($ $) 108 T ELT)) (-1767 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3983)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2693 (((-831)) 152 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3380 (($ $) 132 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 125 T ELT)) (-2566 (((-85) $ $) 127 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 126 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 112 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) -(((-344) (-113)) (T -344)) -((-3252 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-344)))) (-3252 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-831)) (-4 *1 (-344)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-2693 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-1767 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-2614 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-1766 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3983)) (-4 *1 (-344)) (-5 *2 (-831)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3983)) (-4 *1 (-344)) (-5 *2 (-831)))) (-2530 (*1 *1) (-12 (-4 *1 (-344)) (-2559 (|has| *1 (-6 -3983))) (-2559 (|has| *1 (-6 -3975))))) (-2856 (*1 *1) (-12 (-4 *1 (-344)) (-2559 (|has| *1 (-6 -3983))) (-2559 (|has| *1 (-6 -3975)))))) -(-13 (-973) (-10 -8 (-6 -3767) (-15 -3252 ($ (-484) (-484))) (-15 -3252 ($ (-484) (-484) (-831))) (-15 -3769 ((-484) $)) (-15 -2693 ((-831))) (-15 -2400 ((-484) $)) (-15 -1768 ((-484) $)) (-15 -1767 ((-831))) (-15 -2614 ((-831))) (-15 -1766 ((-831))) (IF (|has| $ (-6 -3983)) (PROGN (-15 -1767 ((-831) (-831))) (-15 -2614 ((-831) (-831))) (-15 -1766 ((-831) (-831))) (-15 -1765 ((-831) (-484))) (-15 -1764 ((-831) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3975)) |%noBranch| (IF (|has| $ (-6 -3983)) |%noBranch| (PROGN (-15 -2530 ($)) (-15 -2856 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-801 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-327)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-973) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 59 T ELT)) (-1769 (($ $) 77 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 189 T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) 48 T ELT)) (-1770 ((|#1| $) 16 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-1133)) ELT)) (-1772 (($ |#1| (-484)) 42 T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3464 (((-3 $ #1#) $) 163 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1773 (($ |#1| (-484)) 44 T ELT)) (-3720 (((-85) $) 209 (|has| |#1| (-1133)) ELT)) (-2409 (((-85) $) 61 T ELT)) (-1832 (((-695) $) 51 T ELT)) (-1774 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2298 ((|#1| $ (-484)) 173 T ELT)) (-1775 (((-484) $ (-484)) 172 T ELT)) (-1778 (($ |#1| (-484)) 41 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1829 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1776 (($ |#1| (-484)) 43 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 190 (|has| |#1| (-389)) ELT)) (-1771 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1777 (((-584 (-2 (|:| -3729 |#1|) (|:| -2400 (-484)))) $) 72 T ELT)) (-1950 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-1133)) ELT)) (-3463 (((-3 $ #1#) $ $) 175 T ELT)) (-2400 (((-484) $) 166 T ELT)) (-3960 ((|#1| $) 74 T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 105 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) $) NIL (|has| |#1| (-453 (-1089) $)) ELT) (($ $ (-584 (-1089)) (-584 $)) 106 (|has| |#1| (-453 (-1089) $)) ELT) (($ $ (-584 (-248 $))) 102 (|has| |#1| (-259 $)) ELT) (($ $ (-248 $)) NIL (|has| |#1| (-259 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-259 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-259 $)) ELT)) (-3797 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3755 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3969 (((-473) $) 39 (|has| |#1| (-554 (-473))) ELT) (((-327) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3943 (((-773) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT)) (-3124 (((-695)) 66 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 53 T CONST)) (-2665 (($) 52 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 158 T ELT)) (-3834 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-345 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-287 |#1|) (-352 |#1|) (-10 -8 (-15 -3960 (|#1| $)) (-15 -2400 ((-484) $)) (-15 -1829 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1950 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1778 ($ |#1| (-484))) (-15 -1777 ((-584 (-2 (|:| -3729 |#1|) (|:| -2400 (-484)))) $)) (-15 -1776 ($ |#1| (-484))) (-15 -1775 ((-484) $ (-484))) (-15 -2298 (|#1| $ (-484))) (-15 -1774 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1832 ((-695) $)) (-15 -1773 ($ |#1| (-484))) (-15 -1772 ($ |#1| (-484))) (-15 -1771 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1770 (|#1| $)) (-15 -1769 ($ $)) (-15 -3955 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-389)) (-6 (-389)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-259 $)) (-6 (-259 $)) |%noBranch|) (IF (|has| |#1| (-453 (-1089) $)) (-6 (-453 (-1089) $)) |%noBranch|))) (-495)) (T -345)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-345 *3)))) (-3960 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1829 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-345 *2)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3729 *3) (|:| -2400 (-484))))) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1775 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *4)) (-4 *4 (-495)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1771 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1770 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495))))) -((-3955 (((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)) 20 T ELT))) -(((-346 |#1| |#2|) (-10 -7 (-15 -3955 ((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)))) (-495) (-495)) (T -346)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 13 T ELT)) (-3127 ((|#1| $) 21 (|has| |#1| (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| |#1| (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#1| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) 54 (|has| |#1| (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT)) (-3154 ((|#1| $) 15 T ELT) (((-1089) $) NIL (|has| |#1| (-951 (-1089))) ELT) (((-347 (-484)) $) 51 (|has| |#1| (-951 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) 32 T ELT)) (-2993 (($) NIL (|has| |#1| (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#1| (-797 (-327))) ELT)) (-2409 (((-85) $) 38 T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#1| $) 55 T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3185 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| |#1| (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 82 T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3128 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 133 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 128 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#1| $) 57 T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT) (((-327) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1089)) NIL (|has| |#1| (-951 (-1089))) ELT)) (-2701 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 93 T CONST)) (-3129 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 8 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 48 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3946 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3834 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3836 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-347 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3979)) (IF (|has| |#1| (-389)) (IF (|has| |#1| (-6 -3990)) (-6 -3979) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -347)) -NIL -((-3955 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 13 T ELT))) -(((-348 |#1| |#2|) (-10 -7 (-15 -3955 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-495) (-495)) (T -348)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))) -((-1780 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT)) (-1779 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2013 ((|#3| $) 69 T ELT)) (-3754 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3222 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 22 T ELT) (((-631 |#2|) (-1178 $)) 38 T ELT)) (-3969 (((-1178 |#2|) $) 11 T ELT) (($ (-1178 |#2|)) 13 T ELT)) (-2448 ((|#3| $) 55 T ELT))) -(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -1779 ((-631 |#2|) |#1|)) (-15 -3754 (|#2|)) (-15 -1780 ((-631 |#2|))) (-15 -3969 (|#1| (-1178 |#2|))) (-15 -3969 ((-1178 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1|)) (-15 -2013 (|#3| |#1|)) (-15 -2448 (|#3| |#1|)) (-15 -1780 ((-631 |#2|) (-1178 |#1|))) (-15 -3754 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1779 ((-631 |#2|) |#1| (-1178 |#1|)))) (-350 |#2| |#3|) (-146) (-1154 |#2|)) (T -349)) -((-1780 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)) (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) (-3754 (*1 *2) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) (-4 *3 (-350 *2 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3327 ((|#1| $) 65 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3107 (((-831)) 67 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3130 ((|#1| $) 64 T ELT)) (-2013 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3754 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3969 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2701 (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 58 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 81 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-350 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -350)) -((-2011 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) (-4 *1 (-350 *3 *4)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1154 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1154 *3)))) (-1780 (*1 *2) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-631 *3)))) (-3754 (*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-631 *3))))) -(-13 (-319 |t#1| |t#2|) (-10 -8 (-15 -2011 ((-1178 $))) (-15 -3222 ((-1178 |t#1|) $)) (-15 -3222 ((-631 |t#1|) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -3969 ((-1178 |t#1|) $)) (-15 -3969 ($ (-1178 |t#1|))) (-15 -1780 ((-631 |t#1|))) (-15 -3754 (|t#1|)) (-15 -1779 ((-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-319 |#1| |#2|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3155 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3943 (($ |#2|) NIL T ELT) (($ (-347 (-484))) 22 T ELT) (($ (-484)) 11 T ELT))) -(((-351 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| (-484))) (-15 -3155 ((-3 (-484) #1="failed") |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3943 (|#1| |#2|))) (-352 |#2|) (-1128)) (T -351)) -NIL -((-3155 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-347 (-484)) #1#) $) 16 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-951 (-484))) ELT)) (-3154 ((|#1| $) 8 T ELT) (((-347 (-484)) $) 17 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-951 (-484))) ELT)) (-3943 (($ |#1|) 6 T ELT) (($ (-347 (-484))) 15 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-951 (-484))) ELT))) -(((-352 |#1|) (-113) (-1128)) (T -352)) -NIL -(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-484))) (-6 (-951 (-484))) |%noBranch|) (IF (|has| |t#1| (-951 (-347 (-484)))) (-6 (-951 (-347 (-484)))) |%noBranch|))) -(((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) |has| |#1| (-951 (-484))) ((-556 |#1|) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-1781 ((|#4| (-695) (-1178 |#4|)) 55 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2997 (((-1178 |#4|) $) 15 T ELT)) (-3130 ((|#2| $) 53 T ELT)) (-1782 (($ $) 156 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 103 T ELT)) (-1967 (($ (-1178 |#4|)) 102 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2996 ((|#1| $) 16 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) 147 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 |#4|) $) 140 T ELT)) (-2665 (($) 11 T CONST)) (-3055 (((-85) $ $) 39 T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-353 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -1967 ($ (-1178 |#4|))) (-15 -2011 ((-1178 |#4|) $)) (-15 -3130 (|#2| $)) (-15 -2997 ((-1178 |#4|) $)) (-15 -2996 (|#1| $)) (-15 -1782 ($ $)) (-15 -1781 (|#4| (-695) (-1178 |#4|))))) (-257) (-905 |#1|) (-1154 |#2|) (-13 (-350 |#2| |#3|) (-951 |#2|))) (T -353)) -((-1967 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-353 *3 *4 *5 *6)))) (-2011 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) (-3130 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-353 *3 *2 *4 *5)) (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-951 *2))))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-257)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))) (-1782 (*1 *1 *1) (-12 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1178 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-350 *6 *7) (-951 *6))) (-5 *1 (-353 *5 *6 *7 *2)) (-4 *7 (-1154 *6))))) -((-3955 (((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-354 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3955 ((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)))) (-257) (-905 |#1|) (-1154 |#2|) (-13 (-350 |#2| |#3|) (-951 |#2|)) (-257) (-905 |#5|) (-1154 |#6|) (-13 (-350 |#6| |#7|) (-951 |#6|))) (T -354)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-350 *6 *7) (-951 *6))) (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1154 *10)) (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-350 *10 *11) (-951 *10)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3130 ((|#2| $) 69 T ELT)) (-1783 (($ (-1178 |#4|)) 27 T ELT) (($ (-353 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 37 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 |#4|) $) 28 T ELT)) (-2665 (($) 26 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-355 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2011 ((-1178 |#4|) $)) (-15 -3130 (|#2| $)) (-15 -1783 ($ (-1178 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1783 ($ (-353 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-257) (-905 |#1|) (-1154 |#2|) (-350 |#2| |#3|) (-1178 |#4|)) (T -355)) -((-2011 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) (-3130 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1178 *5)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-350 *4 *5)) (-14 *7 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7))))) -((-3955 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-356 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#3| (-1 |#4| |#2|) |#1|))) (-358 |#2|) (-146) (-358 |#4|) (-146)) (T -356)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5))))) -((-1770 (((-3 $ #1="failed")) 99 T ELT)) (-3221 (((-1178 (-631 |#2|)) (-1178 $)) NIL T ELT) (((-1178 (-631 |#2|))) 104 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) 97 T ELT)) (-1701 (((-3 $ #1#)) 96 T ELT)) (-1786 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1784 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1898 (((-1084 (-858 |#2|))) 64 T ELT)) (-1788 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 125 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) 95 T ELT)) (-1702 (((-3 $ #1#)) 87 T ELT)) (-1787 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1785 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1902 (((-1084 (-858 |#2|))) 63 T ELT)) (-1789 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3222 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 124 T ELT) (((-631 |#2|) (-1178 $)) 133 T ELT)) (-3969 (((-1178 |#2|) $) 109 T ELT) (($ (-1178 |#2|)) 111 T ELT)) (-1890 (((-584 (-858 |#2|)) (-1178 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2544 (($ (-631 |#2|) $) 103 T ELT))) -(((-357 |#1| |#2|) (-10 -7 (-15 -2544 (|#1| (-631 |#2|) |#1|)) (-15 -1898 ((-1084 (-858 |#2|)))) (-15 -1902 ((-1084 (-858 |#2|)))) (-15 -1784 ((-631 |#2|) |#1|)) (-15 -1785 ((-631 |#2|) |#1|)) (-15 -1786 ((-631 |#2|))) (-15 -1787 ((-631 |#2|))) (-15 -1788 (|#2|)) (-15 -1789 (|#2|)) (-15 -3969 (|#1| (-1178 |#2|))) (-15 -3969 ((-1178 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -1890 ((-584 (-858 |#2|)))) (-15 -3221 ((-1178 (-631 |#2|)))) (-15 -3222 ((-631 |#2|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1|)) (-15 -1770 ((-3 |#1| #1="failed"))) (-15 -1701 ((-3 |#1| #1#))) (-15 -1702 ((-3 |#1| #1#))) (-15 -1904 ((-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-584 |#1|))) #1#))) (-15 -1905 ((-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-584 |#1|))) #1#))) (-15 -1786 ((-631 |#2|) (-1178 |#1|))) (-15 -1787 ((-631 |#2|) (-1178 |#1|))) (-15 -1788 (|#2| (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3222 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3222 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1784 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -3221 ((-1178 (-631 |#2|)) (-1178 |#1|))) (-15 -1890 ((-584 (-858 |#2|)) (-1178 |#1|)))) (-358 |#2|) (-146)) (T -357)) -((-3221 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1890 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1789 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1788 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1787 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1786 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1770 (((-3 $ #1="failed")) 47 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3221 (((-1178 (-631 |#1|)) (-1178 $)) 88 T ELT) (((-1178 (-631 |#1|))) 114 T ELT)) (-1727 (((-1178 $)) 91 T ELT)) (-3721 (($) 22 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) 50 (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ #1#)) 48 (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) 75 T ELT) (((-631 |#1|)) 106 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) 86 T ELT) (((-631 |#1|) $) 104 T ELT)) (-2403 (((-3 $ #1#) $) 55 (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-858 |#1|))) 102 (|has| |#1| (-311)) ELT)) (-2406 (($ $ (-831)) 36 T ELT)) (-1723 ((|#1| $) 82 T ELT)) (-1703 (((-1084 |#1|) $) 52 (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1721 (((-1084 |#1|) $) 73 T ELT)) (-1715 (((-85)) 67 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 79 T ELT) (($ (-1178 |#1|)) 112 T ELT)) (-3464 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-3107 (((-831)) 90 T ELT)) (-1712 (((-85)) 64 T ELT)) (-2432 (($ $ (-831)) 43 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1706 (((-85)) 58 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2404 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-858 |#1|))) 103 (|has| |#1| (-311)) ELT)) (-2405 (($ $ (-831)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1711 (((-85)) 63 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1714 (((-85)) 66 T ELT)) (-3797 ((|#1| $ (-484)) 118 T ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 81 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 80 T ELT) (((-1178 |#1|) $) 116 T ELT) (((-631 |#1|) (-1178 $)) 115 T ELT)) (-3969 (((-1178 |#1|) $) 111 T ELT) (($ (-1178 |#1|)) 110 T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) 89 T ELT) (((-584 (-858 |#1|))) 113 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 117 T ELT)) (-1705 (((-584 (-1178 |#1|))) 54 (|has| |#1| (-495)) ELT)) (-2435 (($ $ $ $) 34 T ELT)) (-1718 (((-85)) 70 T ELT)) (-2544 (($ (-631 |#1|) $) 101 T ELT)) (-2433 (($ $ $) 32 T ELT)) (-1719 (((-85)) 71 T ELT)) (-1717 (((-85)) 69 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-358 |#1|) (-113) (-146)) (T -358)) -((-2011 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-358 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3221 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-631 *3))))) (-1890 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-1789 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1788 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1787 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1786 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1084 (-858 *3))))) (-1898 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1084 (-858 *3))))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146))))) -(-13 (-315 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2011 ((-1178 $))) (-15 -3222 ((-1178 |t#1|) $)) (-15 -3222 ((-631 |t#1|) (-1178 $))) (-15 -3221 ((-1178 (-631 |t#1|)))) (-15 -1890 ((-584 (-858 |t#1|)))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -3969 ((-1178 |t#1|) $)) (-15 -3969 ($ (-1178 |t#1|))) (-15 -1789 (|t#1|)) (-15 -1788 (|t#1|)) (-15 -1787 ((-631 |t#1|))) (-15 -1786 ((-631 |t#1|))) (-15 -1785 ((-631 |t#1|) $)) (-15 -1784 ((-631 |t#1|) $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -1902 ((-1084 (-858 |t#1|)))) (-15 -1898 ((-1084 (-858 |t#1|))))) |%noBranch|) (-15 -2544 ($ (-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-484) |#1|) . T) ((-315 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-3132 (((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|)) 28 T ELT)) (-1791 (((-345 |#1|) (-345 |#1|) (-345 |#1|)) 17 T ELT))) -(((-359 |#1|) (-10 -7 (-15 -3132 ((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|))) (-15 -1791 ((-345 |#1|) (-345 |#1|) (-345 |#1|)))) (-495)) (T -359)) -((-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-495)) (-5 *1 (-359 *3)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-495)) (-5 *2 (-345 *4)) (-5 *1 (-359 *4))))) -((-3080 (((-584 (-1089)) $) 81 T ELT)) (-3082 (((-347 (-1084 $)) $ (-551 $)) 313 T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3155 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-347 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3154 (((-551 $) $) NIL T ELT) (((-1089) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-347 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-347 (-484)) $) NIL T ELT)) (-3592 (((-86) (-86)) 47 T ELT)) (-2995 (($ $) 99 T ELT)) (-1600 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1599 (((-584 (-551 $)) $) 269 T ELT)) (-2822 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-484))) #1#) $) 294 T ELT)) (-2821 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1792 (((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2823 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) #1#) $ (-1089)) 257 T ELT)) (-1795 (((-85) $) 17 T ELT)) (-1794 ((|#2| $) 19 T ELT)) (-3765 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) 62 T ELT) (($ $ (-584 (-1089))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1089)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 72 T ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1089) (-695) (-1 $ $)) 104 T ELT)) (-3797 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3755 (($ $ (-1089)) 278 T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-2994 (($ $) 324 T ELT)) (-3969 (((-801 (-484)) $) 297 T ELT) (((-801 (-327)) $) 301 T ELT) (($ (-345 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3943 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1089)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#2| (-551 $))) NIL T ELT) (($ (-347 |#2|)) 329 T ELT) (($ (-858 (-347 |#2|))) 368 T ELT) (($ (-347 (-858 (-347 |#2|)))) 341 T ELT) (($ (-347 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) 373 T ELT)) (-3124 (((-695)) 88 T CONST)) (-2253 (((-85) (-86)) 42 T ELT)) (-1793 (($ (-1089) $) 31 T ELT) (($ (-1089) $ $) 32 T ELT) (($ (-1089) $ $ $) 33 T ELT) (($ (-1089) $ $ $ $) 34 T ELT) (($ (-1089) (-584 $)) 39 T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-360 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3155 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3943 (|#1| (-484))) (-15 -3124 ((-695)) -3949) (-15 * (|#1| |#2| |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3943 (|#1| (-858 |#2|))) (-15 -3155 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3154 ((-858 |#2|) |#1|)) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 * (|#1| |#1| |#2|)) (-15 -3943 (|#1| |#1|)) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3943 (|#1| (-347 (-858 |#2|)))) (-15 -3155 ((-3 (-347 (-858 |#2|)) #1#) |#1|)) (-15 -3154 ((-347 (-858 |#2|)) |#1|)) (-15 -3082 ((-347 (-1084 |#1|)) |#1| (-551 |#1|))) (-15 -3943 (|#1| (-347 (-858 (-347 |#2|))))) (-15 -3943 (|#1| (-858 (-347 |#2|)))) (-15 -3943 (|#1| (-347 |#2|))) (-15 -2994 (|#1| |#1|)) (-15 -3969 (|#1| (-345 |#1|))) (-15 -3765 (|#1| |#1| (-1089) (-695) (-1 |#1| |#1|))) (-15 -3765 (|#1| |#1| (-1089) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2824 ((-3 (-2 (|:| |val| |#1|) (|:| -2400 (-484))) #1#) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2400 (-484))) #1#) |#1| (-1089))) (-15 -2823 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2400 (-484))) #1#) |#1| (-86))) (-15 -2995 (|#1| |#1|)) (-15 -3943 (|#1| (-1038 |#2| (-551 |#1|)))) (-15 -1792 ((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2821 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2400 (-484))) #1#) |#1|)) (-15 -2822 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3765 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1089))) (-15 -3765 (|#1| |#1| (-86) |#1| (-1089))) (-15 -3765 (|#1| |#1|)) (-15 -3765 (|#1| |#1| (-584 (-1089)))) (-15 -3765 (|#1| |#1| (-1089))) (-15 -1793 (|#1| (-1089) (-584 |#1|))) (-15 -1793 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1|)) (-15 -3080 ((-584 (-1089)) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -3943 (|#1| (-1089))) (-15 -3155 ((-3 (-1089) #1#) |#1|)) (-15 -3154 ((-1089) |#1|)) (-15 -3765 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3765 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3765 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3765 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3765 (|#1| |#1| (-1089) (-1 |#1| (-584 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3765 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| |#1|)))) (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 -1599 ((-584 (-551 |#1|)) |#1|)) (-15 -1600 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1602 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1602 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -1602 (|#1| |#1| (-248 |#1|))) (-15 -3797 (|#1| (-86) (-584 |#1|))) (-15 -3797 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1| |#1|)) (-15 -3797 (|#1| (-86) |#1|)) (-15 -3765 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#1| |#1|)) (-15 -3765 (|#1| |#1| (-248 |#1|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3765 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3765 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3943 (|#1| (-551 |#1|))) (-15 -3155 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3154 ((-551 |#1|) |#1|)) (-15 -3943 ((-773) |#1|))) (-361 |#2|) (-1013)) (T -360)) -((-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) (-4 *4 (-361 *5)))) (-3124 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3080 (((-584 (-1089)) $) 220 T ELT)) (-3082 (((-347 (-1084 $)) $ (-551 $)) 188 (|has| |#1| (-495)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 160 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 161 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 163 (|has| |#1| (-495)) ELT)) (-1598 (((-584 (-551 $)) $) 42 T ELT)) (-1310 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1602 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3772 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3968 (((-345 $) $) 181 (|has| |#1| (-495)) ELT)) (-1606 (((-85) $ $) 171 (|has| |#1| (-495)) ELT)) (-3721 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3155 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1089) #1#) $) 233 T ELT) (((-3 (-484) #1#) $) 227 (|has| |#1| (-951 (-484))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-347 (-858 |#1|)) #1#) $) 186 (|has| |#1| (-495)) ELT) (((-3 (-858 |#1|) #1#) $) 136 (|has| |#1| (-962)) ELT) (((-3 (-347 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3154 (((-551 $) $) 68 T ELT) (((-1089) $) 234 T ELT) (((-484) $) 226 (|has| |#1| (-951 (-484))) ELT) ((|#1| $) 225 T ELT) (((-347 (-858 |#1|)) $) 187 (|has| |#1| (-495)) ELT) (((-858 |#1|) $) 137 (|has| |#1| (-962)) ELT) (((-347 (-484)) $) 112 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2563 (($ $ $) 175 (|has| |#1| (-495)) ELT)) (-2278 (((-631 (-484)) (-631 $)) 153 (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 152 (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 150 (|has| |#1| (-962)) ELT)) (-3464 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2562 (($ $ $) 174 (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 169 (|has| |#1| (-495)) ELT)) (-3720 (((-85) $) 182 (|has| |#1| (-495)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 229 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 228 (|has| |#1| (-797 (-327))) ELT)) (-2572 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1597 (((-584 (-86)) $) 41 T ELT)) (-3592 (((-86) (-86)) 40 T ELT)) (-2409 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2672 (((-85) $) 20 (|has| $ (-951 (-484))) ELT)) (-2995 (($ $) 203 (|has| |#1| (-962)) ELT)) (-2997 (((-1038 |#1| (-551 $)) $) 204 (|has| |#1| (-962)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 178 (|has| |#1| (-495)) ELT)) (-1595 (((-1084 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 155 (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 154 (-2561 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 149 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1178 $)) 148 (|has| |#1| (-962)) ELT)) (-1889 (($ (-584 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 43 T ELT)) (-2234 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2822 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-1025)) ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 (-484))) "failed") $) 200 (|has| |#1| (-962)) ELT)) (-2821 (((-3 (-584 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2823 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $) 208 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $ (-86)) 202 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $ (-1089)) 201 (|has| |#1| (-962)) ELT)) (-2632 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2483 (($ $) 121 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-2602 (((-695) $) 45 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 222 T ELT)) (-1794 ((|#1| $) 221 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 168 (|has| |#1| (-495)) ELT)) (-3142 (($ (-584 $)) 165 (|has| |#1| (-495)) ELT) (($ $ $) 164 (|has| |#1| (-495)) ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-3729 (((-345 $) $) 179 (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 176 (|has| |#1| (-495)) ELT)) (-3463 (((-3 $ "failed") $ $) 159 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 170 (|has| |#1| (-495)) ELT)) (-2673 (((-85) $) 21 (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1089)) 214 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) 213 (|has| |#1| (-554 (-473))) ELT) (($ $) 212 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 211 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 210 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 198 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 197 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ $)) 196 (|has| |#1| (-962)) ELT)) (-1605 (((-695) $) 172 (|has| |#1| (-495)) ELT)) (-3797 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 173 (|has| |#1| (-495)) ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3755 (($ $ (-1089)) 146 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 144 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 143 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 142 (|has| |#1| (-962)) ELT)) (-2994 (($ $) 193 (|has| |#1| (-495)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 194 (|has| |#1| (-495)) ELT)) (-3183 (($ $) 22 (|has| $ (-962)) ELT)) (-3969 (((-801 (-484)) $) 231 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 230 (|has| |#1| (-554 (-801 (-327)))) ELT) (($ (-345 $)) 195 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $ $) 124 (|has| |#1| (-410)) ELT)) (-2434 (($ $ $) 125 (|has| |#1| (-410)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1089)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1038 |#1| (-551 $))) 205 (|has| |#1| (-962)) ELT) (($ (-347 |#1|)) 191 (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) 190 (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) 189 (|has| |#1| (-495)) ELT) (($ (-347 (-858 |#1|))) 185 (|has| |#1| (-495)) ELT) (($ $) 158 (|has| |#1| (-495)) ELT) (($ (-858 |#1|)) 135 (|has| |#1| (-962)) ELT) (($ (-347 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-484)))) ELT)) (-2701 (((-633 $) $) 156 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 138 (|has| |#1| (-962)) CONST)) (-2589 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2253 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 162 (|has| |#1| (-495)) ELT)) (-1793 (($ (-1089) $) 219 T ELT) (($ (-1089) $ $) 218 T ELT) (($ (-1089) $ $ $) 217 T ELT) (($ (-1089) $ $ $ $) 216 T ELT) (($ (-1089) (-584 $)) 215 T ELT)) (-2659 (($) 128 (|has| |#1| (-25)) CONST)) (-2665 (($) 116 (|has| |#1| (-1025)) CONST)) (-2668 (($ $ (-1089)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 141 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 140 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 139 (|has| |#1| (-962)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 192 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-3834 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-347 (-484)) $) 184 (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) 183 (|has| |#1| (-495)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-962)) ELT) (($ (-484) $) 132 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT))) -(((-361 |#1|) (-113) (-1013)) (T -361)) -((-1795 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-1089))))) (-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-554 (-473))))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-554 (-473))))) (-3765 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-554 (-473))))) (-3765 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-554 (-473))))) (-3765 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1089)) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-554 (-473))))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-361 *3)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *3)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-361 *3)))) (-1792 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3951 (-484)) (|:| |var| (-551 *1)))) (-4 *1 (-361 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) (-4 *1 (-361 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-962)))) (-2823 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *4)))) (-2823 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *4)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2400 (-484)))) (-4 *1 (-361 *3)))) (-3765 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3765 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3765 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3765 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) (-4 *1 (-361 *3)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3946 (*1 *1 *2 *2) (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-347 (-858 (-347 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-347 (-1084 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))) -(-13 (-253) (-951 (-1089)) (-795 |t#1|) (-340 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3080 ((-584 (-1089)) $)) (-15 -1793 ($ (-1089) $)) (-15 -1793 ($ (-1089) $ $)) (-15 -1793 ($ (-1089) $ $ $)) (-15 -1793 ($ (-1089) $ $ $ $)) (-15 -1793 ($ (-1089) (-584 $))) (IF (|has| |t#1| (-554 (-473))) (PROGN (-6 (-554 (-473))) (-15 -3765 ($ $ (-1089))) (-15 -3765 ($ $ (-584 (-1089)))) (-15 -3765 ($ $)) (-15 -3765 ($ $ (-86) $ (-1089))) (-15 -3765 ($ $ (-584 (-86)) (-584 $) (-1089)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2822 ((-3 (-584 $) "failed") $)) (-15 -2823 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-410)) (-6 (-410)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2821 ((-3 (-584 $) "failed") $)) (-15 -1792 ((-3 (-2 (|:| -3951 (-484)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1089))) (-6 (-326 |t#1|)) (-15 -3943 ($ (-1038 |t#1| (-551 $)))) (-15 -2997 ((-1038 |t#1| (-551 $)) $)) (-15 -2995 ($ $)) (-15 -2823 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $ (-86))) (-15 -2823 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2400 (-484))) "failed") $ (-1089))) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2400 (-484))) "failed") $)) (-15 -3765 ($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3765 ($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3765 ($ $ (-1089) (-695) (-1 $ (-584 $)))) (-15 -3765 ($ $ (-1089) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-311)) (-6 (-951 (-347 (-858 |t#1|)))) (-15 -3969 ($ (-345 $))) (-15 -2996 ((-1038 |t#1| (-551 $)) $)) (-15 -2994 ($ $)) (-15 -3946 ($ (-1038 |t#1| (-551 $)) (-1038 |t#1| (-551 $)))) (-15 -3943 ($ (-347 |t#1|))) (-15 -3943 ($ (-858 (-347 |t#1|)))) (-15 -3943 ($ (-347 (-858 (-347 |t#1|))))) (-15 -3082 ((-347 (-1084 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-484))) (-6 (-951 (-347 (-484)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-347 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-495))) ((-556 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-556 (-484)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1089)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) |has| |#1| (-495)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-201) |has| |#1| (-495)) ((-245) |has| |#1| (-495)) ((-257) |has| |#1| (-495)) ((-259 $) . T) ((-253) . T) ((-311) |has| |#1| (-495)) ((-326 |#1|) |has| |#1| (-962)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) |has| |#1| (-495)) ((-410) |has| |#1| (-410)) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-495)) ((-589 (-484)) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-347 (-484))) |has| |#1| (-495)) ((-591 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-347 (-484))) |has| |#1| (-495)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-581 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-347 (-484))) |has| |#1| (-495)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) OR (|has| |#1| (-1025)) (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1089)) |has| |#1| (-962)) ((-810 (-1089)) |has| |#1| (-962)) ((-812 (-1089)) |has| |#1| (-962)) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-833) |has| |#1| (-495)) ((-951 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484))))) ((-951 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1089)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-495)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-495)) ((-969 (-347 (-484))) |has| |#1| (-495)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-495)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1060) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-495))) -((-3955 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-361 |#1|) (-962) (-361 |#3|)) (T -362)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-361 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5))))) -((-1799 ((|#2| |#2|) 182 T ELT)) (-1796 (((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85)) 60 T ELT))) -(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1796 ((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85))) (-15 -1799 (|#2| |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -363)) -((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-361 *3))) (-14 *4 (-1089)) (-14 *5 *2))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-14 *6 (-1089)) (-14 *7 *3)))) -((-1799 ((|#2| |#2|) 105 T ELT)) (-1797 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 52 T ELT)) (-1798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 169 T ELT))) -(((-364 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1797 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1799 (|#2| |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|) (-10 -8 (-15 -3943 ($ |#3|)))) (-756) (-13 (-1157 |#2| |#3|) (-311) (-1114) (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $)))) (-897 |#4|) (-1089)) (T -364)) -((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *2 (-13 (-27) (-1114) (-361 *3) (-10 -8 (-15 -3943 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1157 *2 *4) (-311) (-1114) (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1089)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3943 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1157 *3 *7) (-311) (-1114) (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) (-14 *10 (-1089)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3943 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1157 *3 *7) (-311) (-1114) (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) (-14 *10 (-1089))))) -((-1800 (($) 51 T ELT)) (-3232 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3234 (($ $ $) 46 T ELT)) (-3233 (((-85) $ $) 35 T ELT)) (-3134 (((-695)) 55 T ELT)) (-3237 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2993 (($) 66 T ELT)) (-3239 (((-85) $ $) 15 T ELT)) (-2530 ((|#2| $) 77 T ELT)) (-2856 ((|#2| $) 75 T ELT)) (-2009 (((-831) $) 70 T ELT)) (-3236 (($ $ $) 42 T ELT)) (-2399 (($ (-831)) 60 T ELT)) (-3235 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) 31 T ELT)) (-3527 (($ (-584 |#2|)) 27 T ELT)) (-1801 (($ $) 53 T ELT)) (-3943 (((-773) $) 40 T ELT)) (-1802 (((-695) $) 24 T ELT)) (-3238 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3055 (((-85) $ $) 19 T ELT))) -(((-365 |#1| |#2|) (-10 -7 (-15 -3134 ((-695))) (-15 -2399 (|#1| (-831))) (-15 -2009 ((-831) |#1|)) (-15 -2993 (|#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2856 (|#2| |#1|)) (-15 -1800 (|#1|)) (-15 -1801 (|#1| |#1|)) (-15 -1802 ((-695) |#1|)) (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3239 ((-85) |#1| |#1|)) (-15 -3238 (|#1|)) (-15 -3238 (|#1| (-584 |#2|))) (-15 -3237 (|#1|)) (-15 -3237 (|#1| (-584 |#2|))) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3233 ((-85) |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#2| |#1|)) (-15 -3527 (|#1| (-584 |#2|))) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|))) (-366 |#2|) (-1013)) (T -365)) -((-3134 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) -((-2567 (((-85) $ $) 19 T ELT)) (-1800 (($) 71 (|has| |#1| (-317)) ELT)) (-3232 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3234 (($ $ $) 82 T ELT)) (-3233 (((-85) $ $) 83 T ELT)) (-3134 (((-695)) 65 (|has| |#1| (-317)) ELT)) (-3237 (($ (-584 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2993 (($) 68 (|has| |#1| (-317)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) 74 T ELT)) (-2530 ((|#1| $) 69 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2856 ((|#1| $) 70 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2009 (((-831) $) 67 (|has| |#1| (-317)) ELT)) (-3240 (((-1072) $) 22 T ELT)) (-3236 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-2399 (($ (-831)) 66 (|has| |#1| (-317)) ELT)) (-3241 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3235 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-1801 (($ $) 72 (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) 17 T ELT)) (-1802 (((-695) $) 73 T ELT)) (-3238 (($ (-584 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-366 |#1|) (-113) (-1013)) (T -366)) -((-1802 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-317)))) (-1800 (*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1013)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757))))) -(-13 (-183 |t#1|) (-1011 |t#1|) (-10 -8 (-6 -3992) (-15 -1802 ((-695) $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-317)) (-15 -1801 ($ $)) (-15 -1800 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2856 (|t#1| $)) (-15 -2530 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-317) |has| |#1| (-317)) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-3838 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3839 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3955 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3839 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3838 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-366 |#1|) (-1013) (-366 |#3|)) (T -367)) -((-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-366 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-366 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5))))) -((-1803 (((-519 |#2|) |#2| (-1089)) 36 T ELT)) (-2099 (((-519 |#2|) |#2| (-1089)) 21 T ELT)) (-2148 ((|#2| |#2| (-1089)) 26 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -2099 ((-519 |#2|) |#2| (-1089))) (-15 -1803 ((-519 |#2|) |#2| (-1089))) (-15 -2148 (|#2| |#2| (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-29 |#1|))) (T -368)) -((-2148 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1805 (($ |#2| |#1|) 37 T ELT)) (-1804 (($ |#2| |#1|) 35 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-280 |#2|)) 25 T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 16 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-369 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3979)) (IF (|has| |#1| (-6 -3979)) (-6 -3979) |%noBranch|) |%noBranch|) (-15 -3943 ($ |#1|)) (-15 -3943 ($ (-280 |#2|))) (-15 -1805 ($ |#2| |#1|)) (-15 -1804 ($ |#2| |#1|)))) (-13 (-146) (-38 (-347 (-484)))) (-13 (-757) (-21))) (T -369)) -((-3943 (*1 *1 *2) (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-484))))) (-4 *3 (-13 (-757) (-21))))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-369 *3 *4)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))))) (-1805 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) (-4 *2 (-13 (-757) (-21))))) (-1804 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) (-4 *2 (-13 (-757) (-21)))))) -((-3809 (((-3 |#2| (-584 |#2|)) |#2| (-1089)) 115 T ELT))) -(((-370 |#1| |#2|) (-10 -7 (-15 -3809 ((-3 |#2| (-584 |#2|)) |#2| (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -370)) -((-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-872) (-29 *5)))))) -((-3383 ((|#2| |#2| |#2|) 31 T ELT)) (-3592 (((-86) (-86)) 43 T ELT)) (-1807 ((|#2| |#2|) 63 T ELT)) (-1806 ((|#2| |#2|) 66 T ELT)) (-3382 ((|#2| |#2|) 30 T ELT)) (-3386 ((|#2| |#2| |#2|) 33 T ELT)) (-3388 ((|#2| |#2| |#2|) 35 T ELT)) (-3385 ((|#2| |#2| |#2|) 32 T ELT)) (-3387 ((|#2| |#2| |#2|) 34 T ELT)) (-2253 (((-85) (-86)) 41 T ELT)) (-3390 ((|#2| |#2|) 37 T ELT)) (-3389 ((|#2| |#2|) 36 T ELT)) (-3380 ((|#2| |#2|) 25 T ELT)) (-3384 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3381 ((|#2| |#2| |#2|) 29 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 -3380 (|#2| |#2|)) (-15 -3384 (|#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1807 (|#2| |#2|))) (-495) (-361 |#1|)) (T -371)) -((-1807 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3389 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3380 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) (-4 *5 (-361 *4))))) -((-2832 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-584 |#2|)) 65 T ELT))) -(((-372 |#1| |#2|) (-10 -7 (-15 -2832 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2832 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-361 |#1|)) (T -372)) -((-2832 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) (|:| |prim| (-1084 *3)))) (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-372 *4 *5))))) -((-1809 (((-1184)) 18 T ELT)) (-1808 (((-1084 (-347 (-484))) |#2| (-551 |#2|)) 40 T ELT) (((-347 (-484)) |#2|) 27 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -1808 ((-347 (-484)) |#2|)) (-15 -1808 ((-1084 (-347 (-484))) |#2| (-551 |#2|))) (-15 -1809 ((-1184)))) (-13 (-495) (-951 (-484))) (-361 |#1|)) (T -373)) -((-1809 (*1 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *2 (-1184)) (-5 *1 (-373 *3 *4)) (-4 *4 (-361 *3)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-373 *5 *3)))) (-1808 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4))))) -((-3642 (((-85) $) 33 T ELT)) (-1810 (((-85) $) 35 T ELT)) (-3257 (((-85) $) 36 T ELT)) (-1812 (((-85) $) 39 T ELT)) (-1814 (((-85) $) 34 T ELT)) (-1813 (((-85) $) 38 T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1072)) 32 T ELT) (($ (-1089)) 30 T ELT) (((-1089) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1811 (((-85) $) 37 T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-374) (-13 (-553 (-773)) (-10 -8 (-15 -3943 ($ (-1072))) (-15 -3943 ($ (-1089))) (-15 -3943 ((-1089) $)) (-15 -3943 ((-1015) $)) (-15 -3642 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -1810 ((-85) $)) (-15 -3055 ((-85) $ $))))) (T -374)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-374)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-374)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3055 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) -((-1816 (((-3 (-345 (-1084 (-347 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1815 (((-345 |#3|) |#3|) 34 T ELT)) (-1818 (((-3 (-345 (-1084 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1817 (((-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2638 (-85))) |#3|) 37 T ELT))) -(((-375 |#1| |#2| |#3|) (-10 -7 (-15 -1815 ((-345 |#3|) |#3|)) (-15 -1816 ((-3 (-345 (-1084 (-347 (-484)))) #1="failed") |#3|)) (-15 -1817 ((-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2638 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1818 ((-3 (-345 (-1084 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-951 (-484))) (-361 |#1|) (-1154 |#2|)) (T -375)) -((-1818 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-48)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1817 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2638 (-85)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1816 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-347 (-484))))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1828 (((-3 (|:| |fst| (-374)) (|:| -3907 #1="void")) $) 11 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1825 (($) 35 T ELT)) (-1822 (($) 41 T ELT)) (-1823 (($) 37 T ELT)) (-1820 (($) 39 T ELT)) (-1824 (($) 36 T ELT)) (-1821 (($) 38 T ELT)) (-1819 (($) 40 T ELT)) (-1826 (((-85) $) 8 T ELT)) (-1827 (((-584 (-858 (-484))) $) 19 T ELT)) (-3527 (($ (-3 (|:| |fst| (-374)) (|:| -3907 #1#)) (-584 (-1089)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-374)) (|:| -3907 #1#)) (-584 (-858 (-484))) (-85)) 30 T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-374)) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-376) (-13 (-1013) (-10 -8 (-15 -3943 ($ (-374))) (-15 -1828 ((-3 (|:| |fst| (-374)) (|:| -3907 #1="void")) $)) (-15 -1827 ((-584 (-858 (-484))) $)) (-15 -1826 ((-85) $)) (-15 -3527 ($ (-3 (|:| |fst| (-374)) (|:| -3907 #1#)) (-584 (-1089)) (-85))) (-15 -3527 ($ (-3 (|:| |fst| (-374)) (|:| -3907 #1#)) (-584 (-858 (-484))) (-85))) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($)) (-15 -1819 ($))))) (T -376)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1="void"))) (-5 *1 (-376)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-484)))) (-5 *1 (-376)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3527 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *3 (-584 (-1089))) (-5 *4 (-85)) (-5 *1 (-376)))) (-3527 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-85)) (-5 *1 (-376)))) (-1825 (*1 *1) (-5 *1 (-376))) (-1824 (*1 *1) (-5 *1 (-376))) (-1823 (*1 *1) (-5 *1 (-376))) (-1822 (*1 *1) (-5 *1 (-376))) (-1821 (*1 *1) (-5 *1 (-376))) (-1820 (*1 *1) (-5 *1 (-376))) (-1819 (*1 *1) (-5 *1 (-376)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3539 (((-1089) $) 8 T ELT)) (-3240 (((-1072) $) 17 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT))) -(((-377 |#1|) (-13 (-1013) (-10 -8 (-15 -3539 ((-1089) $)))) (-1089)) (T -377)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-377 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1028) $) 7 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-378) (-13 (-1013) (-10 -8 (-15 -3317 ((-1028) $))))) (T -378)) -((-3317 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-378))))) -((-1834 (((-85)) 18 T ELT)) (-1835 (((-85) (-85)) 19 T ELT)) (-1836 (((-85)) 14 T ELT)) (-1837 (((-85) (-85)) 15 T ELT)) (-1839 (((-85)) 16 T ELT)) (-1840 (((-85) (-85)) 17 T ELT)) (-1831 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1832 (((-695) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484))))) 52 T ELT)) (-1830 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1833 (((-2 (|:| -2577 (-484)) (|:| -1777 (-584 |#1|))) |#1|) 94 T ELT)) (-1829 (((-345 |#1|) (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484))))))) 176 T ELT)) (-3731 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85)) 209 T ELT)) (-3730 (((-345 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-345 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-345 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-345 |#1|) |#1| (-695)) 222 T ELT) (((-345 |#1|) |#1|) 220 T ELT)) (-1851 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3729 (((-345 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-345 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-345 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-345 |#1|) |#1| (-695)) 216 T ELT) (((-345 |#1|) |#1|) 214 T ELT)) (-1838 (((-85) |#1|) 43 T ELT)) (-1850 (((-676 (-695)) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484))))) 99 T ELT)) (-1841 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85) (-1009 (-695)) (-695)) 213 T ELT))) -(((-379 |#1|) (-10 -7 (-15 -1829 ((-345 |#1|) (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))))) (-15 -1850 ((-676 (-695)) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))))) (-15 -1830 ((-831))) (-15 -1830 ((-831) (-831))) (-15 -1831 ((-831))) (-15 -1831 ((-831) (-831))) (-15 -1832 ((-695) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))))) (-15 -1833 ((-2 (|:| -2577 (-484)) (|:| -1777 (-584 |#1|))) |#1|)) (-15 -1834 ((-85))) (-15 -1835 ((-85) (-85))) (-15 -1836 ((-85))) (-15 -1837 ((-85) (-85))) (-15 -1838 ((-85) |#1|)) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3729 ((-345 |#1|) |#1| (-695))) (-15 -3729 ((-345 |#1|) |#1| (-584 (-695)))) (-15 -3729 ((-345 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3729 ((-345 |#1|) |#1| (-695) (-695))) (-15 -3730 ((-345 |#1|) |#1|)) (-15 -3730 ((-345 |#1|) |#1| (-695))) (-15 -3730 ((-345 |#1|) |#1| (-584 (-695)))) (-15 -3730 ((-345 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3730 ((-345 |#1|) |#1| (-695) (-695))) (-15 -1851 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3731 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85))) (-15 -1841 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85) (-1009 (-695)) (-695)))) (-1154 (-484))) (T -379)) -((-1841 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-3730 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1836 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1834 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1833 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2577 (-484)) (|:| -1777 (-584 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3729 *4) (|:| -3945 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-695)) (-5 *1 (-379 *4)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1830 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3729 *4) (|:| -3945 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-676 (-695))) (-5 *1 (-379 *4)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *4) (|:| -2394 (-484))))))) (-4 *4 (-1154 (-484))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4))))) -((-1845 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-695)) 51 T ELT)) (-1844 (((-484) |#2|) 64 T ELT)) (-1846 ((|#3| |#2|) 26 T ELT)) (-3130 ((|#3| |#2| (-831)) 15 T ELT)) (-3830 ((|#3| |#2|) 16 T ELT)) (-1847 ((|#3| |#2|) 9 T ELT)) (-2602 ((|#3| |#2|) 10 T ELT)) (-1843 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1842 (((-484) |#2|) 66 T ELT))) -(((-380 |#1| |#2| |#3|) (-10 -7 (-15 -1842 ((-484) |#2|)) (-15 -1843 (|#3| |#2|)) (-15 -1843 (|#3| |#2| (-831))) (-15 -1844 ((-484) |#2|)) (-15 -1845 ((-484) |#2| (-695))) (-15 -1845 ((-484) |#2|)) (-15 -3130 (|#3| |#2| (-831))) (-15 -1846 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -2602 (|#3| |#2|)) (-15 -3830 (|#3| |#2|))) (-962) (-1154 |#1|) (-13 (-344) (-951 |#1|) (-311) (-1114) (-239))) (T -380)) -((-3830 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-2602 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *5 *3 *6)) (-4 *3 (-1154 *5)) (-4 *6 (-13 (-344) (-951 *5) (-311) (-1114) (-239))))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))))) -((-3351 ((|#2| (-1178 |#1|)) 42 T ELT)) (-1849 ((|#2| |#2| |#1|) 58 T ELT)) (-1848 ((|#2| |#2| |#1|) 49 T ELT)) (-2297 ((|#2| |#2|) 44 T ELT)) (-3171 (((-85) |#2|) 32 T ELT)) (-1852 (((-584 |#2|) (-831) (-345 |#2|)) 21 T ELT)) (-1851 ((|#2| (-831) (-345 |#2|)) 25 T ELT)) (-1850 (((-676 (-695)) (-345 |#2|)) 29 T ELT))) -(((-381 |#1| |#2|) (-10 -7 (-15 -3171 ((-85) |#2|)) (-15 -3351 (|#2| (-1178 |#1|))) (-15 -2297 (|#2| |#2|)) (-15 -1848 (|#2| |#2| |#1|)) (-15 -1849 (|#2| |#2| |#1|)) (-15 -1850 ((-676 (-695)) (-345 |#2|))) (-15 -1851 (|#2| (-831) (-345 |#2|))) (-15 -1852 ((-584 |#2|) (-831) (-345 |#2|)))) (-962) (-1154 |#1|)) (T -381)) -((-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-381 *5 *6)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-381 *5 *2)) (-4 *5 (-962)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-381 *4 *5)))) (-1849 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-962)) (-4 *2 (-1154 *4)) (-5 *1 (-381 *4 *2)))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1154 *4))))) -((-1855 (((-695)) 59 T ELT)) (-1859 (((-695)) 29 (|has| |#1| (-344)) ELT) (((-695) (-695)) 28 (|has| |#1| (-344)) ELT)) (-1858 (((-484) |#1|) 25 (|has| |#1| (-344)) ELT)) (-1857 (((-484) |#1|) 27 (|has| |#1| (-344)) ELT)) (-1854 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1853 ((|#1| (-695) (-484)) 37 T ELT)) (-1856 (((-1184)) 61 T ELT))) -(((-382 |#1|) (-10 -7 (-15 -1853 (|#1| (-695) (-484))) (-15 -1854 ((-695) (-695))) (-15 -1854 ((-695))) (-15 -1855 ((-695))) (-15 -1856 ((-1184))) (IF (|has| |#1| (-344)) (PROGN (-15 -1857 ((-484) |#1|)) (-15 -1858 ((-484) |#1|)) (-15 -1859 ((-695) (-695))) (-15 -1859 ((-695)))) |%noBranch|)) (-962)) (T -382)) -((-1859 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1856 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1855 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1854 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-484)) (-5 *1 (-382 *2)) (-4 *2 (-962))))) -((-1860 (((-584 (-484)) (-484)) 76 T ELT)) (-3720 (((-85) (-142 (-484))) 84 T ELT)) (-3729 (((-345 (-142 (-484))) (-142 (-484))) 75 T ELT))) -(((-383) (-10 -7 (-15 -3729 ((-345 (-142 (-484))) (-142 (-484)))) (-15 -1860 ((-584 (-484)) (-484))) (-15 -3720 ((-85) (-142 (-484)))))) (T -383)) -((-3720 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-383)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-383)) (-5 *3 (-484)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 (-142 (-484)))) (-5 *1 (-383)) (-5 *3 (-142 (-484)))))) -((-2945 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-311)) ELT)) (-2250 (((-584 |#4|) (-584 |#4|) (-1072) (-1072)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1072)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT))) -(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2250 ((-584 |#4|) (-584 |#4|))) (-15 -2250 ((-584 |#4|) (-584 |#4|) (-1072))) (-15 -2250 ((-584 |#4|) (-584 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-311)) (-15 -2945 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-389) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -384)) -((-2945 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *2)))) (-2250 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-384 *3 *4 *5 *6))))) -((-1861 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1862 (((-584 |#4|) (-584 |#4|) (-1072) (-1072)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1072)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1861 (|#4| |#4| (-584 |#4|))) (-15 -1862 ((-584 |#4|) (-584 |#4|))) (-15 -1862 ((-584 |#4|) (-584 |#4|) (-1072))) (-15 -1862 ((-584 |#4|) (-584 |#4|) (-1072) (-1072)))) (-257) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -385)) -((-1862 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *2))))) -((-1864 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1863 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1863 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-257) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -386)) -((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) -((-1888 (((-695) |#4|) 12 T ELT)) (-1876 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|)))) 39 T ELT)) (-1878 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1877 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1866 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1874 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1881 (((-1184) |#4|) 59 T ELT)) (-1884 (((-1184) (-584 |#4|)) 69 T ELT)) (-1882 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1885 (((-1184) (-484)) 110 T ELT)) (-1879 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1887 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|)) |#4| (-695)) 31 T ELT)) (-1880 (((-484) |#4|) 109 T ELT)) (-1875 ((|#4| |#4|) 37 T ELT)) (-1867 (((-584 |#4|) (-584 |#4|) (-484) (-484)) 74 T ELT)) (-1883 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1886 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1868 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1873 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1872 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1869 (((-85) |#2| |#2|) 75 T ELT)) (-1871 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1870 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1865 ((|#4| |#4| (-584 |#4|)) 97 T ELT))) -(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 (|#4| |#4| (-584 |#4|))) (-15 -1866 (|#4| |#4| (-584 |#4|))) (-15 -1867 ((-584 |#4|) (-584 |#4|) (-484) (-484))) (-15 -1868 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1869 ((-85) |#2| |#2|)) (-15 -1870 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1871 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1872 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1875 (|#4| |#4|)) (-15 -1876 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|))))) (-15 -1877 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1878 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-584 |#4|) (-584 |#4|))) (-15 -1880 ((-484) |#4|)) (-15 -1881 ((-1184) |#4|)) (-15 -1882 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1883 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1884 ((-1184) (-584 |#4|))) (-15 -1885 ((-1184) (-484))) (-15 -1886 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1887 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2003 |#4|)) |#4| (-695))) (-15 -1888 ((-695) |#4|))) (-389) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387)) -((-1888 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2003 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-387 *6 *7 *8 *4)))) (-1886 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1883 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1882 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-484)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1878 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) (-4 *4 (-389)) (-4 *6 (-757)))) (-1876 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *3)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-387 *5 *6 *7 *3)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *4 *3 *5 *6)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1871 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *3)))) (-1870 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1869 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))) -((-1889 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 45 T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT))) -(((-388 |#1|) (-10 -7 (-15 -2707 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -1889 (|#1| (-584 |#1|))) (-15 -1889 (|#1| |#1| |#1|)) (-15 -3142 (|#1| (-584 |#1|))) (-15 -3142 (|#1| |#1| |#1|))) (-389)) (T -388)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-389) (-113)) (T -389)) -((-3142 (*1 *1 *1 *1) (-4 *1 (-389))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) (-1889 (*1 *1 *1 *1) (-4 *1 (-389))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-389))))) -(-13 (-495) (-10 -8 (-15 -3142 ($ $ $)) (-15 -3142 ($ (-584 $))) (-15 -1889 ($ $ $)) (-15 -1889 ($ (-584 $))) (-15 -2707 ((-1084 $) (-1084 $) (-1084 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3221 (((-1178 (-631 (-347 (-858 |#1|)))) (-1178 $)) NIL T ELT) (((-1178 (-631 (-347 (-858 |#1|))))) NIL T ELT)) (-1727 (((-1178 $)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL T ELT)) (-1701 (((-3 $ #1#)) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1786 (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|)))) NIL T ELT)) (-1725 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1784 (((-631 (-347 (-858 |#1|))) $ (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1898 (((-1084 (-858 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-311)) ELT) (((-1084 (-347 (-858 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-831)) NIL T ELT)) (-1723 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1703 (((-1084 (-347 (-858 |#1|))) $) 87 (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1788 (((-347 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-347 (-858 |#1|))) NIL T ELT)) (-1721 (((-1084 (-347 (-858 |#1|))) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-1790 (($ (-1178 (-347 (-858 |#1|))) (-1178 $)) 111 T ELT) (($ (-1178 (-347 (-858 |#1|)))) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-3107 (((-831)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL T ELT)) (-1702 (((-3 $ #1#)) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1787 (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|)))) NIL T ELT)) (-1726 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1785 (((-631 (-347 (-858 |#1|))) $ (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1902 (((-1084 (-858 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-311)) ELT) (((-1084 (-347 (-858 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1724 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1704 (((-1084 (-347 (-858 |#1|))) $) 84 (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1789 (((-347 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-347 (-858 |#1|))) NIL T ELT)) (-1722 (((-1084 (-347 (-858 |#1|))) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1892 (((-347 (-858 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1896 (((-347 (-858 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1895 (((-347 (-858 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1897 (((-1084 (-347 (-858 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1891 (((-347 (-858 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1894 (((-347 (-858 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1900 (((-347 (-858 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1899 (((-347 (-858 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1901 (((-1084 (-347 (-858 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1893 (((-347 (-858 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1903 (($) 107 T ELT) (($ (-1089)) 115 T ELT) (($ (-1178 (-1089))) 114 T ELT) (($ (-1178 $)) 102 T ELT) (($ (-1089) (-1178 $)) 113 T ELT) (($ (-1178 (-1089)) (-1178 $)) 112 T ELT)) (-1714 (((-85)) NIL T ELT)) (-3797 (((-347 (-858 |#1|)) $ (-484)) NIL T ELT)) (-3222 (((-1178 (-347 (-858 |#1|))) $ (-1178 $)) 104 T ELT) (((-631 (-347 (-858 |#1|))) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 (-858 |#1|))) $) 44 T ELT) (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT)) (-3969 (((-1178 (-347 (-858 |#1|))) $) NIL T ELT) (($ (-1178 (-347 (-858 |#1|)))) 41 T ELT)) (-1890 (((-584 (-858 (-347 (-858 |#1|)))) (-1178 $)) NIL T ELT) (((-584 (-858 (-347 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1178 $)) 105 (|has| |#1| (-495)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-1178 (-347 (-858 |#1|)))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 66 T ELT)) (-1705 (((-584 (-1178 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2544 (($ (-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-858 |#1|))) NIL T ELT) (($ (-347 (-858 |#1|)) $) NIL T ELT) (($ (-1055 |#2| (-347 (-858 |#1|))) $) NIL T ELT))) -(((-390 |#1| |#2| |#3| |#4|) (-13 (-358 (-347 (-858 |#1|))) (-591 (-1055 |#2| (-347 (-858 |#1|)))) (-10 -8 (-15 -3943 ($ (-1178 (-347 (-858 |#1|))))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1="failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#))) (-15 -1903 ($)) (-15 -1903 ($ (-1089))) (-15 -1903 ($ (-1178 (-1089)))) (-15 -1903 ($ (-1178 $))) (-15 -1903 ($ (-1089) (-1178 $))) (-15 -1903 ($ (-1178 (-1089)) (-1178 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1902 ((-1084 (-347 (-858 |#1|))))) (-15 -1901 ((-1084 (-347 (-858 |#1|))) $)) (-15 -1900 ((-347 (-858 |#1|)) $)) (-15 -1899 ((-347 (-858 |#1|)) $)) (-15 -1898 ((-1084 (-347 (-858 |#1|))))) (-15 -1897 ((-1084 (-347 (-858 |#1|))) $)) (-15 -1896 ((-347 (-858 |#1|)) $)) (-15 -1895 ((-347 (-858 |#1|)) $)) (-15 -1894 ((-347 (-858 |#1|)) $ $)) (-15 -1893 ((-347 (-858 |#1|)))) (-15 -1892 ((-347 (-858 |#1|)) $ $)) (-15 -1891 ((-347 (-858 |#1|)))) (-15 -1890 ((-584 (-858 |#1|)) (-1178 $))) (-15 -1890 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1089)) (-1178 (-631 |#1|))) (T -390)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1178 (-347 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1178 (-631 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))))) (-1905 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2011 (-584 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1904 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2011 (-584 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1) (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1089))) (-14 *5 (-1178 (-631 *2))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1178 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1178 (-631 *4))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))) (-1902 (*1 *2) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1893 (*1 *2) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1892 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1891 (*1 *2) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))) (-1890 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 19 T ELT)) (-3080 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3082 (((-1084 $) $ (-774 |#1|)) 53 T ELT) (((-1084 |#2|) $) 140 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3154 ((|#2| $) 49 T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3753 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) 95 T ELT)) (-3956 (($ $) 81 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| |#3| $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) 66 T ELT)) (-3083 (($ (-1084 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1084 $) (-774 |#1|)) 59 T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) 69 T ELT)) (-2892 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2819 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#2| $) 48 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 47 T ELT)) (-1794 ((|#2| $) 138 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) 151 (|has| |#2| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3754 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3755 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3945 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#2| $) 147 (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3943 (((-773) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 32 T CONST)) (-2668 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) 77 (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-391 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962) (-196 (-3954 |#1|) (-695))) (T -391)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-14 *3 (-584 (-1089))) (-5 *1 (-391 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3954 *3) (-695)))))) -((-1909 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1907 (((-3 (-1178 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1908 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1178 (-584 |#2|))) 101 T ELT)) (-2036 ((|#2| |#2| |#1|) 35 T ELT)) (-1906 (((-695) |#2| (-584 |#2|)) 26 T ELT))) -(((-392 |#1| |#2|) (-10 -7 (-15 -2036 (|#2| |#2| |#1|)) (-15 -1906 ((-695) |#2| (-584 |#2|))) (-15 -1907 ((-3 (-1178 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1908 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1178 (-584 |#2|)))) (-15 -1909 ((-85) |#1| (-584 |#2|)))) (-257) (-1154 |#1|)) (T -392)) -((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-257)) (-5 *2 (-85)) (-5 *1 (-392 *3 *5)))) (-1908 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3)) (-5 *1 (-392 *4 *3)) (-4 *3 (-1154 *4)))) (-1907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1154 *4)) (-5 *2 (-1178 (-584 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-584 *6)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-257)) (-5 *2 (-695)) (-5 *1 (-392 *5 *3)))) (-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1154 *3))))) -((-3729 (((-345 |#5|) |#5|) 24 T ELT))) -(((-393 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3729 ((-345 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089))))) (-718) (-495) (-495) (-862 |#4| |#2| |#1|)) (T -393)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089)))))) (-4 *5 (-718)) (-4 *7 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-862 *7 *5 *4))))) -((-2699 ((|#3|) 43 T ELT)) (-2707 (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 34 T ELT))) -(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2699 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -394)) -((-2699 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-394 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-394 *3 *4 *5 *6))))) -((-3729 (((-345 (-1084 |#1|)) (-1084 |#1|)) 43 T ELT))) -(((-395 |#1|) (-10 -7 (-15 -3729 ((-345 (-1084 |#1|)) (-1084 |#1|)))) (-257)) (T -395)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1084 *4))) (-5 *1 (-395 *4)) (-5 *3 (-1084 *4))))) -((-3726 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-695))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-695))) 43 T ELT) (((-51) |#2| (-1089) (-248 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|)) 29 T ELT)) (-3815 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 88 T ELT) (((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 87 T ELT) (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484))) 85 T ELT) (((-51) |#2| (-1089) (-248 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|)) 79 T ELT)) (-3779 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 74 T ELT) (((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 72 T ELT)) (-3776 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484))) 50 T ELT))) -(((-396 |#1| |#2|) (-10 -7 (-15 -3726 ((-51) (-1 |#2| (-484)) (-248 |#2|))) (-15 -3726 ((-51) |#2| (-1089) (-248 |#2|))) (-15 -3726 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-695)))) (-15 -3726 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-695)))) (-15 -3776 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484)))) (-15 -3776 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484)))) (-15 -3779 ((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3779 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3815 ((-51) (-1 |#2| (-484)) (-248 |#2|))) (-15 -3815 ((-51) |#2| (-1089) (-248 |#2|))) (-15 -3815 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484)))) (-15 -3815 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484)))) (-15 -3815 ((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3815 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -396)) -((-3815 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3815 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) (-4 *8 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3815 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))) (-3779 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) (-4 *8 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-695))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-695))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6))))) -((-2036 ((|#2| |#2| |#1|) 15 T ELT)) (-1911 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1910 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT))) -(((-397 |#1| |#2|) (-10 -7 (-15 -1910 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1911 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2036 (|#2| |#2| |#1|))) (-257) (-1154 |#1|)) (T -397)) -((-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1154 *3)))) (-1911 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1154 *4)) (-4 *4 (-257)) (-5 *1 (-397 *4 *3)))) (-1910 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1154 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) (-5 *4 (-584 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 28 T ELT)) (-3704 (($ |#3|) 25 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) 32 T ELT)) (-1912 (($ |#2| |#4| $) 33 T ELT)) (-2892 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2893 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1914 ((|#3| $) 19 T ELT)) (-1915 ((|#4| $) 17 T ELT)) (-3172 ((|#2| $) 29 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1913 (($ |#2| |#3| |#4|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 36 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3172 (|#2| $)) (-15 -2893 ((-651 |#3| |#4| |#5|) $)) (-15 -1915 (|#4| $)) (-15 -1914 (|#3| $)) (-15 -3956 ($ $)) (-15 -2892 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3704 ($ |#3|)) (-15 -1913 ($ |#2| |#3| |#4|)) (-15 -1912 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1089)) (-146) (-757) (-196 (-3954 |#1|) (-695)) (-1 (-85) (-2 (|:| -2399 |#3|) (|:| -2400 |#4|)) (-2 (|:| -2399 |#3|) (|:| -2400 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -398)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3954 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3172 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *5 (-196 (-3954 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) (-2 (|:| -2399 *4) (|:| -2400 *5)))) (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2893 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3954 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1915 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *2)) (-2 (|:| -2399 *5) (|:| -2400 *2)))) (-4 *2 (-196 (-3954 *3) (-695))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1914 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3954 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) (-2 (|:| -2399 *2) (|:| -2400 *5)))) (-4 *2 (-757)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3956 (*1 *1 *1) (-12 (-14 *2 (-584 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3954 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) (-2 (|:| -2399 *4) (|:| -2400 *5)))) (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3954 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) (-2 (|:| -2399 *5) (|:| -2400 *6)))) (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3704 (*1 *1 *2) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3954 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) (-2 (|:| -2399 *2) (|:| -2400 *5)))) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1913 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3954 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *4)) (-2 (|:| -2399 *3) (|:| -2400 *4)))) (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1912 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3954 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *3)) (-2 (|:| -2399 *5) (|:| -2400 *3)))) (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4)))))) -((-1916 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-399 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|) (-13 (-951 (-347 (-484))) (-311) (-10 -8 (-15 -3943 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -399)) -((-1916 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-495)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-347 (-484))) (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3080 (((-584 |#3|) $) 41 T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3707 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1="failed") (-584 |#4|)) 49 T ELT)) (-3154 (($ (-584 |#4|)) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3403 (($ |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#4|) $) 18 (|has| $ (-6 -3992)) ELT)) (-3178 ((|#3| $) 47 T ELT)) (-2607 (((-584 |#4|) $) 14 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2913 (((-584 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 39 T ELT)) (-3562 (($) 17 T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 16 T ELT)) (-3969 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT) (($ (-584 |#4|)) 51 T ELT)) (-3527 (($ (-584 |#4|)) 13 T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3943 (((-773) $) 38 T ELT) (((-584 |#4|) $) 50 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 30 T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-400 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3969 ($ (-584 |#4|))) (-6 -3992) (-6 -3993))) (-962) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -400)) -((-3969 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-400 *3 *4 *5 *6))))) -((-2659 (($) 11 T CONST)) (-2665 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-401 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#1|) -3949) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2659 (|#1|) -3949)) (-402 |#2| |#3|) (-146) (-23)) (T -401)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3155 (((-3 |#1| "failed") $) 30 T ELT)) (-3154 ((|#1| $) 31 T ELT)) (-3941 (($ $ $) 27 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3945 ((|#2| $) 23 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 22 T CONST)) (-2665 (($) 28 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-402 |#1| |#2|) (-113) (-146) (-23)) (T -402)) -((-2665 (*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-407 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2665 ($) -3949) (-15 -3941 ($ $ $)))) -(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-407 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-1917 (((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-831)) 26 T ELT)) (-1918 (((-1178 (-1178 (-484))) (-831)) 21 T ELT))) -(((-403) (-10 -7 (-15 -1917 ((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-831))) (-15 -1918 ((-1178 (-1178 (-484))) (-831))))) (T -403)) -((-1918 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-403)))) (-1917 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-831)) (-5 *1 (-403))))) -((-2769 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2773 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2771 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1920 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1919 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1921 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-404) (-10 -7 (-15 -1919 ((-85))) (-15 -1920 ((-85))) (-15 -1919 ((-85) (-85))) (-15 -1920 ((-85) (-85))) (-15 -1921 ((-85))) (-15 -2771 ((-484))) (-15 -2773 ((-484))) (-15 -2769 ((-484))) (-15 -1921 ((-85) (-85))) (-15 -2771 ((-484) (-484))) (-15 -2773 ((-484) (-484))) (-15 -2769 ((-484) (-484))))) (T -404)) -((-2769 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-2769 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2773 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2771 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3848 (((-584 (-327)) $) 34 T ELT) (((-584 (-327)) $ (-584 (-327))) 145 T ELT)) (-1926 (((-584 (-1001 (-327))) $) 16 T ELT) (((-584 (-1001 (-327))) $ (-584 (-1001 (-327)))) 142 T ELT)) (-1923 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1927 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3703 (((-1184) $ (-855 (-179)) (-784)) 162 T ELT)) (-1928 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3857 (((-484) $) 110 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1929 (($) 146 T ELT)) (-1922 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1925 (((-1184) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1184) $ (-855 (-179))) 156 T ELT) (((-1184) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3943 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1924 (((-1184) $ (-855 (-179))) 161 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-405) (-13 (-1013) (-10 -8 (-15 -1929 ($)) (-15 -1928 ($ $)) (-15 -1928 ($ (-584 (-584 (-855 (-179)))))) (-15 -1928 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1928 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1927 ((-584 (-584 (-855 (-179)))) $)) (-15 -3857 ((-484) $)) (-15 -1926 ((-584 (-1001 (-327))) $)) (-15 -1926 ((-584 (-1001 (-327))) $ (-584 (-1001 (-327))))) (-15 -3848 ((-584 (-327)) $)) (-15 -3848 ((-584 (-327)) $ (-584 (-327)))) (-15 -1925 ((-1184) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1925 ((-1184) $ (-855 (-179)))) (-15 -1925 ((-1184) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1924 ((-1184) $ (-855 (-179)))) (-15 -3703 ((-1184) $ (-855 (-179)) (-784))) (-15 -3943 ($ (-584 (-584 (-855 (-179)))))) (-15 -3943 ((-773) $)) (-15 -1923 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1922 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -405)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-405)))) (-1929 (*1 *1) (-5 *1 (-405))) (-1928 (*1 *1 *1) (-5 *1 (-405))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-1928 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-405)))) (-1928 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-405)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-405)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))) (-1926 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) (-3848 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))) (-3703 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-405)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-405))))) -((-3834 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-406 |#1| |#2| |#3|) (-10 -7 (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|))) (-407 |#2| |#3|) (-146) (-23)) (T -406)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3945 ((|#2| $) 23 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 22 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-407 |#1| |#2|) (-113) (-146) (-23)) (T -407)) -((-3945 (*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2659 (*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1013) (-10 -8 (-15 -3945 (|t#2| $)) (-15 -2659 ($) -3949) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3834 ($ $)) (-15 -3836 ($ $ $)) (-15 -3834 ($ $ $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-1931 (((-3 (-584 (-418 |#1| |#2|)) "failed") (-584 (-418 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1930 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1932 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-484)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT))) -(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -1930 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1931 ((-3 (-584 (-418 |#1| |#2|)) "failed") (-584 (-418 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1932 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-484)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1089)) (-389) (-389)) (T -408)) -((-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-484))))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389)))) (-1931 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) (-4 *6 (-389)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389))))) -((-3464 (((-3 $ "failed") $) 11 T ELT)) (-3008 (($ $ $) 22 T ELT)) (-2434 (($ $ $) 23 T ELT)) (-3946 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 21 T ELT))) -(((-409 |#1|) (-10 -7 (-15 -2434 (|#1| |#1| |#1|)) (-15 -3008 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3946 (|#1| |#1| |#1|)) (-15 -3464 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-410)) (T -409)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3721 (($) 23 T CONST)) (-3464 (((-3 $ "failed") $) 20 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 30 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3008 (($ $ $) 27 T ELT)) (-2434 (($ $ $) 26 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-410) (-113)) (T -410)) -((-2483 (*1 *1 *1) (-4 *1 (-410))) (-3946 (*1 *1 *1 *1) (-4 *1 (-410))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-484)))) (-3008 (*1 *1 *1 *1) (-4 *1 (-410))) (-2434 (*1 *1 *1 *1) (-4 *1 (-410)))) -(-13 (-664) (-10 -8 (-15 -2483 ($ $)) (-15 -3946 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3989) (-15 -3008 ($ $ $)) (-15 -2434 ($ $ $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 18 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-347 (-484))) NIL T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) 29 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 35 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 30 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 28 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 16 T ELT)) (-3945 (((-347 (-484)) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1175 |#2|)) NIL T ELT) (($ (-1159 |#1| |#2| |#3|)) 9 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 21 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-411 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3943 ($ (-1175 |#2|))) (-15 -3943 ($ (-1159 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -411)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-411 *3 *4 *5)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-412 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2|) (-1013) (-1013) (-1106 |#1| |#2|) |#2|) (T -412)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3679 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3080 (((-584 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3707 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3154 (($ (-584 |#4|)) NIL T ELT)) (-3796 (((-3 $ #1#) $) 45 T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3403 (($ |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-2888 (((-584 |#4|) $) 18 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 19 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-584 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 42 T ELT)) (-3694 (((-584 |#4|) $) NIL T ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3766 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 17 T ELT)) (-3562 (($) 14 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 13 T ELT)) (-3969 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3681 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3943 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3675 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) NIL T ELT)) (-3930 (((-85) |#3| $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-413 |#1| |#2| |#3| |#4|) (-1123 |#1| |#2| |#3| |#4|) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -413)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3624 (($) 17 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3969 (((-327) $) 21 T ELT) (((-179) $) 24 T ELT) (((-347 (-1084 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3943 (((-773) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-327) $) 20 T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 37 T CONST)) (-2665 (($) 8 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-414) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))) (-934) (-553 (-179)) (-553 (-327)) (-554 (-347 (-1084 (-484)))) (-554 (-473)) (-10 -8 (-15 -3624 ($))))) (T -414)) -((-3624 (*1 *1) (-5 *1 (-414)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 (((-1048) $) 12 T ELT)) (-3526 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-415) (-13 (-995) (-10 -8 (-15 -3526 ((-1048) $)) (-15 -3525 ((-1048) $))))) (T -415)) -((-3526 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) 13 T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 19 T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) 15 (|has| $ (-6 -3992)) ELT))) -(((-416 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3992))) (-1013) (-1013) (-1072)) (T -416)) -NIL -((-1933 (((-484) (-484) (-484)) 19 T ELT)) (-1934 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3454 (((-1178 (-584 (-484))) (-695) (-695)) 42 T ELT))) -(((-417) (-10 -7 (-15 -1933 ((-484) (-484) (-484))) (-15 -1934 ((-85) (-484) (-484) (-484) (-484))) (-15 -3454 ((-1178 (-584 (-484))) (-695) (-695))))) (T -417)) -((-3454 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1178 (-584 (-484)))) (-5 *1 (-417)))) (-1934 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-417)))) (-1933 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-417))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3082 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3753 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-419 (-3954 |#1|) (-695)) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-419 (-3954 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2819 (((-419 (-3954 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-419 (-3954 |#1|) (-695)) (-419 (-3954 |#1|) (-695))) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3754 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3755 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3945 (((-419 (-3954 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-419 (-3954 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-418 |#1| |#2|) (-13 (-862 |#2| (-419 (-3954 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962)) (T -418)) -((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-418 *3 *4)) (-14 *3 (-584 (-1089))) (-4 *4 (-962))))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3704 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3134 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3785 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3154 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2993 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ (-484)) 11 T ELT)) (-3184 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2888 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2607 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3240 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3241 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3798 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3833 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) NIL T ELT)) (-3908 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3124 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) NIL (|has| |#2| (-23)) CONST)) (-2665 (($) NIL (|has| |#2| (-962)) CONST)) (-2668 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2684 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-419 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -419)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1936 (((-584 (-786)) $) 16 T ELT)) (-3539 (((-444) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1937 (($ (-444) (-584 (-786))) 12 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 23 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-420) (-13 (-995) (-10 -8 (-15 -1937 ($ (-444) (-584 (-786)))) (-15 -3539 ((-444) $)) (-15 -1936 ((-584 (-786)) $))))) (T -420)) -((-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-786))) (-5 *1 (-420)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-420))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3721 (($) NIL T CONST)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2855 (($ $ $) 48 T ELT)) (-3515 (($ $ $) 47 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2856 ((|#1| $) 40 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 41 T ELT)) (-3606 (($ |#1| $) 18 T ELT)) (-1938 (($ (-584 |#1|)) 19 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 34 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 11 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 29 (|has| $ (-6 -3992)) ELT))) -(((-421 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1938 ($ (-584 |#1|))))) (-757)) (T -421)) -((-1938 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-421 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3839 (($ $) 71 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 45 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (((-3 |#4| #1#) $) 117 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3432 (((-2 (|:| -2335 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3943 (((-773) $) 110 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 32 T CONST)) (-3055 (((-85) $ $) 121 T ELT)) (-3834 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 77 T ELT))) -(((-422 |#1| |#2| |#3| |#4|) (-285 |#1| |#2| |#3| |#4|) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -422)) -NIL -((-1942 (((-484) (-584 (-484))) 53 T ELT)) (-1939 ((|#1| (-584 |#1|)) 94 T ELT)) (-1941 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1940 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3142 ((|#1| (-584 |#1|)) 96 T ELT)) (-2816 (((-584 (-484)) (-584 |#1|)) 56 T ELT))) -(((-423 |#1|) (-10 -7 (-15 -3142 (|#1| (-584 |#1|))) (-15 -1939 (|#1| (-584 |#1|))) (-15 -1940 ((-584 |#1|) (-584 |#1|))) (-15 -1941 ((-584 |#1|) (-584 |#1|))) (-15 -2816 ((-584 (-484)) (-584 |#1|))) (-15 -1942 ((-484) (-584 (-484))))) (-1154 (-484))) (T -423)) -((-1942 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-484)) (-5 *1 (-423 *4)) (-4 *4 (-1154 *2)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-584 (-484))) (-5 *1 (-423 *4)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484))))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3154 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-484) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3955 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-484) (-1065)) CONST)) (-1943 (($ (-347 (-484))) 9 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3946 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-424) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 16)) (-10 -8 (-15 -3126 ((-347 (-484)) $)) (-15 -1943 ($ (-347 (-484))))))) (T -424)) -((-3126 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424))))) -((-2607 (((-584 |#2|) $) 31 T ELT)) (-3243 (((-85) |#2| $) 39 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3765 (($ $ (-584 (-248 |#2|))) 13 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 30 T ELT) (((-695) |#2| $) 37 T ELT)) (-3943 (((-773) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-3954 (((-695) $) 18 T ELT))) -(((-425 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3765 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3765 (|#1| |#1| |#2| |#2|)) (-15 -3765 (|#1| |#1| (-248 |#2|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3243 ((-85) |#2| |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -2607 ((-584 |#2|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3954 ((-695) |#1|))) (-426 |#2|) (-1128)) (T -425)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3721 (($) 7 T CONST)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-426 |#1|) (-113) (-1128)) (T -426)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1128)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3993)) (-4 *1 (-426 *3)) (-4 *3 (-1128)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-695)))) (-2888 (*1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-2607 (*1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-1944 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-3243 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3993)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3992)) (PROGN (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-85) (-1 (-85) |t#1|) $)) (-15 -1944 ((-695) (-1 (-85) |t#1|) $)) (-15 -2888 ((-584 |t#1|) $)) (-15 -2607 ((-584 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1944 ((-695) |t#1| $)) (-15 -3243 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-3943 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-427 |#1|) (-113) (-1128)) (T -427)) -NIL -(-13 (-553 |t#1|) (-556 |t#1|)) -(((-556 |#1|) . T) ((-553 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1948 (($ (-1072)) 8 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 15 T ELT) (((-1072) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-428) (-13 (-1013) (-553 (-1072)) (-10 -8 (-15 -1948 ($ (-1072)))))) (T -428)) -((-1948 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-428))))) -((-3489 (($ $) 15 T ELT)) (-3487 (($ $) 24 T ELT)) (-3491 (($ $) 12 T ELT)) (-3492 (($ $) 10 T ELT)) (-3490 (($ $) 17 T ELT)) (-3488 (($ $) 22 T ELT))) -(((-429 |#1|) (-10 -7 (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|))) (-430)) (T -429)) -NIL -((-3489 (($ $) 11 T ELT)) (-3487 (($ $) 10 T ELT)) (-3491 (($ $) 9 T ELT)) (-3492 (($ $) 8 T ELT)) (-3490 (($ $) 7 T ELT)) (-3488 (($ $) 6 T ELT))) -(((-430) (-113)) (T -430)) -((-3489 (*1 *1 *1) (-4 *1 (-430))) (-3487 (*1 *1 *1) (-4 *1 (-430))) (-3491 (*1 *1 *1) (-4 *1 (-430))) (-3492 (*1 *1 *1) (-4 *1 (-430))) (-3490 (*1 *1 *1) (-4 *1 (-430))) (-3488 (*1 *1 *1) (-4 *1 (-430)))) -(-13 (-10 -8 (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)) (-15 -3491 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)))) -((-3729 (((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)) 54 T ELT))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)))) (-311) (-1154 |#1|) (-13 (-311) (-120) (-662 |#1| |#2|)) (-1154 |#3|)) (T -431)) -((-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-4 *7 (-13 (-311) (-120) (-662 *5 *6))) (-5 *2 (-345 *3)) (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1154 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1214 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3186 (((-85) $) 39 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1949 (((-85) $ $) 72 T ELT)) (-1598 (((-584 (-551 $)) $) 49 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1215 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3181 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3155 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3154 (((-551 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-347 (-484)) $) 54 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 (-484))) (-631 $)) NIL T ELT)) (-3839 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2572 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3592 (((-86) (-86)) NIL T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2997 (((-1038 (-484) (-551 $)) $) 37 T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-3130 (((-1084 $) (-1084 $) (-551 $)) 86 T ELT) (((-1084 $) (-1084 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1595 (((-1084 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3955 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-1178 $) $) NIL T ELT) (((-631 (-347 (-484))) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) NIL T ELT)) (-2234 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2632 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-2602 (((-695) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2673 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3765 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3755 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2996 (((-1038 (-484) (-551 $)) $) 20 T ELT)) (-3183 (($ $) NIL (|has| $ (-962)) ELT)) (-3969 (((-327) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-327)) $) 116 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-551 $))) 21 T ELT)) (-3124 (((-695)) NIL T CONST)) (-2589 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2253 (((-85) (-86)) 92 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 22 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3055 (((-85) $ $) 24 T ELT)) (-3946 (($ $ $) 44 T ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) -(((-432) (-13 (-253) (-27) (-951 (-484)) (-951 (-347 (-484))) (-581 (-484)) (-934) (-581 (-347 (-484))) (-120) (-554 (-142 (-327))) (-190) (-556 (-1038 (-484) (-551 $))) (-10 -8 (-15 -2997 ((-1038 (-484) (-551 $)) $)) (-15 -2996 ((-1038 (-484) (-551 $)) $)) (-15 -3839 ($ $)) (-15 -1949 ((-85) $ $)) (-15 -3130 ((-1084 $) (-1084 $) (-551 $))) (-15 -3130 ((-1084 $) (-1084 $) (-584 (-551 $)))) (-15 -3130 ($ $ (-551 $))) (-15 -3130 ($ $ (-584 (-551 $))))))) (T -432)) -((-2997 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) (-3839 (*1 *1 *1) (-5 *1 (-432))) (-1949 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432)))) (-3130 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-551 (-432))) (-5 *1 (-432)))) (-3130 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-584 (-551 (-432)))) (-5 *1 (-432)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-432))) (-5 *1 (-432)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-432)))) (-5 *1 (-432))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 43 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 39 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 38 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 22 T ELT)) (-2199 (((-484) $) 18 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) 40 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) 16 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 20 T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 42 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 14 T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 25 T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 12 (|has| $ (-6 -3992)) ELT))) -(((-433 |#1| |#2|) (-19 |#1|) (-1128) (-484)) (T -433)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1255 (($ $ (-484) (-433 |#1| |#3|)) NIL T ELT)) (-1254 (($ $ (-484) (-433 |#1| |#2|)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3110 (((-433 |#1| |#3|) $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3113 (((-695) $) NIL T ELT)) (-3611 (($ (-695) (-695) |#1|) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3109 (((-433 |#1| |#2|) $ (-484)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-434 |#1| |#2| |#3|) (-57 |#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) (-1128) (-484) (-484)) (T -434)) -NIL -((-1951 (((-584 (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1950 (((-584 (-1084 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2076 (((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1950 ((-584 (-1084 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1951 ((-584 (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2076 ((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-298) (-1154 |#1|) (-1154 |#2|)) (T -435)) -((-2076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2011 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-298)) (-5 *2 (-2 (|:| -2011 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-435 *6 *7 *8)))) (-1951 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -2011 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-435 *5 *6 *7)) (-5 *3 (-2 (|:| -2011 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1154 *6)))) (-1950 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1154 *3)) (-5 *2 (-584 (-1084 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1154 *5))))) -((-1957 (((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1952 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1954 (((-695) (-695) (-695)) 34 T ELT)) (-1956 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1955 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1953 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-484)) 28 T ELT)) (-3326 ((|#1| (-631 |#1|)) 18 T ELT))) -(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -3326 (|#1| (-631 |#1|))) (-15 -1952 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1953 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-484))) (-15 -1954 ((-695) (-695) (-695))) (-15 -1955 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1955 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1956 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2011 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $)))) (-1154 |#1|) (-350 |#1| |#2|)) (T -436)) -((-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1953 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-1952 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1154 *2)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 44 T ELT)) (-3319 (($ $ $) 41 T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3785 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3993)) ELT) (((-85) $ (-484) (-85)) 43 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-3403 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-3839 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-1574 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3993)) ELT)) (-3111 (((-85) $ (-484)) NIL T ELT)) (-3416 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2888 (((-584 (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2560 (($ $ $) 39 T ELT)) (-2559 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3611 (($ (-695) (-85)) 27 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2199 (((-484) $) 8 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL T ELT)) (-3515 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2607 (((-584 (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2303 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-85) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2198 (($ $ (-85)) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT)) (-2204 (((-584 (-85)) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 29 T ELT)) (-3797 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) 22 T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2304 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1944 (((-695) (-85) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-1013))) ELT) (((-695) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 30 T ELT)) (-3969 (((-473) $) NIL (|has| (-85) (-554 (-473))) ELT)) (-3527 (($ (-584 (-85))) NIL T ELT)) (-3799 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3943 (((-773) $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2561 (($ $ $) 37 T ELT)) (-2310 (($ $ $) 46 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 31 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 32 T ELT)) (-2311 (($ $ $) 45 T ELT)) (-3954 (((-695) $) 13 (|has| $ (-6 -3992)) ELT))) -(((-437 |#1|) (-96) (-484)) (T -437)) -NIL -((-1959 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|)) 35 T ELT)) (-1958 (((-1084 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1084 |#4|)) 22 T ELT)) (-1960 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1084 |#4|))) 46 T ELT)) (-1961 (((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1958 (|#2| (-1 |#1| |#4|) (-1084 |#4|))) (-15 -1958 ((-1084 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1959 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|))) (-15 -1960 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1084 |#4|)))) (-15 -1961 ((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1154 |#1|) (-1154 |#2|) (-962)) (T -438)) -((-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1084 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))) (-1959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1154 *5)) (-5 *2 (-1084 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1962 (((-1184) $) 25 T ELT)) (-3797 (((-1072) $ (-1089)) 30 T ELT)) (-3614 (((-1184) $) 20 T ELT)) (-3943 (((-773) $) 27 T ELT) (($ (-1072)) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 12 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 10 T ELT))) -(((-439) (-13 (-757) (-556 (-1072)) (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) (-15 -1962 ((-1184) $))))) (T -439)) -((-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-439)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439))))) -((-3738 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3736 ((|#1| |#4|) 10 T ELT)) (-3737 ((|#3| |#4|) 17 T ELT))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3736 (|#1| |#4|)) (-15 -3737 (|#3| |#4|)) (-15 -3738 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-905 |#1|) (-321 |#1|) (-321 |#2|)) (T -440)) -((-3738 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-4 *2 (-321 *4)) (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-440 *2 *4 *5 *3)) (-4 *5 (-321 *2)) (-4 *3 (-321 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1972 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3186 (((-85) $) 178 T ELT)) (-1964 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1963 (((-1079 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1089))) ELT)) (-1971 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2409 (((-85) $) 177 T ELT)) (-1968 (($ $) 132 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3236 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1973 (((-85) |#4| $) 130 T ELT)) (-1974 (((-85) $ $) 82 T ELT)) (-1967 (($ (-584 |#4|)) 106 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1966 (($ (-584 |#4|)) 175 T ELT)) (-1965 (((-85) $) 176 T ELT)) (-2250 (($ $) 85 T ELT)) (-2694 (((-584 |#4|) $) 73 T ELT)) (-1970 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1975 (((-85) |#4| $) 89 T ELT)) (-3908 (((-484) $ (-584 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3943 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1969 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3055 (((-85) $ $) 84 T ELT)) (-3836 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-441 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3836 ($ $ $)) (-15 -2409 ((-85) $)) (-15 -3186 ((-85) $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ $)) (-15 -1973 ((-85) |#4| $)) (-15 -1972 ((-85) $ (-584 |#3|))) (-15 -1972 ((-85) $)) (-15 -3236 ($ $ $)) (-15 -3236 ($ (-584 $))) (-15 -1971 ($ $ $)) (-15 -1971 ($ $ |#4|)) (-15 -2250 ($ $)) (-15 -1970 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1969 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3908 ((-484) $ (-584 |#3|))) (-15 -3908 ((-484) $)) (-15 -1968 ($ $)) (-15 -1967 ($ (-584 |#4|))) (-15 -1966 ($ (-584 |#4|))) (-15 -1965 ((-85) $)) (-15 -2694 ((-584 |#4|) $)) (-15 -3943 ($ (-584 |#4|))) (-15 -1964 ($ $ |#4|)) (-15 -1964 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1089))) (-15 -1963 ((-1079 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -441)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2409 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3186 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-584 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1971 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1971 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2250 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-441 *4 *5 *6 *7)))) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-441 *3 *4 *5 *6)))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-484)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3908 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1968 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1965 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2694 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1964 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1964 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1089))) (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1079 (-584 (-858 *4)) (-584 (-248 (-858 *4))))) (-5 *1 (-441 *4 *5 *6 *7))))) -((-1976 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 178 T ELT)) (-1977 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 179 T ELT)) (-1978 (((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 129 T ELT)) (-3720 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) NIL T ELT)) (-1979 (((-584 (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 181 T ELT)) (-1980 (((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-584 (-774 |#1|))) 197 T ELT))) -(((-442 |#1| |#2|) (-10 -7 (-15 -1976 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1977 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -3720 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1978 ((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1979 ((-584 (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1980 ((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-584 (-774 |#1|))))) (-584 (-1089)) (-695)) (T -442)) -((-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *1 (-442 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-584 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))) (-5 *1 (-442 *4 *5)) (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-441 (-347 (-484)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-347 (-484))))) (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-442 *3 *4)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) -((-3797 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-443 |#1|) (-113) (-72)) (T -443)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3055 (|f| |x| |x|) |x|)))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1981 (($) 6 T ELT)) (-3943 (((-773) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-444) (-13 (-1013) (-10 -8 (-15 -1981 ($))))) (T -444)) -((-1981 (*1 *1) (-5 *1 (-444)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) 10 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) 15 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 20 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 25 T ELT))) -(((-445 |#1| |#2|) (-13 (-21) (-447 |#1| |#2|)) (-21) (-760)) (T -445)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 16 T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) 13 T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) 39 T ELT)) (-2892 (($ |#1| |#2|) 36 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) 41 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) 11 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT))) -(((-446 |#1| |#2|) (-13 (-23) (-447 |#1| |#2|)) (-23) (-760)) (T -446)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) 16 T ELT)) (-3956 (($ $) 17 T ELT)) (-2892 (($ |#1| |#2|) 20 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1982 ((|#2| $) 18 T ELT)) (-3172 ((|#1| $) 19 T ELT)) (-3240 (((-1072) $) 15 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3241 (((-1033) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) 22 T ELT)) (-3943 (((-773) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-447 |#1| |#2|) (-113) (-72) (-760)) (T -447)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2892 (*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-451 *3 *4)))))) -(-13 (-72) (-558 (-584 (-451 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3955 ($ (-1 |t#1| |t#1|) $)) (-15 -2892 ($ |t#1| |t#2|)) (-15 -3172 (|t#1| $)) (-15 -1982 (|t#2| $)) (-15 -3956 ($ $)) (-15 -3771 ((-584 (-451 |t#1| |t#2|)) $)))) -(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-558 (-584 (-451 |#1| |#2|))) . T) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) 29 T ELT)) (-3956 (($ $) 23 T ELT)) (-2892 (($ |#1| |#2|) 19 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1982 ((|#2| $) 28 T ELT)) (-3172 ((|#1| $) 27 T ELT)) (-3240 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3241 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) 30 T ELT)) (-1983 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3943 (((-773) $) 17 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-448 |#1| |#2|) (-13 (-447 |#1| |#2|) (-10 -8 (-15 -1983 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-760)) (T -448)) -((-1983 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-448 *4 *5)) (-4 *5 (-760))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 23 T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-449 |#1| |#2|) (-13 (-717) (-447 |#1| |#2|)) (-717) (-760)) (T -449)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 |#1| |#2|)) $) NIL T ELT)) (-2482 (($ $ $) 24 T ELT)) (-1310 (((-3 $ "failed") $ $) 20 T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 |#1| |#2|))) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-450 |#1| |#2|) (-13 (-718) (-447 |#1| |#2|)) (-718) (-757)) (T -450)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1984 (($ |#2| |#1|) 9 T ELT)) (-2399 ((|#2| $) 11 T ELT)) (-3943 (((-783 |#2| |#1|) $) 14 T ELT)) (-3674 ((|#1| $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-451 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1984 ($ |#2| |#1|)) (-15 -2399 (|#2| $)) (-15 -3674 (|#1| $)))) (-72) (-760)) (T -451)) -((-1984 (*1 *1 *2 *3) (-12 (-5 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2399 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-451 *3 *2)) (-4 *3 (-72)))) (-3674 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-451 *2 *3)) (-4 *3 (-760))))) -((-3765 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -3765 (|#1| |#1| |#2| |#3|)) (-15 -3765 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-453 |#2| |#3|) (-1013) (-1128)) (T -452)) -NIL -((-3765 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-453 |#1| |#2|) (-113) (-1013) (-1128)) (T -453)) -((-3765 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-453 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1128)))) (-3765 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128))))) -(-13 (-10 -8 (-15 -3765 ($ $ |t#1| |t#2|)) (-15 -3765 ($ $ (-584 |t#1|) (-584 |t#2|))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 17 T ELT)) (-3771 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|))) $) 19 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2298 ((|#1| $ (-484)) 24 T ELT)) (-1620 ((|#2| $ (-484)) 22 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3674 ((|#2| |#1| $) 51 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 11 T CONST)) (-3055 (((-85) $ $) 30 T ELT)) (-3836 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-454 |#1| |#2| |#3|) (-273 |#1| |#2|) (-1013) (-104) |#2|) (T -454)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1985 (((-85) (-85)) 32 T ELT)) (-3785 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-2367 (($ $) 83 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1986 (($ $ (-484)) 19 T ELT)) (-1987 (((-695) $) 13 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 31 T ELT)) (-2199 (((-484) $) 29 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) 28 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3606 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1988 (($ (-584 |#1|)) 43 T ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) 24 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 62 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 21 T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) 63 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 53 T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3788 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 22 (|has| $ (-6 -3992)) ELT))) -(((-455 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1988 ($ (-584 |#1|))) (-15 -1987 ((-695) $)) (-15 -1986 ($ $ (-484))) (-15 -1985 ((-85) (-85))))) (-1128) (-484)) (T -455)) -((-1988 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-455 *3 *4)) (-14 *4 (-484)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1990 (((-1048) $) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1989 (((-1048) $) 14 T ELT)) (-3919 (((-1048) $) 10 T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-456) (-13 (-995) (-10 -8 (-15 -3919 ((-1048) $)) (-15 -1990 ((-1048) $)) (-15 -1989 ((-1048) $))))) (T -456)) -((-3919 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (((-517 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3154 (((-517 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-517 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-831) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2010 (((-85) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3130 (((-517 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 (-517 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2009 (((-831) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1625 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1624 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-3 (-1084 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-517 |#1|))) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-517 |#1|) (-317)) CONST)) (-2399 (($ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3945 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3183 (((-1084 (-517 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3222 (((-1178 (-517 |#1|)) $) NIL T ELT) (((-631 (-517 |#1|)) (-1178 $)) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2701 (($ $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2668 (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT))) -(((-457 |#1| |#2|) (-279 (-517 |#1|)) (-831) (-831)) (T -457)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1255 (($ $ (-484) |#4|) NIL T ELT)) (-1254 (($ $ (-484) |#5|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3110 ((|#4| $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 50 T ELT)) (-3111 ((|#1| $ (-484) (-484)) 45 T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3113 (((-695) $) 33 T ELT)) (-3611 (($ (-695) (-695) |#1|) 30 T ELT)) (-3112 (((-695) $) 38 T ELT)) (-3117 (((-484) $) 31 T ELT)) (-3115 (((-484) $) 32 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) 37 T ELT)) (-3114 (((-484) $) 39 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3240 (((-1072) $) 55 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 16 T ELT)) (-3562 (($) 18 T ELT)) (-3797 ((|#1| $ (-484) (-484)) 48 T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3109 ((|#5| $ (-484)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-458 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1128) (-484) (-484) (-321 |#1|) (-321 |#1|)) (T -458)) -NIL -((-3108 ((|#4| |#4|) 38 T ELT)) (-3107 (((-695) |#4|) 45 T ELT)) (-3106 (((-695) |#4|) 46 T ELT)) (-3105 (((-584 |#3|) |#4|) 57 (|has| |#3| (-6 -3993)) ELT)) (-3587 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1991 ((|#4| |#4|) 61 T ELT)) (-3325 ((|#1| |#4|) 60 T ELT))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3108 (|#4| |#4|)) (-15 -3107 ((-695) |#4|)) (-15 -3106 ((-695) |#4|)) (IF (|has| |#3| (-6 -3993)) (-15 -3105 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3325 (|#1| |#4|)) (-15 -1991 (|#4| |#4|)) (-15 -3587 ((-3 |#4| "failed") |#4|))) (-311) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -459)) -((-3587 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1991 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3105 (*1 *2 *3) (-12 (|has| *6 (-6 -3993)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-584 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-3108 ((|#8| |#4|) 20 T ELT)) (-3105 (((-584 |#3|) |#4|) 29 (|has| |#7| (-6 -3993)) ELT)) (-3587 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-460 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3108 (|#8| |#4|)) (-15 -3587 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3993)) (-15 -3105 ((-584 |#3|) |#4|)) |%noBranch|)) (-495) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-321 |#5|) (-321 |#5|) (-628 |#5| |#6| |#7|)) (T -460)) -((-3105 (*1 *2 *3) (-12 (|has| *9 (-6 -3993)) (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-584 *6)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3587 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695) (-695)) NIL T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3411 (($ (-537 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2348 (($ $ (-484) (-484)) 21 T ELT)) (-2347 (($ $ (-484) (-484)) NIL T ELT)) (-2346 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2351 (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2345 (($ $ (-484) (-484) $) NIL T ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-537 |#1| |#3|)) NIL T ELT)) (-1254 (($ $ (-484) (-537 |#1| |#2|)) NIL T ELT)) (-3330 (($ (-695) |#1|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) 30 (|has| |#1| (-257)) ELT)) (-3110 (((-537 |#1| |#3|) $ (-484)) NIL T ELT)) (-3107 (((-695) $) 33 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3111 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3106 (((-695) $) 35 (|has| |#1| (-495)) ELT)) (-3105 (((-584 (-537 |#1| |#2|)) $) 38 (|has| |#1| (-495)) ELT)) (-3113 (((-695) $) NIL T ELT)) (-3611 (($ (-695) (-695) |#1|) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3324 ((|#1| $) 28 (|has| |#1| (-6 (-3994 #1="*"))) ELT)) (-3117 (((-484) $) 10 T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) 13 T ELT)) (-3114 (((-484) $) NIL T ELT)) (-3122 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3591 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3587 (((-3 $ #2="failed") $) 42 (|has| |#1| (-311)) ELT)) (-2350 (($ $ $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-3463 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3329 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3325 ((|#1| $) 26 (|has| |#1| (-6 (-3994 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3109 (((-537 |#1| |#2|) $ (-484)) NIL T ELT)) (-3943 (($ (-537 |#1| |#2|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-537 |#1| |#2|) $ (-537 |#1| |#2|)) NIL T ELT) (((-537 |#1| |#3|) (-537 |#1| |#3|) $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-461 |#1| |#2| |#3|) (-628 |#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) (-962) (-484) (-484)) (T -461)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1992 (((-584 (-1129)) $) 14 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (($ (-584 (-1129))) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-462) (-13 (-995) (-10 -8 (-15 -3943 ($ (-584 (-1129)))) (-15 -1992 ((-584 (-1129)) $))))) (T -462)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1993 (((-1048) $) 15 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3447 (((-444) $) 12 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 22 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-463) (-13 (-995) (-10 -8 (-15 -3447 ((-444) $)) (-15 -1993 ((-1048) $))))) (T -463)) -((-3447 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-463)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463))))) -((-1999 (((-633 (-1137)) $) 15 T ELT)) (-1995 (((-633 (-1135)) $) 38 T ELT)) (-1997 (((-633 (-1134)) $) 29 T ELT)) (-2000 (((-633 (-488)) $) 12 T ELT)) (-1996 (((-633 (-486)) $) 42 T ELT)) (-1998 (((-633 (-485)) $) 33 T ELT)) (-1994 (((-695) $ (-102)) 54 T ELT))) -(((-464 |#1|) (-10 -7 (-15 -1994 ((-695) |#1| (-102))) (-15 -1995 ((-633 (-1135)) |#1|)) (-15 -1996 ((-633 (-486)) |#1|)) (-15 -1997 ((-633 (-1134)) |#1|)) (-15 -1998 ((-633 (-485)) |#1|)) (-15 -1999 ((-633 (-1137)) |#1|)) (-15 -2000 ((-633 (-488)) |#1|))) (-465)) (T -464)) -NIL -((-1999 (((-633 (-1137)) $) 12 T ELT)) (-1995 (((-633 (-1135)) $) 8 T ELT)) (-1997 (((-633 (-1134)) $) 10 T ELT)) (-2000 (((-633 (-488)) $) 13 T ELT)) (-1996 (((-633 (-486)) $) 9 T ELT)) (-1998 (((-633 (-485)) $) 11 T ELT)) (-1994 (((-695) $ (-102)) 7 T ELT)) (-2001 (((-633 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-465) (-113)) (T -465)) -((-2001 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-101))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-488))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1137))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-485))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1134))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-486))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1135))))) (-1994 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-695))))) -(-13 (-147) (-10 -8 (-15 -2001 ((-633 (-101)) $)) (-15 -2000 ((-633 (-488)) $)) (-15 -1999 ((-633 (-1137)) $)) (-15 -1998 ((-633 (-485)) $)) (-15 -1997 ((-633 (-1134)) $)) (-15 -1996 ((-633 (-486)) $)) (-15 -1995 ((-633 (-1135)) $)) (-15 -1994 ((-695) $ (-102))))) +((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3944 (*1 *1 *1) (-4 *1 (-239))) (-3943 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-10 -8 (-15 -3943 ($ $)) (-15 -3944 ($ $)) (-15 ** ($ $ $)))) +((-1576 (((-585 (-1070 |#1|)) (-1070 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT))) +(((-240 |#1| |#2|) (-10 -7 (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 ((-585 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-312) (-1173 |#1|)) (T -240)) +((-1576 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1070 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +((-3801 ((|#2| $ |#1|) 6 T ELT))) +(((-241 |#1| |#2|) (-113) (-1130) (-1130)) (T -241)) +((-3801 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3801 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1130) . T)) +((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3114 ((|#3| $ |#2|) 10 T ELT))) +(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1577 (|#3| |#1| |#2| |#3|)) (-15 -3114 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1015) (-1130)) (T -242)) +NIL +((-3789 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3997)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) 11 T ELT)) (-3801 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-243 |#1| |#2|) (-113) (-1015) (-1130)) (T -243)) +((-3801 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) (-1577 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130))))) +(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3801 (|t#2| $ |t#1| |t#2|)) (-15 -3114 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3789 (|t#2| $ |t#1| |t#2|)) (-15 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-241 |#1| |#2|) . T) ((-13) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 44 T ELT)) (-2065 (($ $) 41 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) 35 T ELT)) (-3843 (($ |#2| |#3|) 18 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2616 ((|#3| $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 19 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-696) $) 36 T ELT)) (-3801 ((|#2| $ |#2|) 46 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 23 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 39 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2616 (|#3| $)) (-15 -3947 (|#2| $)) (-15 -3843 ($ |#2| |#3|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-1156 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) +((-3468 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2616 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3843 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2486 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-3127 (((-85) $ $) 10 T ELT))) +(((-245 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-246)) (T -245)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-246) (-113)) (T -246)) +NIL +(-13 (-963) (-82 $ $) (-10 -7 (-6 -3989))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-1585 (((-585 (-999)) $) 10 T ELT)) (-1583 (($ (-445) (-445) (-1017) $) 19 T ELT)) (-1581 (($ (-445) (-585 (-878)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-634 (-1017)) (-445) (-445) $) 18 T ELT)) (-1582 (((-585 (-878)) (-445) $) 22 T ELT)) (-3566 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3947 (((-774) $) 29 T ELT)) (-1578 (($) 26 T ELT))) +(((-247) (-13 (-554 (-774)) (-10 -8 (-15 -3566 ($)) (-15 -1585 ((-585 (-999)) $)) (-15 -1584 ((-634 (-1017)) (-445) (-445) $)) (-15 -1583 ($ (-445) (-445) (-1017) $)) (-15 -1582 ((-585 (-878)) (-445) $)) (-15 -1581 ($ (-445) (-585 (-878)) $)) (-15 -1580 ($)) (-15 -1579 ($)) (-15 -1578 ($))))) (T -247)) +((-3566 (*1 *1) (-5 *1 (-247))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247)))) (-1584 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-1017))) (-5 *1 (-247)))) (-1583 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1017)) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-585 (-878))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-878))) (-5 *1 (-247)))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247)))) +((-1589 (((-585 (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-348 (-859 |#1|))))))) (-632 (-348 (-859 |#1|)))) 103 T ELT)) (-1588 (((-585 (-632 (-348 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 |#1|)))))) (-632 (-348 (-859 |#1|)))) 98 T ELT) (((-585 (-632 (-348 (-859 |#1|)))) (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|))) (-632 (-348 (-859 |#1|))) (-696) (-696)) 42 T ELT)) (-1590 (((-585 (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 |#1|))))))) (-632 (-348 (-859 |#1|)))) 100 T ELT)) (-1587 (((-585 (-632 (-348 (-859 |#1|)))) (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|))) (-632 (-348 (-859 |#1|)))) 76 T ELT)) (-1586 (((-585 (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (-632 (-348 (-859 |#1|)))) 75 T ELT)) (-2451 (((-859 |#1|) (-632 (-348 (-859 |#1|)))) 56 T ELT) (((-859 |#1|) (-632 (-348 (-859 |#1|))) (-1091)) 57 T ELT))) +(((-248 |#1|) (-10 -7 (-15 -2451 ((-859 |#1|) (-632 (-348 (-859 |#1|))) (-1091))) (-15 -2451 ((-859 |#1|) (-632 (-348 (-859 |#1|))))) (-15 -1586 ((-585 (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (-632 (-348 (-859 |#1|))))) (-15 -1587 ((-585 (-632 (-348 (-859 |#1|)))) (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|))) (-632 (-348 (-859 |#1|))))) (-15 -1588 ((-585 (-632 (-348 (-859 |#1|)))) (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|))) (-632 (-348 (-859 |#1|))) (-696) (-696))) (-15 -1588 ((-585 (-632 (-348 (-859 |#1|)))) (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 |#1|)))))) (-632 (-348 (-859 |#1|))))) (-15 -1589 ((-585 (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |geneigvec| (-585 (-632 (-348 (-859 |#1|))))))) (-632 (-348 (-859 |#1|))))) (-15 -1590 ((-585 (-2 (|:| |eigval| (-3 (-348 (-859 |#1|)) (-1081 (-1091) (-859 |#1|)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 |#1|))))))) (-632 (-348 (-859 |#1|)))))) (-390)) (T -248)) +((-1590 (*1 *2 *3) (-12 (-4 *4 (-390)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-348 (-859 *4)))))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-390)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4)))) (|:| |geneigvec| (-585 (-632 (-348 (-859 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-632 (-348 (-859 *4)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-348 (-859 *5)) (-1081 (-1091) (-859 *5)))) (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) (-4 *5 (-390)) (-5 *2 (-585 (-632 (-348 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-348 (-859 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-348 (-859 *6)) (-1081 (-1091) (-859 *6)))) (-5 *5 (-696)) (-4 *6 (-390)) (-5 *2 (-585 (-632 (-348 (-859 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-632 (-348 (-859 *6)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-348 (-859 *5)) (-1081 (-1091) (-859 *5)))) (-4 *5 (-390)) (-5 *2 (-585 (-632 (-348 (-859 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-632 (-348 (-859 *5)))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-859 *4)))) (-4 *4 (-390)) (-5 *2 (-585 (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4))))) (-5 *1 (-248 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) (-4 *4 (-390)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-348 (-859 *5)))) (-5 *4 (-1091)) (-5 *2 (-859 *5)) (-5 *1 (-248 *5)) (-4 *5 (-390))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1596 (($ $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-665))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-665)) ELT)) (-3529 ((|#1| $) 11 T ELT)) (-3468 (((-3 $ #1#) $) 60 (|has| |#1| (-665)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-665)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-665)) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2486 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-411))) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1591 (((-585 $) $) 85 (|has| |#1| (-496)) ELT)) (-3769 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-1091) |#1|) 17 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 21 (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-3228 (($ |#1| |#1|) 9 T ELT)) (-3912 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 87 (|has| |#1| (-811 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-811 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-811 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-811 (-1091))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-3947 (($ (-485)) NIL (|has| |#1| (-963)) ELT) (((-85) $) 37 (|has| |#1| (-1015)) ELT) (((-774) $) 36 (|has| |#1| (-1015)) ELT)) (-3128 (((-696)) 67 (|has| |#1| (-963)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-2662 (($) 47 (|has| |#1| (-21)) CONST)) (-2668 (($) 57 (|has| |#1| (-665)) CONST)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-811 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-811 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-811 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-811 (-1091))) ELT)) (-3058 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1015)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-411))) ELT)) (-3838 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-411)) ELT) (($ $ (-696)) NIL (|has| |#1| (-665)) ELT) (($ $ (-832)) NIL (|has| |#1| (-1027)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1027)) ELT) (($ |#1| $) 54 (|has| |#1| (-1027)) ELT) (($ $ $) 53 (|has| |#1| (-1027)) ELT) (($ (-485) $) 70 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-25)) ELT))) +(((-249 |#1|) (-13 (-1130) (-10 -8 (-15 -3058 ($ |#1| |#1|)) (-15 -3228 ($ |#1| |#1|)) (-15 -1596 ($ $)) (-15 -3530 (|#1| $)) (-15 -3529 (|#1| $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454 (-1091) |#1|)) (-6 (-454 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-6 (-554 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3769 ($ $ $)) (-15 -3769 ($ $ (-585 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3840 ($ |#1| $)) (-15 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -1594 ($ $)) (-15 -3838 ($ |#1| $)) (-15 -3838 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-665)) (PROGN (-6 (-665)) (-15 -1593 ((-3 $ #1="failed") $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-411)) (PROGN (-6 (-411)) (-15 -1593 ((-3 $ #1#) $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-6 (-963)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-15 -1591 ((-585 $) $)) |%noBranch|) (IF (|has| |#1| (-811 (-1091))) (-6 (-811 (-1091))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1188 |#1|)) (-15 -3950 ($ $ $)) (-15 -2486 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1605 ($ $ $)) |%noBranch|))) (-1130)) (T -249)) +((-3058 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3228 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3769 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3840 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1130)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1130)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) (-4 *3 (-1130)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1130)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1130)))) (-3950 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1130))))) (-2486 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1130)))))) +((-3959 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) +(((-250 |#1| |#2|) (-10 -7 (-15 -3959 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1130) (-1130)) (T -250)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-251 |#1| |#2|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -3996))) (-1015) (-1015)) (T -251)) +NIL +((-1597 (((-262) (-1074) (-585 (-1074))) 17 T ELT) (((-262) (-1074) (-1074)) 16 T ELT) (((-262) (-585 (-1074))) 15 T ELT) (((-262) (-1074)) 14 T ELT))) +(((-252) (-10 -7 (-15 -1597 ((-262) (-1074))) (-15 -1597 ((-262) (-585 (-1074)))) (-15 -1597 ((-262) (-1074) (-1074))) (-15 -1597 ((-262) (-1074) (-585 (-1074)))))) (T -252)) +((-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) +((-1601 (((-585 (-552 $)) $) 27 T ELT)) (-1605 (($ $ (-249 $)) 78 T ELT) (($ $ (-585 (-249 $))) 140 T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3159 (((-3 (-552 $) #1="failed") $) 128 T ELT)) (-3158 (((-552 $) $) 127 T ELT)) (-2575 (($ $) 17 T ELT) (($ (-585 $)) 54 T ELT)) (-1600 (((-585 (-86)) $) 35 T ELT)) (-3596 (((-86) (-86)) 89 T ELT)) (-2675 (((-85) $) 151 T ELT)) (-3959 (($ (-1 $ $) (-552 $)) 87 T ELT)) (-1603 (((-3 (-552 $) #1#) $) 95 T ELT)) (-2237 (($ (-86) $) 59 T ELT) (($ (-86) (-585 $)) 111 T ELT)) (-2635 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1091)) 132 T ELT)) (-2605 (((-696) $) 44 T ELT)) (-1599 (((-85) $ $) 57 T ELT) (((-85) $ (-1091)) 49 T ELT)) (-2676 (((-85) $) 149 T ELT)) (-3769 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) 81 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-585 $))) 67 T ELT) (($ $ (-1091) (-1 $ $)) 72 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 80 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-585 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3801 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-585 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2592 (($ $) 15 T ELT) (($ (-585 $)) 53 T ELT)) (-2256 (((-85) (-86)) 21 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -2675 ((-85) |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3769 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| (-585 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-1 |#1| |#1|)))) (-15 -1599 ((-85) |#1| (-1091))) (-15 -1599 ((-85) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#1| |#1|) (-552 |#1|))) (-15 -2237 (|#1| (-86) (-585 |#1|))) (-15 -2237 (|#1| (-86) |#1|)) (-15 -2635 ((-85) |#1| (-1091))) (-15 -2635 ((-85) |#1| (-86))) (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1600 ((-585 (-86)) |#1|)) (-15 -1601 ((-585 (-552 |#1|)) |#1|)) (-15 -1603 ((-3 (-552 |#1|) #1="failed") |#1|)) (-15 -2605 ((-696) |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2575 (|#1| (-585 |#1|))) (-15 -2575 (|#1| |#1|)) (-15 -2592 (|#1| (-585 |#1|))) (-15 -2592 (|#1| |#1|)) (-15 -1605 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1605 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-585 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3769 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3159 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3158 ((-552 |#1|) |#1|))) (-254)) (T -253)) +((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) +((-2570 (((-85) $ $) 7 T ELT)) (-1601 (((-585 (-552 $)) $) 42 T ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3159 (((-3 (-552 $) "failed") $) 67 T ELT)) (-3158 (((-552 $) $) 68 T ELT)) (-2575 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1600 (((-585 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2675 (((-85) $) 20 (|has| $ (-952 (-485))) ELT)) (-1598 (((-1086 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2605 (((-696) $) 45 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-2676 (((-85) $) 21 (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3187 (($ $) 22 (|has| $ (-963)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT)) (-2592 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-254) (-113)) (T -254)) +((-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-2592 (*1 *1 *1) (-4 *1 (-254))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-2575 (*1 *1 *1) (-4 *1 (-254))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1) (-4 *1 (-254))) (-1604 (*1 *1 *1 *1) (-4 *1 (-254))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) (-1603 (*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86))))) (-3596 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2256 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-2237 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2237 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1086 *1)))) (-3187 (*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-952 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-952 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))) +(-13 (-1015) (-952 (-552 $)) (-454 (-552 $) $) (-260 $) (-10 -8 (-15 -3801 ($ (-86) $)) (-15 -3801 ($ (-86) $ $)) (-15 -3801 ($ (-86) $ $ $)) (-15 -3801 ($ (-86) $ $ $ $)) (-15 -3801 ($ (-86) (-585 $))) (-15 -1605 ($ $ (-249 $))) (-15 -1605 ($ $ (-585 (-249 $)))) (-15 -1605 ($ $ (-585 (-552 $)) (-585 $))) (-15 -2592 ($ $)) (-15 -2592 ($ (-585 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-585 $))) (-15 -1604 ($ $)) (-15 -1604 ($ $ $)) (-15 -2605 ((-696) $)) (-15 -1603 ((-3 (-552 $) "failed") $)) (-15 -1602 ((-585 (-552 $)) $)) (-15 -1601 ((-585 (-552 $)) $)) (-15 -1600 ((-585 (-86)) $)) (-15 -3596 ((-86) (-86))) (-15 -2256 ((-85) (-86))) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (-15 -2237 ($ (-86) $)) (-15 -2237 ($ (-86) (-585 $))) (-15 -3959 ($ (-1 $ $) (-552 $))) (-15 -1599 ((-85) $ $)) (-15 -1599 ((-85) $ (-1091))) (-15 -3769 ($ $ (-585 (-1091)) (-585 (-1 $ $)))) (-15 -3769 ($ $ (-585 (-1091)) (-585 (-1 $ (-585 $))))) (-15 -3769 ($ $ (-1091) (-1 $ (-585 $)))) (-15 -3769 ($ $ (-1091) (-1 $ $))) (-15 -3769 ($ $ (-585 (-86)) (-585 (-1 $ $)))) (-15 -3769 ($ $ (-585 (-86)) (-585 (-1 $ (-585 $))))) (-15 -3769 ($ $ (-86) (-1 $ (-585 $)))) (-15 -3769 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-963)) (PROGN (-15 -1598 ((-1086 $) (-552 $))) (-15 -3187 ($ $))) |%noBranch|) (IF (|has| $ (-952 (-485))) (PROGN (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-557 (-552 $)) . T) ((-554 (-774)) . T) ((-260 $) . T) ((-454 (-552 $) $) . T) ((-454 $ $) . T) ((-13) . T) ((-952 (-552 $)) . T) ((-1015) . T) ((-1130) . T)) +((-3959 ((|#2| (-1 |#2| |#1|) (-1074) (-552 |#1|)) 18 T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-1074) (-552 |#1|)))) (-254) (-1130)) (T -255)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-552 *6)) (-4 *6 (-254)) (-4 *2 (-1130)) (-5 *1 (-255 *6 *2))))) +((-3959 ((|#2| (-1 |#2| |#1|) (-552 |#1|)) 17 T ELT))) +(((-256 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-552 |#1|)))) (-254) (-254)) (T -256)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) +((-1609 (((-85) $ $) 14 T ELT)) (-2566 (($ $ $) 18 T ELT)) (-2565 (($ $ $) 17 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 50 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 67 T ELT)) (-3146 (($ $ $) 25 T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3467 (((-3 $ #1#) $ $) 21 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 55 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -1606 ((-3 (-585 |#1|) #1="failed") (-585 |#1|) |#1|)) (-15 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1609 ((-85) |#1| |#1|)) (-15 -2742 ((-634 (-585 |#1|)) (-585 |#1|) |#1|)) (-15 -2743 ((-2 (|:| -3955 (-585 |#1|)) (|:| -2411 |#1|)) (-585 |#1|))) (-15 -3146 (|#1| (-585 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) "failed") (-585 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-258) (-113)) (T -258)) +((-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696)))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-258)))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-2566 (*1 *1 *1 *1) (-4 *1 (-258))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) +(-13 (-834) (-10 -8 (-15 -1609 ((-85) $ $)) (-15 -1608 ((-696) $)) (-15 -2881 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1606 ((-3 (-585 $) "failed") (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3769 (($ $ (-585 |#2|) (-585 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-585 (-249 |#2|))) NIL T ELT))) +(((-259 |#1| |#2|) (-10 -7 (-15 -3769 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-585 |#2|) (-585 |#2|)))) (-260 |#2|) (-1015)) (T -259)) +NIL +((-3769 (($ $ (-585 |#1|) (-585 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-585 (-249 |#1|))) 12 T ELT))) +(((-260 |#1|) (-113) (-1015)) (T -260)) +((-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015))))) +(-13 (-454 |t#1| |t#1|) (-10 -8 (-15 -3769 ($ $ (-249 |t#1|))) (-15 -3769 ($ $ (-585 (-249 |t#1|)))))) +(((-454 |#1| |#1|) . T)) +((-3769 ((|#1| (-1 |#1| (-485)) (-1093 (-348 (-485)))) 26 T ELT))) +(((-261 |#1|) (-10 -7 (-15 -3769 (|#1| (-1 |#1| (-485)) (-1093 (-348 (-485)))))) (-38 (-348 (-485)))) (T -261)) +((-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-348 (-485)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-348 (-485))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) +(((-262) (-1015)) (T -262)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3507 (((-485) $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-263) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3507 ((-485) $))))) (T -263)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 60 T ELT)) (-3131 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-1167 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-485))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3158 (((-1167 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1091) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-485))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-1167 |#1| |#2| |#3| |#4|)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1167 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3446 (((-634 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3959 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-752 |#2|) #1#) $) 80 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-1180 $) $) NIL T ELT) (((-632 (-1167 |#1| |#2| |#3| |#4|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3132 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-1167 |#1| |#2| |#3| |#4|)) (-585 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-249 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-585 (-1091)) (-585 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-454 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1091) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-454 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1167 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-935)) ELT) (((-179) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-952 (-1091))) ELT) (($ (-1161 |#2| |#3| |#4|)) 37 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-823))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-758)) ELT)) (-3950 (($ $ $) 35 T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-264 |#1| |#2| |#3| |#4|) (-13 (-906 (-1167 |#1| |#2| |#3| |#4|)) (-952 (-1161 |#2| |#3| |#4|)) (-10 -8 (-15 -3785 ((-3 (-752 |#2|) "failed") $)) (-15 -3947 ($ (-1161 |#2| |#3| |#4|))))) (-13 (-952 (-485)) (-582 (-485)) (-390)) (-13 (-27) (-1116) (-362 |#1|)) (-1091) |#2|) (T -264)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4) (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) +((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-585 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-585 $) $) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-496)) ELT)) (-1217 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-859 $)) NIL (|has| |#1| (-496)) ELT)) (-3190 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-3083 (((-585 (-1091)) $) 365 T ELT)) (-3085 (((-348 (-1086 $)) $ (-552 $)) NIL (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1601 (((-585 (-552 $)) $) NIL T ELT)) (-3493 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3640 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1373 (($ $ (-1006 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 227 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) 383 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 438 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 305 (-12 (|has| |#1| (-390)) (|has| |#1| (-496))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-496)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3491 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1610 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3495 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) (|has| |#1| (-1027))) CONST)) (-1218 (((-585 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-585 $) $) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-585 $) (-859 $)) NIL (|has| |#1| (-496)) ELT)) (-3185 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) 133 (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-859 $)) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 (-552 $) #1#) $) 18 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-859 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-859 |#1|) #1#) $) NIL (|has| |#1| (-963)) ELT) (((-3 (-348 (-485)) #1#) $) 48 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3158 (((-552 $) $) 12 T ELT) (((-1091) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-859 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-859 |#1|) $) NIL (|has| |#1| (-963)) ELT) (((-348 (-485)) $) 316 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 124 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 114 (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT)) (-3843 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $ (-1006 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-496)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3387 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3628 (($) 136 (|has| |#1| (-496)) ELT)) (-1370 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 389 (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 396 (|has| |#1| (-798 (-328))) ELT)) (-2575 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) 275 T ELT)) (-2412 (((-85) $) 27 (|has| |#1| (-1027)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-2998 (($ $) 73 (|has| |#1| (-963)) ELT)) (-3000 (((-1040 |#1| (-552 $)) $) 90 (|has| |#1| (-963)) ELT)) (-1611 (((-85) $) 49 (|has| |#1| (-496)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-552 $)) 276 (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) 434 T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-3943 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2259 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2282 (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1180 $)) NIL (|has| |#1| (-963)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) 51 T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) 439 T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL (|has| |#1| (-1027)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #1#) $) NIL (|has| |#1| (-963)) ELT)) (-2824 (((-3 (-585 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $) NIL (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $ (-86)) NIL (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $ (-1091)) NIL (|has| |#1| (-963)) ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) 53 T ELT)) (-2486 (($ $) NIL (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT)) (-2834 (($ $ (-1091)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1006 $)) 252 (|has| |#1| (-496)) ELT)) (-2605 (((-696) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) 45 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 298 (|has| |#1| (-496)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-1374 (($ $ (-1091)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1368 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 303 (-12 (|has| |#1| (-390)) (|has| |#1| (-496))) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 433 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 376 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-555 (-474))) ELT) (($ $) NIL (|has| |#1| (-555 (-474))) ELT) (($ $ (-86) $ (-1091)) 363 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-86)) (-585 $) (-1091)) 362 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ (-585 $)))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696) (-1 $ (-585 $))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696) (-1 $ $)) NIL (|has| |#1| (-963)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-496)) ELT)) (-2257 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2258 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3386 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3759 (($ $ (-1091)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2997 (($ $) 74 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-552 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 314 (|has| $ (-963)) ELT)) (-3496 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3636 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3492 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3635 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3973 (((-802 (-485)) $) NIL (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| |#1| (-555 (-802 (-328)))) ELT) (($ (-346 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-411)) ELT)) (-3947 (((-774) $) 432 T ELT) (($ (-552 $)) 423 T ELT) (($ (-1091)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485)))) ELT) (($ (-1040 |#1| (-552 $))) 94 (|has| |#1| (-963)) ELT) (($ (-348 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-859 (-348 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-348 (-859 (-348 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-348 (-859 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-859 |#1|)) NIL (|has| |#1| (-963)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-952 (-485))) (|has| |#1| (-963))) ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL (|has| |#1| (-963)) CONST)) (-2592 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3103 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3390 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3392 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3389 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2256 (((-85) (-86)) 10 T ELT)) (-1266 (((-85) $ $) 85 T ELT)) (-3499 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3485 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3501 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1796 (($ (-1091) $) NIL T ELT) (($ (-1091) $ $) NIL T ELT) (($ (-1091) $ $ $) NIL T ELT) (($ (-1091) $ $ $ $) NIL T ELT) (($ (-1091) (-585 $)) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-963)) ELT)) (-3394 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3393 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3502 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3490 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3500 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3486 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3384 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2662 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) CONST)) (-2261 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2668 (($) 25 (|has| |#1| (-1027)) CONST)) (-3388 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2262 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-963)) ELT)) (-2260 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3385 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3058 (((-85) $ $) 87 T ELT)) (-3950 (($ (-1040 |#1| (-552 $)) (-1040 |#1| (-552 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT)) (-3838 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (-3840 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-348 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT) (($ $ (-696)) 75 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 83 (|has| |#1| (-1027)) ELT)) (* (($ (-348 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-963)) ELT) (($ $ $) 38 (|has| |#1| (-1027)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT) (($ (-696) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT) (($ (-832) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963)))) ELT))) +(((-265 |#1|) (-13 (-362 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-29 |#1|)) (-6 (-1116)) (-6 (-133)) (-6 (-571)) (-6 (-1054)) (-15 -3843 ($ $)) (-15 -1611 ((-85) $)) (-15 -1610 ($ $ (-485))) (IF (|has| |#1| (-390)) (PROGN (-15 -2708 ((-346 (-1086 $)) (-1086 $))) (-15 -2709 ((-346 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-952 (-485))) (-6 (-952 (-48))) |%noBranch|)) |%noBranch|))) (-1015)) (T -265)) +((-3843 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1015)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1015)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1015)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-346 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-390)) (-4 *4 (-496)) (-4 *4 (-1015)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-346 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-390)) (-4 *4 (-496)) (-4 *4 (-1015))))) +((-3959 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -3959 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1015) (-1015)) (T -266)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) +((-3730 (((-51) |#2| (-249 |#2|) (-696)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-696)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1091)) 26 T ELT)) (-3819 (((-51) |#2| (-249 |#2|) (-348 (-485))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-348 (-485))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1091)) 55 T ELT)) (-3783 (((-51) |#2| (-249 |#2|) (-348 (-485))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-348 (-485))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1091)) 50 T ELT)) (-3780 (((-51) |#2| (-249 |#2|) (-485)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-485)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1091)) 43 T ELT))) +(((-267 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1091))) (-15 -3730 ((-51) |#2|)) (-15 -3730 ((-51) |#2| (-696))) (-15 -3730 ((-51) |#2| (-249 |#2|))) (-15 -3730 ((-51) |#2| (-249 |#2|) (-696))) (-15 -3780 ((-51) (-1091))) (-15 -3780 ((-51) |#2|)) (-15 -3780 ((-51) |#2| (-485))) (-15 -3780 ((-51) |#2| (-249 |#2|))) (-15 -3780 ((-51) |#2| (-249 |#2|) (-485))) (-15 -3783 ((-51) (-1091))) (-15 -3783 ((-51) |#2|)) (-15 -3783 ((-51) |#2| (-348 (-485)))) (-15 -3783 ((-51) |#2| (-249 |#2|))) (-15 -3783 ((-51) |#2| (-249 |#2|) (-348 (-485)))) (-15 -3819 ((-51) (-1091))) (-15 -3819 ((-51) |#2|)) (-15 -3819 ((-51) |#2| (-348 (-485)))) (-15 -3819 ((-51) |#2| (-249 |#2|))) (-15 -3819 ((-51) |#2| (-249 |#2|) (-348 (-485))))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -267)) +((-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-485))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-485))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-952 *5) (-582 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-13 (-390) (-952 *4) (-582 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-3780 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4)))))) +((-1612 (((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 81 T ELT) (((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 83 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|)) 84 T ELT) (((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) +(((-268 |#1| |#2|) (-10 -7 (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1612 ((-51) (-585 (-249 |#2|)) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 |#2|))) (-15 -1612 ((-51) (-585 |#2|) (-585 (-86)) (-249 |#2|) (-585 (-249 |#2|)))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-496) (-555 (-474))) (-362 |#1|)) (T -268)) +((-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-362 *7)) (-4 *7 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) (-4 *8 (-362 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-585 *8)) (-4 *8 (-362 *7)) (-4 *7 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-362 *5)) (-4 *5 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) +((-1614 (((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-485) (-1074)) 67 T ELT) (((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-485)) 68 T ELT) (((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-485) (-1074)) 64 T ELT) (((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-485)) 65 T ELT)) (-1613 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-269) (-10 -7 (-15 -1613 ((-1 (-179) (-179)) (-179))) (-15 -1614 ((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-485))) (-15 -1614 ((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-1 (-179) (-179)) (-485) (-1074))) (-15 -1614 ((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-485))) (-15 -1614 ((-1126 (-840)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-179) (-485) (-1074))))) (T -269)) +((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-485)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 26 T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) NIL T ELT) (($ $ (-348 (-485)) (-348 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 36 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) NIL T ELT) (((-348 (-485)) $ (-348 (-485))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-348 (-485))) NIL T ELT) (($ $ (-996) (-348 (-485))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1615 (((-348 (-485)) $) 17 T ELT)) (-3092 (($ (-1161 |#1| |#2| |#3|)) 11 T ELT)) (-2403 (((-1161 |#1| |#2| |#3|) $) 12 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3949 (((-348 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 10 T ELT)) (-3947 (((-774) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) 34 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 28 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 37 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-270 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-718) (-10 -8 (-15 -3092 ($ (-1161 |#1| |#2| |#3|))) (-15 -2403 ((-1161 |#1| |#2| |#3|) $)) (-15 -1615 ((-348 (-485)) $)))) (-312) (-1091) |#1|) (T -270)) +((-3092 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3)))) +((-3013 (((-2 (|:| -2403 (-696)) (|:| -3955 |#1|) (|:| |radicand| (-585 |#1|))) (-346 |#1|) (-696)) 35 T ELT)) (-3943 (((-585 (-2 (|:| -3955 (-696)) (|:| |logand| |#1|))) (-346 |#1|)) 40 T ELT))) +(((-271 |#1|) (-10 -7 (-15 -3013 ((-2 (|:| -2403 (-696)) (|:| -3955 |#1|) (|:| |radicand| (-585 |#1|))) (-346 |#1|) (-696))) (-15 -3943 ((-585 (-2 (|:| -3955 (-696)) (|:| |logand| |#1|))) (-346 |#1|)))) (-496)) (T -271)) +((-3943 (*1 *2 *3) (-12 (-5 *3 (-346 *4)) (-4 *4 (-496)) (-5 *2 (-585 (-2 (|:| -3955 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-346 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *5) (|:| |radicand| (-585 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-696))))) +((-3083 (((-585 |#2|) (-1086 |#4|)) 45 T ELT)) (-1620 ((|#3| (-485)) 48 T ELT)) (-1618 (((-1086 |#4|) (-1086 |#3|)) 30 T ELT)) (-1619 (((-1086 |#4|) (-1086 |#4|) (-485)) 67 T ELT)) (-1617 (((-1086 |#3|) (-1086 |#4|)) 21 T ELT)) (-3949 (((-585 (-696)) (-1086 |#4|) (-585 |#2|)) 41 T ELT)) (-1616 (((-1086 |#3|) (-1086 |#4|) (-585 |#2|) (-585 |#3|)) 35 T ELT))) +(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-1086 |#3|) (-1086 |#4|) (-585 |#2|) (-585 |#3|))) (-15 -3949 ((-585 (-696)) (-1086 |#4|) (-585 |#2|))) (-15 -3083 ((-585 |#2|) (-1086 |#4|))) (-15 -1617 ((-1086 |#3|) (-1086 |#4|))) (-15 -1618 ((-1086 |#4|) (-1086 |#3|))) (-15 -1619 ((-1086 |#4|) (-1086 |#4|) (-485))) (-15 -1620 (|#3| (-485)))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|)) (T -272)) +((-1620 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1086 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3775 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $) 21 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-485) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-485) (-718)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-485) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 30 (|has| |#1| (-758)) ELT)) (-3838 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT))) +(((-273 |#1|) (-13 (-21) (-656 (-485)) (-274 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-758)) (-6 (-758)) |%noBranch|))) (-1015)) (T -273)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3775 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 34 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-696) $) 35 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 39 T ELT)) (-3158 ((|#1| $) 40 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2301 ((|#1| $ (-485)) 32 T ELT)) (-1623 ((|#2| $ (-485)) 33 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-718)) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3678 ((|#2| |#1| $) 31 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) +(((-274 |#1| |#2|) (-113) (-1015) (-104)) (T -274)) +((-3840 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) (-3678 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) +(-13 (-104) (-952 |t#1|) (-10 -8 (-15 -3840 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3138 ((-696) $)) (-15 -3775 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3944 |t#2|))) $)) (-15 -1623 (|t#2| $ (-485))) (-15 -2301 (|t#1| $ (-485))) (-15 -3678 (|t#2| |t#1| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-718)) (-15 -1621 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-696)))) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-696) $ (-485)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-696) (-718)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-696) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-696) |#1|) NIL T ELT))) +(((-275 |#1|) (-274 |#1| (-696)) (-1015)) (T -275)) +NIL +((-3504 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1798 (((-85) $) 42 T ELT)) (-1797 ((|#2| $) 44 T ELT)) (-3467 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2819 ((|#2| $) 68 T ELT)) (-3818 (((-585 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-696)) 37 T ELT)) (-3950 (($ $ |#2|) 60 T ELT))) +(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3504 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1624 (|#1| |#1| |#1| (-696))) (-15 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3818 ((-585 |#2|) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -1798 ((-85) |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3950 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-963) (-718)) (T -276)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 107 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 106 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 105 T ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 93 (|has| |#1| (-390)) ELT)) (-1625 (($ $ |#1| |#2| $) 97 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 100 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-2822 ((|#2| $) 99 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 103 T ELT)) (-1797 ((|#1| $) 102 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2819 ((|#1| $) 94 (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 T ELT) (($ (-348 (-485))) 77 (OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ELT)) (-3818 (((-585 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 96 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-277 |#1| |#2|) (-113) (-963) (-718)) (T -277)) +((-1798 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-1625 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) (-1624 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *3 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-496)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-390)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-390))))) +(-13 (-47 |t#1| |t#2|) (-353 |t#1|) (-10 -8 (-15 -1798 ((-85) $)) (-15 -1797 (|t#1| $)) (-15 -3818 ((-585 |t#1|) $)) (-15 -2422 ((-696) $)) (-15 -2822 (|t#2| $)) (-15 -1626 ($ (-1 |t#2| |t#2|) $)) (-15 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1624 ($ $ $ (-696))) |%noBranch|) (IF (|has| |t#1| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-353 |#1|) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) NIL T ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) NIL (|has| |#1| (-1015)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1015)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-1989 (($ $ (-485)) NIL T ELT)) (-1990 (((-696) $) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-485))) (-15 -1988 ((-85) (-85))))) (-1130)) (T -278)) +((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))) +((-3933 (((-85) $) 47 T ELT)) (-3930 (((-696)) 23 T ELT)) (-3331 ((|#2| $) 51 T ELT) (($ $ (-832)) 123 T ELT)) (-3138 (((-696)) 124 T ELT)) (-1793 (($ (-1180 |#2|)) 20 T ELT)) (-2013 (((-85) $) 136 T ELT)) (-3134 ((|#2| $) 53 T ELT) (($ $ (-832)) 120 T ELT)) (-2016 (((-1086 |#2|) $) NIL T ELT) (((-1086 $) $ (-832)) 111 T ELT)) (-1628 (((-1086 |#2|) $) 95 T ELT)) (-1627 (((-1086 |#2|) $) 91 T ELT) (((-3 (-1086 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1086 |#2|)) 58 T ELT)) (-3931 (((-745 (-832))) 30 T ELT) (((-832)) 48 T ELT)) (-3912 (((-107)) 27 T ELT)) (-3949 (((-745 (-832)) $) 32 T ELT) (((-832) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3226 (((-1180 |#2|) $) NIL T ELT) (((-632 |#2|) (-1180 $)) 42 T ELT)) (-2704 (($ $) NIL T ELT) (((-634 $) $) 100 T ELT)) (-3934 (((-85) $) 45 T ELT))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2704 ((-634 |#1|) |#1|)) (-15 -3138 ((-696))) (-15 -2704 (|#1| |#1|)) (-15 -1627 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -1627 ((-1086 |#2|) |#1|)) (-15 -1628 ((-1086 |#2|) |#1|)) (-15 -1629 (|#1| |#1| (-1086 |#2|))) (-15 -2013 ((-85) |#1|)) (-15 -1630 (|#1|)) (-15 -3331 (|#1| |#1| (-832))) (-15 -3134 (|#1| |#1| (-832))) (-15 -2016 ((-1086 |#1|) |#1| (-832))) (-15 -3331 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3949 ((-832) |#1|)) (-15 -3931 ((-832))) (-15 -2016 ((-1086 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -3930 ((-696))) (-15 -3931 ((-745 (-832)))) (-15 -3949 ((-745 (-832)) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3912 ((-107)))) (-280 |#2|) (-312)) (T -279)) +((-3912 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-696)) 110 T ELT)) (-3331 ((|#1| $) 162 T ELT) (($ $ (-832)) 159 (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 144 (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-696)) 134 (|has| |#1| (-318)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-1793 (($ (-1180 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 131 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2835 (($) 146 (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) 147 (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-832) $) 149 (|has| |#1| (-318)) ELT) (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2015 (($) 157 (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) 156 (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) 163 T ELT) (($ $ (-832)) 160 (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) 135 (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2016 (((-1086 |#1|) $) 167 T ELT) (((-1086 $) $ (-832)) 161 (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) 132 (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) 153 (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) 152 (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) "failed") $ $) 151 (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) 154 (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3447 (($) 136 (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) 133 (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) 113 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2411 (($) 155 (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 143 (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-3931 (((-745 (-832))) 111 T ELT) (((-832)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1766 (((-696) $) 148 (|has| |#1| (-318)) ELT) (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3759 (($ $ (-696)) 139 (|has| |#1| (-318)) ELT) (($ $) 137 (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) 112 T ELT) (((-832) $) 164 T ELT)) (-3187 (((-1086 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-318)) ELT)) (-1630 (($) 158 (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) 170 T ELT) (((-632 |#1|) (-1180 $)) 169 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 142 (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (($ $) 141 (|has| |#1| (-318)) ELT) (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 172 T ELT) (((-1180 $) (-832)) 171 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-318)) ELT) (($ $ (-696)) 108 (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) 140 (|has| |#1| (-318)) ELT) (($ $) 138 (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-280 |#1|) (-113) (-312)) (T -280)) +((-2014 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3187 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3931 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-4 *4 (-318)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) (-4 *1 (-280 *4)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) (-1630 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-2015 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-85)))) (-2411 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-318)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1086 *3))))) +(-13 (-1199 |t#1|) (-952 |t#1|) (-10 -8 (-15 -2014 ((-1180 $))) (-15 -2014 ((-1180 $) (-832))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-632 |t#1|) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -2016 ((-1086 |t#1|) $)) (-15 -3187 ((-1086 |t#1|))) (-15 -3931 ((-832))) (-15 -3949 ((-832) $)) (-15 -3134 (|t#1| $)) (-15 -3331 (|t#1| $)) (IF (|has| |t#1| (-318)) (PROGN (-6 (-299)) (-15 -2016 ((-1086 $) $ (-832))) (-15 -3134 ($ $ (-832))) (-15 -3331 ($ $ (-832))) (-15 -1630 ($)) (-15 -2015 ($)) (-15 -2013 ((-85) $)) (-15 -2411 ($)) (-15 -1629 ($ $ (-1086 |t#1|))) (-15 -1628 ((-1086 |t#1|) $)) (-15 -1627 ((-1086 |t#1|) $)) (-15 -1627 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) |has| |#1| (-318)) ((-190) |has| |#1| (-318)) ((-189) |has| |#1| (-318)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1199 |#1|) . T) ((-312) . T) ((-343) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-318) |has| |#1| (-318)) ((-299) |has| |#1| (-318)) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-348 (-485))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| |#1| (-318)) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-1631 (((-85) $) 13 T ELT)) (-3639 (($ |#1|) 10 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3635 (($ |#1|) 12 T ELT)) (-3947 (((-774) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2238 ((|#1| $) 14 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT))) +(((-281 |#1|) (-13 (-758) (-10 -8 (-15 -3639 ($ |#1|)) (-15 -3635 ($ |#1|)) (-15 -1631 ((-85) $)) (-15 -2238 (|#1| $)))) (-758)) (T -281)) +((-3639 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-3635 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758)))) (-2238 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1632 (((-445) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1633 (((-871 (-696)) $) 18 T ELT)) (-1635 (((-209) $) 7 T ELT)) (-3947 (((-774) $) 26 T ELT)) (-2208 (((-871 (-158 (-112))) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1634 (((-585 (-784 (-1096) (-696))) $) 12 T ELT)) (-3058 (((-85) $ $) 22 T ELT))) +(((-282) (-13 (-1015) (-10 -8 (-15 -1635 ((-209) $)) (-15 -1634 ((-585 (-784 (-1096) (-696))) $)) (-15 -1633 ((-871 (-696)) $)) (-15 -2208 ((-871 (-158 (-112))) $)) (-15 -1632 ((-445) $))))) (T -282)) +((-1635 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1096) (-696)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-282))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 34 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1636 (((-1180 |#4|) $) 133 T ELT)) (-1970 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 32 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1180 |#4|) $) 125 T ELT)) (-1639 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3436 (((-2 (|:| -2338 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3947 (((-774) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3058 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 24 T ELT))) +(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1637 ((-1180 |#4|) $)) (-15 -1636 ((-1180 |#4|) $)))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) +((-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +((-3959 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1156 |#5|) (-1156 (-348 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-348 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) +((-1638 (((-85) $) 14 T ELT))) +(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1638 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1156 |#2|) (-1156 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3843 (($ $) 35 T ELT)) (-1638 (((-85) $) 34 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1970 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 41 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2411 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3436 (((-2 (|:| -2338 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1156 |t#1|) (-1156 (-348 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) +((-1970 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-354 *4 (-348 *4) *5 *6)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-354 *4 (-348 *4) *5 *6)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-348 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) (-4 *5 (-1156 (-348 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2338 (-354 *4 (-348 *4) *5 *6)) (|:| |principalPart| *6))))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-348 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2411 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1970 ((-354 |t#2| (-348 |t#2|) |t#3| |t#4|) $)) (-15 -1639 ($ (-354 |t#2| (-348 |t#2|) |t#3| |t#4|))) (-15 -1639 ($ |t#4|)) (-15 -1639 ($ |t#1| |t#1|)) (-15 -1639 ($ |t#1| |t#1| (-485))) (-15 -3436 ((-2 (|:| -2338 (-354 |t#2| (-348 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3843 ($ $)) (-15 -1638 ((-85) $)) (-15 -2411 ((-3 |t#4| "failed") $)) (-15 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-1015) . T) ((-1130) . T)) +((-3769 (($ $ (-1091) |#2|) NIL T ELT) (($ $ (-585 (-1091)) (-585 |#2|)) 20 T ELT) (($ $ (-585 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT)) (-3801 (($ $ |#2|) 11 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3801 (|#1| |#1| |#2|)) (-15 -3769 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 |#2|))) (-15 -3769 (|#1| |#1| (-1091) |#2|))) (-288 |#2|) (-1015)) (T -287)) +NIL +((-3959 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3769 (($ $ (-1091) |#1|) 17 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 16 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3801 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) +(((-288 |#1|) (-113) (-1015)) (T -288)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1015))))) +(-13 (-10 -8 (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454 (-1091) |t#1|)) (-6 (-454 (-1091) |t#1|)) |%noBranch|))) +(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-454 (-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1130) |has| |#1| (-241 |#1| |#1|))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3158 (((-819 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3134 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 (-819 |#1|)) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1628 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1627 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-1086 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1629 (($ $ (-1086 (-819 |#1|))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-819 |#1|) (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3226 (((-1180 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-280 (-819 |#1|)) (-832) (-832)) (T -289)) +NIL +((-1648 (((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1793 (($ (-1180 (-348 |#3|)) (-1180 $)) NIL T ELT) (($ (-1180 (-348 |#3|))) NIL T ELT) (($ (-1180 |#3|) |#3|) 172 T ELT)) (-1653 (((-1180 $) (-1180 $)) 156 T ELT)) (-1640 (((-585 (-585 |#2|))) 126 T ELT)) (-1665 (((-85) |#2| |#2|) 76 T ELT)) (-3504 (($ $) 148 T ELT)) (-3378 (((-696)) 171 T ELT)) (-1654 (((-1180 $) (-1180 $)) 219 T ELT)) (-1641 (((-585 (-859 |#2|)) (-1091)) 115 T ELT)) (-1657 (((-85) $) 168 T ELT)) (-1656 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-696)) 183 T ELT)) (-3801 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3759 (($ $ (-1 (-348 |#3|) (-348 |#3|))) NIL T ELT) (($ $ (-1 (-348 |#3|) (-348 |#3|)) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1180 $) (-1180 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-85)) 34 T ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -1640 ((-585 (-585 |#2|)))) (-15 -1641 ((-585 (-859 |#2|)) (-1091))) (-15 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1643 ((-3 |#3| #1="failed"))) (-15 -1644 ((-3 |#3| #1#))) (-15 -3801 (|#2| |#1| |#2| |#2|)) (-15 -3504 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-85) |#1| |#3|)) (-15 -1656 ((-85) |#1| |#2|)) (-15 -1793 (|#1| (-1180 |#3|) |#3|)) (-15 -1648 ((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1653 ((-1180 |#1|) (-1180 |#1|))) (-15 -1654 ((-1180 |#1|) (-1180 |#1|))) (-15 -1655 ((-1180 |#1|) (-1180 |#1|))) (-15 -1656 ((-85) |#1|)) (-15 -1657 ((-85) |#1|)) (-15 -1665 ((-85) |#2| |#2|)) (-15 -1666 ((-85))) (-15 -1667 ((-696))) (-15 -3378 ((-696))) (-15 -3759 (|#1| |#1| (-1 (-348 |#3|) (-348 |#3|)) (-696))) (-15 -3759 (|#1| |#1| (-1 (-348 |#3|) (-348 |#3|)))) (-15 -1793 (|#1| (-1180 (-348 |#3|)))) (-15 -1793 (|#1| (-1180 (-348 |#3|)) (-1180 |#1|)))) (-291 |#2| |#3| |#4|) (-1135) (-1156 |#2|) (-1156 (-348 |#3|))) (T -290)) +((-3378 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-5 *2 (-585 (-859 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1640 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| (-348 |#2|) (-312)) ELT)) (-2065 (($ $) 115 (|has| (-348 |#2|) (-312)) ELT)) (-2063 (((-85) $) 117 (|has| (-348 |#2|) (-312)) ELT)) (-1783 (((-632 (-348 |#2|)) (-1180 $)) 61 T ELT) (((-632 (-348 |#2|))) 77 T ELT)) (-3331 (((-348 |#2|) $) 67 T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 167 (|has| (-348 |#2|) (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| (-348 |#2|) (-312)) ELT)) (-3972 (((-346 $) $) 135 (|has| (-348 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| (-348 |#2|) (-312)) ELT)) (-3138 (((-696)) 108 (|has| (-348 |#2|) (-318)) ELT)) (-1662 (((-85)) 242 T ELT)) (-1661 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| (-348 |#2|) (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 192 (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-3 (-348 |#2|) #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| (-348 |#2|) (-952 (-485))) ELT) (((-348 (-485)) $) 191 (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-348 |#2|) $) 190 T ELT)) (-1793 (($ (-1180 (-348 |#2|)) (-1180 $)) 63 T ELT) (($ (-1180 (-348 |#2|))) 80 T ELT) (($ (-1180 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-348 |#2|) (-299)) ELT)) (-2566 (($ $ $) 129 (|has| (-348 |#2|) (-312)) ELT)) (-1782 (((-632 (-348 |#2|)) $ (-1180 $)) 68 T ELT) (((-632 (-348 |#2|)) $) 75 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 186 (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 185 (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-632 $) (-1180 $)) 184 T ELT) (((-632 (-348 |#2|)) (-632 $)) 183 T ELT)) (-1653 (((-1180 $) (-1180 $)) 230 T ELT)) (-3843 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-348 |#3|)) 175 (|has| (-348 |#2|) (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-585 (-585 |#1|))) 211 (|has| |#1| (-318)) ELT)) (-1665 (((-85) |#1| |#1|) 246 T ELT)) (-3110 (((-832)) 69 T ELT)) (-2996 (($) 111 (|has| (-348 |#2|) (-318)) ELT)) (-1660 (((-85)) 239 T ELT)) (-1659 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2565 (($ $ $) 128 (|has| (-348 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| (-348 |#2|) (-312)) ELT)) (-3504 (($ $) 217 T ELT)) (-2835 (($) 169 (|has| (-348 |#2|) (-299)) ELT)) (-1681 (((-85) $) 170 (|has| (-348 |#2|) (-299)) ELT)) (-1765 (($ $ (-696)) 161 (|has| (-348 |#2|) (-299)) ELT) (($ $) 160 (|has| (-348 |#2|) (-299)) ELT)) (-3724 (((-85) $) 136 (|has| (-348 |#2|) (-312)) ELT)) (-3773 (((-832) $) 172 (|has| (-348 |#2|) (-299)) ELT) (((-745 (-832)) $) 158 (|has| (-348 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3378 (((-696)) 249 T ELT)) (-1654 (((-1180 $) (-1180 $)) 231 T ELT)) (-3134 (((-348 |#2|) $) 66 T ELT)) (-1641 (((-585 (-859 |#1|)) (-1091)) 212 (|has| |#1| (-312)) ELT)) (-3446 (((-634 $) $) 162 (|has| (-348 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| (-348 |#2|) (-312)) ELT)) (-2016 ((|#3| $) 59 (|has| (-348 |#2|) (-312)) ELT)) (-2012 (((-832) $) 110 (|has| (-348 |#2|) (-318)) ELT)) (-3081 ((|#3| $) 176 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 188 (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-1180 $) $) 182 T ELT) (((-632 (-348 |#2|)) (-1180 $)) 181 T ELT)) (-1892 (($ (-585 $)) 121 (|has| (-348 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-348 |#2|) (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1649 (((-632 (-348 |#2|))) 226 T ELT)) (-1651 (((-632 (-348 |#2|))) 228 T ELT)) (-2486 (($ $) 137 (|has| (-348 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 222 T ELT)) (-1650 (((-632 (-348 |#2|))) 227 T ELT)) (-1652 (((-632 (-348 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1180 $)) 235 T ELT)) (-3919 (((-1180 $)) 236 T ELT)) (-1657 (((-85) $) 234 T ELT)) (-1656 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3447 (($) 163 (|has| (-348 |#2|) (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| (-348 |#2|) (-318)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1667 (((-696)) 248 T ELT)) (-2411 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| (-348 |#2|) (-312)) ELT)) (-3146 (($ (-585 $)) 119 (|has| (-348 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-348 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 166 (|has| (-348 |#2|) (-299)) ELT)) (-3733 (((-346 $) $) 133 (|has| (-348 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| (-348 |#2|) (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| (-348 |#2|) (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 124 (|has| (-348 |#2|) (-312)) ELT)) (-1608 (((-696) $) 126 (|has| (-348 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 127 (|has| (-348 |#2|) (-312)) ELT)) (-3758 (((-348 |#2|) (-1180 $)) 62 T ELT) (((-348 |#2|)) 76 T ELT)) (-1766 (((-696) $) 171 (|has| (-348 |#2|) (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| (-348 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-348 |#2|) (-348 |#2|))) 145 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) 144 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-585 (-1091)) (-585 (-696))) 150 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1091) (-696)) 149 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-585 (-1091))) 148 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-696)) 156 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2564 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) 154 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2564 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2410 (((-632 (-348 |#2|)) (-1180 $) (-1 (-348 |#2|) (-348 |#2|))) 174 (|has| (-348 |#2|) (-312)) ELT)) (-3187 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-348 |#2|) (-299)) ELT)) (-3226 (((-1180 (-348 |#2|)) $ (-1180 $)) 65 T ELT) (((-632 (-348 |#2|)) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 (-348 |#2|)) $) 82 T ELT) (((-632 (-348 |#2|)) (-1180 $)) 81 T ELT)) (-3973 (((-1180 (-348 |#2|)) $) 79 T ELT) (($ (-1180 (-348 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 165 (|has| (-348 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) 232 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 |#2|)) 52 T ELT) (($ (-348 (-485))) 107 (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-952 (-348 (-485))))) ELT) (($ $) 112 (|has| (-348 |#2|) (-312)) ELT)) (-2704 (($ $) 164 (|has| (-348 |#2|) (-299)) ELT) (((-634 $) $) 58 (|has| (-348 |#2|) (-118)) ELT)) (-2451 ((|#3| $) 60 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1664 (((-85)) 245 T ELT)) (-1663 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| (-348 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-85)) 247 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 (-348 |#2|) (-348 |#2|))) 143 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) 142 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 153 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1091) (-696)) 152 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-585 (-1091))) 151 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-2564 (|has| (-348 |#2|) (-813 (-1091))) (|has| (-348 |#2|) (-312)))) ELT) (($ $ (-696)) 157 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2564 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) 155 (OR (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-189))) (-2564 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-190))) (-2564 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| (-348 |#2|) (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 138 (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 |#2|)) 54 T ELT) (($ (-348 |#2|) $) 53 T ELT) (($ (-348 (-485)) $) 140 (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-485))) 139 (|has| (-348 |#2|) (-312)) ELT))) +(((-291 |#1| |#2| |#3|) (-113) (-1135) (-1156 |t#1|) (-1156 (-348 |t#2|))) (T -291)) +((-3378 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-696)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-696)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) (-3919 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-348 *3))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-348 *3))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-348 *3))))) (-3801 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-348 *3))))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-348 *2))) (-4 *2 (-1156 *3)))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-348 *2))) (-4 *2 (-1156 *3)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) (-4 *6 (-1156 (-348 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-4 *4 (-312)) (-5 *2 (-585 (-859 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) (-4 *3 (-318)) (-5 *2 (-585 (-585 *3)))))) +(-13 (-663 (-348 |t#2|) |t#3|) (-10 -8 (-15 -3378 ((-696))) (-15 -1667 ((-696))) (-15 -1666 ((-85))) (-15 -1665 ((-85) |t#1| |t#1|)) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1|)) (-15 -1663 ((-85) |t#2|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -3919 ((-1180 $))) (-15 -1658 ((-1180 $))) (-15 -1657 ((-85) $)) (-15 -1656 ((-85) $)) (-15 -1655 ((-1180 $) (-1180 $))) (-15 -1654 ((-1180 $) (-1180 $))) (-15 -1653 ((-1180 $) (-1180 $))) (-15 -1652 ((-632 (-348 |t#2|)))) (-15 -1651 ((-632 (-348 |t#2|)))) (-15 -1650 ((-632 (-348 |t#2|)))) (-15 -1649 ((-632 (-348 |t#2|)))) (-15 -1648 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1793 ($ (-1180 |t#2|) |t#2|)) (-15 -1647 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1646 ($ (-1180 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-85) $ |t#1|)) (-15 -1656 ((-85) $ |t#2|)) (-15 -3759 ($ $ (-1 |t#2| |t#2|))) (-15 -3504 ($ $)) (-15 -3801 (|t#1| $ |t#1| |t#1|)) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1641 ((-585 (-859 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -1640 ((-585 (-585 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-38 (-348 |#2|)) . T) ((-38 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-82 (-348 |#2|) (-348 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-118))) ((-120) |has| (-348 |#2|) (-120)) ((-557 (-348 (-485))) OR (|has| (-348 |#2|) (-952 (-348 (-485)))) (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-557 (-348 |#2|)) . T) ((-557 (-485)) . T) ((-557 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#3|) . T) ((-186 $) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-184 (-348 |#2|)) |has| (-348 |#2|) (-312)) ((-190) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-189) OR (|has| (-348 |#2|) (-299)) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312)))) ((-225 (-348 |#2|)) |has| (-348 |#2|) (-312)) ((-201) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-246) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-258) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-312) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-343) |has| (-348 |#2|) (-299)) ((-318) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-318))) ((-299) |has| (-348 |#2|) (-299)) ((-320 (-348 |#2|) |#3|) . T) ((-351 (-348 |#2|) |#3|) . T) ((-327 (-348 |#2|)) . T) ((-353 (-348 |#2|)) . T) ((-390) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-496) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-590 (-348 |#2|)) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-592 (-348 |#2|)) . T) ((-592 (-485)) |has| (-348 |#2|) (-582 (-485))) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-584 (-348 |#2|)) . T) ((-584 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-582 (-348 |#2|)) . T) ((-582 (-485)) |has| (-348 |#2|) (-582 (-485))) ((-656 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-656 (-348 |#2|)) . T) ((-656 $) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-663 (-348 |#2|) |#3|) . T) ((-665) . T) ((-808 $ (-1091)) OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091))))) ((-811 (-1091)) -12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) ((-813 (-1091)) OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091))))) ((-834) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-952 (-348 (-485))) |has| (-348 |#2|) (-952 (-348 (-485)))) ((-952 (-348 |#2|)) . T) ((-952 (-485)) |has| (-348 |#2|) (-952 (-485))) ((-965 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-965 (-348 |#2|)) . T) ((-965 $) . T) ((-970 (-348 (-485))) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312))) ((-970 (-348 |#2|)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| (-348 |#2|) (-299)) ((-1130) . T) ((-1135) OR (|has| (-348 |#2|) (-299)) (|has| (-348 |#2|) (-312)))) +((-3959 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#5|) (-1156 (-348 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1156 (-348 *9)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3158 (((-819 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3134 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 (-819 |#1|)) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1628 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1627 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-1086 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1629 (($ $ (-1086 (-819 |#1|))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-819 |#1|) (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3226 (((-1180 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-293 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-832) (-832)) (T -293)) +((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 56 (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 139 T ELT)) (-3158 ((|#1| $) 111 T ELT)) (-1793 (($ (-1180 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 122 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) 155 (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) 65 (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) 60 (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 62 T ELT)) (-2015 (($) 157 (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 115 T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) 165 (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 172 T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) 94 (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) 142 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) 57 T ELT)) (-2411 (($) 153 (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 117 (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) 88 T ELT) (((-832)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) 156 (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-318)) ELT)) (-1630 (($) 162 (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) 76 T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) 150 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 141 T ELT) (((-1180 $) (-832)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) 66 T CONST)) (-2668 (($) 101 T CONST)) (-3929 (($ $) 105 (|has| |#1| (-318)) ELT) (($ $ (-696)) NIL (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3838 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 84 T ELT)) (** (($ $ (-832)) 174 T ELT) (($ $ (-696)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-299) (-1086 |#1|)) (T -294)) +((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1086 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1668 (((-871 (-1035))) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-318)) ELT)) (-1630 (($) NIL (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-696)) NIL (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-871 (-1035)))))) (-299) (-832)) (T -295)) +((-1668 (*1 *2) (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) +((-1678 (((-696) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) 61 T ELT)) (-1669 (((-871 (-1035)) (-1086 |#1|)) 112 T ELT)) (-1670 (((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) (-1086 |#1|)) 103 T ELT)) (-1671 (((-632 |#1|) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) 113 T ELT)) (-1672 (((-3 (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) "failed") (-832)) 13 T ELT)) (-1673 (((-3 (-1086 |#1|) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) (-832)) 18 T ELT))) +(((-296 |#1|) (-10 -7 (-15 -1669 ((-871 (-1035)) (-1086 |#1|))) (-15 -1670 ((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) (-1086 |#1|))) (-15 -1671 ((-632 |#1|) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))))) (-15 -1678 ((-696) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))))) (-15 -1672 ((-3 (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) "failed") (-832))) (-15 -1673 ((-3 (-1086 |#1|) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) (-832)))) (-299)) (T -296)) +((-1673 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-3 (-1086 *4) (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-5 *2 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) (-5 *1 (-296 *4))))) +((-3947 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#3| |#1|)) (-15 -3947 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) +((-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) +((-1681 (((-85) $) 65 T ELT)) (-3773 (((-745 (-832)) $) 26 T ELT) (((-832) $) 69 T ELT)) (-3446 (((-634 $) $) 21 T ELT)) (-3447 (($) 9 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 120 T ELT)) (-1766 (((-3 (-696) #1="failed") $ $) 98 T ELT) (((-696) $) 84 T ELT)) (-3759 (($ $) 8 T ELT) (($ $ (-696)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 41 T ELT)) (-2704 (((-634 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-298 |#1|) (-10 -7 (-15 -3773 ((-832) |#1|)) (-15 -1766 ((-696) |#1|)) (-15 -1681 ((-85) |#1|)) (-15 -1675 (|#1|)) (-15 -2705 ((-3 (-1180 |#1|) #1="failed") (-632 |#1|))) (-15 -2704 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-634 |#1|) |#1|)) (-15 -1766 ((-3 (-696) #1#) |#1| |#1|)) (-15 -3773 ((-745 (-832)) |#1|)) (-15 -2704 ((-634 |#1|) |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-299)) (T -298)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 113 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-696)) 123 T ELT)) (-3725 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 126 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-2835 (($) 111 T ELT)) (-1681 (((-85) $) 110 T ELT)) (-1765 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-745 (-832)) $) 99 T ELT) (((-832) $) 108 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3446 (((-634 $) $) 122 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2012 (((-832) $) 125 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3447 (($) 121 T CONST)) (-2402 (($ (-832)) 124 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 114 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1766 (((-3 (-696) "failed") $ $) 98 T ELT) (((-696) $) 109 T ELT)) (-3759 (($ $) 120 T ELT) (($ $ (-696)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 115 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT)) (-2704 (((-634 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 119 T ELT) (($ $ (-696)) 117 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) +(((-299) (-113)) (T -299)) +((-2704 (*1 *1 *1) (-4 *1 (-299))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) (-1677 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-832) (-696))))) (-1675 (*1 *1) (-4 *1 (-299))) (-2835 (*1 *1) (-4 *1 (-299))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-343) (-318) (-1067) (-190) (-10 -8 (-15 -2704 ($ $)) (-15 -2705 ((-3 (-1180 $) "failed") (-632 $))) (-15 -1677 ((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485)))))) (-15 -1676 ((-1103 (-832) (-696)) (-485))) (-15 -1675 ($)) (-15 -2835 ($)) (-15 -1681 ((-85) $)) (-15 -1766 ((-696) $)) (-15 -3773 ((-832) $)) (-15 -1674 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-343) . T) ((-318) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) +((-3920 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 55 T ELT)) (-3919 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 53 T ELT))) +(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -3920 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $)))) (-1156 |#1|) (-351 |#1| |#2|)) (T -300)) +((-3920 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1678 (((-696)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-819 |#1|) #1#) $) NIL T ELT)) (-3158 (((-819 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-819 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1681 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2013 (((-85) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3134 (((-819 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 (-819 |#1|)) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2012 (((-832) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1628 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1627 (((-1086 (-819 |#1|)) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-1086 (-819 |#1|)) #1#) $ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1629 (($ $ (-1086 (-819 |#1|))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-819 |#1|) (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1680 (((-1180 (-585 (-2 (|:| -3403 (-819 |#1|)) (|:| -2402 (-1035)))))) NIL T ELT)) (-1679 (((-632 (-819 |#1|))) NIL T ELT)) (-2411 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 (-819 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-1630 (($) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3226 (((-1180 (-819 |#1|)) $) NIL T ELT) (((-632 (-819 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-819 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (((-634 $) $) NIL (OR (|has| (-819 |#1|) (-118)) (|has| (-819 |#1|) (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| (-819 |#1|) (-318)) ELT) (($ $) NIL (|has| (-819 |#1|) (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-819 |#1|)) NIL T ELT) (($ (-819 |#1|) $) NIL T ELT))) +(((-301 |#1| |#2|) (-13 (-280 (-819 |#1|)) (-10 -7 (-15 -1680 ((-1180 (-585 (-2 (|:| -3403 (-819 |#1|)) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 (-819 |#1|)))) (-15 -1678 ((-696))))) (-832) (-832)) (T -301)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 (-819 *3)) (|:| -2402 (-1035)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832))))) +((-2570 (((-85) $ $) 72 T ELT)) (-3190 (((-85) $) 87 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) 105 T ELT) (($ $ (-832)) 103 (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 168 (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1678 (((-696)) 102 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) 185 (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 126 T ELT)) (-3158 ((|#1| $) 104 T ELT)) (-1793 (($ (-1180 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 180 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) 169 (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 112 (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) 198 (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) 107 T ELT) (($ $ (-832)) 106 (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 212 T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) 146 (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) 86 (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) 83 (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) 95 (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) 82 (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 216 T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) 148 (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) 122 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1680 (((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) 96 T ELT)) (-1679 (((-632 |#1|)) 100 T ELT)) (-2411 (($) 109 (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 171 (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) 74 T ELT)) (-3187 (((-1086 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-318)) ELT)) (-1630 (($) NIL (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) 120 T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) 178 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 195 T ELT) (((-1180 $) (-832)) 115 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) 184 T CONST)) (-2668 (($) 159 T CONST)) (-3929 (($ $) 121 (|has| |#1| (-318)) ELT) (($ $ (-696)) 113 (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) 206 T ELT)) (-3950 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3838 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3840 (($ $ $) 202 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 |#1|))) (-15 -1678 ((-696))))) (-299) (-3 (-1086 |#1|) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))))) (T -302)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035))))))))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035)))))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1678 (((-696)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1680 (((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035)))))) NIL T ELT)) (-1679 (((-632 |#1|)) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-318)) ELT)) (-1630 (($) NIL (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-696)) NIL (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))))) (-15 -1679 ((-632 |#1|))) (-15 -1678 ((-696))))) (-299) (-832)) (T -303)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1679 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832)))) (-1678 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 130 (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) 156 (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 104 T ELT)) (-3158 ((|#1| $) 101 T ELT)) (-1793 (($ (-1180 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 93 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) 52 (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 131 (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) 85 (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) 48 T ELT) (($ $ (-832)) 53 (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) 76 T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) 108 (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) 106 (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) 158 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) 45 (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 125 (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) 68 T ELT)) (-3187 (((-1086 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-318)) ELT)) (-1630 (($) NIL (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) 64 T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) 160 T CONST)) (-1266 (((-85) $ $) 162 T ELT)) (-2014 (((-1180 $)) 120 T ELT) (((-1180 $) (-832)) 59 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) 122 T CONST)) (-2668 (($) 40 T CONST)) (-3929 (($ $) 79 (|has| |#1| (-318)) ELT) (($ $ (-696)) NIL (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) 118 T ELT)) (-3950 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3840 (($ $ $) 114 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1086 |#1|)) (T -304)) +NIL +((-1696 (((-871 (-1086 |#1|)) (-1086 |#1|)) 49 T ELT)) (-2996 (((-1086 |#1|) (-832) (-832)) 159 T ELT) (((-1086 |#1|) (-832)) 155 T ELT)) (-1681 (((-85) (-1086 |#1|)) 110 T ELT)) (-1683 (((-832) (-832)) 85 T ELT)) (-1684 (((-832) (-832)) 94 T ELT)) (-1682 (((-832) (-832)) 83 T ELT)) (-2013 (((-85) (-1086 |#1|)) 114 T ELT)) (-1691 (((-3 (-1086 |#1|) #1="failed") (-1086 |#1|)) 139 T ELT)) (-1694 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 144 T ELT)) (-1693 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 143 T ELT)) (-1692 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 142 T ELT)) (-1690 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 134 T ELT)) (-1695 (((-1086 |#1|) (-1086 |#1|)) 71 T ELT)) (-1686 (((-1086 |#1|) (-832)) 149 T ELT)) (-1689 (((-1086 |#1|) (-832)) 152 T ELT)) (-1688 (((-1086 |#1|) (-832)) 151 T ELT)) (-1687 (((-1086 |#1|) (-832)) 150 T ELT)) (-1685 (((-1086 |#1|) (-832)) 147 T ELT))) +(((-305 |#1|) (-10 -7 (-15 -1681 ((-85) (-1086 |#1|))) (-15 -2013 ((-85) (-1086 |#1|))) (-15 -1682 ((-832) (-832))) (-15 -1683 ((-832) (-832))) (-15 -1684 ((-832) (-832))) (-15 -1685 ((-1086 |#1|) (-832))) (-15 -1686 ((-1086 |#1|) (-832))) (-15 -1687 ((-1086 |#1|) (-832))) (-15 -1688 ((-1086 |#1|) (-832))) (-15 -1689 ((-1086 |#1|) (-832))) (-15 -1690 ((-3 (-1086 |#1|) #1="failed") (-1086 |#1|))) (-15 -1691 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1692 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1693 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1694 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -2996 ((-1086 |#1|) (-832))) (-15 -2996 ((-1086 |#1|) (-832) (-832))) (-15 -1695 ((-1086 |#1|) (-1086 |#1|))) (-15 -1696 ((-871 (-1086 |#1|)) (-1086 |#1|)))) (-299)) (T -305)) +((-1696 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1086 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1086 *4)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2996 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) +((-1697 ((|#1| (-1086 |#2|)) 60 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1697 (|#1| (-1086 |#2|)))) (-13 (-343) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -2012 ((-832) |#1|)) (-15 -2014 ((-1180 |#1|) (-832))) (-15 -3929 (|#1| |#1|)))) (-299)) (T -306)) +((-1697 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-343) (-10 -7 (-15 -3947 (*2 *4)) (-15 -2012 ((-832) *2)) (-15 -2014 ((-1180 *2) (-832))) (-15 -3929 (*2 *2))))) (-5 *1 (-306 *2 *4))))) +((-2706 (((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|) 40 T ELT))) +(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -307)) +((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| |#1| (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-318)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| |#1| (-318)) ELT)) (-2013 (((-85) $) NIL (|has| |#1| (-318)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-318)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| |#1| (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-318)) ELT)) (-1630 (($) NIL (|has| |#1| (-318)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-318)) ELT) (((-634 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-318)) ELT) (($ $ (-696)) NIL (|has| |#1| (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| |#1| (-318)) ELT) (($ $) NIL (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-308 |#1| |#2|) (-280 |#1|) (-299) (-832)) (T -308)) +NIL +((-2251 (((-85) (-585 (-859 |#1|))) 41 T ELT)) (-2253 (((-585 (-859 |#1|)) (-585 (-859 |#1|))) 53 T ELT)) (-2252 (((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|))) 48 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-859 |#1|)))) (-15 -2252 ((-3 (-585 (-859 |#1|)) "failed") (-585 (-859 |#1|)))) (-15 -2253 ((-585 (-859 |#1|)) (-585 (-859 |#1|))))) (-390) (-585 (-1091))) (T -309)) +((-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1091))))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) (-14 *4 (-585 (-1091))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-390)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1091)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-485) $ (-485)) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2293 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 28 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1780 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $) 30 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-310 |#1|) (-13 (-411) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-485))) (-15 -3138 ((-696) $)) (-15 -2302 ((-485) $ (-485))) (-15 -2301 (|#1| $ (-485))) (-15 -2293 ($ (-1 (-485) (-485)) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)) (-15 -1780 ((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $)))) (-1015)) (T -310)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2302 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 (-485))))) (-5 *1 (-310 *3)) (-4 *3 (-1015))))) +((-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 13 T ELT)) (-2065 (($ $) 14 T ELT)) (-3972 (((-346 $) $) 31 T ELT)) (-3724 (((-85) $) 27 T ELT)) (-2486 (($ $) 19 T ELT)) (-3146 (($ $ $) 22 T ELT) (($ (-585 $)) NIL T ELT)) (-3733 (((-346 $) $) 32 T ELT)) (-3467 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-696) $) 25 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 36 T ELT)) (-2064 (((-85) $ $) 16 T ELT)) (-3950 (($ $ $) 34 T ELT))) +(((-311 |#1|) (-10 -7 (-15 -3950 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3972 ((-346 |#1|) |#1|)) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -2881 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -3146 (|#1| (-585 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) +(((-312) (-113)) (T -312)) +((-3950 (*1 *1 *1 *1) (-4 *1 (-312)))) +(-13 (-258) (-1135) (-201) (-10 -8 (-15 -3950 ($ $ $)) (-6 -3994) (-6 -3988))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1074)) 23 T ELT)) (-3620 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-336)) 22 T ELT) (($ (-336) (-1074)) 21 T ELT)) (-3543 (((-336) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) 26 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT))) +(((-313 |#1|) (-13 (-314 (-336) |#1|) (-10 -8 (-15 -3620 ((-3 |#1| "failed") $)))) (-1015)) (T -313)) +((-3620 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015))))) +((-2570 (((-85) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1074)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1074)) 23 T ELT)) (-3543 ((|#1| $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1700 (((-1074) $) 19 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-314 |#1| |#2|) (-113) (-1015) (-1015)) (T -314)) +((-1703 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-1698 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(-13 (-1015) (-10 -8 (-15 -1703 ($ |t#1|)) (-15 -1703 ($ |t#1| (-1074))) (-15 -1702 ($ $ (-1074))) (-15 -1701 ($ $)) (-15 -3543 (|t#1| $)) (-15 -1700 ((-1074) $)) (-15 -1699 (|t#2| $)) (-15 -1698 (|t#2| $ |t#2|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3225 (((-1180 (-632 |#2|)) (-1180 $)) 67 T ELT)) (-1789 (((-632 |#2|) (-1180 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1787 (((-632 |#2|) $ (-1180 $)) 142 T ELT)) (-2406 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1086 |#2|) $) 98 T ELT)) (-1791 ((|#2| (-1180 $)) 122 T ELT)) (-1724 (((-1086 |#2|) $) 32 T ELT)) (-1718 (((-85)) 116 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) 132 T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-85)) 111 T ELT)) (-1709 (((-85)) 106 T ELT)) (-1713 (((-85)) 58 T ELT)) (-1790 (((-632 |#2|) (-1180 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1788 (((-632 |#2|) $ (-1180 $)) 141 T ELT)) (-2407 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1086 |#2|) $) 97 T ELT)) (-1792 ((|#2| (-1180 $)) 120 T ELT)) (-1725 (((-1086 |#2|) $) 30 T ELT)) (-1719 (((-85)) 115 T ELT)) (-1710 (((-85)) 108 T ELT)) (-1712 (((-85)) 56 T ELT)) (-1714 (((-85)) 103 T ELT)) (-1717 (((-85)) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) 128 T ELT)) (-1723 (((-85)) 113 T ELT)) (-1708 (((-585 (-1180 |#2|))) 102 T ELT)) (-1721 (((-85)) 114 T ELT)) (-1722 (((-85)) 112 T ELT)) (-1720 (((-85)) 51 T ELT)) (-1716 (((-85)) 118 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -1706 ((-1086 |#2|) |#1|)) (-15 -1707 ((-1086 |#2|) |#1|)) (-15 -1708 ((-585 (-1180 |#2|)))) (-15 -2406 ((-3 |#1| #1="failed") |#1|)) (-15 -2407 ((-3 |#1| #1#) |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-1086 |#2|) |#1|)) (-15 -1725 ((-1086 |#2|) |#1|)) (-15 -1789 ((-632 |#2|) (-1180 |#1|))) (-15 -1790 ((-632 |#2|) (-1180 |#1|))) (-15 -1791 (|#2| (-1180 |#1|))) (-15 -1792 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1787 ((-632 |#2|) |#1| (-1180 |#1|))) (-15 -1788 ((-632 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-632 |#2|)) (-1180 |#1|)))) (-316 |#2|) (-146)) (T -315)) +((-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1180 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1773 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-632 |#1|)) (-1180 $)) 89 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1789 (((-632 |#1|) (-1180 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1787 (((-632 |#1|) $ (-1180 $)) 87 T ELT)) (-2406 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) 78 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 80 T ELT)) (-3468 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-832)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-832)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1790 (((-632 |#1|) (-1180 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1788 (((-632 |#1|) $ (-1180 $)) 88 T ELT)) (-2407 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) 79 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 81 T ELT)) (-1893 (((-585 (-859 |#1|)) (-1180 $)) 90 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1708 (((-585 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-316 |#1|) (-113) (-146)) (T -316)) +((-1730 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3)))) (-3110 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 (-632 *4))))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3468 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2407 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-585 (-1180 *3))))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1908 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1907 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1773 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) +(-13 (-685 |t#1|) (-10 -8 (-15 -1730 ((-1180 $))) (-15 -3110 ((-832))) (-15 -1893 ((-585 (-859 |t#1|)) (-1180 $))) (-15 -3225 ((-1180 (-632 |t#1|)) (-1180 $))) (-15 -1788 ((-632 |t#1|) $ (-1180 $))) (-15 -1787 ((-632 |t#1|) $ (-1180 $))) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-632 |t#1|) (-1180 $) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|) (-1180 $))) (-15 -1792 (|t#1| (-1180 $))) (-15 -1791 (|t#1| (-1180 $))) (-15 -1790 ((-632 |t#1|) (-1180 $))) (-15 -1789 ((-632 |t#1|) (-1180 $))) (-15 -1725 ((-1086 |t#1|) $)) (-15 -1724 ((-1086 |t#1|) $)) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (IF (|has| |t#1| (-496)) (PROGN (-15 -3468 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -1708 ((-585 (-1180 |t#1|)))) (-15 -1707 ((-1086 |t#1|) $)) (-15 -1706 ((-1086 |t#1|) $)) (-15 -1908 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1773 ((-3 $ "failed"))) (-6 -3993)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2996 (($) 15 T ELT))) +(((-317 |#1|) (-10 -7 (-15 -2996 (|#1|))) (-318)) (T -317)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-696)) 20 T ELT)) (-2996 (($) 17 T ELT)) (-2012 (((-832) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2402 (($ (-832)) 19 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-318) (-113)) (T -318)) +((-3138 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-696)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-318)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-832)))) (-2996 (*1 *1) (-4 *1 (-318)))) +(-13 (-1015) (-10 -8 (-15 -3138 ((-696))) (-15 -2402 ($ (-832))) (-15 -2012 ((-832) $)) (-15 -2996 ($)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-1783 (((-632 |#2|) (-1180 $)) 45 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) 39 T ELT)) (-1782 (((-632 |#2|) $ (-1180 $)) 47 T ELT)) (-3758 ((|#2| (-1180 $)) 13 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) 27 T ELT))) +(((-319 |#1| |#2| |#3|) (-10 -7 (-15 -1783 ((-632 |#2|) (-1180 |#1|))) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1782 ((-632 |#2|) |#1| (-1180 |#1|)))) (-320 |#2| |#3|) (-146) (-1156 |#2|)) (T -319)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1783 (((-632 |#1|) (-1180 $)) 61 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) 68 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-832)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 64 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-320 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -320)) +((-3110 (*1 *2) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-832)))) (-1782 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-320 *4 *5)) (-4 *5 (-1156 *4)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3110 ((-832))) (-15 -1782 ((-632 |t#1|) $ (-1180 $))) (-15 -3331 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-632 |t#1|) (-1180 $) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|) (-1180 $))) (-15 -3758 (|t#1| (-1180 $))) (-15 -1783 ((-632 |t#1|) (-1180 $))) (-15 -2451 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2016 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-1733 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1731 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2911 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2300 (($ $) 25 T ELT)) (-3420 (((-485) (-1 (-85) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-321 |#1| |#2|) (-10 -7 (-15 -1731 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1733 ((-85) |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2911 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-322 |#2|) (-1130)) (T -321)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3997)) ELT) (($ $) 97 (-12 (|has| |#1| (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 109 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 106 T ELT) (((-485) |#1| $) 105 (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) 104 (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 91 (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 100 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 93 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 95 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 94 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 96 (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-322 |#1|) (-113) (-1130)) (T -322)) +((-3519 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-322 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-322 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) (-2911 (*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-758)) (-5 *2 (-85)))) (-1732 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) (-2299 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-322 *2)) (-4 *2 (-1130)))) (-1731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) (-1731 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758))))) +(-13 (-595 |t#1|) (-10 -8 (-6 -3996) (-15 -3519 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2300 ($ $)) (-15 -2911 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1733 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3420 ((-485) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1015)) (PROGN (-15 -3420 ((-485) |t#1| $)) (-15 -3420 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-6 (-758)) (-15 -3519 ($ $ $)) (-15 -2911 ($ $)) (-15 -1733 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -1732 ($ $ $ (-485))) (-15 -2299 ($ $)) (-15 -1731 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-15 -1731 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1130) . T)) +((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-323 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-322 |#1|) (-1130) (-322 |#3|)) (T -323)) +((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-322 *5)) (-5 *1 (-323 *6 *4 *5 *2)) (-4 *4 (-322 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-323 *5 *4 *2 *6)) (-4 *4 (-322 *5)) (-4 *6 (-322 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-322 *6)) (-5 *1 (-323 *5 *4 *6 *2)) (-4 *4 (-322 *5))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3935 (((-585 |#1|) $) 43 T ELT)) (-3948 (($ $ (-696)) 44 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3937 (($ $) 45 T ELT)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 48 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3769 (($ $ |#1| $) 42 T ELT) (($ $ (-585 |#1|) (-585 $)) 41 T ELT)) (-3949 (((-696) $) 49 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1196 |#1| |#2|) $) 51 T ELT) (((-1205 |#1| |#2|) $) 50 T ELT)) (-3955 ((|#2| (-1205 |#1| |#2|) $) 53 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-1734 (($ (-616 |#1|)) 46 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-324 |#1| |#2|) (-113) (-758) (-146)) (T -324)) +((-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-324 *4 *2)) (-4 *4 (-758)) (-4 *2 (-146)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1196 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-1205 *3 *4)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) (-3941 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3940 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-324 *3 *4)) (-4 *4 (-146)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) (-3769 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-758)) (-4 *5 (-146))))) +(-13 (-576 |t#2|) (-10 -8 (-15 -3955 (|t#2| (-1205 |t#1| |t#2|) $)) (-15 -3947 ($ |t#1|)) (-15 -3947 ((-1196 |t#1| |t#2|) $)) (-15 -3947 ((-1205 |t#1| |t#2|) $)) (-15 -3949 ((-696) $)) (-15 -3941 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -3940 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -1734 ($ (-616 |t#1|))) (-15 -3937 ($ $)) (-15 -3948 ($ $ (-696))) (-15 -3935 ((-585 |t#1|) $)) (-15 -3769 ($ $ |t#1| $)) (-15 -3769 ($ $ (-585 |t#1|) (-585 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#2|) . T) ((-592 |#2|) . T) ((-576 |#2|) . T) ((-584 |#2|) . T) ((-656 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-1015) . T) ((-1130) . T)) +((-1737 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1736 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-325 |#1| |#2|) (-10 -7 (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1736 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1737 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1130) (-13 (-322 |#1|) (-10 -7 (-6 -3997)))) (T -325)) +((-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997)))))) (-1736 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997)))))) (-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997))))))) +((-2281 (((-632 |#2|) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 22 T ELT) (((-632 (-485)) (-632 $)) 14 T ELT))) +(((-326 |#1| |#2|) (-10 -7 (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-632 |#2|) (-632 |#1|)))) (-327 |#2|) (-963)) (T -326)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 35 T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 47 (|has| |#1| (-582 (-485))) ELT) (((-632 (-485)) (-632 $)) 46 (|has| |#1| (-582 (-485))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 45 (|has| |#1| (-582 (-485))) ELT) (((-632 (-485)) (-1180 $)) 44 (|has| |#1| (-582 (-485))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-327 |#1|) (-113) (-963)) (T -327)) +NIL +(-13 (-582 |t#1|) (-10 -7 (IF (|has| |t#1| (-582 (-485))) (-6 (-582 (-485))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3131 (((-485) $) 44 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3772 (($ $) 120 T ELT)) (-3493 (($ $) 81 T ELT)) (-3640 (($ $) 72 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-3039 (($ $) 28 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 79 T ELT)) (-3639 (($ $) 67 T ELT)) (-3624 (((-485) $) 60 T ELT)) (-2443 (($ $ (-485)) 55 T ELT)) (-3495 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3129 (($ $) 122 T ELT)) (-3159 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-348 (-485)) #1#) $) 213 T ELT)) (-3158 (((-485) $) 215 T ELT) (((-348 (-485)) $) 211 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-1746 (((-485) $ $) 110 T ELT)) (-3468 (((-3 $ #1#) $) 125 T ELT)) (-1745 (((-348 (-485)) $ (-696)) 218 T ELT) (((-348 (-485)) $ (-696) (-696)) 210 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1769 (((-832)) 106 T ELT) (((-832) (-832)) 107 (|has| $ (-6 -3987)) ELT)) (-3188 (((-85) $) 38 T ELT)) (-3628 (($) 22 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL T ELT)) (-1738 (((-1186) (-696)) 177 T ELT)) (-1739 (((-1186)) 182 T ELT) (((-1186) (-696)) 183 T ELT)) (-1741 (((-1186)) 184 T ELT) (((-1186) (-696)) 185 T ELT)) (-1740 (((-1186)) 180 T ELT) (((-1186) (-696)) 181 T ELT)) (-3773 (((-485) $) 50 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 21 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-2445 (($ $) 32 T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3979))) (-2562 (|has| $ (-6 -3987)))) ELT)) (-2859 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3979))) (-2562 (|has| $ (-6 -3987)))) ELT)) (-1771 (((-485) $) 112 T ELT)) (-1744 (($) 90 T ELT) (($ $) 97 T ELT)) (-1743 (($) 96 T ELT) (($ $) 98 T ELT)) (-3943 (($ $) 84 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 127 T ELT)) (-1768 (((-832) (-485)) 27 (|has| $ (-6 -3987)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) 41 T ELT)) (-3132 (($ $) 119 T ELT)) (-3256 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-832)) 116 T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2403 (((-485) $) 113 T ELT)) (-1742 (($) 99 T ELT)) (-3944 (($ $) 78 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-832)) 108 T ELT) (((-832) (-832)) 109 (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 126 T ELT) (($ $ (-696)) NIL T ELT)) (-1767 (((-832) (-485)) 31 (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3494 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3492 (($ $) 80 T ELT)) (-3635 (($ $) 71 T ELT)) (-3973 (((-328) $) 202 T ELT) (((-179) $) 204 T ELT) (((-802 (-328)) $) NIL T ELT) (((-1074) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3947 (((-774) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-348 (-485))) NIL T ELT) (((-179) $) 205 T ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (($ $) 121 T ELT)) (-1770 (((-832)) 42 T ELT) (((-832) (-832)) 62 (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-832)) 111 T ELT)) (-3499 (($ $) 87 T ELT)) (-3487 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 85 T ELT)) (-3485 (($ $) 20 T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3498 (($ $) 86 T ELT)) (-3486 (($ $) 33 T ELT)) (-3384 (($ $) 39 T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 24 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2568 (((-85) $ $) 189 T ELT)) (-2569 (((-85) $ $) 26 T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 43 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3840 (($ $ $) 54 T ELT)) (** (($ $ (-832)) 65 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-348 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-832) $) 61 T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-328) (-13 (-345) (-190) (-555 (-1074)) (-554 (-179)) (-1116) (-555 (-474)) (-559 (-179)) (-10 -8 (-15 -3950 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -2445 ($ $)) (-15 -1746 ((-485) $ $)) (-15 -2443 ($ $ (-485))) (-15 -1745 ((-348 (-485)) $ (-696))) (-15 -1745 ((-348 (-485)) $ (-696) (-696))) (-15 -1744 ($)) (-15 -1743 ($)) (-15 -1742 ($)) (-15 -3487 ($ $ $)) (-15 -1744 ($ $)) (-15 -1743 ($ $)) (-15 -1741 ((-1186))) (-15 -1741 ((-1186) (-696))) (-15 -1740 ((-1186))) (-15 -1740 ((-1186) (-696))) (-15 -1739 ((-1186))) (-15 -1739 ((-1186) (-696))) (-15 -1738 ((-1186) (-696))) (-6 -3987) (-6 -3979)))) (T -328)) +((** (*1 *1 *1 *1) (-5 *1 (-328))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-328)))) (-2445 (*1 *1 *1) (-5 *1 (-328))) (-1746 (*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-328)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-328)))) (-1745 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-328)))) (-1745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-328)))) (-1744 (*1 *1) (-5 *1 (-328))) (-1743 (*1 *1) (-5 *1 (-328))) (-1742 (*1 *1) (-5 *1 (-328))) (-3487 (*1 *1 *1 *1) (-5 *1 (-328))) (-1744 (*1 *1 *1) (-5 *1 (-328))) (-1743 (*1 *1 *1) (-5 *1 (-328))) (-1741 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) (-1740 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) (-1739 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328))))) +((-1747 (((-585 (-249 (-859 (-142 |#1|)))) (-249 (-348 (-859 (-142 (-485))))) |#1|) 52 T ELT) (((-585 (-249 (-859 (-142 |#1|)))) (-348 (-859 (-142 (-485)))) |#1|) 51 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-348 (-859 (-142 (-485)))))) |#1|) 48 T ELT) (((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-348 (-859 (-142 (-485))))) |#1|) 42 T ELT)) (-1748 (((-585 (-585 (-142 |#1|))) (-585 (-348 (-859 (-142 (-485))))) (-585 (-1091)) |#1|) 30 T ELT) (((-585 (-142 |#1|)) (-348 (-859 (-142 (-485)))) |#1|) 18 T ELT))) +(((-329 |#1|) (-10 -7 (-15 -1747 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-348 (-859 (-142 (-485))))) |#1|)) (-15 -1747 ((-585 (-585 (-249 (-859 (-142 |#1|))))) (-585 (-249 (-348 (-859 (-142 (-485)))))) |#1|)) (-15 -1747 ((-585 (-249 (-859 (-142 |#1|)))) (-348 (-859 (-142 (-485)))) |#1|)) (-15 -1747 ((-585 (-249 (-859 (-142 |#1|)))) (-249 (-348 (-859 (-142 (-485))))) |#1|)) (-15 -1748 ((-585 (-142 |#1|)) (-348 (-859 (-142 (-485)))) |#1|)) (-15 -1748 ((-585 (-585 (-142 |#1|))) (-585 (-348 (-859 (-142 (-485))))) (-585 (-1091)) |#1|))) (-13 (-312) (-757))) (T -329)) +((-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-348 (-859 (-142 (-485)))))) (-5 *4 (-585 (-1091))) (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-312) (-757))))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 (-142 (-485))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-859 (-142 (-485)))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 (-142 (-485))))) (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-348 (-859 (-142 (-485))))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 (-142 (-485)))))) (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-3574 (((-585 (-249 (-859 |#1|))) (-249 (-348 (-859 (-485)))) |#1|) 47 T ELT) (((-585 (-249 (-859 |#1|))) (-348 (-859 (-485))) |#1|) 46 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-348 (-859 (-485))))) |#1|) 43 T ELT) (((-585 (-585 (-249 (-859 |#1|)))) (-585 (-348 (-859 (-485)))) |#1|) 37 T ELT)) (-1749 (((-585 |#1|) (-348 (-859 (-485))) |#1|) 20 T ELT) (((-585 (-585 |#1|)) (-585 (-348 (-859 (-485)))) (-585 (-1091)) |#1|) 30 T ELT))) +(((-330 |#1|) (-10 -7 (-15 -3574 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-348 (-859 (-485)))) |#1|)) (-15 -3574 ((-585 (-585 (-249 (-859 |#1|)))) (-585 (-249 (-348 (-859 (-485))))) |#1|)) (-15 -3574 ((-585 (-249 (-859 |#1|))) (-348 (-859 (-485))) |#1|)) (-15 -3574 ((-585 (-249 (-859 |#1|))) (-249 (-348 (-859 (-485)))) |#1|)) (-15 -1749 ((-585 (-585 |#1|)) (-585 (-348 (-859 (-485)))) (-585 (-1091)) |#1|)) (-15 -1749 ((-585 |#1|) (-348 (-859 (-485))) |#1|))) (-13 (-757) (-312))) (T -330)) +((-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 (-485)))) (-5 *2 (-585 *4)) (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-348 (-859 (-485))))) (-5 *4 (-585 (-1091))) (-5 *2 (-585 (-585 *5))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-757) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-859 (-485))))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 (-485)))) (-5 *2 (-585 (-249 (-859 *4)))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-348 (-859 (-485)))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 (-485))))) (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) NIL T ELT)) (-3947 (((-774) $) 34 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-331 |#1| |#2|) (-13 (-82 |#1| |#1|) (-448 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-656 |#1|)) |%noBranch|))) (-963) (-761)) (T -331)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 29 T ELT)) (-3158 ((|#2| $) 31 T ELT)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) 13 T ELT)) (-2823 (((-585 $) $) 23 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) 21 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2896 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3818 (((-585 |#1|) $) 20 T ELT)) (-3678 ((|#1| $ |#2|) 54 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2667 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-332 |#1| |#2|) (-13 (-333 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-963) (-758)) (T -332)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-332 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 55 T ELT)) (-3158 ((|#2| $) 56 T ELT)) (-3960 (($ $) 41 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2422 (((-696) $) 45 T ELT)) (-2823 (((-585 $) $) 46 T ELT)) (-3938 (((-85) $) 49 T ELT)) (-3939 (($ |#2| |#1|) 50 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2896 ((|#2| $) 44 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3818 (((-585 |#1|) $) 47 T ELT)) (-3678 ((|#1| $ |#2|) 52 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2667 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) +(((-333 |#1| |#2|) (-113) (-963) (-1015)) (T -333)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)))) (-3939 (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-333 *3 *4)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015))))) +(-13 (-82 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3678 (|t#1| $ |t#2|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3939 ($ |t#2| |t#1|)) (-15 -3938 ((-85) $)) (-15 -2667 ((-585 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3818 ((-585 |t#1|) $)) (-15 -2823 ((-585 $) $)) (-15 -2422 ((-696) $)) (-15 -2896 (|t#2| $)) (-15 -3176 (|t#1| $)) (-15 -1750 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-952 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-696) $) 40 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-3 $ "failed") $ $) 43 T ELT)) (-3159 (((-3 |#1| "failed") $) 51 T ELT)) (-3158 ((|#1| $) 52 T ELT)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2301 ((|#1| $ (-485)) 37 T ELT)) (-2302 (((-696) $ (-485)) 38 T ELT)) (-2533 (($ $ $) 29 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 30 (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 36 T ELT)) (-3941 (((-3 $ "failed") $ $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1752 (($ $ $) 45 T ELT)) (-1753 (($ $ $) 46 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1780 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-696)))) $) 39 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 31 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 33 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 32 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 34 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ |#1| (-696)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-334 |#1|) (-113) (-1015)) (T -334)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-1753 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-3941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-3940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-2881 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-334 *3)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-334 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 (-696))))))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-334 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-334 *2)) (-4 *2 (-1015)))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-334 *3)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3)) (-4 *3 (-1015))))) +(-13 (-665) (-952 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-696))) (-15 -1753 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -3941 ((-3 $ "failed") $ $)) (-15 -3940 ((-3 $ "failed") $ $)) (-15 -2881 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1751 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3138 ((-696) $)) (-15 -1780 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3944 (-696)))) $)) (-15 -2302 ((-696) $ (-485))) (-15 -2301 (|t#1| $ (-485))) (-15 -2293 ($ (-1 (-696) (-696)) $)) (-15 -2292 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 |#1|) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696) $) 74 T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2412 (((-85) $) 17 T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-696) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2292 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2293 (($ (-1 (-696) (-696)) $) 37 T ELT)) (-3941 (((-3 $ #1#) $ $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1752 (($ $ $) 28 T ELT)) (-1753 (($ $ $) 26 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1780 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-696)))) $) 34 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3947 (((-774) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-758)) ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-335 |#1|) (-334 |#1|) (-1015)) (T -335)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1754 (((-85) $) 25 T ELT)) (-1755 (((-85) $) 22 T ELT)) (-3615 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-3543 (((-1074) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1759 (($ (-1074) (-1074) (-1074)) 14 T ELT)) (-1757 (((-1074) $) 17 T ELT)) (-1756 (((-85) $) 18 T ELT)) (-1758 (((-1074) $) 15 T ELT)) (-3947 (((-774) $) 12 T ELT) (($ (-1074)) 13 T ELT) (((-1074) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT))) +(((-336) (-337)) (T -336)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-1754 (((-85) $) 20 T ELT)) (-1755 (((-85) $) 21 T ELT)) (-3615 (($ (-1074) (-1074) (-1074)) 19 T ELT)) (-3543 (((-1074) $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1759 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-1757 (((-1074) $) 23 T ELT)) (-1756 (((-85) $) 22 T ELT)) (-1758 (((-1074) $) 25 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-1074)) 28 T ELT) (((-1074) $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-337) (-113)) (T -337)) +((-1759 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-337)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85)))) (-3615 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-337))))) +(-13 (-1015) (-428 (-1074)) (-10 -8 (-15 -1759 ($ (-1074) (-1074) (-1074))) (-15 -1758 ((-1074) $)) (-15 -3543 ((-1074) $)) (-15 -1757 ((-1074) $)) (-15 -1756 ((-85) $)) (-15 -1755 ((-85) $)) (-15 -1754 ((-85) $)) (-15 -3615 ($ (-1074) (-1074) (-1074))))) +(((-72) . T) ((-557 (-1074)) . T) ((-554 (-774)) . T) ((-554 (-1074)) . T) ((-428 (-1074)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-1760 (((-774) $) 64 T ELT)) (-3725 (($) NIL T CONST)) (-2409 (($ $ (-832)) NIL T ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($ (-696)) 38 T ELT)) (-3912 (((-696)) 18 T ELT)) (-1761 (((-774) $) 66 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-338 |#1| |#2| |#3|) (-13 (-685 |#3|) (-10 -8 (-15 -3912 ((-696))) (-15 -1761 ((-774) $)) (-15 -1760 ((-774) $)) (-15 -2411 ($ (-696))))) (-696) (-696) (-146)) (T -338)) +((-3912 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-3773 (((-696) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-339 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3773 ((-696) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-318) (-312)) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -339)) +((-3773 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-318) (-312))) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-696)) (-5 *1 (-339 *4 *5 *6 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1763 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1764 (($ (-348 |#2|)) 93 T ELT)) (-1762 (((-585 (-2 (|:| -2403 (-696)) (|:| -3774 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3759 (($ $ (-696)) 36 T ELT) (($ $) 34 T ELT)) (-3973 (((-348 |#2|) $) 49 T ELT)) (-3531 (($ (-585 (-2 (|:| -2403 (-696)) (|:| -3774 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3947 (((-774) $) 131 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-696)) 37 T ELT) (($ $) 35 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3840 (($ |#2| $) 41 T ELT))) +(((-340 |#1| |#2|) (-13 (-1015) (-189) (-555 (-348 |#2|)) (-10 -8 (-15 -3840 ($ |#2| $)) (-15 -1764 ($ (-348 |#2|))) (-15 -1763 (|#2| $)) (-15 -1762 ((-585 (-2 (|:| -2403 (-696)) (|:| -3774 |#2|) (|:| |num| |#2|))) $)) (-15 -3531 ($ (-585 (-2 (|:| -2403 (-696)) (|:| -3774 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1156 |#1|)) (T -340)) +((-3840 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *2)) (-4 *2 (-1156 *3)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4)))) (-1763 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-340 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1762 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3774 *4) (|:| |num| *4)))) (-5 *1 (-340 *3 *4)) (-4 *4 (-1156 *3)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3774 *4) (|:| |num| *4)))) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4))))) +((-2570 (((-85) $ $) 10 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 16 (|has| |#1| (-798 (-328))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 15 (|has| |#1| (-798 (-485))) ELT)) (-3244 (((-1074) $) 14 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT)) (-3245 (((-1035) $) 13 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT)) (-3947 (((-774) $) 12 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT)) (-1266 (((-85) $ $) 11 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT)) (-3058 (((-85) $ $) 9 (OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ELT))) +(((-341 |#1|) (-113) (-1130)) (T -341)) +NIL +(-13 (-1130) (-10 -7 (IF (|has| |t#1| (-798 (-485))) (-6 (-798 (-485))) |%noBranch|) (IF (|has| |t#1| (-798 (-328))) (-6 (-798 (-328))) |%noBranch|))) +(((-72) OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ((-554 (-774)) OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ((-13) . T) ((-798 (-328)) |has| |#1| (-798 (-328))) ((-798 (-485)) |has| |#1| (-798 (-485))) ((-1015) OR (|has| |#1| (-798 (-485))) (|has| |#1| (-798 (-328)))) ((-1130) . T)) +((-1765 (($ $) 10 T ELT) (($ $ (-696)) 12 T ELT))) +(((-342 |#1|) (-10 -7 (-15 -1765 (|#1| |#1| (-696))) (-15 -1765 (|#1| |#1|))) (-343)) (T -342)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1765 (($ $) 97 T ELT) (($ $ (-696)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-745 (-832)) $) 99 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1766 (((-3 (-696) "failed") $ $) 98 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT)) (-2704 (((-634 $) $) 100 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) +(((-343) (-113)) (T -343)) +((-3773 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-745 (-832))))) (-1766 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-343)) (-5 *2 (-696)))) (-1765 (*1 *1 *1) (-4 *1 (-343))) (-1765 (*1 *1 *1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-696))))) +(-13 (-312) (-118) (-10 -8 (-15 -3773 ((-745 (-832)) $)) (-15 -1766 ((-3 (-696) "failed") $ $)) (-15 -1765 ($ $)) (-15 -1765 ($ $ (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-3256 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-832)) NIL T ELT)) (-2617 (((-832)) 19 T ELT) (((-832) (-832)) NIL T ELT))) +(((-344 |#1|) (-10 -7 (-15 -2617 ((-832) (-832))) (-15 -2617 ((-832))) (-15 -3256 (|#1| (-485) (-485) (-832))) (-15 -3256 (|#1| (-485) (-485)))) (-345)) (T -344)) +((-2617 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-344 *3)) (-4 *3 (-345))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-348 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-348 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1769 (((-832)) 149 T ELT) (((-832) (-832)) 146 (|has| $ (-6 -3987)) ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 112 T ELT)) (-3773 (((-485) $) 155 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT) (($) 143 (-12 (-2562 (|has| $ (-6 -3987))) (-2562 (|has| $ (-6 -3979)))) ELT)) (-2859 (($ $ $) 126 T ELT) (($) 142 (-12 (-2562 (|has| $ (-6 -3987))) (-2562 (|has| $ (-6 -3979)))) ELT)) (-1771 (((-485) $) 152 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-1768 (((-832) (-485)) 145 (|has| $ (-6 -3987)) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3256 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-832)) 156 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-2403 (((-485) $) 153 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-832)) 150 T ELT) (((-832) (-832)) 147 (|has| $ (-6 -3987)) ELT)) (-1767 (((-832) (-485)) 144 (|has| $ (-6 -3987)) ELT)) (-3973 (((-328) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-328)) $) 113 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-348 (-485))) 117 T ELT)) (-3128 (((-696)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1770 (((-832)) 151 T ELT) (((-832) (-832)) 148 (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (((-832)) 154 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-348 (-485))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) +(((-345) (-113)) (T -345)) +((-3256 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-345)))) (-3256 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-832)) (-4 *1 (-345)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485)))) (-2696 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485)))) (-1770 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) (-2617 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) (-1769 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-345)) (-5 *2 (-832)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-345)) (-5 *2 (-832)))) (-2533 (*1 *1) (-12 (-4 *1 (-345)) (-2562 (|has| *1 (-6 -3987))) (-2562 (|has| *1 (-6 -3979))))) (-2859 (*1 *1) (-12 (-4 *1 (-345)) (-2562 (|has| *1 (-6 -3987))) (-2562 (|has| *1 (-6 -3979)))))) +(-13 (-975) (-10 -8 (-6 -3771) (-15 -3256 ($ (-485) (-485))) (-15 -3256 ($ (-485) (-485) (-832))) (-15 -3773 ((-485) $)) (-15 -2696 ((-832))) (-15 -2403 ((-485) $)) (-15 -1771 ((-485) $)) (-15 -1770 ((-832))) (-15 -2617 ((-832))) (-15 -1769 ((-832))) (IF (|has| $ (-6 -3987)) (PROGN (-15 -1770 ((-832) (-832))) (-15 -2617 ((-832) (-832))) (-15 -1769 ((-832) (-832))) (-15 -1768 ((-832) (-485))) (-15 -1767 ((-832) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3979)) |%noBranch| (IF (|has| $ (-6 -3987)) |%noBranch| (PROGN (-15 -2533 ($)) (-15 -2859 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-328)) . T) ((-555 (-802 (-328))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-328)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-975) . T) ((-952 (-348 (-485))) . T) ((-952 (-485)) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1772 (($ $) 77 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 189 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 48 T ELT)) (-1773 ((|#1| $) 16 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-1135)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-1135)) ELT)) (-1775 (($ |#1| (-485)) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3468 (((-3 $ #1#) $) 163 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 80 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1776 (($ |#1| (-485)) 44 T ELT)) (-3724 (((-85) $) 209 (|has| |#1| (-1135)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 61 T ELT)) (-1835 (((-696) $) 51 T ELT)) (-1777 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2301 ((|#1| $ (-485)) 173 T ELT)) (-1778 (((-485) $ (-485)) 172 T ELT)) (-1781 (($ |#1| (-485)) 41 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1832 (($ |#1| (-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1779 (($ |#1| (-485)) 43 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) 190 (|has| |#1| (-390)) ELT)) (-1774 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1780 (((-585 (-2 (|:| -3733 |#1|) (|:| -2403 (-485)))) $) 72 T ELT)) (-1953 (((-585 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-1135)) ELT)) (-3467 (((-3 $ #1#) $ $) 175 T ELT)) (-2403 (((-485) $) 166 T ELT)) (-3964 ((|#1| $) 74 T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 105 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) $) NIL (|has| |#1| (-454 (-1091) $)) ELT) (($ $ (-585 (-1091)) (-585 $)) 106 (|has| |#1| (-454 (-1091) $)) ELT) (($ $ (-585 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-585 $) (-585 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3801 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3973 (((-474) $) 39 (|has| |#1| (-555 (-474))) ELT) (((-328) $) 112 (|has| |#1| (-935)) ELT) (((-179) $) 118 (|has| |#1| (-935)) ELT)) (-3947 (((-774) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT)) (-3128 (((-696)) 66 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 53 T CONST)) (-2668 (($) 52 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 158 T ELT)) (-3838 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 179 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 124 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-346 |#1|) (-13 (-496) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-353 |#1|) (-10 -8 (-15 -3964 (|#1| $)) (-15 -2403 ((-485) $)) (-15 -1832 ($ |#1| (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-15 -1953 ((-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-15 -1781 ($ |#1| (-485))) (-15 -1780 ((-585 (-2 (|:| -3733 |#1|) (|:| -2403 (-485)))) $)) (-15 -1779 ($ |#1| (-485))) (-15 -1778 ((-485) $ (-485))) (-15 -2301 (|#1| $ (-485))) (-15 -1777 ((-3 #1# #2# #3# #4#) $ (-485))) (-15 -1835 ((-696) $)) (-15 -1776 ($ |#1| (-485))) (-15 -1775 ($ |#1| (-485))) (-15 -1774 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-15 -1773 (|#1| $)) (-15 -1772 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-390)) (-6 (-390)) |%noBranch|) (IF (|has| |#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-454 (-1091) $)) (-6 (-454 (-1091) $)) |%noBranch|))) (-496)) (T -346)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-346 *3)))) (-3964 (*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-346 *3)) (-4 *3 (-496)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-346 *2)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-346 *3)) (-4 *3 (-496)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3733 *3) (|:| -2403 (-485))))) (-5 *1 (-346 *3)) (-4 *3 (-496)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1778 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-346 *3)) (-4 *3 (-496)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-346 *4)) (-4 *4 (-496)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-346 *3)) (-4 *3 (-496)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1774 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1773 (*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-346 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-346 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-346 *3)) (-4 *3 (-484)) (-4 *3 (-496))))) +((-3959 (((-346 |#2|) (-1 |#2| |#1|) (-346 |#1|)) 20 T ELT))) +(((-347 |#1| |#2|) (-10 -7 (-15 -3959 ((-346 |#2|) (-1 |#2| |#1|) (-346 |#1|)))) (-496) (-496)) (T -347)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-346 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-346 *6)) (-5 *1 (-347 *5 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3131 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#1| (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) 54 (|has| |#1| (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT)) (-3158 ((|#1| $) 15 T ELT) (((-1091) $) NIL (|has| |#1| (-952 (-1091))) ELT) (((-348 (-485)) $) 51 (|has| |#1| (-952 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 32 T ELT)) (-2996 (($) NIL (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| |#1| (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 55 T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 22 (|has| |#1| (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 82 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 128 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 57 T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| |#1| (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT) (((-328) $) NIL (|has| |#1| (-935)) ELT) (((-179) $) NIL (|has| |#1| (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1091)) NIL (|has| |#1| (-952 (-1091))) ELT)) (-2704 (((-634 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 93 T CONST)) (-3133 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-742)) ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 48 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3950 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-348 |#1|) (-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3983)) (IF (|has| |#1| (-390)) (IF (|has| |#1| (-6 -3994)) (-6 -3983) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -348)) +NIL +((-3959 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 13 T ELT))) +(((-349 |#1| |#2|) (-10 -7 (-15 -3959 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-496) (-496)) (T -349)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) +((-1783 (((-632 |#2|) (-1180 $)) NIL T ELT) (((-632 |#2|)) 18 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT)) (-1782 (((-632 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) $) 40 T ELT)) (-2016 ((|#3| $) 69 T ELT)) (-3758 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 22 T ELT) (((-632 |#2|) (-1180 $)) 38 T ELT)) (-3973 (((-1180 |#2|) $) 11 T ELT) (($ (-1180 |#2|)) 13 T ELT)) (-2451 ((|#3| $) 55 T ELT))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -1782 ((-632 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -1783 ((-632 |#2|))) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2016 (|#3| |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -1783 ((-632 |#2|) (-1180 |#1|))) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1782 ((-632 |#2|) |#1| (-1180 |#1|)))) (-351 |#2| |#3|) (-146) (-1156 |#2|)) (T -350)) +((-1783 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)) (-5 *1 (-350 *3 *4 *5)) (-4 *3 (-351 *4 *5)))) (-3758 (*1 *2) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-350 *3 *2 *4)) (-4 *3 (-351 *2 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1783 (((-632 |#1|) (-1180 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-832)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-632 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-351 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -351)) +((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-351 *3 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) (-4 *4 (-1156 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) (-4 *4 (-1156 *3)))) (-1783 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-632 *3)))) (-3758 (*1 *2) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-632 *3))))) +(-13 (-320 |t#1| |t#2|) (-10 -8 (-15 -2014 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-632 |t#1|) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -3973 ((-1180 |t#1|) $)) (-15 -3973 ($ (-1180 |t#1|))) (-15 -1783 ((-632 |t#1|))) (-15 -3758 (|t#1|)) (-15 -1782 ((-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-320 |#1| |#2|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3947 (($ |#2|) NIL T ELT) (($ (-348 (-485))) 22 T ELT) (($ (-485)) 11 T ELT))) +(((-352 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|))) (-353 |#2|) (-1130)) (T -352)) +NIL +((-3159 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-348 (-485)) #1#) $) 16 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-952 (-485))) ELT)) (-3158 ((|#1| $) 8 T ELT) (((-348 (-485)) $) 17 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-952 (-485))) ELT)) (-3947 (($ |#1|) 6 T ELT) (($ (-348 (-485))) 15 (|has| |#1| (-952 (-348 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-952 (-485))) ELT))) +(((-353 |#1|) (-113) (-1130)) (T -353)) +NIL +(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-485))) (-6 (-952 (-485))) |%noBranch|) (IF (|has| |t#1| (-952 (-348 (-485)))) (-6 (-952 (-348 (-485)))) |%noBranch|))) +(((-557 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-557 (-485)) |has| |#1| (-952 (-485))) ((-557 |#1|) . T) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-1784 ((|#4| (-696) (-1180 |#4|)) 55 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3000 (((-1180 |#4|) $) 15 T ELT)) (-3134 ((|#2| $) 53 T ELT)) (-1785 (($ $) 156 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 103 T ELT)) (-1970 (($ (-1180 |#4|)) 102 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2999 ((|#1| $) 16 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) 147 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 |#4|) $) 140 T ELT)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-354 |#1| |#2| |#3| |#4|) (-13 (-411) (-10 -8 (-15 -1970 ($ (-1180 |#4|))) (-15 -2014 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -3000 ((-1180 |#4|) $)) (-15 -2999 (|#1| $)) (-15 -1785 ($ $)) (-15 -1784 (|#4| (-696) (-1180 |#4|))))) (-258) (-906 |#1|) (-1156 |#2|) (-13 (-351 |#2| |#3|) (-952 |#2|))) (T -354)) +((-1970 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-354 *3 *4 *5 *6)))) (-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-906 *3)) (-5 *1 (-354 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-351 *2 *4) (-952 *2))))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-952 *3))))) (-1785 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1156 *3)) (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-952 *3))))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-351 *6 *7) (-952 *6))) (-5 *1 (-354 *5 *6 *7 *2)) (-4 *7 (-1156 *6))))) +((-3959 (((-354 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-354 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-355 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-354 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-354 |#1| |#2| |#3| |#4|)))) (-258) (-906 |#1|) (-1156 |#2|) (-13 (-351 |#2| |#3|) (-952 |#2|)) (-258) (-906 |#5|) (-1156 |#6|) (-13 (-351 |#6| |#7|) (-952 |#6|))) (T -355)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-354 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-906 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-351 *6 *7) (-952 *6))) (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-354 *9 *10 *11 *12)) (-5 *1 (-355 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-351 *10 *11) (-952 *10)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3134 ((|#2| $) 69 T ELT)) (-1786 (($ (-1180 |#4|)) 27 T ELT) (($ (-354 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-952 |#2|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 37 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 |#4|) $) 28 T ELT)) (-2668 (($) 26 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-356 |#1| |#2| |#3| |#4| |#5|) (-13 (-665) (-10 -8 (-15 -2014 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -1786 ($ (-1180 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -1786 ($ (-354 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-906 |#1|) (-1156 |#2|) (-351 |#2| |#3|) (-1180 |#4|)) (T -356)) +((-2014 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7)) (-4 *6 (-351 *4 *5)) (-14 *7 *2))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-351 *2 *4)) (-14 *6 (-1180 *5)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-351 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-354 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-351 *4 *5)) (-14 *7 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7))))) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-357 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-359 |#2|) (-146) (-359 |#4|) (-146)) (T -357)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-359 *6)) (-5 *1 (-357 *4 *5 *2 *6)) (-4 *4 (-359 *5))))) +((-1773 (((-3 $ #1="failed")) 99 T ELT)) (-3225 (((-1180 (-632 |#2|)) (-1180 $)) NIL T ELT) (((-1180 (-632 |#2|))) 104 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1789 (((-632 |#2|) (-1180 $)) NIL T ELT) (((-632 |#2|)) 115 T ELT)) (-1787 (((-632 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) $) 123 T ELT)) (-1901 (((-1086 (-859 |#2|))) 64 T ELT)) (-1791 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 125 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1790 (((-632 |#2|) (-1180 $)) NIL T ELT) (((-632 |#2|)) 113 T ELT)) (-1788 (((-632 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) $) 121 T ELT)) (-1905 (((-1086 (-859 |#2|))) 63 T ELT)) (-1792 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 124 T ELT) (((-632 |#2|) (-1180 $)) 133 T ELT)) (-3973 (((-1180 |#2|) $) 109 T ELT) (($ (-1180 |#2|)) 111 T ELT)) (-1893 (((-585 (-859 |#2|)) (-1180 $)) NIL T ELT) (((-585 (-859 |#2|))) 107 T ELT)) (-2547 (($ (-632 |#2|) $) 103 T ELT))) +(((-358 |#1| |#2|) (-10 -7 (-15 -2547 (|#1| (-632 |#2|) |#1|)) (-15 -1901 ((-1086 (-859 |#2|)))) (-15 -1905 ((-1086 (-859 |#2|)))) (-15 -1787 ((-632 |#2|) |#1|)) (-15 -1788 ((-632 |#2|) |#1|)) (-15 -1789 ((-632 |#2|))) (-15 -1790 ((-632 |#2|))) (-15 -1791 (|#2|)) (-15 -1792 (|#2|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -1893 ((-585 (-859 |#2|)))) (-15 -3225 ((-1180 (-632 |#2|)))) (-15 -3226 ((-632 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -1773 ((-3 |#1| #1="failed"))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1908 ((-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#))) (-15 -1789 ((-632 |#2|) (-1180 |#1|))) (-15 -1790 ((-632 |#2|) (-1180 |#1|))) (-15 -1791 (|#2| (-1180 |#1|))) (-15 -1792 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-632 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1787 ((-632 |#2|) |#1| (-1180 |#1|))) (-15 -1788 ((-632 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-632 |#2|)) (-1180 |#1|))) (-15 -1893 ((-585 (-859 |#2|)) (-1180 |#1|)))) (-359 |#2|) (-146)) (T -358)) +((-3225 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-632 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1893 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1792 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) (-1791 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) (-1790 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1789 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1905 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-859 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-859 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1773 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-632 |#1|)) (-1180 $)) 89 T ELT) (((-1180 (-632 |#1|))) 115 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1789 (((-632 |#1|) (-1180 $)) 76 T ELT) (((-632 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1787 (((-632 |#1|) $ (-1180 $)) 87 T ELT) (((-632 |#1|) $) 105 T ELT)) (-2406 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1901 (((-1086 (-859 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2409 (($ $ (-832)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 80 T ELT) (($ (-1180 |#1|)) 113 T ELT)) (-3468 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-832)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-832)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1790 (((-632 |#1|) (-1180 $)) 77 T ELT) (((-632 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1788 (((-632 |#1|) $ (-1180 $)) 88 T ELT) (((-632 |#1|) $) 106 T ELT)) (-2407 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-859 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3801 ((|#1| $ (-485)) 119 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 81 T ELT) (((-1180 |#1|) $) 117 T ELT) (((-632 |#1|) (-1180 $)) 116 T ELT)) (-3973 (((-1180 |#1|) $) 112 T ELT) (($ (-1180 |#1|)) 111 T ELT)) (-1893 (((-585 (-859 |#1|)) (-1180 $)) 90 T ELT) (((-585 (-859 |#1|))) 114 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 118 T ELT)) (-1708 (((-585 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2547 (($ (-632 |#1|) $) 102 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-359 |#1|) (-113) (-146)) (T -359)) +((-2014 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-359 *3)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-359 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) (-3225 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-632 *3))))) (-1893 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) (-1792 (*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146)))) (-1791 (*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146)))) (-1790 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1789 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-859 *3))))) (-1901 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-859 *3))))) (-2547 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-359 *3)) (-4 *3 (-146))))) +(-13 (-316 |t#1|) (-241 (-485) |t#1|) (-10 -8 (-15 -2014 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-632 |t#1|) (-1180 $))) (-15 -3225 ((-1180 (-632 |t#1|)))) (-15 -1893 ((-585 (-859 |t#1|)))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -3973 ((-1180 |t#1|) $)) (-15 -3973 ($ (-1180 |t#1|))) (-15 -1792 (|t#1|)) (-15 -1791 (|t#1|)) (-15 -1790 ((-632 |t#1|))) (-15 -1789 ((-632 |t#1|))) (-15 -1788 ((-632 |t#1|) $)) (-15 -1787 ((-632 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1905 ((-1086 (-859 |t#1|)))) (-15 -1901 ((-1086 (-859 |t#1|))))) |%noBranch|) (-15 -2547 ($ (-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-241 (-485) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-685 |#1|) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-3136 (((-346 |#1|) (-346 |#1|) (-1 (-346 |#1|) |#1|)) 28 T ELT)) (-1794 (((-346 |#1|) (-346 |#1|) (-346 |#1|)) 17 T ELT))) +(((-360 |#1|) (-10 -7 (-15 -3136 ((-346 |#1|) (-346 |#1|) (-1 (-346 |#1|) |#1|))) (-15 -1794 ((-346 |#1|) (-346 |#1|) (-346 |#1|)))) (-496)) (T -360)) +((-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-346 *3)) (-4 *3 (-496)) (-5 *1 (-360 *3)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-346 *4) *4)) (-4 *4 (-496)) (-5 *2 (-346 *4)) (-5 *1 (-360 *4))))) +((-3083 (((-585 (-1091)) $) 81 T ELT)) (-3085 (((-348 (-1086 $)) $ (-552 $)) 313 T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 277 T ELT)) (-3159 (((-3 (-552 $) #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-348 (-859 |#2|)) #1#) $) 363 T ELT) (((-3 (-859 |#2|) #1#) $) 275 T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3158 (((-552 $) $) NIL T ELT) (((-1091) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-348 (-859 |#2|)) $) 345 T ELT) (((-859 |#2|) $) 272 T ELT) (((-348 (-485)) $) NIL T ELT)) (-3596 (((-86) (-86)) 47 T ELT)) (-2998 (($ $) 99 T ELT)) (-1603 (((-3 (-552 $) #1#) $) 268 T ELT)) (-1602 (((-585 (-552 $)) $) 269 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 287 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) #1#) $) 294 T ELT)) (-2824 (((-3 (-585 $) #1#) $) 285 T ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 $))) #1#) $) 304 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) #1#) $ (-1091)) 257 T ELT)) (-1798 (((-85) $) 17 T ELT)) (-1797 ((|#2| $) 19 T ELT)) (-3769 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) 276 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) 109 T ELT) (($ $ (-1091) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) 62 T ELT) (($ $ (-585 (-1091))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1091)) 65 T ELT) (($ $ (-585 (-86)) (-585 $) (-1091)) 72 T ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ $))) 120 T ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 282 T ELT) (($ $ (-1091) (-696) (-1 $ (-585 $))) 105 T ELT) (($ $ (-1091) (-696) (-1 $ $)) 104 T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) 119 T ELT)) (-3759 (($ $ (-1091)) 278 T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-2997 (($ $) 324 T ELT)) (-3973 (((-802 (-485)) $) 297 T ELT) (((-802 (-328)) $) 301 T ELT) (($ (-346 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3947 (((-774) $) 279 T ELT) (($ (-552 $)) 93 T ELT) (($ (-1091)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#2| (-552 $))) NIL T ELT) (($ (-348 |#2|)) 329 T ELT) (($ (-859 (-348 |#2|))) 368 T ELT) (($ (-348 (-859 (-348 |#2|)))) 341 T ELT) (($ (-348 (-859 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-859 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) 373 T ELT)) (-3128 (((-696)) 88 T CONST)) (-2256 (((-85) (-86)) 42 T ELT)) (-1796 (($ (-1091) $) 31 T ELT) (($ (-1091) $ $) 32 T ELT) (($ (-1091) $ $ $) 33 T ELT) (($ (-1091) $ $ $ $) 34 T ELT) (($ (-1091) (-585 $)) 39 T ELT)) (* (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-361 |#1| |#2|) (-10 -7 (-15 * (|#1| (-832) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3159 ((-3 (-348 (-485)) #1="failed") |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3947 (|#1| (-485))) (-15 -3128 ((-696)) -3953) (-15 * (|#1| |#2| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3947 (|#1| (-859 |#2|))) (-15 -3159 ((-3 (-859 |#2|) #1#) |#1|)) (-15 -3158 ((-859 |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 * (|#1| |#1| (-348 (-485)))) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 -3947 (|#1| (-348 (-859 |#2|)))) (-15 -3159 ((-3 (-348 (-859 |#2|)) #1#) |#1|)) (-15 -3158 ((-348 (-859 |#2|)) |#1|)) (-15 -3085 ((-348 (-1086 |#1|)) |#1| (-552 |#1|))) (-15 -3947 (|#1| (-348 (-859 (-348 |#2|))))) (-15 -3947 (|#1| (-859 (-348 |#2|)))) (-15 -3947 (|#1| (-348 |#2|))) (-15 -2997 (|#1| |#1|)) (-15 -3973 (|#1| (-346 |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-696) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-696) (-1 |#1| (-585 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-696)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-696)) (-585 (-1 |#1| |#1|)))) (-15 -2827 ((-3 (-2 (|:| |val| |#1|) (|:| -2403 (-485))) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-485))) #1#) |#1| (-1091))) (-15 -2826 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-485))) #1#) |#1| (-86))) (-15 -2998 (|#1| |#1|)) (-15 -3947 (|#1| (-1040 |#2| (-552 |#1|)))) (-15 -1795 ((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 |#1|))) #1#) |#1|)) (-15 -2824 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-552 |#1|)) (|:| -2403 (-485))) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -3769 (|#1| |#1| (-585 (-86)) (-585 |#1|) (-1091))) (-15 -3769 (|#1| |#1| (-86) |#1| (-1091))) (-15 -3769 (|#1| |#1|)) (-15 -3769 (|#1| |#1| (-585 (-1091)))) (-15 -3769 (|#1| |#1| (-1091))) (-15 -1796 (|#1| (-1091) (-585 |#1|))) (-15 -1796 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1|)) (-15 -3083 ((-585 (-1091)) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -1798 ((-85) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -3947 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-585 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3769 (|#1| |#1| (-585 (-86)) (-585 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| (-585 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -3769 (|#1| |#1| (-585 (-1091)) (-585 (-1 |#1| |#1|)))) (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1602 ((-585 (-552 |#1|)) |#1|)) (-15 -1603 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -1605 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -1605 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-585 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-585 (-552 |#1|)) (-585 |#1|))) (-15 -3769 (|#1| |#1| (-552 |#1|) |#1|)) (-15 -3947 (|#1| (-552 |#1|))) (-15 -3159 ((-3 (-552 |#1|) #1#) |#1|)) (-15 -3158 ((-552 |#1|) |#1|)) (-15 -3947 ((-774) |#1|))) (-362 |#2|) (-1015)) (T -361)) +((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-361 *4 *5)) (-4 *4 (-362 *5)))) (-3128 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3083 (((-585 (-1091)) $) 222 T ELT)) (-3085 (((-348 (-1086 $)) $ (-552 $)) 190 (|has| |#1| (-496)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 165 (|has| |#1| (-496)) ELT)) (-1601 (((-585 (-552 $)) $) 42 T ELT)) (-1313 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-585 (-249 $))) 53 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 52 T ELT)) (-3776 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3972 (((-346 $) $) 183 (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) 173 (|has| |#1| (-496)) ELT)) (-3725 (($) 117 (OR (|has| |#1| (-1027)) (|has| |#1| (-25))) CONST)) (-3159 (((-3 (-552 $) #1="failed") $) 67 T ELT) (((-3 (-1091) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-952 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-348 (-859 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-859 |#1|) #1#) $) 137 (|has| |#1| (-963)) ELT) (((-3 (-348 (-485)) #1#) $) 111 (OR (-12 (|has| |#1| (-952 (-485))) (|has| |#1| (-496))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3158 (((-552 $) $) 68 T ELT) (((-1091) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-952 (-485))) ELT) ((|#1| $) 227 T ELT) (((-348 (-859 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-859 |#1|) $) 138 (|has| |#1| (-963)) ELT) (((-348 (-485)) $) 112 (OR (-12 (|has| |#1| (-952 (-485))) (|has| |#1| (-496))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2566 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2281 (((-632 (-485)) (-632 $)) 155 (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 154 (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 153 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-632 $)) 152 (|has| |#1| (-963)) ELT)) (-3468 (((-3 $ "failed") $) 119 (|has| |#1| (-1027)) ELT)) (-2565 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 171 (|has| |#1| (-496)) ELT)) (-3724 (((-85) $) 184 (|has| |#1| (-496)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 231 (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 230 (|has| |#1| (-798 (-328))) ELT)) (-2575 (($ $) 49 T ELT) (($ (-585 $)) 48 T ELT)) (-1215 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1600 (((-585 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2412 (((-85) $) 118 (|has| |#1| (-1027)) ELT)) (-2675 (((-85) $) 20 (|has| $ (-952 (-485))) ELT)) (-2998 (($ $) 205 (|has| |#1| (-963)) ELT)) (-3000 (((-1040 |#1| (-552 $)) $) 206 (|has| |#1| (-963)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 180 (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-552 $)) 23 (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) 34 T ELT)) (-1603 (((-3 (-552 $) "failed") $) 44 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 157 (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 156 (-2564 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 151 (|has| |#1| (-963)) ELT) (((-632 |#1|) (-1180 $)) 150 (|has| |#1| (-963)) ELT)) (-1892 (($ (-585 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-585 (-552 $)) $) 43 T ELT)) (-2237 (($ (-86) $) 36 T ELT) (($ (-86) (-585 $)) 35 T ELT)) (-2825 (((-3 (-585 $) "failed") $) 211 (|has| |#1| (-1027)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) "failed") $) 202 (|has| |#1| (-963)) ELT)) (-2824 (((-3 (-585 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $) 210 (|has| |#1| (-1027)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $ (-86)) 204 (|has| |#1| (-963)) ELT) (((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $ (-1091)) 203 (|has| |#1| (-963)) ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2486 (($ $) 121 (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT)) (-2605 (((-696) $) 45 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 224 T ELT)) (-1797 ((|#1| $) 223 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 170 (|has| |#1| (-496)) ELT)) (-3146 (($ (-585 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-3733 (((-346 $) $) 181 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 172 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) 21 (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-552 $) $) 65 T ELT) (($ $ (-585 (-552 $)) (-585 $)) 64 T ELT) (($ $ (-585 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-585 $) (-585 $)) 60 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) 31 T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-585 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) 27 T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-585 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1091)) 216 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-1091))) 215 (|has| |#1| (-555 (-474))) ELT) (($ $) 214 (|has| |#1| (-555 (-474))) ELT) (($ $ (-86) $ (-1091)) 213 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-86)) (-585 $) (-1091)) 212 (|has| |#1| (-555 (-474))) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ $))) 201 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ (-585 $)))) 200 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696) (-1 $ (-585 $))) 199 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696) (-1 $ $)) 198 (|has| |#1| (-963)) ELT)) (-1608 (((-696) $) 174 (|has| |#1| (-496)) ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-585 $)) 55 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3759 (($ $ (-1091)) 148 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) 146 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) 145 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 144 (|has| |#1| (-963)) ELT)) (-2997 (($ $) 195 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-552 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 22 (|has| $ (-963)) ELT)) (-3973 (((-802 (-485)) $) 233 (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) 232 (|has| |#1| (-555 (-802 (-328)))) ELT) (($ (-346 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $ $) 124 (|has| |#1| (-411)) ELT)) (-2437 (($ $ $) 125 (|has| |#1| (-411)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-552 $)) 66 T ELT) (($ (-1091)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1040 |#1| (-552 $))) 207 (|has| |#1| (-963)) ELT) (($ (-348 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-859 (-348 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-348 (-859 (-348 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-348 (-859 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-859 |#1|)) 136 (|has| |#1| (-963)) ELT) (($ (-348 (-485))) 110 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-952 (-485))) (|has| |#1| (-496))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-963)) (|has| |#1| (-952 (-485)))) ELT)) (-2704 (((-634 $) $) 158 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 140 (|has| |#1| (-963)) CONST)) (-2592 (($ $) 51 T ELT) (($ (-585 $)) 50 T ELT)) (-2256 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 164 (|has| |#1| (-496)) ELT)) (-1796 (($ (-1091) $) 221 T ELT) (($ (-1091) $ $) 220 T ELT) (($ (-1091) $ $ $) 219 T ELT) (($ (-1091) $ $ $ $) 218 T ELT) (($ (-1091) (-585 $)) 217 T ELT)) (-3127 (((-85) $ $) 139 (|has| |#1| (-963)) ELT)) (-2662 (($) 128 (|has| |#1| (-25)) CONST)) (-2668 (($) 116 (|has| |#1| (-1027)) CONST)) (-2671 (($ $ (-1091)) 147 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091))) 143 (|has| |#1| (-963)) ELT) (($ $ (-1091) (-696)) 142 (|has| |#1| (-963)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 141 (|has| |#1| (-963)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ (-1040 |#1| (-552 $)) (-1040 |#1| (-552 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT)) (-3838 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-411)) (|has| |#1| (-496))) ELT) (($ $ (-696)) 120 (|has| |#1| (-1027)) ELT) (($ $ (-832)) 115 (|has| |#1| (-1027)) ELT)) (* (($ (-348 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-348 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-963)) ELT) (($ (-485) $) 133 (|has| |#1| (-21)) ELT) (($ (-696) $) 130 (|has| |#1| (-25)) ELT) (($ (-832) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1027)) ELT))) +(((-362 |#1|) (-113) (-1015)) (T -362)) +((-1798 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1091))))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) (-1796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) (-1796 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) (-1796 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-585 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1015)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-474))))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1091))) (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-4 *3 (-555 (-474))))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-474))))) (-3769 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-362 *4)) (-4 *4 (-1015)) (-4 *4 (-555 (-474))))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1091)) (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-555 (-474))))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-362 *3)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-362 *3)))) (-1795 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| -3955 (-485)) (|:| |var| (-552 *1)))) (-4 *1 (-362 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1040 *3 (-552 *1))) (-4 *1 (-362 *3)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *4)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *4)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-485)))) (-4 *1 (-362 *3)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-346 *1)) (-4 *1 (-362 *3)) (-4 *3 (-496)) (-4 *3 (-1015)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-496)) (-4 *3 (-1015)) (-5 *2 (-1040 *3 (-552 *1))) (-4 *1 (-362 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-496)))) (-3950 (*1 *1 *2 *2) (-12 (-5 *2 (-1040 *3 (-552 *1))) (-4 *3 (-496)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-859 (-348 *3))) (-4 *3 (-496)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-348 (-859 (-348 *3)))) (-4 *3 (-496)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-552 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1015)) (-4 *4 (-496)) (-5 *2 (-348 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-4 *3 (-1027))))) +(-13 (-254) (-952 (-1091)) (-796 |t#1|) (-341 |t#1|) (-353 |t#1|) (-10 -8 (-15 -1798 ((-85) $)) (-15 -1797 (|t#1| $)) (-15 -3083 ((-585 (-1091)) $)) (-15 -1796 ($ (-1091) $)) (-15 -1796 ($ (-1091) $ $)) (-15 -1796 ($ (-1091) $ $ $)) (-15 -1796 ($ (-1091) $ $ $ $)) (-15 -1796 ($ (-1091) (-585 $))) (IF (|has| |t#1| (-555 (-474))) (PROGN (-6 (-555 (-474))) (-15 -3769 ($ $ (-1091))) (-15 -3769 ($ $ (-585 (-1091)))) (-15 -3769 ($ $)) (-15 -3769 ($ $ (-86) $ (-1091))) (-15 -3769 ($ $ (-585 (-86)) (-585 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1027)) (PROGN (-6 (-665)) (-15 ** ($ $ (-696))) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-411)) (-6 (-411)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2824 ((-3 (-585 $) "failed") $)) (-15 -1795 ((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-552 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-6 (-963)) (-6 (-952 (-859 |t#1|))) (-6 (-811 (-1091))) (-6 (-327 |t#1|)) (-15 -3947 ($ (-1040 |t#1| (-552 $)))) (-15 -3000 ((-1040 |t#1| (-552 $)) $)) (-15 -2998 ($ $)) (-15 -2826 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $ (-86))) (-15 -2826 ((-3 (-2 (|:| |var| (-552 $)) (|:| -2403 (-485))) "failed") $ (-1091))) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2403 (-485))) "failed") $)) (-15 -3769 ($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ $)))) (-15 -3769 ($ $ (-585 (-1091)) (-585 (-696)) (-585 (-1 $ (-585 $))))) (-15 -3769 ($ $ (-1091) (-696) (-1 $ (-585 $)))) (-15 -3769 ($ $ (-1091) (-696) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-312)) (-6 (-952 (-348 (-859 |t#1|)))) (-15 -3973 ($ (-346 $))) (-15 -2999 ((-1040 |t#1| (-552 $)) $)) (-15 -2997 ($ $)) (-15 -3950 ($ (-1040 |t#1| (-552 $)) (-1040 |t#1| (-552 $)))) (-15 -3947 ($ (-348 |t#1|))) (-15 -3947 ($ (-859 (-348 |t#1|)))) (-15 -3947 ($ (-348 (-859 (-348 |t#1|))))) (-15 -3085 ((-348 (-1086 $)) $ (-552 $))) (IF (|has| |t#1| (-952 (-485))) (-6 (-952 (-348 (-485)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-348 (-485))) |has| |#1| (-496)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-496)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-496)) ((-104) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-496))) ((-557 (-348 (-859 |#1|))) |has| |#1| (-496)) ((-557 (-485)) OR (|has| |#1| (-963)) (|has| |#1| (-952 (-485))) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-557 (-552 $)) . T) ((-557 (-859 |#1|)) |has| |#1| (-963)) ((-557 (-1091)) . T) ((-557 |#1|) . T) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) |has| |#1| (-496)) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-555 (-802 (-328))) |has| |#1| (-555 (-802 (-328)))) ((-555 (-802 (-485))) |has| |#1| (-555 (-802 (-485)))) ((-201) |has| |#1| (-496)) ((-246) |has| |#1| (-496)) ((-258) |has| |#1| (-496)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-496)) ((-327 |#1|) |has| |#1| (-963)) ((-341 |#1|) . T) ((-353 |#1|) . T) ((-390) |has| |#1| (-496)) ((-411) |has| |#1| (-411)) ((-454 (-552 $) $) . T) ((-454 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-496)) ((-590 (-485)) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-590 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-592 (-348 (-485))) |has| |#1| (-496)) ((-592 (-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ((-592 |#1|) OR (|has| |#1| (-963)) (|has| |#1| (-146))) ((-592 $) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-584 (-348 (-485))) |has| |#1| (-496)) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-582 (-485)) -12 (|has| |#1| (-582 (-485))) (|has| |#1| (-963))) ((-582 |#1|) |has| |#1| (-963)) ((-656 (-348 (-485))) |has| |#1| (-496)) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-411)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-808 $ (-1091)) |has| |#1| (-963)) ((-811 (-1091)) |has| |#1| (-963)) ((-813 (-1091)) |has| |#1| (-963)) ((-798 (-328)) |has| |#1| (-798 (-328))) ((-798 (-485)) |has| |#1| (-798 (-485))) ((-796 |#1|) . T) ((-834) |has| |#1| (-496)) ((-952 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-952 (-485))))) ((-952 (-348 (-859 |#1|))) |has| |#1| (-496)) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 (-552 $)) . T) ((-952 (-859 |#1|)) |has| |#1| (-963)) ((-952 (-1091)) . T) ((-952 |#1|) . T) ((-965 (-348 (-485))) |has| |#1| (-496)) ((-965 |#1|) |has| |#1| (-146)) ((-965 $) |has| |#1| (-496)) ((-970 (-348 (-485))) |has| |#1| (-496)) ((-970 |#1|) |has| |#1| (-146)) ((-970 $) |has| |#1| (-496)) ((-963) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-972) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1027) OR (|has| |#1| (-1027)) (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-411)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1062) OR (|has| |#1| (-963)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1015) . T) ((-1130) . T) ((-1135) |has| |#1| (-496))) +((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-362 |#1|) (-963) (-362 |#3|)) (T -363)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-362 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5))))) +((-1802 ((|#2| |#2|) 182 T ELT)) (-1799 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85)) 60 T ELT))) +(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1799 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85))) (-15 -1802 (|#2| |#2|))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|)) (-1091) |#2|) (T -364)) +((-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-364 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-362 *3))) (-14 *4 (-1091)) (-14 *5 *2))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-364 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-14 *6 (-1091)) (-14 *7 *3)))) +((-1802 ((|#2| |#2|) 105 T ELT)) (-1800 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 52 T ELT)) (-1801 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 169 T ELT))) +(((-365 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1800 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1802 (|#2| |#2|))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|) (-10 -8 (-15 -3947 ($ |#3|)))) (-757) (-13 (-1159 |#2| |#3|) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))) (-898 |#4|) (-1091)) (T -365)) +((-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-4 *2 (-13 (-27) (-1116) (-362 *3) (-10 -8 (-15 -3947 ($ *4))))) (-4 *4 (-757)) (-4 *5 (-13 (-1159 *2 *4) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *1 (-365 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1091)))) (-1801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-4 *3 (-13 (-27) (-1116) (-362 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-898 *8)) (-14 *10 (-1091)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-4 *3 (-13 (-27) (-1116) (-362 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-757)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-898 *8)) (-14 *10 (-1091))))) +((-1803 (($) 51 T ELT)) (-3236 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3238 (($ $ $) 46 T ELT)) (-3237 (((-85) $ $) 35 T ELT)) (-3138 (((-696)) 55 T ELT)) (-3241 (($ (-585 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2996 (($) 66 T ELT)) (-3243 (((-85) $ $) 15 T ELT)) (-2533 ((|#2| $) 77 T ELT)) (-2859 ((|#2| $) 75 T ELT)) (-2012 (((-832) $) 70 T ELT)) (-3240 (($ $ $) 42 T ELT)) (-2402 (($ (-832)) 60 T ELT)) (-3239 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL T ELT) (((-696) |#2| $) 31 T ELT)) (-3531 (($ (-585 |#2|)) 27 T ELT)) (-1804 (($ $) 53 T ELT)) (-3947 (((-774) $) 40 T ELT)) (-1805 (((-696) $) 24 T ELT)) (-3242 (($ (-585 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT))) +(((-366 |#1| |#2|) (-10 -7 (-15 -3138 ((-696))) (-15 -2402 (|#1| (-832))) (-15 -2012 ((-832) |#1|)) (-15 -2996 (|#1|)) (-15 -2533 (|#2| |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1803 (|#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1805 ((-696) |#1|)) (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3243 ((-85) |#1| |#1|)) (-15 -3242 (|#1|)) (-15 -3242 (|#1| (-585 |#2|))) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-585 |#2|))) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 ((-85) |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#2| |#1|)) (-15 -3531 (|#1| (-585 |#2|))) (-15 -1947 ((-696) |#2| |#1|)) (-15 -1947 ((-696) (-1 (-85) |#2|) |#1|))) (-367 |#2|) (-1015)) (T -366)) +((-3138 (*1 *2) (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) +((-2570 (((-85) $ $) 19 T ELT)) (-1803 (($) 71 (|has| |#1| (-318)) ELT)) (-3236 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3238 (($ $ $) 82 T ELT)) (-3237 (((-85) $ $) 83 T ELT)) (-3138 (((-696)) 65 (|has| |#1| (-318)) ELT)) (-3241 (($ (-585 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2996 (($) 68 (|has| |#1| (-318)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) 74 T ELT)) (-2533 ((|#1| $) 69 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2859 ((|#1| $) 70 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2012 (((-832) $) 67 (|has| |#1| (-318)) ELT)) (-3244 (((-1074) $) 22 T ELT)) (-3240 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-2402 (($ (-832)) 66 (|has| |#1| (-318)) ELT)) (-3245 (((-1035) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3239 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-1804 (($ $) 72 (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) 17 T ELT)) (-1805 (((-696) $) 73 T ELT)) (-3242 (($ (-585 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-367 |#1|) (-113) (-1015)) (T -367)) +((-1805 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-1804 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-318)))) (-1803 (*1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-318)) (-4 *2 (-1015)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-758))))) +(-13 (-183 |t#1|) (-1013 |t#1|) (-10 -8 (-6 -3996) (-15 -1805 ((-696) $)) (IF (|has| |t#1| (-318)) (PROGN (-6 (-318)) (-15 -1804 ($ $)) (-15 -1803 ($))) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2859 (|t#1| $)) (-15 -2533 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-318) |has| |#1| (-318)) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1015) (-367 |#1|) (-1015) (-367 |#3|)) (T -368)) +((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-367 *5)) (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-367 *6)) (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) +((-1806 (((-520 |#2|) |#2| (-1091)) 36 T ELT)) (-2102 (((-520 |#2|) |#2| (-1091)) 21 T ELT)) (-2151 ((|#2| |#2| (-1091)) 26 T ELT))) +(((-369 |#1| |#2|) (-10 -7 (-15 -2102 ((-520 |#2|) |#2| (-1091))) (-15 -1806 ((-520 |#2|) |#2| (-1091))) (-15 -2151 (|#2| |#2| (-1091)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-29 |#1|))) (T -369)) +((-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) (-1806 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1808 (($ |#2| |#1|) 37 T ELT)) (-1807 (($ |#2| |#1|) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 16 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-370 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3983)) (IF (|has| |#1| (-6 -3983)) (-6 -3983) |%noBranch|) |%noBranch|) (-15 -3947 ($ |#1|)) (-15 -3947 ($ (-281 |#2|))) (-15 -1808 ($ |#2| |#1|)) (-15 -1807 ($ |#2| |#1|)))) (-13 (-146) (-38 (-348 (-485)))) (-13 (-758) (-21))) (T -370)) +((-3947 (*1 *1 *2) (-12 (-5 *1 (-370 *2 *3)) (-4 *2 (-13 (-146) (-38 (-348 (-485))))) (-4 *3 (-13 (-758) (-21))))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-370 *3 *4)) (-4 *3 (-13 (-146) (-38 (-348 (-485))))))) (-1808 (*1 *1 *2 *3) (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-485))))) (-4 *2 (-13 (-758) (-21))))) (-1807 (*1 *1 *2 *3) (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-485))))) (-4 *2 (-13 (-758) (-21)))))) +((-3813 (((-3 |#2| (-585 |#2|)) |#2| (-1091)) 115 T ELT))) +(((-371 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 |#2| (-585 |#2|)) |#2| (-1091)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-873) (-29 |#1|))) (T -371)) +((-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-873) (-29 *5)))))) +((-3387 ((|#2| |#2| |#2|) 31 T ELT)) (-3596 (((-86) (-86)) 43 T ELT)) (-1810 ((|#2| |#2|) 63 T ELT)) (-1809 ((|#2| |#2|) 66 T ELT)) (-3386 ((|#2| |#2|) 30 T ELT)) (-3390 ((|#2| |#2| |#2|) 33 T ELT)) (-3392 ((|#2| |#2| |#2|) 35 T ELT)) (-3389 ((|#2| |#2| |#2|) 32 T ELT)) (-3391 ((|#2| |#2| |#2|) 34 T ELT)) (-2256 (((-85) (-86)) 41 T ELT)) (-3394 ((|#2| |#2|) 37 T ELT)) (-3393 ((|#2| |#2|) 36 T ELT)) (-3384 ((|#2| |#2|) 25 T ELT)) (-3388 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3385 ((|#2| |#2| |#2|) 29 T ELT))) +(((-372 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -3384 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -1810 (|#2| |#2|))) (-496) (-362 |#1|)) (T -372)) +((-1810 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-372 *3 *4)) (-4 *4 (-362 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-372 *4 *5)) (-4 *5 (-362 *4))))) +((-2835 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-585 |#2|)) 65 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-585 |#2|))) (IF (|has| |#2| (-27)) (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-496) (-120)) (-362 |#1|)) (T -373)) +((-2835 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-373 *4 *3)) (-4 *3 (-27)) (-4 *3 (-362 *4)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-362 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-373 *4 *5))))) +((-1812 (((-1186)) 18 T ELT)) (-1811 (((-1086 (-348 (-485))) |#2| (-552 |#2|)) 40 T ELT) (((-348 (-485)) |#2|) 27 T ELT))) +(((-374 |#1| |#2|) (-10 -7 (-15 -1811 ((-348 (-485)) |#2|)) (-15 -1811 ((-1086 (-348 (-485))) |#2| (-552 |#2|))) (-15 -1812 ((-1186)))) (-13 (-496) (-952 (-485))) (-362 |#1|)) (T -374)) +((-1812 (*1 *2) (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *2 (-1186)) (-5 *1 (-374 *3 *4)) (-4 *4 (-362 *3)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-362 *5)) (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-374 *5 *3)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-348 (-485))) (-5 *1 (-374 *4 *3)) (-4 *3 (-362 *4))))) +((-3646 (((-85) $) 33 T ELT)) (-1813 (((-85) $) 35 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-1815 (((-85) $) 39 T ELT)) (-1817 (((-85) $) 34 T ELT)) (-1816 (((-85) $) 38 T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1074)) 32 T ELT) (($ (-1091)) 30 T ELT) (((-1091) $) 24 T ELT) (((-1017) $) 23 T ELT)) (-1814 (((-85) $) 37 T ELT)) (-3058 (((-85) $ $) 17 T ELT))) +(((-375) (-13 (-554 (-774)) (-10 -8 (-15 -3947 ($ (-1074))) (-15 -3947 ($ (-1091))) (-15 -3947 ((-1091) $)) (-15 -3947 ((-1017) $)) (-15 -3646 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -3058 ((-85) $ $))))) (T -375)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-375)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-375)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-375)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-375)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) (-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) +((-1819 (((-3 (-346 (-1086 (-348 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1818 (((-346 |#3|) |#3|) 34 T ELT)) (-1821 (((-3 (-346 (-1086 (-48))) #1#) |#3|) 29 (|has| |#2| (-952 (-48))) ELT)) (-1820 (((-3 (|:| |overq| (-1086 (-348 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|) 37 T ELT))) +(((-376 |#1| |#2| |#3|) (-10 -7 (-15 -1818 ((-346 |#3|) |#3|)) (-15 -1819 ((-3 (-346 (-1086 (-348 (-485)))) #1="failed") |#3|)) (-15 -1820 ((-3 (|:| |overq| (-1086 (-348 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|)) (IF (|has| |#2| (-952 (-48))) (-15 -1821 ((-3 (-346 (-1086 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-496) (-952 (-485))) (-362 |#1|) (-1156 |#2|)) (T -376)) +((-1821 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) (-5 *2 (-346 (-1086 (-48)))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-348 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85)))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1819 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) (-5 *2 (-346 (-1086 (-348 (-485))))) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) (-5 *2 (-346 *3)) (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1831 (((-3 (|:| |fst| (-375)) (|:| -3911 #1="void")) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1828 (($) 35 T ELT)) (-1825 (($) 41 T ELT)) (-1826 (($) 37 T ELT)) (-1823 (($) 39 T ELT)) (-1827 (($) 36 T ELT)) (-1824 (($) 38 T ELT)) (-1822 (($) 40 T ELT)) (-1829 (((-85) $) 8 T ELT)) (-1830 (((-585 (-859 (-485))) $) 19 T ELT)) (-3531 (($ (-3 (|:| |fst| (-375)) (|:| -3911 #1#)) (-585 (-1091)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-375)) (|:| -3911 #1#)) (-585 (-859 (-485))) (-85)) 30 T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-375)) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-377) (-13 (-1015) (-10 -8 (-15 -3947 ($ (-375))) (-15 -1831 ((-3 (|:| |fst| (-375)) (|:| -3911 #1="void")) $)) (-15 -1830 ((-585 (-859 (-485))) $)) (-15 -1829 ((-85) $)) (-15 -3531 ($ (-3 (|:| |fst| (-375)) (|:| -3911 #1#)) (-585 (-1091)) (-85))) (-15 -3531 ($ (-3 (|:| |fst| (-375)) (|:| -3911 #1#)) (-585 (-859 (-485))) (-85))) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($))))) (T -377)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-377)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1="void"))) (-5 *1 (-377)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-485)))) (-5 *1 (-377)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *3 (-585 (-1091))) (-5 *4 (-85)) (-5 *1 (-377)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *3 (-585 (-859 (-485)))) (-5 *4 (-85)) (-5 *1 (-377)))) (-1828 (*1 *1) (-5 *1 (-377))) (-1827 (*1 *1) (-5 *1 (-377))) (-1826 (*1 *1) (-5 *1 (-377))) (-1825 (*1 *1) (-5 *1 (-377))) (-1824 (*1 *1) (-5 *1 (-377))) (-1823 (*1 *1) (-5 *1 (-377))) (-1822 (*1 *1) (-5 *1 (-377)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT))) +(((-378 |#1|) (-13 (-1015) (-10 -8 (-15 -3543 ((-1091) $)))) (-1091)) (T -378)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-378 *3)) (-14 *3 *2)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1030) $) 7 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) +(((-379) (-13 (-1015) (-10 -8 (-15 -3321 ((-1030) $))))) (T -379)) +((-3321 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-379))))) +((-1837 (((-85)) 18 T ELT)) (-1838 (((-85) (-85)) 19 T ELT)) (-1839 (((-85)) 14 T ELT)) (-1840 (((-85) (-85)) 15 T ELT)) (-1842 (((-85)) 16 T ELT)) (-1843 (((-85) (-85)) 17 T ELT)) (-1834 (((-832) (-832)) 22 T ELT) (((-832)) 21 T ELT)) (-1835 (((-696) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485))))) 52 T ELT)) (-1833 (((-832) (-832)) 24 T ELT) (((-832)) 23 T ELT)) (-1836 (((-2 (|:| -2580 (-485)) (|:| -1780 (-585 |#1|))) |#1|) 94 T ELT)) (-1832 (((-346 |#1|) (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485))))))) 176 T ELT)) (-3735 (((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85)) 209 T ELT)) (-3734 (((-346 |#1|) |#1| (-696) (-696)) 224 T ELT) (((-346 |#1|) |#1| (-585 (-696)) (-696)) 221 T ELT) (((-346 |#1|) |#1| (-585 (-696))) 223 T ELT) (((-346 |#1|) |#1| (-696)) 222 T ELT) (((-346 |#1|) |#1|) 220 T ELT)) (-1854 (((-3 |#1| #1="failed") (-832) |#1| (-585 (-696)) (-696) (-85)) 226 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696)) 227 T ELT) (((-3 |#1| #1#) (-832) |#1| (-585 (-696))) 229 T ELT) (((-3 |#1| #1#) (-832) |#1| (-696)) 228 T ELT) (((-3 |#1| #1#) (-832) |#1|) 230 T ELT)) (-3733 (((-346 |#1|) |#1| (-696) (-696)) 219 T ELT) (((-346 |#1|) |#1| (-585 (-696)) (-696)) 215 T ELT) (((-346 |#1|) |#1| (-585 (-696))) 217 T ELT) (((-346 |#1|) |#1| (-696)) 216 T ELT) (((-346 |#1|) |#1|) 214 T ELT)) (-1841 (((-85) |#1|) 43 T ELT)) (-1853 (((-677 (-696)) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485))))) 99 T ELT)) (-1844 (((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85) (-1011 (-696)) (-696)) 213 T ELT))) +(((-380 |#1|) (-10 -7 (-15 -1832 ((-346 |#1|) (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))))) (-15 -1853 ((-677 (-696)) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))))) (-15 -1833 ((-832))) (-15 -1833 ((-832) (-832))) (-15 -1834 ((-832))) (-15 -1834 ((-832) (-832))) (-15 -1835 ((-696) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))))) (-15 -1836 ((-2 (|:| -2580 (-485)) (|:| -1780 (-585 |#1|))) |#1|)) (-15 -1837 ((-85))) (-15 -1838 ((-85) (-85))) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -1841 ((-85) |#1|)) (-15 -1842 ((-85))) (-15 -1843 ((-85) (-85))) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3733 ((-346 |#1|) |#1| (-696))) (-15 -3733 ((-346 |#1|) |#1| (-585 (-696)))) (-15 -3733 ((-346 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3733 ((-346 |#1|) |#1| (-696) (-696))) (-15 -3734 ((-346 |#1|) |#1|)) (-15 -3734 ((-346 |#1|) |#1| (-696))) (-15 -3734 ((-346 |#1|) |#1| (-585 (-696)))) (-15 -3734 ((-346 |#1|) |#1| (-585 (-696)) (-696))) (-15 -3734 ((-346 |#1|) |#1| (-696) (-696))) (-15 -1854 ((-3 |#1| #1="failed") (-832) |#1|)) (-15 -1854 ((-3 |#1| #1#) (-832) |#1| (-696))) (-15 -1854 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)))) (-15 -1854 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696))) (-15 -1854 ((-3 |#1| #1#) (-832) |#1| (-585 (-696)) (-696) (-85))) (-15 -3735 ((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85))) (-15 -1844 ((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85) (-1011 (-696)) (-696)))) (-1156 (-485))) (T -380)) +((-1844 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *6 (-85)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-832)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-696))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1842 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1841 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1780 (-585 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-696)) (-5 *1 (-380 *4)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1834 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1833 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-677 (-696))) (-5 *1 (-380 *4)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-485))))))) (-4 *4 (-1156 (-485))) (-5 *2 (-346 *4)) (-5 *1 (-380 *4))))) +((-1848 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-696)) 51 T ELT)) (-1847 (((-485) |#2|) 64 T ELT)) (-1849 ((|#3| |#2|) 26 T ELT)) (-3134 ((|#3| |#2| (-832)) 15 T ELT)) (-3834 ((|#3| |#2|) 16 T ELT)) (-1850 ((|#3| |#2|) 9 T ELT)) (-2605 ((|#3| |#2|) 10 T ELT)) (-1846 ((|#3| |#2| (-832)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1845 (((-485) |#2|) 66 T ELT))) +(((-381 |#1| |#2| |#3|) (-10 -7 (-15 -1845 ((-485) |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -1846 (|#3| |#2| (-832))) (-15 -1847 ((-485) |#2|)) (-15 -1848 ((-485) |#2| (-696))) (-15 -1848 ((-485) |#2|)) (-15 -3134 (|#3| |#2| (-832))) (-15 -1849 (|#3| |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -2605 (|#3| |#2|)) (-15 -3834 (|#3| |#2|))) (-963) (-1156 |#1|) (-13 (-345) (-952 |#1|) (-312) (-1116) (-239))) (T -381)) +((-3834 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-345) (-952 *5) (-312) (-1116) (-239))) (-5 *1 (-381 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *5 *3 *6)) (-4 *3 (-1156 *5)) (-4 *6 (-13 (-345) (-952 *5) (-312) (-1116) (-239))))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-963)) (-4 *2 (-13 (-345) (-952 *5) (-312) (-1116) (-239))) (-5 *1 (-381 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239)))))) +((-3355 ((|#2| (-1180 |#1|)) 42 T ELT)) (-1852 ((|#2| |#2| |#1|) 58 T ELT)) (-1851 ((|#2| |#2| |#1|) 49 T ELT)) (-2300 ((|#2| |#2|) 44 T ELT)) (-3175 (((-85) |#2|) 32 T ELT)) (-1855 (((-585 |#2|) (-832) (-346 |#2|)) 21 T ELT)) (-1854 ((|#2| (-832) (-346 |#2|)) 25 T ELT)) (-1853 (((-677 (-696)) (-346 |#2|)) 29 T ELT))) +(((-382 |#1| |#2|) (-10 -7 (-15 -3175 ((-85) |#2|)) (-15 -3355 (|#2| (-1180 |#1|))) (-15 -2300 (|#2| |#2|)) (-15 -1851 (|#2| |#2| |#1|)) (-15 -1852 (|#2| |#2| |#1|)) (-15 -1853 ((-677 (-696)) (-346 |#2|))) (-15 -1854 (|#2| (-832) (-346 |#2|))) (-15 -1855 ((-585 |#2|) (-832) (-346 |#2|)))) (-963) (-1156 |#1|)) (T -382)) +((-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-346 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-963)) (-5 *2 (-585 *6)) (-5 *1 (-382 *5 *6)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-346 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-382 *5 *2)) (-4 *5 (-963)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-346 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-963)) (-5 *2 (-677 (-696))) (-5 *1 (-382 *4 *5)))) (-1852 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3)))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-963)) (-4 *2 (-1156 *4)) (-5 *1 (-382 *4 *2)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-382 *4 *3)) (-4 *3 (-1156 *4))))) +((-1858 (((-696)) 59 T ELT)) (-1862 (((-696)) 29 (|has| |#1| (-345)) ELT) (((-696) (-696)) 28 (|has| |#1| (-345)) ELT)) (-1861 (((-485) |#1|) 25 (|has| |#1| (-345)) ELT)) (-1860 (((-485) |#1|) 27 (|has| |#1| (-345)) ELT)) (-1857 (((-696)) 58 T ELT) (((-696) (-696)) 57 T ELT)) (-1856 ((|#1| (-696) (-485)) 37 T ELT)) (-1859 (((-1186)) 61 T ELT))) +(((-383 |#1|) (-10 -7 (-15 -1856 (|#1| (-696) (-485))) (-15 -1857 ((-696) (-696))) (-15 -1857 ((-696))) (-15 -1858 ((-696))) (-15 -1859 ((-1186))) (IF (|has| |#1| (-345)) (PROGN (-15 -1860 ((-485) |#1|)) (-15 -1861 ((-485) |#1|)) (-15 -1862 ((-696) (-696))) (-15 -1862 ((-696)))) |%noBranch|)) (-963)) (T -383)) +((-1862 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963)))) (-1861 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963)))) (-1859 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-383 *3)) (-4 *3 (-963)))) (-1858 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963)))) (-1857 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-485)) (-5 *1 (-383 *2)) (-4 *2 (-963))))) +((-1863 (((-585 (-485)) (-485)) 76 T ELT)) (-3724 (((-85) (-142 (-485))) 84 T ELT)) (-3733 (((-346 (-142 (-485))) (-142 (-485))) 75 T ELT))) +(((-384) (-10 -7 (-15 -3733 ((-346 (-142 (-485))) (-142 (-485)))) (-15 -1863 ((-585 (-485)) (-485))) (-15 -3724 ((-85) (-142 (-485)))))) (T -384)) +((-3724 (*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-384)))) (-1863 (*1 *2 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-384)) (-5 *3 (-485)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 (-142 (-485)))) (-5 *1 (-384)) (-5 *3 (-142 (-485)))))) +((-2948 ((|#4| |#4| (-585 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2253 (((-585 |#4|) (-585 |#4|) (-1074) (-1074)) 46 T ELT) (((-585 |#4|) (-585 |#4|) (-1074)) 45 T ELT) (((-585 |#4|) (-585 |#4|)) 34 T ELT))) +(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2253 ((-585 |#4|) (-585 |#4|))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1074))) (-15 -2253 ((-585 |#4|) (-585 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-312)) (-15 -2948 (|#4| |#4| (-585 |#4|))) |%noBranch|)) (-390) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -385)) +((-2948 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *2)))) (-2253 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *7)))) (-2253 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *7)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-385 *3 *4 *5 *6))))) +((-1864 ((|#4| |#4| (-585 |#4|)) 82 T ELT)) (-1865 (((-585 |#4|) (-585 |#4|) (-1074) (-1074)) 22 T ELT) (((-585 |#4|) (-585 |#4|) (-1074)) 21 T ELT) (((-585 |#4|) (-585 |#4|)) 13 T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| (-585 |#4|))) (-15 -1865 ((-585 |#4|) (-585 |#4|))) (-15 -1865 ((-585 |#4|) (-585 |#4|) (-1074))) (-15 -1865 ((-585 |#4|) (-585 |#4|) (-1074) (-1074)))) (-258) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -386)) +((-1865 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *7)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *7)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-386 *3 *4 *5 *6)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *2))))) +((-1867 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 90 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 89 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85)) 83 T ELT) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-1866 (((-585 (-585 |#4|)) (-585 |#4|) (-85)) 56 T ELT) (((-585 (-585 |#4|)) (-585 |#4|)) 78 T ELT))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1866 ((-585 (-585 |#4|)) (-585 |#4|) (-85))) (-15 -1867 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|))) (-15 -1867 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-85))) (-15 -1867 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1867 ((-585 (-585 |#4|)) (-585 |#4|) (-85)))) (-13 (-258) (-120)) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -387)) +((-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1867 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +((-1891 (((-696) |#4|) 12 T ELT)) (-1879 (((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)))) 39 T ELT)) (-1881 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1880 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1869 ((|#4| |#4| (-585 |#4|)) 54 T ELT)) (-1877 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|)) 96 T ELT)) (-1884 (((-1186) |#4|) 59 T ELT)) (-1887 (((-1186) (-585 |#4|)) 69 T ELT)) (-1885 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1888 (((-1186) (-485)) 110 T ELT)) (-1882 (((-585 |#4|) (-585 |#4|)) 104 T ELT)) (-1890 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696)) 31 T ELT)) (-1883 (((-485) |#4|) 109 T ELT)) (-1878 ((|#4| |#4|) 37 T ELT)) (-1870 (((-585 |#4|) (-585 |#4|) (-485) (-485)) 74 T ELT)) (-1886 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1889 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1871 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1876 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1875 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1872 (((-85) |#2| |#2|) 75 T ELT)) (-1874 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1873 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1868 ((|#4| |#4| (-585 |#4|)) 97 T ELT))) +(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 (|#4| |#4| (-585 |#4|))) (-15 -1869 (|#4| |#4| (-585 |#4|))) (-15 -1870 ((-585 |#4|) (-585 |#4|) (-485) (-485))) (-15 -1871 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1872 ((-85) |#2| |#2|)) (-15 -1873 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1874 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1876 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|))) (-15 -1878 (|#4| |#4|)) (-15 -1879 ((-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))) |#4| (-696) (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|))))) (-15 -1880 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1881 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1882 ((-585 |#4|) (-585 |#4|))) (-15 -1883 ((-485) |#4|)) (-15 -1884 ((-1186) |#4|)) (-15 -1885 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-15 -1886 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-15 -1887 ((-1186) (-585 |#4|))) (-15 -1888 ((-1186) (-485))) (-15 -1889 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1890 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-696)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-696)) (|:| -2006 |#4|)) |#4| (-696))) (-15 -1891 ((-696) |#4|))) (-390) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -388)) +((-1891 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-388 *6 *7 *8 *4)))) (-1889 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1186)) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1186)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1886 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-758)) (-5 *1 (-388 *5 *6 *7 *4)))) (-1885 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-758)) (-5 *1 (-388 *5 *6 *7 *4)))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1186)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-485)) (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1881 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-388 *4 *5 *6 *2)) (-4 *4 (-390)) (-4 *6 (-758)))) (-1879 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-388 *5 *6 *7 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-388 *5 *6 *7 *3)))) (-1876 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-390)) (-4 *5 (-758)) (-5 *1 (-388 *4 *3 *5 *6)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *3)))) (-1873 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-390)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1870 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-485)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2))))) +((-1892 (($ $ $) 14 T ELT) (($ (-585 $)) 21 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 45 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) 22 T ELT))) +(((-389 |#1|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1892 (|#1| (-585 |#1|))) (-15 -1892 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-585 |#1|))) (-15 -3146 (|#1| |#1| |#1|))) (-390)) (T -389)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-390) (-113)) (T -390)) +((-3146 (*1 *1 *1 *1) (-4 *1 (-390))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-390)))) (-1892 (*1 *1 *1 *1) (-4 *1 (-390))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-390)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-390))))) +(-13 (-496) (-10 -8 (-15 -3146 ($ $ $)) (-15 -3146 ($ (-585 $))) (-15 -1892 ($ $ $)) (-15 -1892 ($ (-585 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-632 (-348 (-859 |#1|)))) (-1180 $)) NIL T ELT) (((-1180 (-632 (-348 (-859 |#1|))))) NIL T ELT)) (-1730 (((-1180 $)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1789 (((-632 (-348 (-859 |#1|))) (-1180 $)) NIL T ELT) (((-632 (-348 (-859 |#1|)))) NIL T ELT)) (-1728 (((-348 (-859 |#1|)) $) NIL T ELT)) (-1787 (((-632 (-348 (-859 |#1|))) $ (-1180 $)) NIL T ELT) (((-632 (-348 (-859 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1901 (((-1086 (-859 (-348 (-859 |#1|))))) NIL (|has| (-348 (-859 |#1|)) (-312)) ELT) (((-1086 (-348 (-859 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 (((-348 (-859 |#1|)) $) NIL T ELT)) (-1706 (((-1086 (-348 (-859 |#1|))) $) 87 (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1791 (((-348 (-859 |#1|)) (-1180 $)) NIL T ELT) (((-348 (-859 |#1|))) NIL T ELT)) (-1724 (((-1086 (-348 (-859 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1793 (($ (-1180 (-348 (-859 |#1|))) (-1180 $)) 111 T ELT) (($ (-1180 (-348 (-859 |#1|)))) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-3110 (((-832)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1790 (((-632 (-348 (-859 |#1|))) (-1180 $)) NIL T ELT) (((-632 (-348 (-859 |#1|)))) NIL T ELT)) (-1729 (((-348 (-859 |#1|)) $) NIL T ELT)) (-1788 (((-632 (-348 (-859 |#1|))) $ (-1180 $)) NIL T ELT) (((-632 (-348 (-859 |#1|))) $) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1905 (((-1086 (-859 (-348 (-859 |#1|))))) NIL (|has| (-348 (-859 |#1|)) (-312)) ELT) (((-1086 (-348 (-859 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 (((-348 (-859 |#1|)) $) NIL T ELT)) (-1707 (((-1086 (-348 (-859 |#1|))) $) 84 (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-1792 (((-348 (-859 |#1|)) (-1180 $)) NIL T ELT) (((-348 (-859 |#1|))) NIL T ELT)) (-1725 (((-1086 (-348 (-859 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1895 (((-348 (-859 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1899 (((-348 (-859 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1898 (((-348 (-859 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1900 (((-1086 (-348 (-859 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1894 (((-348 (-859 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1897 (((-348 (-859 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1903 (((-348 (-859 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1902 (((-348 (-859 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-348 (-859 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1896 (((-348 (-859 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1906 (($) 107 T ELT) (($ (-1091)) 115 T ELT) (($ (-1180 (-1091))) 114 T ELT) (($ (-1180 $)) 102 T ELT) (($ (-1091) (-1180 $)) 113 T ELT) (($ (-1180 (-1091)) (-1180 $)) 112 T ELT)) (-1717 (((-85)) NIL T ELT)) (-3801 (((-348 (-859 |#1|)) $ (-485)) NIL T ELT)) (-3226 (((-1180 (-348 (-859 |#1|))) $ (-1180 $)) 104 T ELT) (((-632 (-348 (-859 |#1|))) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-348 (-859 |#1|))) $) 44 T ELT) (((-632 (-348 (-859 |#1|))) (-1180 $)) NIL T ELT)) (-3973 (((-1180 (-348 (-859 |#1|))) $) NIL T ELT) (($ (-1180 (-348 (-859 |#1|)))) 41 T ELT)) (-1893 (((-585 (-859 (-348 (-859 |#1|)))) (-1180 $)) NIL T ELT) (((-585 (-859 (-348 (-859 |#1|))))) NIL T ELT) (((-585 (-859 |#1|)) (-1180 $)) 105 (|has| |#1| (-496)) ELT) (((-585 (-859 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-1180 (-348 (-859 |#1|)))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 66 T ELT)) (-1708 (((-585 (-1180 (-348 (-859 |#1|))))) NIL (|has| (-348 (-859 |#1|)) (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-632 (-348 (-859 |#1|))) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-348 (-859 |#1|))) NIL T ELT) (($ (-348 (-859 |#1|)) $) NIL T ELT) (($ (-1057 |#2| (-348 (-859 |#1|))) $) NIL T ELT))) +(((-391 |#1| |#2| |#3| |#4|) (-13 (-359 (-348 (-859 |#1|))) (-592 (-1057 |#2| (-348 (-859 |#1|)))) (-10 -8 (-15 -3947 ($ (-1180 (-348 (-859 |#1|))))) (-15 -1908 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1="failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#))) (-15 -1906 ($)) (-15 -1906 ($ (-1091))) (-15 -1906 ($ (-1180 (-1091)))) (-15 -1906 ($ (-1180 $))) (-15 -1906 ($ (-1091) (-1180 $))) (-15 -1906 ($ (-1180 (-1091)) (-1180 $))) (IF (|has| |#1| (-496)) (PROGN (-15 -1905 ((-1086 (-348 (-859 |#1|))))) (-15 -1904 ((-1086 (-348 (-859 |#1|))) $)) (-15 -1903 ((-348 (-859 |#1|)) $)) (-15 -1902 ((-348 (-859 |#1|)) $)) (-15 -1901 ((-1086 (-348 (-859 |#1|))))) (-15 -1900 ((-1086 (-348 (-859 |#1|))) $)) (-15 -1899 ((-348 (-859 |#1|)) $)) (-15 -1898 ((-348 (-859 |#1|)) $)) (-15 -1897 ((-348 (-859 |#1|)) $ $)) (-15 -1896 ((-348 (-859 |#1|)))) (-15 -1895 ((-348 (-859 |#1|)) $ $)) (-15 -1894 ((-348 (-859 |#1|)))) (-15 -1893 ((-585 (-859 |#1|)) (-1180 $))) (-15 -1893 ((-585 (-859 |#1|))))) |%noBranch|))) (-146) (-832) (-585 (-1091)) (-1180 (-632 |#1|))) (T -391)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1180 (-348 (-859 *3)))) (-4 *3 (-146)) (-14 *6 (-1180 (-632 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))))) (-1908 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-391 *3 *4 *5 *6)) (|:| -2014 (-585 (-391 *3 *4 *5 *6))))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1907 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-391 *3 *4 *5 *6)) (|:| -2014 (-585 (-391 *3 *4 *5 *6))))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1906 (*1 *1) (-12 (-5 *1 (-391 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) (-14 *4 (-585 (-1091))) (-14 *5 (-1180 (-632 *2))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1180 (-632 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1180 (-391 *3 *4 *5 *6))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-391 *4 *5 *6 *7))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) (-14 *7 (-1180 (-632 *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-391 *4 *5 *6 *7))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1091))) (-14 *7 (-1180 (-632 *4))))) (-1905 (*1 *2) (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1901 (*1 *2) (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1897 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1896 (*1 *2) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1895 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1894 (*1 *2) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1180 (-391 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 (-1091))) (-14 *7 (-1180 (-632 *4))))) (-1893 (*1 *2) (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3083 (((-585 (-775 |#1|)) $) 88 T ELT)) (-3085 (((-1086 $) $ (-775 |#1|)) 53 T ELT) (((-1086 |#2|) $) 140 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-696) $) 28 T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 49 T ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-585 (-485))) 95 T ELT)) (-3960 (($ $) 81 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 66 T ELT)) (-3086 (($ (-1086 |#2|) (-775 |#1|)) 145 T ELT) (($ (-1086 $) (-775 |#1|)) 59 T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) 69 T ELT)) (-2895 (($ |#2| |#3|) 36 T ELT) (($ $ (-775 |#1|) (-696)) 38 T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2822 ((|#3| $) NIL T ELT) (((-696) $ (-775 |#1|)) 57 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-775 |#1|) #1#) $) 46 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) 48 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) 47 T ELT)) (-1797 ((|#2| $) 138 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) 151 (|has| |#2| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) 102 T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) 108 T ELT) (($ $ (-775 |#1|) $) 100 T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) 126 T ELT)) (-3758 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) 60 T ELT)) (-3949 ((|#3| $) 80 T ELT) (((-696) $ (-775 |#1|)) 43 T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) 63 T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-775 |#1|) (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#2| $) 147 (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3947 (((-774) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-775 |#1|)) 40 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 133 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 131 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-392 |#1| |#2| |#3|) (-13 (-863 |#2| |#3| (-775 |#1|)) (-10 -8 (-15 -1938 ($ $ (-585 (-485)))))) (-585 (-1091)) (-963) (-196 (-3958 |#1|) (-696))) (T -392)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-14 *3 (-585 (-1091))) (-5 *1 (-392 *3 *4 *5)) (-4 *4 (-963)) (-4 *5 (-196 (-3958 *3) (-696)))))) +((-1912 (((-85) |#1| (-585 |#2|)) 90 T ELT)) (-1910 (((-3 (-1180 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|)) 99 T ELT)) (-1911 (((-3 (-585 |#2|) #1#) |#2| |#1| (-1180 (-585 |#2|))) 101 T ELT)) (-2039 ((|#2| |#2| |#1|) 35 T ELT)) (-1909 (((-696) |#2| (-585 |#2|)) 26 T ELT))) +(((-393 |#1| |#2|) (-10 -7 (-15 -2039 (|#2| |#2| |#1|)) (-15 -1909 ((-696) |#2| (-585 |#2|))) (-15 -1910 ((-3 (-1180 (-585 |#2|)) #1="failed") (-696) |#1| (-585 |#2|))) (-15 -1911 ((-3 (-585 |#2|) #1#) |#2| |#1| (-1180 (-585 |#2|)))) (-15 -1912 ((-85) |#1| (-585 |#2|)))) (-258) (-1156 |#1|)) (T -393)) +((-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-393 *3 *5)))) (-1911 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) (-5 *1 (-393 *4 *3)) (-4 *3 (-1156 *4)))) (-1910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) (-5 *2 (-1180 (-585 *6))) (-5 *1 (-393 *4 *6)) (-5 *5 (-585 *6)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-696)) (-5 *1 (-393 *5 *3)))) (-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1156 *3))))) +((-3733 (((-346 |#5|) |#5|) 24 T ELT))) +(((-394 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3733 ((-346 |#5|) |#5|))) (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-719) (-496) (-496) (-863 |#4| |#2| |#1|)) (T -394)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) (-4 *5 (-719)) (-4 *7 (-496)) (-5 *2 (-346 *3)) (-5 *1 (-394 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-863 *7 *5 *4))))) +((-2702 ((|#3|) 43 T ELT)) (-2710 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 34 T ELT))) +(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2702 (|#3|))) (-719) (-758) (-823) (-863 |#3| |#1| |#2|)) (T -395)) +((-2702 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-395 *3 *4 *2 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-823)) (-5 *1 (-395 *3 *4 *5 *6))))) +((-3733 (((-346 (-1086 |#1|)) (-1086 |#1|)) 43 T ELT))) +(((-396 |#1|) (-10 -7 (-15 -3733 ((-346 (-1086 |#1|)) (-1086 |#1|)))) (-258)) (T -396)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-346 (-1086 *4))) (-5 *1 (-396 *4)) (-5 *3 (-1086 *4))))) +((-3730 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-696))) 44 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-696))) 43 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 29 T ELT)) (-3819 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485))) 88 T ELT) (((-51) (-1 |#2| (-348 (-485))) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485))) 87 T ELT) (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 86 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 85 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 79 T ELT)) (-3783 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485))) 74 T ELT) (((-51) (-1 |#2| (-348 (-485))) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485))) 72 T ELT)) (-3780 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 51 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 50 T ELT))) +(((-397 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3730 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3730 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-696)))) (-15 -3730 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-696)))) (-15 -3780 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3780 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3783 ((-51) (-1 |#2| (-348 (-485))) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485)))) (-15 -3783 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485)))) (-15 -3819 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3819 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3819 ((-51) (-1 |#2| (-348 (-485))) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485)))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-348 (-485))) (-348 (-485))))) (-13 (-496) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -397)) +((-3819 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-348 (-485)))) (-5 *7 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *8))) (-4 *8 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *8 *3)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-348 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-348 (-485)))) (-5 *6 (-348 (-485))) (-4 *8 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *8)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *5 *6)))) (-3783 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-348 (-485)))) (-5 *7 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *8))) (-4 *8 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *8 *3)))) (-3783 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-348 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-348 (-485)))) (-5 *6 (-348 (-485))) (-4 *8 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *8)))) (-3780 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3730 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-696))) (-4 *3 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *7 *3)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-696))) (-4 *7 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *7)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) (-5 *1 (-397 *5 *6))))) +((-2039 ((|#2| |#2| |#1|) 15 T ELT)) (-1914 (((-585 |#2|) |#2| (-585 |#2|) |#1| (-832)) 82 T ELT)) (-1913 (((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832)) 71 T ELT))) +(((-398 |#1| |#2|) (-10 -7 (-15 -1913 ((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-832))) (-15 -1914 ((-585 |#2|) |#2| (-585 |#2|) |#1| (-832))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1156 |#1|)) (T -398)) +((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1156 *3)))) (-1914 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) (-5 *1 (-398 *4 *3)))) (-1913 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-398 *5 *3)) (-5 *4 (-585 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 28 T ELT)) (-3708 (($ |#3|) 25 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 32 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1915 (($ |#2| |#4| $) 33 T ELT)) (-2895 (($ |#2| (-652 |#3| |#4| |#5|)) 24 T ELT)) (-2896 (((-652 |#3| |#4| |#5|) $) 15 T ELT)) (-1917 ((|#3| $) 19 T ELT)) (-1918 ((|#4| $) 17 T ELT)) (-3176 ((|#2| $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1916 (($ |#2| |#3| |#4|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-399 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-656 |#6|) (-656 |#2|) (-10 -8 (-15 -3176 (|#2| $)) (-15 -2896 ((-652 |#3| |#4| |#5|) $)) (-15 -1918 (|#4| $)) (-15 -1917 (|#3| $)) (-15 -3960 ($ $)) (-15 -2895 ($ |#2| (-652 |#3| |#4| |#5|))) (-15 -3708 ($ |#3|)) (-15 -1916 ($ |#2| |#3| |#4|)) (-15 -1915 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-585 (-1091)) (-146) (-758) (-196 (-3958 |#1|) (-696)) (-1 (-85) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|)) (-2 (|:| -2402 |#3|) (|:| -2403 |#4|))) (-863 |#2| |#4| (-775 |#1|))) (T -399)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *1 (-399 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) (-4 *2 (-863 *4 *6 (-775 *3))))) (-3176 (*1 *2 *1) (-12 (-14 *3 (-585 (-1091))) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-4 *2 (-146)) (-5 *1 (-399 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *2 *5 (-775 *3))))) (-2896 (*1 *2 *1) (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-399 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) (-4 *8 (-863 *4 *6 (-775 *3))))) (-1918 (*1 *2 *1) (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) (-2 (|:| -2402 *5) (|:| -2403 *2)))) (-4 *2 (-196 (-3958 *3) (-696))) (-5 *1 (-399 *3 *4 *5 *2 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3))))) (-1917 (*1 *2 *1) (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-4 *2 (-758)) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-3960 (*1 *1 *1) (-12 (-14 *2 (-585 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) (-2 (|:| -2402 *4) (|:| -2403 *5)))) (-5 *1 (-399 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) (-4 *7 (-863 *3 *5 (-775 *2))))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3958 *4) (-696))) (-14 *7 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) (-2 (|:| -2402 *5) (|:| -2403 *6)))) (-14 *4 (-585 (-1091))) (-4 *2 (-146)) (-5 *1 (-399 *4 *2 *5 *6 *7 *8)) (-4 *8 (-863 *2 *6 (-775 *4))))) (-3708 (*1 *1 *2) (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) (-2 (|:| -2402 *2) (|:| -2403 *5)))) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) (-4 *7 (-863 *4 *5 (-775 *3))))) (-1916 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-585 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) (-2 (|:| -2402 *3) (|:| -2403 *4)))) (-5 *1 (-399 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) (-4 *7 (-863 *2 *4 (-775 *5))))) (-1915 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-585 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-696))) (-14 *6 (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) (-2 (|:| -2402 *5) (|:| -2403 *3)))) (-5 *1 (-399 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) (-4 *7 (-863 *2 *3 (-775 *4)))))) +((-1919 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-400 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1919 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-719) (-758) (-496) (-863 |#3| |#1| |#2|) (-13 (-952 (-348 (-485))) (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -400)) +((-1919 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-496)) (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-400 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-348 (-485))) (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3083 (((-585 |#3|) $) 41 T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1="failed") (-585 |#4|)) 49 T ELT)) (-3158 (($ (-585 |#4|)) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3182 ((|#3| $) 47 T ELT)) (-2610 (((-585 |#4|) $) 14 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2916 (((-585 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 39 T ELT)) (-3566 (($) 17 T ELT)) (-1947 (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-555 (-474))) ELT) (($ (-585 |#4|)) 51 T ELT)) (-3531 (($ (-585 |#4|)) 13 T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3947 (((-774) $) 38 T ELT) (((-585 |#4|) $) 50 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 30 T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-401 |#1| |#2| |#3| |#4|) (-13 (-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3973 ($ (-585 |#4|))) (-6 -3996) (-6 -3997))) (-963) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -401)) +((-3973 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-401 *3 *4 *5 *6))))) +((-2662 (($) 11 T CONST)) (-2668 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-402 |#1| |#2| |#3|) (-10 -7 (-15 -2668 (|#1|) -3953) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2662 (|#1|) -3953)) (-403 |#2| |#3|) (-146) (-23)) (T -402)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3159 (((-3 |#1| "failed") $) 30 T ELT)) (-3158 ((|#1| $) 31 T ELT)) (-3945 (($ $ $) 27 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-403 |#1| |#2|) (-113) (-146) (-23)) (T -403)) +((-2668 (*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3945 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-408 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 -2668 ($) -3953) (-15 -3945 ($ $ $)))) +(((-72) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-408 |#1| |#2|) . T) ((-13) . T) ((-952 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-1920 (((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-832)) 26 T ELT)) (-1921 (((-1180 (-1180 (-485))) (-832)) 21 T ELT))) +(((-404) (-10 -7 (-15 -1920 ((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-832))) (-15 -1921 ((-1180 (-1180 (-485))) (-832))))) (T -404)) +((-1921 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-404)))) (-1920 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-832)) (-5 *1 (-404))))) +((-2772 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2776 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2774 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1923 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1922 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1924 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-405) (-10 -7 (-15 -1922 ((-85))) (-15 -1923 ((-85))) (-15 -1922 ((-85) (-85))) (-15 -1923 ((-85) (-85))) (-15 -1924 ((-85))) (-15 -2774 ((-485))) (-15 -2776 ((-485))) (-15 -2772 ((-485))) (-15 -1924 ((-85) (-85))) (-15 -2774 ((-485) (-485))) (-15 -2776 ((-485) (-485))) (-15 -2772 ((-485) (-485))))) (T -405)) +((-2772 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-1924 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) (-1924 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1923 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3852 (((-585 (-328)) $) 34 T ELT) (((-585 (-328)) $ (-585 (-328))) 145 T ELT)) (-1929 (((-585 (-1003 (-328))) $) 16 T ELT) (((-585 (-1003 (-328))) $ (-585 (-1003 (-328)))) 142 T ELT)) (-1926 (((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785))) 58 T ELT)) (-1930 (((-585 (-585 (-856 (-179)))) $) 137 T ELT)) (-3707 (((-1186) $ (-856 (-179)) (-785)) 162 T ELT)) (-1931 (($ $) 136 T ELT) (($ (-585 (-585 (-856 (-179))))) 148 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832))) 147 T ELT) (($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221))) 149 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 110 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1932 (($) 146 T ELT)) (-1925 (((-585 (-179)) (-585 (-585 (-856 (-179))))) 89 T ELT)) (-1928 (((-1186) $ (-585 (-856 (-179))) (-785) (-785) (-832)) 154 T ELT) (((-1186) $ (-856 (-179))) 156 T ELT) (((-1186) $ (-856 (-179)) (-785) (-785) (-832)) 155 T ELT)) (-3947 (((-774) $) 168 T ELT) (($ (-585 (-585 (-856 (-179))))) 163 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1927 (((-1186) $ (-856 (-179))) 161 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-406) (-13 (-1015) (-10 -8 (-15 -1932 ($)) (-15 -1931 ($ $)) (-15 -1931 ($ (-585 (-585 (-856 (-179)))))) (-15 -1931 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)))) (-15 -1931 ($ (-585 (-585 (-856 (-179)))) (-585 (-785)) (-585 (-785)) (-585 (-832)) (-585 (-221)))) (-15 -1930 ((-585 (-585 (-856 (-179)))) $)) (-15 -3861 ((-485) $)) (-15 -1929 ((-585 (-1003 (-328))) $)) (-15 -1929 ((-585 (-1003 (-328))) $ (-585 (-1003 (-328))))) (-15 -3852 ((-585 (-328)) $)) (-15 -3852 ((-585 (-328)) $ (-585 (-328)))) (-15 -1928 ((-1186) $ (-585 (-856 (-179))) (-785) (-785) (-832))) (-15 -1928 ((-1186) $ (-856 (-179)))) (-15 -1928 ((-1186) $ (-856 (-179)) (-785) (-785) (-832))) (-15 -1927 ((-1186) $ (-856 (-179)))) (-15 -3707 ((-1186) $ (-856 (-179)) (-785))) (-15 -3947 ($ (-585 (-585 (-856 (-179)))))) (-15 -3947 ((-774) $)) (-15 -1926 ((-585 (-585 (-856 (-179)))) (-585 (-585 (-856 (-179)))) (-585 (-785)))) (-15 -1925 ((-585 (-179)) (-585 (-585 (-856 (-179))))))))) (T -406)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-406)))) (-1932 (*1 *1) (-5 *1 (-406))) (-1931 (*1 *1 *1) (-5 *1 (-406))) (-1931 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406)))) (-1931 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *1 (-406)))) (-1931 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-406)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-406)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-406)))) (-1929 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-406)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-406)))) (-3852 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-406)))) (-1928 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1186)) (-5 *1 (-406)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-406)))) (-1928 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1186)) (-5 *1 (-406)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-406)))) (-3707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-406)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406)))) (-1926 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) (-5 *1 (-406)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) (-5 *1 (-406))))) +((-3838 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-407 |#1| |#2| |#3|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|))) (-408 |#2| |#3|) (-146) (-23)) (T -407)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-408 |#1| |#2|) (-113) (-146) (-23)) (T -408)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2662 (*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1015) (-10 -8 (-15 -3949 (|t#2| $)) (-15 -2662 ($) -3953) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3838 ($ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-1934 (((-3 (-585 (-419 |#1| |#2|)) "failed") (-585 (-419 |#1| |#2|)) (-585 (-775 |#1|))) 135 T ELT)) (-1933 (((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 132 T ELT)) (-1935 (((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-485)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))) 87 T ELT))) +(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -1933 ((-585 (-585 (-206 |#1| |#2|))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1934 ((-3 (-585 (-419 |#1| |#2|)) "failed") (-585 (-419 |#1| |#2|)) (-585 (-775 |#1|)))) (-15 -1935 ((-2 (|:| |dpolys| (-585 (-206 |#1| |#2|))) (|:| |coords| (-585 (-485)))) (-585 (-206 |#1| |#2|)) (-585 (-775 |#1|))))) (-585 (-1091)) (-390) (-390)) (T -409)) +((-1935 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1091))) (-4 *6 (-390)) (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-485))))) (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-390)))) (-1934 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-419 *4 *5))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *1 (-409 *4 *5 *6)) (-4 *6 (-390)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1091))) (-4 *6 (-390)) (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-390))))) +((-3468 (((-3 $ "failed") $) 11 T ELT)) (-3011 (($ $ $) 22 T ELT)) (-2437 (($ $ $) 23 T ELT)) (-3950 (($ $ $) 9 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 21 T ELT))) +(((-410 |#1|) (-10 -7 (-15 -2437 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-411)) (T -410)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-411) (-113)) (T -411)) +((-2486 (*1 *1 *1) (-4 *1 (-411))) (-3950 (*1 *1 *1 *1) (-4 *1 (-411))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-485)))) (-3011 (*1 *1 *1 *1) (-4 *1 (-411))) (-2437 (*1 *1 *1 *1) (-4 *1 (-411)))) +(-13 (-665) (-10 -8 (-15 -2486 ($ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-485))) (-6 -3993) (-15 -3011 ($ $ $)) (-15 -2437 ($ $ $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 18 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) NIL T ELT) (($ $ (-348 (-485)) (-348 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) NIL T ELT) (((-348 (-485)) $ (-348 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-348 (-485))) NIL T ELT) (($ $ (-996) (-348 (-485))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 29 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 35 (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 30 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 28 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 16 T ELT)) (-3949 (((-348 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1177 |#2|)) NIL T ELT) (($ (-1161 |#1| |#2| |#3|)) 9 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 21 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-412 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-808 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (-15 -3947 ($ (-1161 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -412)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-412 *3 *4 *5)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-413 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1015) (-1015) (-1108 |#1| |#2|) |#2|) (T -413)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3683 (((-585 $) (-585 |#4|)) NIL T ELT)) (-3083 (((-585 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3158 (($ (-585 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-2891 (((-585 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 19 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2916 (((-585 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3698 (((-585 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-1947 (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 22 T ELT)) (-2912 (($ $ |#3|) 49 T ELT)) (-2914 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3947 (((-774) $) 35 T ELT) (((-585 |#4|) $) 46 T ELT)) (-3679 (((-696) $) NIL (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-414 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-496) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -414)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3628 (($) 17 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3973 (((-328) $) 21 T ELT) (((-179) $) 24 T ELT) (((-348 (-1086 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3947 (((-774) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (((-179) $) 23 T ELT) (((-328) $) 20 T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 37 T CONST)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-415) (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))) (-935) (-554 (-179)) (-554 (-328)) (-555 (-348 (-1086 (-485)))) (-555 (-474)) (-10 -8 (-15 -3628 ($))))) (T -415)) +((-3628 (*1 *1) (-5 *1 (-415)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-416) (-13 (-997) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -416)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-416)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-416))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) 13 T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) 15 (|has| $ (-6 -3996)) ELT))) +(((-417 |#1| |#2| |#3|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -3996))) (-1015) (-1015) (-1074)) (T -417)) +NIL +((-1936 (((-485) (-485) (-485)) 19 T ELT)) (-1937 (((-85) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3458 (((-1180 (-585 (-485))) (-696) (-696)) 42 T ELT))) +(((-418) (-10 -7 (-15 -1936 ((-485) (-485) (-485))) (-15 -1937 ((-85) (-485) (-485) (-485) (-485))) (-15 -3458 ((-1180 (-585 (-485))) (-696) (-696))))) (T -418)) +((-3458 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1180 (-585 (-485)))) (-5 *1 (-418)))) (-1937 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-418)))) (-1936 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-418))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-775 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-585 (-485))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-420 (-3958 |#1|) (-696)) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1086 $) (-775 |#1|)) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-420 (-3958 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2822 (((-420 (-3958 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-420 (-3958 |#1|) (-696)) (-420 (-3958 |#1|) (-696))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3758 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3949 (((-420 (-3958 |#1|) (-696)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-775 |#1|) (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-420 (-3958 |#1|) (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-419 |#1| |#2|) (-13 (-863 |#2| (-420 (-3958 |#1|) (-696)) (-775 |#1|)) (-10 -8 (-15 -1938 ($ $ (-585 (-485)))))) (-585 (-1091)) (-963)) (T -419)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-419 *3 *4)) (-14 *3 (-585 (-1091))) (-4 *4 (-963))))) +((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-696)) NIL (|has| |#2| (-318)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2996 (($) NIL (|has| |#2| (-318)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ (-485)) 11 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-2891 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2610 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-1950 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-318)) ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1180 $)) NIL (|has| |#2| (-963)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-318)) ELT)) (-3245 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3128 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-963)) CONST)) (-2671 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2687 (((-85) $ $) 17 (|has| |#2| (-758)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-420 |#1| |#2|) (-196 |#1| |#2|) (-696) (-719)) (T -420)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1939 (((-585 (-787)) $) 16 T ELT)) (-3543 (((-445) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1940 (($ (-445) (-585 (-787))) 12 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 23 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-421) (-13 (-997) (-10 -8 (-15 -1940 ($ (-445) (-585 (-787)))) (-15 -3543 ((-445) $)) (-15 -1939 ((-585 (-787)) $))))) (T -421)) +((-1940 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-787))) (-5 *1 (-421)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-421)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-421))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2858 (($ $ $) 48 T ELT)) (-3519 (($ $ $) 47 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2859 ((|#1| $) 40 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 41 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-1941 (($ (-585 |#1|)) 19 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 34 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 11 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 45 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 29 (|has| $ (-6 -3996)) ELT))) +(((-422 |#1|) (-13 (-883 |#1|) (-10 -8 (-15 -1941 ($ (-585 |#1|))))) (-758)) (T -422)) +((-1941 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-422 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 71 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1970 (((-354 |#2| (-348 |#2|) |#3| |#4|) $) 45 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-354 |#2| (-348 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3436 (((-2 (|:| -2338 (-354 |#2| (-348 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3947 (((-774) $) 110 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-3058 (((-85) $ $) 121 T ELT)) (-3838 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 72 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 77 T ELT))) +(((-423 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -423)) +NIL +((-1945 (((-485) (-585 (-485))) 53 T ELT)) (-1942 ((|#1| (-585 |#1|)) 94 T ELT)) (-1944 (((-585 |#1|) (-585 |#1|)) 95 T ELT)) (-1943 (((-585 |#1|) (-585 |#1|)) 97 T ELT)) (-3146 ((|#1| (-585 |#1|)) 96 T ELT)) (-2819 (((-585 (-485)) (-585 |#1|)) 56 T ELT))) +(((-424 |#1|) (-10 -7 (-15 -3146 (|#1| (-585 |#1|))) (-15 -1942 (|#1| (-585 |#1|))) (-15 -1943 ((-585 |#1|) (-585 |#1|))) (-15 -1944 ((-585 |#1|) (-585 |#1|))) (-15 -2819 ((-585 (-485)) (-585 |#1|))) (-15 -1945 ((-485) (-585 (-485))))) (-1156 (-485))) (T -424)) +((-1945 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-485)) (-5 *1 (-424 *4)) (-4 *4 (-1156 *2)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-585 (-485))) (-5 *1 (-424 *4)))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-424 *3)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-424 *3)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1156 (-485))))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1156 (-485)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-485) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-485) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-1946 (($ (-348 (-485))) 9 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-348 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-485)) (-585 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-1091)) (-585 (-485))) NIL (|has| (-485) (-454 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-454 (-1091) (-485))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-485) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-485) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-485) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-485) (-935)) ELT) (((-179) $) NIL (|has| (-485) (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL T ELT) (((-919 16) $) 10 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-823))) (|has| (-485) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-425) (-13 (-906 (-485)) (-554 (-348 (-485))) (-554 (-919 16)) (-10 -8 (-15 -3130 ((-348 (-485)) $)) (-15 -1946 ($ (-348 (-485))))))) (T -425)) +((-3130 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-425)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-425))))) +((-2610 (((-585 |#2|) $) 31 T ELT)) (-3247 (((-85) |#2| $) 39 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3769 (($ $ (-585 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 30 T ELT) (((-696) |#2| $) 37 T ELT)) (-3947 (((-774) $) 45 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-3958 (((-696) $) 18 T ELT))) +(((-426 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3769 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#2|)))) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1947 ((-696) |#2| |#1|)) (-15 -2610 ((-585 |#2|) |#1|)) (-15 -1947 ((-696) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-696) |#1|))) (-427 |#2|) (-1130)) (T -426)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-427 |#1|) (-113) (-1130)) (T -427)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-427 *3)) (-4 *3 (-1130)))) (-1950 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-427 *3)) (-4 *3 (-1130)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) (-4 *4 (-1130)) (-5 *2 (-696)))) (-2891 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-5 *2 (-585 *3)))) (-2610 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-5 *2 (-585 *3)))) (-1947 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-696)))) (-3247 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-1015)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3997)) (-15 -1950 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -1949 ((-85) (-1 (-85) |t#1|) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-696) (-1 (-85) |t#1|) $)) (-15 -2891 ((-585 |t#1|) $)) (-15 -2610 ((-585 |t#1|) $)) (IF (|has| |t#1| (-1015)) (PROGN (-15 -1947 ((-696) |t#1| $)) (-15 -3247 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-3947 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-428 |#1|) (-113) (-1130)) (T -428)) +NIL +(-13 (-554 |t#1|) (-557 |t#1|)) +(((-557 |#1|) . T) ((-554 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1951 (($ (-1074)) 8 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 15 T ELT) (((-1074) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) +(((-429) (-13 (-1015) (-554 (-1074)) (-10 -8 (-15 -1951 ($ (-1074)))))) (T -429)) +((-1951 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-429))))) +((-3493 (($ $) 15 T ELT)) (-3491 (($ $) 24 T ELT)) (-3495 (($ $) 12 T ELT)) (-3496 (($ $) 10 T ELT)) (-3494 (($ $) 17 T ELT)) (-3492 (($ $) 22 T ELT))) +(((-430 |#1|) (-10 -7 (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|))) (-431)) (T -430)) +NIL +((-3493 (($ $) 11 T ELT)) (-3491 (($ $) 10 T ELT)) (-3495 (($ $) 9 T ELT)) (-3496 (($ $) 8 T ELT)) (-3494 (($ $) 7 T ELT)) (-3492 (($ $) 6 T ELT))) +(((-431) (-113)) (T -431)) +((-3493 (*1 *1 *1) (-4 *1 (-431))) (-3491 (*1 *1 *1) (-4 *1 (-431))) (-3495 (*1 *1 *1) (-4 *1 (-431))) (-3496 (*1 *1 *1) (-4 *1 (-431))) (-3494 (*1 *1 *1) (-4 *1 (-431))) (-3492 (*1 *1 *1) (-4 *1 (-431)))) +(-13 (-10 -8 (-15 -3492 ($ $)) (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3495 ($ $)) (-15 -3491 ($ $)) (-15 -3493 ($ $)))) +((-3733 (((-346 |#4|) |#4| (-1 (-346 |#2|) |#2|)) 54 T ELT))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4| (-1 (-346 |#2|) |#2|)))) (-312) (-1156 |#1|) (-13 (-312) (-120) (-663 |#1| |#2|)) (-1156 |#3|)) (T -432)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-346 *3)) (-5 *1 (-432 *5 *6 *7 *3)) (-4 *3 (-1156 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-585 $) (-1086 $) (-1091)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1952 (((-85) $ $) 72 T ELT)) (-1601 (((-585 (-552 $)) $) 49 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1218 (((-585 $) (-1086 $) (-1091)) NIL T ELT) (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-859 $)) NIL T ELT)) (-3159 (((-3 (-552 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3158 (((-552 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-348 (-485)) $) 54 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-348 (-485)))) (|:| |vec| (-1180 (-348 (-485))))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-348 (-485))) (-632 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-585 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2412 (((-85) $) 42 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-3000 (((-1040 (-485) (-552 $)) $) 37 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-552 $)) 86 T ELT) (((-1086 $) (-1086 $) (-585 (-552 $))) 61 T ELT) (($ $ (-552 $)) 75 T ELT) (($ $ (-585 (-552 $))) 76 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1598 (((-1086 $) (-552 $)) 73 (|has| $ (-963)) ELT)) (-3959 (($ (-1 $ $) (-552 $)) NIL T ELT)) (-1603 (((-3 (-552 $) #1#) $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-348 (-485)))) (|:| |vec| (-1180 (-348 (-485))))) (-1180 $) $) NIL T ELT) (((-632 (-348 (-485))) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-585 (-552 $)) $) NIL T ELT)) (-2237 (($ (-86) $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-696) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-952 (-485))) ELT)) (-3769 (($ $ (-552 $) $) NIL T ELT) (($ $ (-585 (-552 $)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-585 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ $))) NIL T ELT) (($ $ (-585 (-86)) (-585 (-1 $ (-585 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-585 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-585 $)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) 36 T ELT) (($ $ (-696)) NIL T ELT)) (-2999 (((-1040 (-485) (-552 $)) $) 20 T ELT)) (-3187 (($ $) NIL (|has| $ (-963)) ELT)) (-3973 (((-328) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-328)) $) 116 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-552 $)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-552 $))) 21 T ELT)) (-3128 (((-696)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2256 (((-85) (-86)) 92 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 22 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 44 T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-348 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-832) $) NIL T ELT))) +(((-433) (-13 (-254) (-27) (-952 (-485)) (-952 (-348 (-485))) (-582 (-485)) (-935) (-582 (-348 (-485))) (-120) (-555 (-142 (-328))) (-190) (-557 (-1040 (-485) (-552 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-552 $)) $)) (-15 -2999 ((-1040 (-485) (-552 $)) $)) (-15 -3843 ($ $)) (-15 -1952 ((-85) $ $)) (-15 -3134 ((-1086 $) (-1086 $) (-552 $))) (-15 -3134 ((-1086 $) (-1086 $) (-585 (-552 $)))) (-15 -3134 ($ $ (-552 $))) (-15 -3134 ($ $ (-585 (-552 $))))))) (T -433)) +((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-433)))) (-5 *1 (-433)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-433)))) (-5 *1 (-433)))) (-3843 (*1 *1 *1) (-5 *1 (-433))) (-1952 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-433)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-433))) (-5 *3 (-552 (-433))) (-5 *1 (-433)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-433))) (-5 *3 (-585 (-552 (-433)))) (-5 *1 (-433)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-552 (-433))) (-5 *1 (-433)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-433)))) (-5 *1 (-433))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 43 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 39 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 38 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 22 T ELT)) (-2202 (((-485) $) 18 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) 40 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 16 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 20 T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 42 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 14 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 25 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 12 (|has| $ (-6 -3996)) ELT))) +(((-434 |#1| |#2|) (-19 |#1|) (-1130) (-485)) (T -434)) +NIL +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-434 |#1| |#3|)) NIL T ELT)) (-1257 (($ $ (-485) (-434 |#1| |#2|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3113 (((-434 |#1| |#3|) $ (-485)) NIL T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3116 (((-696) $) NIL T ELT)) (-3615 (($ (-696) (-696) |#1|) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3112 (((-434 |#1| |#2|) $ (-485)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-435 |#1| |#2| |#3|) (-57 |#1| (-434 |#1| |#3|) (-434 |#1| |#2|)) (-1130) (-485) (-485)) (T -435)) +NIL +((-1954 (((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696)) 32 T ELT)) (-1953 (((-585 (-1086 |#1|)) |#1| (-696) (-696) (-696)) 43 T ELT)) (-2079 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)) 107 T ELT))) +(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -1953 ((-585 (-1086 |#1|)) |#1| (-696) (-696) (-696))) (-15 -1954 ((-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-696) (-696))) (-15 -2079 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-696)))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -436)) +((-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-696)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-436 *6 *7 *8)))) (-1954 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-436 *5 *6 *7)) (-5 *3 (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1156 *6)))) (-1953 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) (-5 *2 (-585 (-1086 *3))) (-5 *1 (-436 *3 *5 *6)) (-4 *6 (-1156 *5))))) +((-1960 (((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 70 T ELT)) (-1955 ((|#1| (-632 |#1|) |#1| (-696)) 24 T ELT)) (-1957 (((-696) (-696) (-696)) 34 T ELT)) (-1959 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 50 T ELT)) (-1958 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 58 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 55 T ELT)) (-1956 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-485)) 28 T ELT)) (-3330 ((|#1| (-632 |#1|)) 18 T ELT))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3330 (|#1| (-632 |#1|))) (-15 -1955 (|#1| (-632 |#1|) |#1| (-696))) (-15 -1956 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-485))) (-15 -1957 ((-696) (-696) (-696))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1958 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1959 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1960 ((-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2014 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $)))) (-1156 |#1|) (-351 |#1| |#2|)) (T -437)) +((-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1958 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) (-1956 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-485)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5)))) (-1955 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1156 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-5 *1 (-437 *2 *4 *5)) (-4 *5 (-351 *2 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 44 T ELT)) (-3323 (($ $ $) 41 T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| (-85) (-758)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-85) (-758))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) 43 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3420 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1015)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1015)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2891 (((-585 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2563 (($ $ $) 39 T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3615 (($ (-696) (-85)) 27 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2202 (((-485) $) 8 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| (-85) (-758)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-585 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-1950 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-85) $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2201 (($ $ (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-85)) (-585 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT) (($ $ (-585 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT)) (-2207 (((-585 (-85)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 29 T ELT)) (-3801 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) 22 T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1947 (((-696) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1015))) ELT) (((-696) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 30 T ELT)) (-3973 (((-474) $) NIL (|has| (-85) (-555 (-474))) ELT)) (-3531 (($ (-585 (-85))) NIL T ELT)) (-3803 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3947 (((-774) $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2564 (($ $ $) 37 T ELT)) (-2313 (($ $ $) 46 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 32 T ELT)) (-2314 (($ $ $) 45 T ELT)) (-3958 (((-696) $) 13 (|has| $ (-6 -3996)) ELT))) +(((-438 |#1|) (-96) (-485)) (T -438)) +NIL +((-1962 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|)) 35 T ELT)) (-1961 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22 T ELT)) (-1963 (((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1086 |#4|))) 46 T ELT)) (-1964 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1961 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -1961 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1962 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|))) (-15 -1963 ((-3 (-632 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-632 (-1086 |#4|)))) (-15 -1964 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-963) (-1156 |#1|) (-1156 |#2|) (-963)) (T -439)) +((-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-439 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))) (-1963 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1086 *8))) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1156 *5)) (-5 *2 (-632 *6)) (-5 *1 (-439 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1156 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1156 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-439 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1156 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1156 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1965 (((-1186) $) 25 T ELT)) (-3801 (((-1074) $ (-1091)) 30 T ELT)) (-3618 (((-1186) $) 20 T ELT)) (-3947 (((-774) $) 27 T ELT) (($ (-1074)) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 10 T ELT))) +(((-440) (-13 (-758) (-557 (-1074)) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1965 ((-1186) $))))) (T -440)) +((-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-440)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440))))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3740 ((|#1| |#4|) 10 T ELT)) (-3741 ((|#3| |#4|) 17 T ELT))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3740 (|#1| |#4|)) (-15 -3741 (|#3| |#4|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-906 |#1|) (-322 |#1|) (-322 |#2|)) (T -441)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *6 (-322 *4)) (-4 *3 (-322 *5)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-4 *2 (-322 *4)) (-5 *1 (-441 *4 *5 *2 *3)) (-4 *3 (-322 *5)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-441 *2 *4 *5 *3)) (-4 *5 (-322 *2)) (-4 *3 (-322 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1975 (((-85) $ (-585 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3190 (((-85) $) 178 T ELT)) (-1967 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-585 |#3|)) 122 T ELT)) (-1966 (((-1081 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|)) 171 (|has| |#3| (-555 (-1091))) ELT)) (-1974 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2412 (((-85) $) 177 T ELT)) (-1971 (($ $) 132 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 99 T ELT) (($ (-585 $)) 101 T ELT)) (-1976 (((-85) |#4| $) 130 T ELT)) (-1977 (((-85) $ $) 82 T ELT)) (-1970 (($ (-585 |#4|)) 106 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1969 (($ (-585 |#4|)) 175 T ELT)) (-1968 (((-85) $) 176 T ELT)) (-2253 (($ $) 85 T ELT)) (-2697 (((-585 |#4|) $) 73 T ELT)) (-1973 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|)) NIL T ELT)) (-1978 (((-85) |#4| $) 89 T ELT)) (-3912 (((-485) $ (-585 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3947 (((-774) $) 174 T ELT) (($ (-585 |#4|)) 102 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1972 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3058 (((-85) $ $) 84 T ELT)) (-3840 (($ $ $) 109 T ELT)) (** (($ $ (-696)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-442 |#1| |#2| |#3| |#4|) (-13 (-1015) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 -3840 ($ $ $)) (-15 -2412 ((-85) $)) (-15 -3190 ((-85) $)) (-15 -1978 ((-85) |#4| $)) (-15 -1977 ((-85) $ $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ (-585 |#3|))) (-15 -1975 ((-85) $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ (-585 $))) (-15 -1974 ($ $ $)) (-15 -1974 ($ $ |#4|)) (-15 -2253 ($ $)) (-15 -1973 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|))) (-15 -1972 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3912 ((-485) $ (-585 |#3|))) (-15 -3912 ((-485) $)) (-15 -1971 ($ $)) (-15 -1970 ($ (-585 |#4|))) (-15 -1969 ($ (-585 |#4|))) (-15 -1968 ((-85) $)) (-15 -2697 ((-585 |#4|) $)) (-15 -3947 ($ (-585 |#4|))) (-15 -1967 ($ $ |#4|)) (-15 -1967 ($ $ |#4| (-585 |#3|))) (IF (|has| |#3| (-555 (-1091))) (-15 -1966 ((-1081 (-585 (-859 |#1|)) (-585 (-249 (-859 |#1|)))) (-585 |#4|))) |%noBranch|))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -442)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2412 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1978 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1977 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1975 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-585 (-442 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-2253 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-442 *4 *5 *6 *7)))) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-442 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 (-485)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) (-3912 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-485)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-1971 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1968 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-863 *3 *4 *5)))) (-1967 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1091))) (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1081 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) (-5 *1 (-442 *4 *5 *6 *7))))) +((-1979 (((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) 178 T ELT)) (-1980 (((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) 179 T ELT)) (-1981 (((-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) 129 T ELT)) (-3724 (((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) NIL T ELT)) (-1982 (((-585 (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) 181 T ELT)) (-1983 (((-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-585 (-775 |#1|))) 197 T ELT))) +(((-443 |#1| |#2|) (-10 -7 (-15 -1979 ((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))))) (-15 -1980 ((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))))) (-15 -3724 ((-85) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))))) (-15 -1981 ((-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))))) (-15 -1982 ((-585 (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485))))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))))) (-15 -1983 ((-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-442 (-348 (-485)) (-197 |#2| (-696)) (-775 |#1|) (-206 |#1| (-348 (-485)))) (-585 (-775 |#1|))))) (-585 (-1091)) (-696)) (T -443)) +((-1983 (*1 *2 *2 *3) (-12 (-5 *2 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *1 (-443 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-585 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485)))))) (-5 *1 (-443 *4 *5)) (-5 *3 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-442 (-348 (-485)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-348 (-485))))) (-14 *3 (-585 (-1091))) (-14 *4 (-696)) (-5 *1 (-443 *3 *4)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-444 |#1|) (-113) (-72)) (T -444)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3058 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1984 (($) 6 T ELT)) (-3947 (((-774) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-445) (-13 (-1015) (-10 -8 (-15 -1984 ($))))) (T -445)) +((-1984 (*1 *1) (-5 *1 (-445)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) 10 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) 15 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 25 T ELT))) +(((-446 |#1| |#2|) (-13 (-21) (-448 |#1| |#2|)) (-21) (-761)) (T -446)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) 13 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 39 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) 36 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) 41 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) 11 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) 30 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 35 T ELT))) +(((-447 |#1| |#2|) (-13 (-23) (-448 |#1| |#2|)) (-23) (-761)) (T -447)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) 16 T ELT)) (-3960 (($ $) 17 T ELT)) (-2895 (($ |#1| |#2|) 20 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1985 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 15 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3245 (((-1035) $) 14 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) 22 T ELT)) (-3947 (((-774) $) 13 (-12 (|has| |#2| (-1015)) (|has| |#1| (-1015))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-448 |#1| |#2|) (-113) (-72) (-761)) (T -448)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-448 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) (-5 *2 (-585 (-452 *3 *4)))))) +(-13 (-72) (-559 (-585 (-452 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1015)) (IF (|has| |t#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3176 (|t#1| $)) (-15 -1985 (|t#2| $)) (-15 -3960 ($ $)) (-15 -3775 ((-585 (-452 |t#1| |t#2|)) $)))) +(((-72) . T) ((-554 (-774)) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-559 (-585 (-452 |#1| |#2|))) . T) ((-13) . T) ((-1015) -12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) 29 T ELT)) (-3960 (($ $) 23 T ELT)) (-2895 (($ |#1| |#2|) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1985 ((|#2| $) 28 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3245 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) 30 T ELT)) (-1986 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3947 (((-774) $) 17 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-449 |#1| |#2|) (-13 (-448 |#1| |#2|) (-10 -8 (-15 -1986 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-761)) (T -449)) +((-1986 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-449 *4 *5)) (-4 *5 (-761))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 23 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-450 |#1| |#2|) (-13 (-718) (-448 |#1| |#2|)) (-718) (-761)) (T -450)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 |#1| |#2|)) $) NIL T ELT)) (-2485 (($ $ $) 24 T ELT)) (-1313 (((-3 $ "failed") $ $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1985 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 |#1| |#2|))) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-451 |#1| |#2|) (-13 (-719) (-448 |#1| |#2|)) (-719) (-758)) (T -451)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1987 (($ |#2| |#1|) 9 T ELT)) (-2402 ((|#2| $) 11 T ELT)) (-3947 (((-784 |#2| |#1|) $) 14 T ELT)) (-3678 ((|#1| $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-452 |#1| |#2|) (-13 (-72) (-554 (-784 |#2| |#1|)) (-10 -8 (-15 -1987 ($ |#2| |#1|)) (-15 -2402 (|#2| $)) (-15 -3678 (|#1| $)))) (-72) (-761)) (T -452)) +((-1987 (*1 *1 *2 *3) (-12 (-5 *1 (-452 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761)))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-452 *3 *2)) (-4 *3 (-72)))) (-3678 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-452 *2 *3)) (-4 *3 (-761))))) +((-3769 (($ $ (-585 |#2|) (-585 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3769 (|#1| |#1| |#2| |#3|)) (-15 -3769 (|#1| |#1| (-585 |#2|) (-585 |#3|)))) (-454 |#2| |#3|) (-1015) (-1130)) (T -453)) +NIL +((-3769 (($ $ (-585 |#1|) (-585 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-454 |#1| |#2|) (-113) (-1015) (-1130)) (T -454)) +((-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-454 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1130)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1130))))) +(-13 (-10 -8 (-15 -3769 ($ $ |t#1| |t#2|)) (-15 -3769 ($ $ (-585 |t#1|) (-585 |t#2|))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 17 T ELT)) (-3775 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 19 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2301 ((|#1| $ (-485)) 24 T ELT)) (-1623 ((|#2| $ (-485)) 22 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-718)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3678 ((|#2| |#1| $) 51 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 11 T CONST)) (-3058 (((-85) $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-455 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1015) (-104) |#2|) (T -455)) +NIL +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-1988 (((-85) (-85)) 32 T ELT)) (-3789 ((|#1| $ (-485) |#1|) 42 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-2370 (($ $) 83 (|has| |#1| (-1015)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1015)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-1989 (($ $ (-485)) 19 T ELT)) (-1990 (((-696) $) 13 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 31 T ELT)) (-2202 (((-485) $) 29 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) 28 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3610 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1991 (($ (-585 |#1|)) 43 T ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 62 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 21 T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) 63 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 53 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3792 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 22 (|has| $ (-6 -3996)) ELT))) +(((-456 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1991 ($ (-585 |#1|))) (-15 -1990 ((-696) $)) (-15 -1989 ($ $ (-485))) (-15 -1988 ((-85) (-85))))) (-1130) (-485)) (T -456)) +((-1991 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-456 *3 *4)) (-14 *4 (-485)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1993 (((-1050) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1992 (((-1050) $) 14 T ELT)) (-3923 (((-1050) $) 10 T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-457) (-13 (-997) (-10 -8 (-15 -3923 ((-1050) $)) (-15 -1993 ((-1050) $)) (-15 -1992 ((-1050) $))))) (T -457)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (((-518 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3158 (((-518 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-518 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1681 (((-85) $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1765 (($ $ (-696)) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-318))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-318))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-832) $) NIL (|has| (-518 |#1|) (-318)) ELT) (((-745 (-832)) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2013 (((-85) $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3134 (((-518 |#1|) $) NIL T ELT) (($ $ (-832)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 (-518 |#1|)) $) NIL T ELT) (((-1086 $) $ (-832)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2012 (((-832) $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1628 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1627 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-318)) ELT) (((-3 (-1086 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1629 (($ $ (-1086 (-518 |#1|))) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-518 |#1|) (-318)) CONST)) (-2402 (($ (-832)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-745 (-832))) NIL T ELT) (((-832)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-696) $) NIL (|has| (-518 |#1|) (-318)) ELT) (((-3 (-696) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-318))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-696)) NIL (|has| (-518 |#1|) (-318)) ELT) (($ $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3949 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-3187 (((-1086 (-518 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-1630 (($) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3226 (((-1180 (-518 |#1|)) $) NIL T ELT) (((-632 (-518 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-518 |#1|) (-318)) ELT) (((-634 $) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-318))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT) (((-1180 $) (-832)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-518 |#1|) (-318)) ELT) (($ $ (-696)) NIL (|has| (-518 |#1|) (-318)) ELT)) (-2671 (($ $ (-696)) NIL (|has| (-518 |#1|) (-318)) ELT) (($ $) NIL (|has| (-518 |#1|) (-318)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT))) +(((-458 |#1| |#2|) (-280 (-518 |#1|)) (-832) (-832)) (T -458)) +NIL +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-1258 (($ $ (-485) |#4|) NIL T ELT)) (-1257 (($ $ (-485) |#5|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3113 ((|#4| $ (-485)) NIL T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 50 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 45 T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3116 (((-696) $) 33 T ELT)) (-3615 (($ (-696) (-696) |#1|) 30 T ELT)) (-3115 (((-696) $) 38 T ELT)) (-3120 (((-485) $) 31 T ELT)) (-3118 (((-485) $) 32 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) 37 T ELT)) (-3117 (((-485) $) 39 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3244 (((-1074) $) 55 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 16 T ELT)) (-3566 (($) 18 T ELT)) (-3801 ((|#1| $ (-485) (-485)) 48 T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3112 ((|#5| $ (-485)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-459 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1130) (-485) (-485) (-322 |#1|) (-322 |#1|)) (T -459)) +NIL +((-3111 ((|#4| |#4|) 38 T ELT)) (-3110 (((-696) |#4|) 45 T ELT)) (-3109 (((-696) |#4|) 46 T ELT)) (-3108 (((-585 |#3|) |#4|) 57 (|has| |#3| (-6 -3997)) ELT)) (-3591 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1994 ((|#4| |#4|) 61 T ELT)) (-3329 ((|#1| |#4|) 60 T ELT))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3111 (|#4| |#4|)) (-15 -3110 ((-696) |#4|)) (-15 -3109 ((-696) |#4|)) (IF (|has| |#3| (-6 -3997)) (-15 -3108 ((-585 |#3|) |#4|)) |%noBranch|) (-15 -3329 (|#1| |#4|)) (-15 -1994 (|#4| |#4|)) (-15 -3591 ((-3 |#4| "failed") |#4|))) (-312) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|)) (T -460)) +((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-312)) (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3108 (*1 *2 *3) (-12 (|has| *6 (-6 -3997)) (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-585 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-3111 ((|#8| |#4|) 20 T ELT)) (-3108 (((-585 |#3|) |#4|) 29 (|has| |#7| (-6 -3997)) ELT)) (-3591 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-461 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3111 (|#8| |#4|)) (-15 -3591 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3997)) (-15 -3108 ((-585 |#3|) |#4|)) |%noBranch|)) (-496) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|) (-906 |#1|) (-322 |#5|) (-322 |#5|) (-629 |#5| |#6| |#7|)) (T -461)) +((-3108 (*1 *2 *3) (-12 (|has| *9 (-6 -3997)) (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-906 *4)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)) (-5 *2 (-585 *6)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) (-4 *10 (-629 *7 *8 *9)))) (-3591 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696) (-696)) NIL T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3415 (($ (-538 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2351 (($ $ (-485) (-485)) 21 T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2348 (($ $ (-485) (-485) $) NIL T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-538 |#1| |#3|)) NIL T ELT)) (-1257 (($ $ (-485) (-538 |#1| |#2|)) NIL T ELT)) (-3334 (($ (-696) |#1|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) 30 (|has| |#1| (-258)) ELT)) (-3113 (((-538 |#1| |#3|) $ (-485)) NIL T ELT)) (-3110 (((-696) $) 33 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3109 (((-696) $) 35 (|has| |#1| (-496)) ELT)) (-3108 (((-585 (-538 |#1| |#2|)) $) 38 (|has| |#1| (-496)) ELT)) (-3116 (((-696) $) NIL T ELT)) (-3615 (($ (-696) (-696) |#1|) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3328 ((|#1| $) 28 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3120 (((-485) $) 10 T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) 13 T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-585 (-585 |#1|))) NIL T ELT) (($ (-696) (-696) (-1 |#1| (-485) (-485))) NIL T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-585 (-585 |#1|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3591 (((-3 $ #2="failed") $) 42 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485))) NIL T ELT)) (-3333 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) 26 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3112 (((-538 |#1| |#2|) $ (-485)) NIL T ELT)) (-3947 (($ (-538 |#1| |#2|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-538 |#1| |#2|) $ (-538 |#1| |#2|)) NIL T ELT) (((-538 |#1| |#3|) (-538 |#1| |#3|) $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-462 |#1| |#2| |#3|) (-629 |#1| (-538 |#1| |#3|) (-538 |#1| |#2|)) (-963) (-485) (-485)) (T -462)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1995 (((-585 (-1131)) $) 14 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (($ (-585 (-1131))) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-463) (-13 (-997) (-10 -8 (-15 -3947 ($ (-585 (-1131)))) (-15 -1995 ((-585 (-1131)) $))))) (T -463)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-463)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-463))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1996 (((-1050) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3451 (((-445) $) 12 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 22 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-464) (-13 (-997) (-10 -8 (-15 -3451 ((-445) $)) (-15 -1996 ((-1050) $))))) (T -464)) +((-3451 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-464)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) +((-2002 (((-634 (-1139)) $) 15 T ELT)) (-1998 (((-634 (-1137)) $) 38 T ELT)) (-2000 (((-634 (-1136)) $) 29 T ELT)) (-2003 (((-634 (-489)) $) 12 T ELT)) (-1999 (((-634 (-487)) $) 42 T ELT)) (-2001 (((-634 (-486)) $) 33 T ELT)) (-1997 (((-696) $ (-102)) 54 T ELT))) +(((-465 |#1|) (-10 -7 (-15 -1997 ((-696) |#1| (-102))) (-15 -1998 ((-634 (-1137)) |#1|)) (-15 -1999 ((-634 (-487)) |#1|)) (-15 -2000 ((-634 (-1136)) |#1|)) (-15 -2001 ((-634 (-486)) |#1|)) (-15 -2002 ((-634 (-1139)) |#1|)) (-15 -2003 ((-634 (-489)) |#1|))) (-466)) (T -465)) +NIL +((-2002 (((-634 (-1139)) $) 12 T ELT)) (-1998 (((-634 (-1137)) $) 8 T ELT)) (-2000 (((-634 (-1136)) $) 10 T ELT)) (-2003 (((-634 (-489)) $) 13 T ELT)) (-1999 (((-634 (-487)) $) 9 T ELT)) (-2001 (((-634 (-486)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-466) (-113)) (T -466)) +((-2004 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-101))))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-489))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1139))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-486))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1136))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-487))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1137))))) (-1997 (*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-696))))) +(-13 (-147) (-10 -8 (-15 -2004 ((-634 (-101)) $)) (-15 -2003 ((-634 (-489)) $)) (-15 -2002 ((-634 (-1139)) $)) (-15 -2001 ((-634 (-486)) $)) (-15 -2000 ((-634 (-1136)) $)) (-15 -1999 ((-634 (-487)) $)) (-15 -1998 ((-634 (-1137)) $)) (-15 -1997 ((-696) $ (-102))))) (((-147) . T)) -((-2004 (((-1084 |#1|) (-695)) 114 T ELT)) (-3327 (((-1178 |#1|) (-1178 |#1|) (-831)) 107 T ELT)) (-2002 (((-1184) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) |#1|) 122 T ELT)) (-2006 (((-1178 |#1|) (-1178 |#1|) (-695)) 53 T ELT)) (-2993 (((-1178 |#1|) (-831)) 109 T ELT)) (-2008 (((-1178 |#1|) (-1178 |#1|) (-484)) 30 T ELT)) (-2003 (((-1084 |#1|) (-1178 |#1|)) 115 T ELT)) (-2012 (((-1178 |#1|) (-831)) 136 T ELT)) (-2010 (((-85) (-1178 |#1|)) 119 T ELT)) (-3130 (((-1178 |#1|) (-1178 |#1|) (-831)) 99 T ELT)) (-2013 (((-1084 |#1|) (-1178 |#1|)) 130 T ELT)) (-2009 (((-831) (-1178 |#1|)) 95 T ELT)) (-2483 (((-1178 |#1|) (-1178 |#1|)) 38 T ELT)) (-2399 (((-1178 |#1|) (-831) (-831)) 139 T ELT)) (-2007 (((-1178 |#1|) (-1178 |#1|) (-1033) (-1033)) 29 T ELT)) (-2005 (((-1178 |#1|) (-1178 |#1|) (-695) (-1033)) 54 T ELT)) (-2011 (((-1178 (-1178 |#1|)) (-831)) 135 T ELT)) (-3946 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 120 T ELT)) (** (((-1178 |#1|) (-1178 |#1|) (-484)) 67 T ELT)) (* (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 31 T ELT))) -(((-466 |#1|) (-10 -7 (-15 -2002 ((-1184) (-1178 (-584 (-2 (|:| -3399 |#1|) (|:| -2399 (-1033))))) |#1|)) (-15 -2993 ((-1178 |#1|) (-831))) (-15 -2399 ((-1178 |#1|) (-831) (-831))) (-15 -2003 ((-1084 |#1|) (-1178 |#1|))) (-15 -2004 ((-1084 |#1|) (-695))) (-15 -2005 ((-1178 |#1|) (-1178 |#1|) (-695) (-1033))) (-15 -2006 ((-1178 |#1|) (-1178 |#1|) (-695))) (-15 -2007 ((-1178 |#1|) (-1178 |#1|) (-1033) (-1033))) (-15 -2008 ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3946 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3130 ((-1178 |#1|) (-1178 |#1|) (-831))) (-15 -3327 ((-1178 |#1|) (-1178 |#1|) (-831))) (-15 -2483 ((-1178 |#1|) (-1178 |#1|))) (-15 -2009 ((-831) (-1178 |#1|))) (-15 -2010 ((-85) (-1178 |#1|))) (-15 -2011 ((-1178 (-1178 |#1|)) (-831))) (-15 -2012 ((-1178 |#1|) (-831))) (-15 -2013 ((-1084 |#1|) (-1178 |#1|)))) (-298)) (T -466)) -((-2013 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-466 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (-3327 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-3130 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-3946 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2005 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1178 *5)) (-5 *3 (-695)) (-5 *4 (-1033)) (-4 *5 (-298)) (-5 *1 (-466 *5)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2399 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-1184)) (-5 *1 (-466 *4))))) -((-1999 (((-633 (-1137)) $) NIL T ELT)) (-1995 (((-633 (-1135)) $) NIL T ELT)) (-1997 (((-633 (-1134)) $) NIL T ELT)) (-2000 (((-633 (-488)) $) NIL T ELT)) (-1996 (((-633 (-486)) $) NIL T ELT)) (-1998 (((-633 (-485)) $) NIL T ELT)) (-1994 (((-695) $ (-102)) NIL T ELT)) (-2001 (((-633 (-101)) $) 26 T ELT)) (-2014 (((-1033) $ (-1033)) 31 T ELT)) (-3416 (((-1033) $) 30 T ELT)) (-2557 (((-85) $) 20 T ELT)) (-2016 (($ (-335)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-2015 (((-85) $) 27 T ELT)) (-3943 (((-773) $) 34 T ELT)) (-1698 (($ $) 28 T ELT))) -(((-467) (-13 (-465) (-553 (-773)) (-10 -8 (-15 -2016 ($ (-335))) (-15 -2016 ($ (-1072))) (-15 -2015 ((-85) $)) (-15 -2557 ((-85) $)) (-15 -3416 ((-1033) $)) (-15 -2014 ((-1033) $ (-1033)))))) (T -467)) -((-2016 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-467)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2014 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) -((-2018 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2017 (((-1 |#1| |#1|)) 10 T ELT))) -(((-468 |#1|) (-10 -7 (-15 -2017 ((-1 |#1| |#1|))) (-15 -2018 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -468)) -((-2018 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25))))) (-2017 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 (-695) |#1|)) $) NIL T ELT)) (-2482 (($ $ $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-2892 (($ (-695) |#1|) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3955 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1982 ((|#1| $) NIL T ELT)) (-3172 (((-695) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (($ (-584 (-451 (-695) |#1|))) NIL T ELT)) (-3943 (((-773) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) -(((-469 |#1|) (-13 (-718) (-447 (-695) |#1|)) (-757)) (T -469)) -NIL -((-2020 (((-584 |#2|) (-1084 |#1|) |#3|) 98 T ELT)) (-2021 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-345 (-1084 |#1|)) (-1084 |#1|))) 114 T ELT)) (-2019 (((-1084 |#1|) (-631 |#1|)) 110 T ELT))) -(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2019 ((-1084 |#1|) (-631 |#1|))) (-15 -2020 ((-584 |#2|) (-1084 |#1|) |#3|)) (-15 -2021 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-345 (-1084 |#1|)) (-1084 |#1|))))) (-311) (-311) (-13 (-311) (-756))) (T -470)) -((-2021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-345 (-1084 *6)) (-1084 *6))) (-4 *6 (-311)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1084 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-756)))))) -((-2554 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2555 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2553 (((-695) $ (-102)) 39 T ELT)) (-2556 (((-633 (-101)) $ (-101)) 40 T ELT)) (-1999 (((-633 (-1137)) $) NIL T ELT)) (-1995 (((-633 (-1135)) $) NIL T ELT)) (-1997 (((-633 (-1134)) $) NIL T ELT)) (-2000 (((-633 (-488)) $) NIL T ELT)) (-1996 (((-633 (-486)) $) NIL T ELT)) (-1998 (((-633 (-485)) $) NIL T ELT)) (-1994 (((-695) $ (-102)) 35 T ELT)) (-2001 (((-633 (-101)) $) 37 T ELT)) (-2438 (((-85) $) 27 T ELT)) (-2439 (((-633 $) (-515) (-866)) 18 T ELT) (((-633 $) (-428) (-866)) 24 T ELT)) (-3943 (((-773) $) 48 T ELT)) (-1698 (($ $) 42 T ELT))) -(((-471) (-13 (-692 (-515)) (-553 (-773)) (-10 -8 (-15 -2439 ((-633 $) (-428) (-866)))))) (T -471)) -((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-428)) (-5 *4 (-866)) (-5 *2 (-633 (-471))) (-5 *1 (-471))))) -((-2526 (((-751 (-484))) 12 T ELT)) (-2525 (((-751 (-484))) 14 T ELT)) (-2513 (((-744 (-484))) 9 T ELT))) -(((-472) (-10 -7 (-15 -2513 ((-744 (-484)))) (-15 -2526 ((-751 (-484)))) (-15 -2525 ((-751 (-484)))))) (T -472)) -((-2525 (*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) (-2526 (*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) (-2513 (*1 *2) (-12 (-5 *2 (-744 (-484))) (-5 *1 (-472))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2025 (((-1072) $) 55 T ELT)) (-3258 (((-85) $) 51 T ELT)) (-3254 (((-1089) $) 52 T ELT)) (-3259 (((-85) $) 49 T ELT)) (-3532 (((-1072) $) 50 T ELT)) (-2024 (($ (-1072)) 56 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2027 (($ $ (-584 (-1089))) 21 T ELT)) (-2030 (((-51) $) 23 T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3253 (((-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2382 (($ $ (-584 (-1089)) (-1089)) 73 T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3252 (((-179) $) NIL T ELT)) (-2026 (($ $) 44 T ELT)) (-3251 (((-773) $) NIL T ELT)) (-3264 (((-85) $ $) NIL T ELT)) (-3797 (($ $ (-484)) NIL T ELT) (($ $ (-584 (-484))) NIL T ELT)) (-3255 (((-584 $) $) 30 T ELT)) (-2023 (((-1089) (-584 $)) 57 T ELT)) (-3969 (($ (-1072)) NIL T ELT) (($ (-1089)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2022 (((-1089) (-1089) (-584 $)) 60 T ELT)) (-3943 (((-773) $) 54 T ELT)) (-3249 (($ $) 59 T ELT)) (-3250 (($ $) 58 T ELT)) (-2028 (($ $ (-584 $)) 66 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) 29 T ELT)) (-2659 (($) 9 T CONST)) (-2665 (($) 11 T CONST)) (-3055 (((-85) $ $) 74 T ELT)) (-3946 (($ $ $) 82 T ELT)) (-3836 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3954 (((-484) $) NIL T ELT))) -(((-473) (-13 (-1016 (-1072) (-1089) (-484) (-179) (-773)) (-554 (-1015)) (-10 -8 (-15 -2030 ((-51) $)) (-15 -3969 ($ (-1015))) (-15 -2028 ($ $ (-584 $))) (-15 -2382 ($ $ (-584 (-1089)) (-1089))) (-15 -2027 ($ $ (-584 (-1089)))) (-15 -3836 ($ $ $)) (-15 * ($ $ $)) (-15 -3946 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-484))) (-15 -2659 ($) -3949) (-15 -2665 ($) -3949) (-15 -2026 ($ $)) (-15 -2025 ((-1072) $)) (-15 -2024 ($ (-1072))) (-15 -2023 ((-1089) (-584 $))) (-15 -2022 ((-1089) (-1089) (-584 $)))))) (T -473)) -((-2030 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-473))) (-5 *1 (-473)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-473)))) (-3836 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3946 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2659 (*1 *1) (-5 *1 (-473))) (-2665 (*1 *1) (-5 *1 (-473))) (-2026 (*1 *1 *1) (-5 *1 (-473))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-584 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))) (-2022 (*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 (-473))) (-5 *1 (-473))))) -((-2029 (((-473) (-1089)) 15 T ELT)) (-2030 ((|#1| (-473)) 20 T ELT))) -(((-474 |#1|) (-10 -7 (-15 -2029 ((-473) (-1089))) (-15 -2030 (|#1| (-473)))) (-1128)) (T -474)) -((-2030 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128))))) -((-3450 ((|#2| |#2|) 17 T ELT)) (-3448 ((|#2| |#2|) 13 T ELT)) (-3451 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3449 ((|#2| |#2|) 15 T ELT))) -(((-475 |#1| |#2|) (-10 -7 (-15 -3448 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1171 |#1|)) (T -475)) -((-3451 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1171 *4)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))) -((-2033 (((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1089))) 32 T ELT)) (-2031 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1084 |#1|) |#3|) 53 T ELT)) (-2032 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)) |#3|) 106 T ELT))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2031 ((-584 |#2|) (-1084 |#1|) |#3|)) (-15 -2031 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2032 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)) |#3|)) (-15 -2033 ((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1089))))) (-389) (-311) (-13 (-311) (-756))) (T -476)) -((-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1089))) (-4 *6 (-311)) (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-13 (-311) (-756))))) (-2032 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-311)) (-4 *5 (-13 (-311) (-756))))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756)))))) -((-2036 ((|#2| |#2| |#1|) 17 T ELT)) (-2034 ((|#2| (-584 |#2|)) 30 T ELT)) (-2035 ((|#2| (-584 |#2|)) 51 T ELT))) -(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2034 (|#2| (-584 |#2|))) (-15 -2035 (|#2| (-584 |#2|))) (-15 -2036 (|#2| |#2| |#1|))) (-257) (-1154 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -477)) -((-2036 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) -((-3729 (((-345 (-1084 |#4|)) (-1084 |#4|) (-1 (-345 (-1084 |#3|)) (-1084 |#3|))) 90 T ELT) (((-345 |#4|) |#4| (-1 (-345 (-1084 |#3|)) (-1084 |#3|))) 213 T ELT))) -(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4| (-1 (-345 (-1084 |#3|)) (-1084 |#3|)))) (-15 -3729 ((-345 (-1084 |#4|)) (-1084 |#4|) (-1 (-345 (-1084 |#3|)) (-1084 |#3|))))) (-757) (-718) (-13 (-257) (-120)) (-862 |#3| |#2| |#1|)) (T -478)) -((-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5))))) -((-3450 ((|#4| |#4|) 74 T ELT)) (-3448 ((|#4| |#4|) 70 T ELT)) (-3451 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3449 ((|#4| |#4|) 72 T ELT))) -(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3448 (|#4| |#4|)) (-15 -3449 (|#4| |#4|)) (-15 -3450 (|#4| |#4|)) (-15 -3451 (|#4| |#4| (-484) (-484)))) (-13 (-311) (-317) (-554 (-484))) (-1154 |#1|) (-662 |#1| |#2|) (-1171 |#3|)) (T -479)) -((-3451 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-4 *5 (-1154 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))) -((-3450 ((|#2| |#2|) 27 T ELT)) (-3448 ((|#2| |#2|) 23 T ELT)) (-3451 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3449 ((|#2| |#2|) 25 T ELT))) -(((-480 |#1| |#2|) (-10 -7 (-15 -3448 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3451 (|#2| |#2| (-484) (-484)))) (-13 (-311) (-317) (-554 (-484))) (-1171 |#1|)) (T -480)) -((-3451 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3))))) -((-2037 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT))) -(((-481 |#1| |#2|) (-10 -7 (-15 -2037 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2037 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2037 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-962) (-1154 |#1|)) (T -481)) -((-2037 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2037 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2037 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5))))) -((-2046 (($ $ $) 87 T ELT)) (-3968 (((-345 $) $) 50 T ELT)) (-3155 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3154 (((-484) $) 40 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 80 T ELT)) (-3022 (((-85) $) 24 T ELT)) (-3021 (((-347 (-484)) $) 78 T ELT)) (-3720 (((-85) $) 53 T ELT)) (-2039 (($ $ $ $) 94 T ELT)) (-1367 (($ $ $) 60 T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 75 T ELT)) (-3442 (((-633 $) $) 70 T ELT)) (-2043 (($ $) 22 T ELT)) (-2038 (($ $ $) 92 T ELT)) (-3443 (($) 63 T CONST)) (-1365 (($ $) 56 T ELT)) (-3729 (((-345 $) $) 48 T ELT)) (-2673 (((-85) $) 15 T ELT)) (-1605 (((-695) $) 30 T ELT)) (-3755 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3397 (($ $) 16 T ELT)) (-3969 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-801 (-484)) $) 43 T ELT) (((-327) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3124 (((-695)) 9 T CONST)) (-2048 (((-85) $ $) 19 T ELT)) (-3100 (($ $ $) 58 T ELT))) -(((-482 |#1|) (-10 -7 (-15 -2038 (|#1| |#1| |#1|)) (-15 -2039 (|#1| |#1| |#1| |#1|)) (-15 -2043 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3023 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3021 ((-347 (-484)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2048 ((-85) |#1| |#1|)) (-15 -2673 ((-85) |#1|)) (-15 -3443 (|#1|) -3949) (-15 -3442 ((-633 |#1|) |#1|)) (-15 -3969 ((-179) |#1|)) (-15 -3969 ((-327) |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -3100 (|#1| |#1| |#1|)) (-15 -2795 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3969 ((-484) |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3968 ((-345 |#1|) |#1|)) (-15 -3720 ((-85) |#1|)) (-15 -3124 ((-695)) -3949)) (-483)) (T -482)) -((-3124 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-482 *3)) (-4 *3 (-483))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-2046 (($ $ $) 100 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2041 (($ $ $ $) 89 T ELT)) (-3772 (($ $) 64 T ELT)) (-3968 (((-345 $) $) 65 T ELT)) (-1606 (((-85) $ $) 143 T ELT)) (-3620 (((-484) $) 132 T ELT)) (-2440 (($ $ $) 103 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) "failed") $) 124 T ELT)) (-3154 (((-484) $) 125 T ELT)) (-2563 (($ $ $) 147 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 122 T ELT) (((-631 (-484)) (-631 $)) 121 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3023 (((-3 (-347 (-484)) "failed") $) 97 T ELT)) (-3022 (((-85) $) 99 T ELT)) (-3021 (((-347 (-484)) $) 98 T ELT)) (-2993 (($) 96 T ELT) (($ $) 95 T ELT)) (-2562 (($ $ $) 146 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 141 T ELT)) (-3720 (((-85) $) 66 T ELT)) (-2039 (($ $ $ $) 87 T ELT)) (-2047 (($ $ $) 101 T ELT)) (-3184 (((-85) $) 134 T ELT)) (-1367 (($ $ $) 112 T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 115 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2672 (((-85) $) 107 T ELT)) (-3442 (((-633 $) $) 109 T ELT)) (-3185 (((-85) $) 133 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 150 T ELT)) (-2040 (($ $ $ $) 88 T ELT)) (-2530 (($ $ $) 140 T ELT)) (-2856 (($ $ $) 139 T ELT)) (-2043 (($ $) 91 T ELT)) (-3830 (($ $) 104 T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 120 T ELT) (((-631 (-484)) (-1178 $)) 119 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2038 (($ $ $) 86 T ELT)) (-3443 (($) 108 T CONST)) (-2045 (($ $) 93 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1365 (($ $) 113 T ELT)) (-3729 (((-345 $) $) 63 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 149 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 148 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 142 T ELT)) (-2673 (((-85) $) 106 T ELT)) (-1605 (((-695) $) 144 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 145 T ELT)) (-3755 (($ $) 130 T ELT) (($ $ (-695)) 128 T ELT)) (-2044 (($ $) 92 T ELT)) (-3397 (($ $) 94 T ELT)) (-3969 (((-484) $) 126 T ELT) (((-473) $) 117 T ELT) (((-801 (-484)) $) 116 T ELT) (((-327) $) 111 T ELT) (((-179) $) 110 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-484)) 123 T ELT)) (-3124 (((-695)) 38 T CONST)) (-2048 (((-85) $ $) 102 T ELT)) (-3100 (($ $ $) 114 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2693 (($) 105 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2042 (($ $ $ $) 90 T ELT)) (-3380 (($ $) 131 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $) 129 T ELT) (($ $ (-695)) 127 T ELT)) (-2565 (((-85) $ $) 138 T ELT)) (-2566 (((-85) $ $) 136 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 137 T ELT)) (-2684 (((-85) $ $) 135 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-484) $) 118 T ELT))) -(((-483) (-113)) (T -483)) -((-2672 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2693 (*1 *1) (-4 *1 (-483))) (-3830 (*1 *1 *1) (-4 *1 (-483))) (-2440 (*1 *1 *1 *1) (-4 *1 (-483))) (-2048 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2047 (*1 *1 *1 *1) (-4 *1 (-483))) (-2046 (*1 *1 *1 *1) (-4 *1 (-483))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) (-2993 (*1 *1) (-4 *1 (-483))) (-2993 (*1 *1 *1) (-4 *1 (-483))) (-3397 (*1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2038 (*1 *1 *1 *1) (-4 *1 (-483)))) -(-13 (-1133) (-257) (-741) (-190) (-554 (-484)) (-951 (-484)) (-581 (-484)) (-554 (-473)) (-554 (-801 (-484))) (-797 (-484)) (-116) (-934) (-120) (-1065) (-10 -8 (-15 -2672 ((-85) $)) (-15 -2673 ((-85) $)) (-6 -3991) (-15 -2693 ($)) (-15 -3830 ($ $)) (-15 -2440 ($ $ $)) (-15 -2048 ((-85) $ $)) (-15 -2047 ($ $ $)) (-15 -2046 ($ $ $)) (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $)) (-15 -2993 ($)) (-15 -2993 ($ $)) (-15 -3397 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $ $)) (-15 -2038 ($ $ $)) (-6 -3990))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-473)) . T) ((-554 (-484)) . T) ((-554 (-801 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-484)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-484)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-484)) . T) ((-833) . T) ((-934) . T) ((-951 (-484)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 8 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 77 T ELT)) (-2062 (($ $) 78 T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) 31 T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL T ELT)) (-2440 (($ $ $) 71 T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL T ELT)) (-2563 (($ $ $) 45 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 53 T ELT) (((-631 (-484)) (-631 $)) 49 T ELT)) (-3464 (((-3 $ #1#) $) 74 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-347 (-484)) $) NIL T ELT)) (-2993 (($) 55 T ELT) (($ $) 56 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) 46 T ELT)) (-3184 (((-85) $) 22 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2409 (((-85) $) 9 T ELT)) (-2672 (((-85) $) 64 T ELT)) (-3442 (((-633 $) $) NIL T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2040 (($ $ $ $) 32 T ELT)) (-2530 (($ $ $) 67 T ELT)) (-2856 (($ $ $) 66 T ELT)) (-2043 (($ $) NIL T ELT)) (-3830 (($ $) 29 T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) 44 T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3443 (($) NIL T CONST)) (-2045 (($ $) 15 T ELT)) (-3241 (((-1033) $) 19 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 109 T ELT)) (-3142 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3729 (((-345 $) $) 95 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) 93 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2673 (((-85) $) 65 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 69 T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2044 (($ $) 17 T ELT)) (-3397 (($ $) 13 T ELT)) (-3969 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3943 (((-773) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3124 (((-695)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) 12 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2042 (($ $ $ $) 30 T ELT)) (-3380 (($ $) 54 T ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 11 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2565 (((-85) $ $) 59 T ELT)) (-2566 (((-85) $ $) 57 T ELT)) (-3055 (((-85) $ $) 7 T ELT)) (-2683 (((-85) $ $) 58 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-3834 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3836 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT))) -(((-484) (-13 (-483) (-10 -7 (-6 -3979) (-6 -3984) (-6 -3980)))) (T -484)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-485) (-13 (-753) (-10 -8 (-15 -3721 ($) -3949)))) (T -485)) -((-3721 (*1 *1) (-5 *1 (-485)))) -((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-486) (-13 (-753) (-10 -8 (-15 -3721 ($) -3949)))) (T -486)) -((-3721 (*1 *1) (-5 *1 (-486)))) -((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-487) (-13 (-753) (-10 -8 (-15 -3721 ($) -3949)))) (T -487)) -((-3721 (*1 *1) (-5 *1 (-487)))) -((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-488) (-13 (-753) (-10 -8 (-15 -3721 ($) -3949)))) (T -488)) -((-3721 (*1 *1) (-5 *1 (-488)))) -((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-489 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3992))) (-1013) (-1013) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3992)))) (T -489)) -NIL -((-2049 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))) 50 T ELT))) -(((-490 |#1| |#2|) (-10 -7 (-15 -2049 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))))) (-495) (-13 (-27) (-361 |#1|))) (T -490)) -((-2049 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3))))) -((-2051 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2052 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2050 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2050 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2051 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-951 (-484))) (-13 (-27) (-361 |#1|)) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -491)) -((-2052 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *7 (-1154 (-347 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-290 *5 *6 *7)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) -((-2055 (((-85) (-484) (-484)) 12 T ELT)) (-2053 (((-484) (-484)) 7 T ELT)) (-2054 (((-484) (-484) (-484)) 10 T ELT))) -(((-492) (-10 -7 (-15 -2053 ((-484) (-484))) (-15 -2054 ((-484) (-484) (-484))) (-15 -2055 ((-85) (-484) (-484))))) (T -492)) -((-2055 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2054 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2603 ((|#1| $) 75 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-3489 (($ $) 105 T ELT)) (-3636 (($ $) 88 T ELT)) (-2482 ((|#1| $) 76 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3036 (($ $) 87 T ELT)) (-3487 (($ $) 104 T ELT)) (-3635 (($ $) 89 T ELT)) (-3491 (($ $) 103 T ELT)) (-3634 (($ $) 90 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) "failed") $) 83 T ELT)) (-3154 (((-484) $) 84 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2058 (($ |#1| |#1|) 80 T ELT)) (-3184 (((-85) $) 74 T ELT)) (-3624 (($) 115 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 86 T ELT)) (-3185 (((-85) $) 73 T ELT)) (-2530 (($ $ $) 116 T ELT)) (-2856 (($ $ $) 117 T ELT)) (-3939 (($ $) 112 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2059 (($ |#1| |#1|) 81 T ELT) (($ |#1|) 79 T ELT) (($ (-347 (-484))) 78 T ELT)) (-2057 ((|#1| $) 77 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (($ $) 113 T ELT)) (-3492 (($ $) 102 T ELT)) (-3633 (($ $) 91 T ELT)) (-3490 (($ $) 101 T ELT)) (-3632 (($ $) 92 T ELT)) (-3488 (($ $) 100 T ELT)) (-3631 (($ $) 93 T ELT)) (-2056 (((-85) $ |#1|) 72 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-484)) 82 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 111 T ELT)) (-3483 (($ $) 99 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3493 (($ $) 110 T ELT)) (-3481 (($ $) 98 T ELT)) (-3497 (($ $) 109 T ELT)) (-3485 (($ $) 97 T ELT)) (-3498 (($ $) 108 T ELT)) (-3486 (($ $) 96 T ELT)) (-3496 (($ $) 107 T ELT)) (-3484 (($ $) 95 T ELT)) (-3494 (($ $) 106 T ELT)) (-3482 (($ $) 94 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 118 T ELT)) (-2566 (((-85) $ $) 120 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 119 T ELT)) (-2684 (((-85) $ $) 121 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ $) 114 T ELT) (($ $ (-347 (-484))) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-493 |#1|) (-113) (-13 (-344) (-1114))) (T -493)) -((-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2058 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2059 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) (-2056 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85))))) -(-13 (-389) (-757) (-1114) (-916) (-951 (-484)) (-10 -8 (-6 -3767) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2058 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1|)) (-15 -2059 ($ (-347 (-484)))) (-15 -2057 (|t#1| $)) (-15 -2482 (|t#1| $)) (-15 -2603 (|t#1| $)) (-15 -3184 ((-85) $)) (-15 -3185 ((-85) $)) (-15 -2056 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-245) . T) ((-389) . T) ((-430) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-484)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) . T) ((-1117) . T) ((-1128) . T)) -((-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 9 T ELT)) (-2062 (($ $) 11 T ELT)) (-2060 (((-85) $) 20 T ELT)) (-3464 (((-3 $ "failed") $) 16 T ELT)) (-2061 (((-85) $ $) 22 T ELT))) -(((-494 |#1|) (-10 -7 (-15 -2060 ((-85) |#1|)) (-15 -2061 ((-85) |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2063 ((-2 (|:| -1770 |#1|) (|:| -3979 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3464 ((-3 |#1| "failed") |#1|))) (-495)) (T -494)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-495) (-113)) (T -495)) -((-3463 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3979 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2062 (*1 *1 *1) (-4 *1 (-495))) (-2061 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-245) (-10 -8 (-15 -3463 ((-3 $ "failed") $ $)) (-15 -2063 ((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $)) (-15 -2062 ($ $)) (-15 -2061 ((-85) $ $)) (-15 -2060 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2065 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1089) (-584 |#2|)) 38 T ELT)) (-2067 (((-519 |#2|) |#2| (-1089)) 63 T ELT)) (-2066 (((-3 |#2| #1#) |#2| (-1089)) 156 T ELT)) (-2068 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2064 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) |#2|) 41 T ELT))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2064 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1089) |#2|)) (-15 -2065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1089) (-584 |#2|))) (-15 -2066 ((-3 |#2| #1#) |#2| (-1089))) (-15 -2067 ((-519 |#2|) |#2| (-1089))) (-15 -2068 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -496)) -((-2068 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-2065 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2064 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) -((-3968 (((-345 |#1|) |#1|) 17 T ELT)) (-3729 (((-345 |#1|) |#1|) 32 T ELT)) (-2070 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2069 (((-345 |#1|) |#1|) 59 T ELT))) -(((-497 |#1|) (-10 -7 (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3968 ((-345 |#1|) |#1|)) (-15 -2069 ((-345 |#1|) |#1|)) (-15 -2070 ((-3 |#1| "failed") |#1|))) (-483)) (T -497)) -((-2070 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3968 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) -((-3082 (((-1084 (-347 (-1084 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1084 |#2|)) 35 T ELT)) (-2073 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1084 |#2|)) 115 T ELT)) (-2071 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|)) 55 T ELT)) (-2072 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-347 (-1084 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1084 |#2|)) 114 T ELT)) (-2074 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|)) 116 T ELT)) (-2075 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3083 ((|#2| (-1084 (-347 (-1084 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3078 (((-1084 (-347 (-1084 |#2|))) (-1084 |#2|) (-551 |#2|)) 34 T ELT))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2071 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|))) (-15 -2071 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2072 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1084 |#2|))) (-15 -2072 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2073 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1084 |#2|))) (-15 -2073 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2074 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|))) (-15 -2074 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -3082 ((-1084 (-347 (-1084 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1084 |#2|))) (-15 -3083 (|#2| (-1084 (-347 (-1084 |#2|))) (-551 |#2|) |#2|)) (-15 -3078 ((-1084 (-347 (-1084 |#2|))) (-1084 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2075 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|))) (-15 -2075 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-120) (-581 (-484))) (-13 (-361 |#1|) (-27) (-1114)) (-1013)) (T -498)) -((-2075 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-347 (-1084 *4))) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-2075 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1084 *4)) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-584 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-1084 (-347 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) (-4 *7 (-1013)))) (-3083 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1084 (-347 (-1084 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3082 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-1084 (-347 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) (-4 *7 (-1013)))) (-2074 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1089))) (-5 *5 (-347 (-1084 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2074 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1089))) (-5 *5 (-1084 *2)) (-4 *2 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1084 *3)) (-4 *3 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2071 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2071 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) -((-2085 (((-484) (-484) (-695)) 87 T ELT)) (-2084 (((-484) (-484)) 85 T ELT)) (-2083 (((-484) (-484)) 82 T ELT)) (-2082 (((-484) (-484)) 89 T ELT)) (-2804 (((-484) (-484) (-484)) 67 T ELT)) (-2081 (((-484) (-484) (-484)) 64 T ELT)) (-2080 (((-347 (-484)) (-484)) 29 T ELT)) (-2079 (((-484) (-484)) 34 T ELT)) (-2078 (((-484) (-484)) 76 T ELT)) (-2801 (((-484) (-484)) 47 T ELT)) (-2077 (((-584 (-484)) (-484)) 81 T ELT)) (-2076 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2797 (((-347 (-484)) (-484)) 56 T ELT))) -(((-499) (-10 -7 (-15 -2797 ((-347 (-484)) (-484))) (-15 -2076 ((-484) (-484) (-484) (-484) (-484))) (-15 -2077 ((-584 (-484)) (-484))) (-15 -2801 ((-484) (-484))) (-15 -2078 ((-484) (-484))) (-15 -2079 ((-484) (-484))) (-15 -2080 ((-347 (-484)) (-484))) (-15 -2081 ((-484) (-484) (-484))) (-15 -2804 ((-484) (-484) (-484))) (-15 -2082 ((-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484))) (-15 -2085 ((-484) (-484) (-695))))) (T -499)) -((-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-695)) (-5 *1 (-499)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2077 (*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2076 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -((-2086 (((-2 (|:| |answer| |#4|) (|:| -2134 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2086 ((-2 (|:| |answer| |#4|) (|:| -2134 |#4|)) |#4| (-1 |#2| |#2|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -500)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2134 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7))))) -((-2086 (((-2 (|:| |answer| (-347 |#2|)) (|:| -2134 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-501 |#1| |#2|) (-10 -7 (-15 -2086 ((-2 (|:| |answer| (-347 |#2|)) (|:| -2134 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -501)) -((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| (-347 *6)) (|:| -2134 (-347 *6)) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-347 *6))))) -((-2089 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2087 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2088 (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2090 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089))) 200 T ELT)) (-2091 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1089)) 209 (|has| |#3| (-601 |#2|)) ELT))) -(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2087 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2088 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2089 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2090 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2091 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2011 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1089))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-120) (-581 (-484))) (-13 (-361 |#1|) (-27) (-1114)) (-1013)) (T -502)) -((-2091 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-2090 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) (-4 *2 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2089 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2088 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) -((-2092 (((-2 (|:| -2337 |#2|) (|:| |nconst| |#2|)) |#2| (-1089)) 64 T ELT)) (-2094 (((-3 |#2| #1="failed") |#2| (-1089) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1052)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT)) (-2093 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT))) -(((-503 |#1| |#2|) (-10 -7 (-15 -2092 ((-2 (|:| -2337 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-554 (-801 (-484)))) (IF (|has| |#1| (-797 (-484))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2093 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1089))) (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1052)) (-15 -2094 ((-3 |#2| #1#) |#2| (-1089) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-484)) (-389) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -503)) -((-2094 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-751 *2)) (-4 *2 (-1052)) (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *1 (-503 *5 *2)))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2093 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2092 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| -2337 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) -((-2097 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1="failed") (-347 |#2|) (-584 (-347 |#2|))) 41 T ELT)) (-3809 (((-519 (-347 |#2|)) (-347 |#2|)) 28 T ELT)) (-2095 (((-3 (-347 |#2|) #1#) (-347 |#2|)) 17 T ELT)) (-2096 (((-3 (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|)) 48 T ELT))) -(((-504 |#1| |#2|) (-10 -7 (-15 -3809 ((-519 (-347 |#2|)) (-347 |#2|))) (-15 -2095 ((-3 (-347 |#2|) #1="failed") (-347 |#2|))) (-15 -2096 ((-3 (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|))) (-15 -2097 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-584 (-347 |#2|))))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -504)) -((-2097 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2096 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2135 (-347 *5)) (|:| |coeff| (-347 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5)))) (-2095 (*1 *2 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120) (-951 (-484)))) (-5 *1 (-504 *3 *4)))) (-3809 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-519 (-347 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5))))) -((-2098 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3257 (((-85) |#1|) 13 T ELT)) (-3253 (((-484) |#1|) 9 T ELT))) -(((-505 |#1|) (-10 -7 (-15 -3253 ((-484) |#1|)) (-15 -3257 ((-85) |#1|)) (-15 -2098 ((-3 (-484) "failed") |#1|))) (-951 (-484))) (T -505)) -((-2098 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2)))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-951 (-484))))) (-3253 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2))))) -((-2101 (((-3 (-2 (|:| |mainpart| (-347 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 (-858 |#1|))) (|:| |logand| (-347 (-858 |#1|))))))) #1="failed") (-347 (-858 |#1|)) (-1089) (-584 (-347 (-858 |#1|)))) 48 T ELT)) (-2099 (((-519 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-1089)) 28 T ELT)) (-2100 (((-3 (-347 (-858 |#1|)) #1#) (-347 (-858 |#1|)) (-1089)) 23 T ELT)) (-2102 (((-3 (-2 (|:| -2135 (-347 (-858 |#1|))) (|:| |coeff| (-347 (-858 |#1|)))) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))) 35 T ELT))) -(((-506 |#1|) (-10 -7 (-15 -2099 ((-519 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -2100 ((-3 (-347 (-858 |#1|)) #1="failed") (-347 (-858 |#1|)) (-1089))) (-15 -2101 ((-3 (-2 (|:| |mainpart| (-347 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 (-858 |#1|))) (|:| |logand| (-347 (-858 |#1|))))))) #1#) (-347 (-858 |#1|)) (-1089) (-584 (-347 (-858 |#1|))))) (-15 -2102 ((-3 (-2 (|:| -2135 (-347 (-858 |#1|))) (|:| |coeff| (-347 (-858 |#1|)))) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))))) (-13 (-495) (-951 (-484)) (-120))) (T -506)) -((-2102 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-2 (|:| -2135 (-347 (-858 *5))) (|:| |coeff| (-347 (-858 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5))))) (-2101 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 (-347 (-858 *6)))) (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-519 (-347 (-858 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5)))))) -((-2567 (((-85) $ $) 77 T ELT)) (-3186 (((-85) $) 49 T ELT)) (-2603 ((|#1| $) 39 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) 81 T ELT)) (-3489 (($ $) 142 T ELT)) (-3636 (($ $) 120 T ELT)) (-2482 ((|#1| $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL T ELT)) (-3487 (($ $) 144 T ELT)) (-3635 (($ $) 116 T ELT)) (-3491 (($ $) 146 T ELT)) (-3634 (($ $) 124 T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) 95 T ELT)) (-3154 (((-484) $) 97 T ELT)) (-3464 (((-3 $ #1#) $) 80 T ELT)) (-2058 (($ |#1| |#1|) 35 T ELT)) (-3184 (((-85) $) 44 T ELT)) (-3624 (($) 106 T ELT)) (-2409 (((-85) $) 56 T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-3185 (((-85) $) 46 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3939 (($ $) 108 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2059 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-347 (-484))) 94 T ELT)) (-2057 ((|#1| $) 36 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) 82 T ELT)) (-3940 (($ $) 110 T ELT)) (-3492 (($ $) 150 T ELT)) (-3633 (($ $) 122 T ELT)) (-3490 (($ $) 152 T ELT)) (-3632 (($ $) 126 T ELT)) (-3488 (($ $) 148 T ELT)) (-3631 (($ $) 118 T ELT)) (-2056 (((-85) $ |#1|) 42 T ELT)) (-3943 (((-773) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3124 (((-695)) 104 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 164 T ELT)) (-3483 (($ $) 132 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3493 (($ $) 162 T ELT)) (-3481 (($ $) 128 T ELT)) (-3497 (($ $) 160 T ELT)) (-3485 (($ $) 140 T ELT)) (-3498 (($ $) 158 T ELT)) (-3486 (($ $) 138 T ELT)) (-3496 (($ $) 156 T ELT)) (-3484 (($ $) 134 T ELT)) (-3494 (($ $) 154 T ELT)) (-3482 (($ $) 130 T ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 50 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 48 T ELT)) (-3834 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3836 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-347 (-484))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-507 |#1|) (-493 |#1|) (-13 (-344) (-1114))) (T -507)) -NIL -((-2703 (((-3 (-584 (-1084 (-484))) "failed") (-584 (-1084 (-484))) (-1084 (-484))) 27 T ELT))) -(((-508) (-10 -7 (-15 -2703 ((-3 (-584 (-1084 (-484))) "failed") (-584 (-1084 (-484))) (-1084 (-484)))))) (T -508)) -((-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 (-484)))) (-5 *3 (-1084 (-484))) (-5 *1 (-508))))) -((-2103 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1089)) 19 T ELT)) (-2106 (((-584 (-551 |#2|)) (-584 |#2|) (-1089)) 23 T ELT)) (-3232 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2107 ((|#2| |#2| (-1089)) 59 (|has| |#1| (-495)) ELT)) (-2108 ((|#2| |#2| (-1089)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-389))) ELT)) (-2105 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1089)) 25 T ELT)) (-2104 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2109 (((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1089))) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-389)) (|has| |#1| (-797 (-484)))) ELT))) -(((-509 |#1| |#2|) (-10 -7 (-15 -2103 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1089))) (-15 -2104 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2105 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1089))) (-15 -3232 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2106 ((-584 (-551 |#2|)) (-584 |#2|) (-1089))) (IF (|has| |#1| (-495)) (-15 -2107 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-389)) (IF (|has| |#2| (-239)) (PROGN (-15 -2108 (|#2| |#2| (-1089))) (IF (|has| |#1| (-554 (-801 (-484)))) (IF (|has| |#1| (-797 (-484))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1089))) (-15 -2109 ((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-361 |#1|)) (T -509)) -((-2109 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-361 *7)) (-5 *4 (-1089)) (-4 *7 (-554 (-801 (-484)))) (-4 *7 (-389)) (-4 *7 (-797 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-389)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-361 *4)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-361 *4)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1089)) (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-509 *5 *6)))) (-3232 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2105 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1089)) (-5 *2 (-551 *6)) (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1013)) (-5 *2 (-551 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-361 *4)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1089)) (-4 *5 (-361 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) -((-2112 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-347 |#2|))) 174 T ELT)) (-2118 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-584 (-347 |#2|))) 171 T ELT)) (-2119 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2110 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2117 (((-3 (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|)) 202 T ELT)) (-2113 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|)) 205 T ELT)) (-2121 (((-2 (|:| |ir| (-519 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2122 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-584 (-347 |#2|))) 178 T ELT)) (-2120 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2111 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-347 |#2|)) 210 T ELT))) -(((-510 |#1| |#2|) (-10 -7 (-15 -2110 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2111 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2112 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2113 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-347 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-347 |#2|)))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-584 (-347 |#2|)))) (-15 -2117 ((-3 (-2 (|:| -2135 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|))) (-15 -2118 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-584 (-347 |#2|)))) (-15 -2119 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2120 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3135 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2121 ((-2 (|:| |ir| (-519 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|))) (-15 -2122 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -510)) -((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |ir| (-519 (-347 *6))) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))) (-2120 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3135 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))) (-2119 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-311)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))) (-2118 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-347 *7))) (-4 *7 (-1154 *6)) (-5 *3 (-347 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2117 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -2135 (-347 *6)) (|:| |coeff| (-347 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3135 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3135 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2135 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2113 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2135 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-484) *6 *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3135 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) -((-2123 (((-3 |#2| "failed") |#2| (-1089) (-1089)) 10 T ELT))) -(((-511 |#1| |#2|) (-10 -7 (-15 -2123 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-1052) (-29 |#1|))) (T -511)) -((-2123 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-1052) (-29 *4)))))) -((-2554 (((-633 (-1137)) $ (-1137)) 27 T ELT)) (-2555 (((-633 (-488)) $ (-488)) 26 T ELT)) (-2553 (((-695) $ (-102)) 28 T ELT)) (-2556 (((-633 (-101)) $ (-101)) 25 T ELT)) (-1999 (((-633 (-1137)) $) 12 T ELT)) (-1995 (((-633 (-1135)) $) 8 T ELT)) (-1997 (((-633 (-1134)) $) 10 T ELT)) (-2000 (((-633 (-488)) $) 13 T ELT)) (-1996 (((-633 (-486)) $) 9 T ELT)) (-1998 (((-633 (-485)) $) 11 T ELT)) (-1994 (((-695) $ (-102)) 7 T ELT)) (-2001 (((-633 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-512) (-113)) (T -512)) -NIL -(-13 (-465) (-771)) -(((-147) . T) ((-465) . T) ((-771) . T)) -((-2554 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2555 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2553 (((-695) $ (-102)) NIL T ELT)) (-2556 (((-633 (-101)) $ (-101)) NIL T ELT)) (-1999 (((-633 (-1137)) $) NIL T ELT)) (-1995 (((-633 (-1135)) $) NIL T ELT)) (-1997 (((-633 (-1134)) $) NIL T ELT)) (-2000 (((-633 (-488)) $) NIL T ELT)) (-1996 (((-633 (-486)) $) NIL T ELT)) (-1998 (((-633 (-485)) $) NIL T ELT)) (-1994 (((-695) $ (-102)) NIL T ELT)) (-2001 (((-633 (-101)) $) NIL T ELT)) (-2557 (((-85) $) NIL T ELT)) (-2124 (($ (-335)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1698 (($ $) NIL T ELT))) -(((-513) (-13 (-512) (-553 (-773)) (-10 -8 (-15 -2124 ($ (-335))) (-15 -2124 ($ (-1072))) (-15 -2557 ((-85) $))))) (T -513)) -((-2124 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-513)))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3457 (($) 7 T CONST)) (-3240 (((-1072) $) NIL T ELT)) (-2127 (($) 6 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 15 T ELT)) (-2125 (($) 9 T CONST)) (-2126 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-514) (-13 (-1013) (-10 -8 (-15 -2127 ($) -3949) (-15 -3457 ($) -3949) (-15 -2126 ($) -3949) (-15 -2125 ($) -3949)))) (T -514)) -((-2127 (*1 *1) (-5 *1 (-514))) (-3457 (*1 *1) (-5 *1 (-514))) (-2126 (*1 *1) (-5 *1 (-514))) (-2125 (*1 *1) (-5 *1 (-514)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2128 (((-633 $) (-428)) 23 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2130 (($ (-1072)) 16 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 33 T ELT)) (-2129 (((-166 4 (-101)) $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-515) (-13 (-1013) (-10 -8 (-15 -2130 ($ (-1072))) (-15 -2129 ((-166 4 (-101)) $)) (-15 -2128 ((-633 $) (-428)))))) (T -515)) -((-2130 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-633 (-515))) (-5 *1 (-515))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-484)) 73 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2610 (($ (-1084 (-484)) (-484)) 79 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 64 T ELT)) (-2611 (($ $) 43 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3769 (((-695) $) 16 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2613 (((-484)) 37 T ELT)) (-2612 (((-484) $) 41 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3766 (($ $ (-484)) 24 T ELT)) (-3463 (((-3 $ #1#) $ $) 70 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) 17 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-2614 (((-1068 (-484)) $) 19 T ELT)) (-2890 (($ $) 26 T ELT)) (-3943 (((-773) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3124 (((-695)) 15 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-484) $ (-484)) 46 T ELT)) (-2659 (($) 44 T CONST)) (-2665 (($) 21 T CONST)) (-3055 (((-85) $ $) 51 T ELT)) (-3834 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3836 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-516 |#1| |#2|) (-780 |#1|) (-484) (-85)) (T -516)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 30 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 $ #1#) $) 95 T ELT)) (-3154 (($ $) 94 T ELT)) (-1790 (($ (-1178 $)) 93 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 47 T ELT)) (-2993 (($) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) 61 T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) 49 (|has| $ (-317)) ELT)) (-2010 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3130 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3442 (((-633 $) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 $) $ (-831)) NIL (|has| $ (-317)) ELT) (((-1084 $) $) 104 T ELT)) (-2009 (((-831) $) 67 T ELT)) (-1625 (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1624 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1626 (($ $ (-1084 $)) NIL (|has| $ (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL T CONST)) (-2399 (($ (-831)) 60 T ELT)) (-3928 (((-85) $) 87 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) 28 (|has| $ (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 54 T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3945 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3183 (((-1084 $)) 102 T ELT)) (-1672 (($) 66 T ELT)) (-1627 (($) 50 (|has| $ (-317)) ELT)) (-3222 (((-631 $) (-1178 $)) NIL T ELT) (((-1178 $) $) 91 T ELT)) (-3969 (((-484) $) 42 T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT)) (-2701 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3124 (((-695)) 51 T CONST)) (-1263 (((-85) $ $) 107 T ELT)) (-2011 (((-1178 $) (-831)) 97 T ELT) (((-1178 $)) 96 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) 31 T CONST)) (-2665 (($) 27 T CONST)) (-3925 (($ $ (-695)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-517 |#1|) (-13 (-298) (-279 $) (-554 (-484))) (-831)) (T -517)) -NIL -((-2131 (((-1184) (-1072)) 10 T ELT))) -(((-518) (-10 -7 (-15 -2131 ((-1184) (-1072))))) (T -518)) -((-2131 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 77 T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2135 ((|#1| $) 30 T ELT)) (-2133 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2136 (($ |#1| (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2134 (((-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $) 31 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2831 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1089)) 49 (|has| |#1| (-951 (-1089))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2132 (((-85) $) 35 T ELT)) (-3755 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1089)) 90 (|has| |#1| (-810 (-1089))) ELT)) (-3943 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-347 (-484)) $) 41 T ELT) (($ $ (-347 (-484))) NIL T ELT))) -(((-519 |#1|) (-13 (-655 (-347 (-484))) (-951 |#1|) (-10 -8 (-15 -2136 ($ |#1| (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2135 (|#1| $)) (-15 -2134 ((-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $)) (-15 -2133 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2132 ((-85) $)) (-15 -2831 ($ |#1| |#1|)) (-15 -3755 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1089))) (-15 -3755 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-951 (-1089))) (-15 -2831 ($ |#1| (-1089))) |%noBranch|))) (-311)) (T -519)) -((-2136 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *2)) (|:| |logand| (-1084 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) (-5 *1 (-519 *2)))) (-2135 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *3)) (|:| |logand| (-1084 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2831 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-3755 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-3755 (*1 *2 *1 *3) (-12 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) (-2831 (*1 *1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311))))) -((-3955 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT))) -(((-520 |#1| |#2|) (-10 -7 (-15 -3955 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3955 ((-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2135 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3955 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3955 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-311) (-311)) (T -520)) -((-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-520 *5 *2)))) (-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2135 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| -2135 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))) -((-3415 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3960 (((-584 |#2|) (-519 |#2|)) 44 T ELT)) (-2147 ((|#2| (-519 |#2|)) 50 T ELT))) -(((-521 |#1| |#2|) (-10 -7 (-15 -3415 ((-519 |#2|) (-519 |#2|))) (-15 -3960 ((-584 |#2|) (-519 |#2|))) (-15 -2147 (|#2| (-519 |#2|)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-29 |#1|) (-1114))) (T -521)) -((-2147 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 *5)) (-5 *1 (-521 *4 *5)))) (-3415 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-521 *3 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2139 (($ (-444) (-532)) 14 T ELT)) (-2137 (($ (-444) (-532) $) 16 T ELT)) (-2138 (($ (-444) (-532)) 15 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-1094)) 7 T ELT) (((-1094) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-522) (-13 (-1013) (-427 (-1094)) (-10 -8 (-15 -2139 ($ (-444) (-532))) (-15 -2138 ($ (-444) (-532))) (-15 -2137 ($ (-444) (-532) $))))) (T -522)) -((-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2137 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522))))) -((-2143 (((-85) |#1|) 16 T ELT)) (-2144 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2141 (((-2 (|:| -2693 |#1|) (|:| -2400 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2140 (((-85) |#1| (-695)) 19 T ELT)) (-2145 ((|#1| |#1|) 41 T ELT)) (-2142 ((|#1| |#1| (-695)) 44 T ELT))) -(((-523 |#1|) (-10 -7 (-15 -2140 ((-85) |#1| (-695))) (-15 -2141 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2141 ((-2 (|:| -2693 |#1|) (|:| -2400 (-695))) |#1|)) (-15 -2142 (|#1| |#1| (-695))) (-15 -2143 ((-85) |#1|)) (-15 -2144 ((-3 |#1| #1#) |#1|)) (-15 -2145 (|#1| |#1|))) (-483)) (T -523)) -((-2145 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2144 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2142 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2141 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2693 *3) (|:| -2400 (-695)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2141 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -((-2146 (((-1084 |#1|) (-831)) 44 T ELT))) -(((-524 |#1|) (-10 -7 (-15 -2146 ((-1084 |#1|) (-831)))) (-298)) (T -524)) -((-2146 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-298))))) -((-3415 (((-519 (-347 (-858 |#1|))) (-519 (-347 (-858 |#1|)))) 27 T ELT)) (-3809 (((-3 (-264 |#1|) (-584 (-264 |#1|))) (-347 (-858 |#1|)) (-1089)) 33 (|has| |#1| (-120)) ELT)) (-3960 (((-584 (-264 |#1|)) (-519 (-347 (-858 |#1|)))) 19 T ELT)) (-2148 (((-264 |#1|) (-347 (-858 |#1|)) (-1089)) 31 (|has| |#1| (-120)) ELT)) (-2147 (((-264 |#1|) (-519 (-347 (-858 |#1|)))) 21 T ELT))) -(((-525 |#1|) (-10 -7 (-15 -3415 ((-519 (-347 (-858 |#1|))) (-519 (-347 (-858 |#1|))))) (-15 -3960 ((-584 (-264 |#1|)) (-519 (-347 (-858 |#1|))))) (-15 -2147 ((-264 |#1|) (-519 (-347 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3809 ((-3 (-264 |#1|) (-584 (-264 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -2148 ((-264 |#1|) (-347 (-858 |#1|)) (-1089)))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-581 (-484)))) (T -525)) -((-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *5)) (-5 *1 (-525 *5)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-525 *5)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-519 (-347 (-858 *4)))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-525 *4)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-519 (-347 (-858 *4)))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 (-264 *4))) (-5 *1 (-525 *4)))) (-3415 (*1 *2 *2) (-12 (-5 *2 (-519 (-347 (-858 *3)))) (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-525 *3))))) -((-2150 (((-584 (-631 (-484))) (-584 (-831)) (-584 (-814 (-484)))) 80 T ELT) (((-584 (-631 (-484))) (-584 (-831))) 81 T ELT) (((-631 (-484)) (-584 (-831)) (-814 (-484))) 74 T ELT)) (-2149 (((-695) (-584 (-831))) 71 T ELT))) -(((-526) (-10 -7 (-15 -2149 ((-695) (-584 (-831)))) (-15 -2150 ((-631 (-484)) (-584 (-831)) (-814 (-484)))) (-15 -2150 ((-584 (-631 (-484))) (-584 (-831)))) (-15 -2150 ((-584 (-631 (-484))) (-584 (-831)) (-584 (-814 (-484))))))) (T -526)) -((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-484)))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-526)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-526))))) -((-3211 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2151 (((-85) |#5| (-584 |#5|)) 34 T ELT))) -(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3211 ((-584 |#5|) |#5| (-85))) (-15 -2151 ((-85) |#5| (-584 |#5|)))) (-13 (-257) (-120)) (-718) (-757) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527)) -((-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 (((-1048) $) 12 T ELT)) (-3526 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-528) (-13 (-995) (-10 -8 (-15 -3526 ((-1048) $)) (-15 -3525 ((-1048) $))))) (T -528)) -((-3526 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))) -((-3529 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3529 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|)) (T -529)) -((-3529 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3529 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 71 T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2182 (($ $) 109 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2180 (((-773) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-940 (-751 (-484))) (-1089) |#1| (-347 (-484))) 232 T ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3769 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3774 (($ $ (-831)) 83 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3934 (((-85) $) 26 T ELT)) (-2892 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2186 (($ (-940 (-751 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3809 (($ $) 120 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2183 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2181 (($ $ $) 116 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2184 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2185 (((-940 (-751 (-484))) $) 14 T ELT)) (-3766 (($ $ (-484)) 47 T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3797 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3755 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3945 (((-484) $) NIL T ELT)) (-2890 (($ $) 48 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3674 ((|#1| $ (-484)) 61 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 39 T CONST)) (-3770 ((|#1| $) NIL T ELT)) (-2161 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2173 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2163 (($ $) 189 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2175 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2159 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2171 (($ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2178 (($ $ (-347 (-484))) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2179 (($ $ |#1|) 128 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2176 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2177 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2158 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2170 (($ $) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2160 (($ $) 193 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2172 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2162 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2174 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2155 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2167 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2157 (($ $) 197 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2169 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2153 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2165 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2152 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2164 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2154 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2166 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2156 (($ $) 199 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2168 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3767 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 40 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3055 (((-85) $ $) 73 T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3836 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-530 |#1|) (-13 (-1157 |#1| (-484)) (-10 -8 (-15 -2186 ($ (-940 (-751 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2185 ((-940 (-751 (-484))) $)) (-15 -2184 ((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3815 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3934 ((-85) $)) (-15 -3812 ($ (-1 |#1| (-484)) $)) (-15 -2183 ((-3 $ "failed") $ $ (-85))) (-15 -2182 ($ $)) (-15 -2181 ($ $ $)) (-15 -2180 ((-773) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-940 (-751 (-484))) (-1089) |#1| (-347 (-484)))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $)) (-15 -2179 ($ $ |#1|)) (-15 -2178 ($ $ (-347 (-484)))) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $))) |%noBranch|))) (-962)) (T -530)) -((-3934 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2186 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-530 *4)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-530 *3)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-530 *3)))) (-2183 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2182 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))) (-2180 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-484)))) (-5 *5 (-1089)) (-5 *7 (-347 (-484))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-530 *6)))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 62 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3815 (($ (-1068 |#1|)) 9 T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) 44 T ELT)) (-2891 (((-85) $) 56 T ELT)) (-3769 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-1068 |#1|) $) 25 T ELT)) (-3124 (((-695)) 55 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 10 T CONST)) (-2665 (($) 14 T CONST)) (-3055 (((-85) $ $) 24 T ELT)) (-3834 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3836 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT))) -(((-531 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3814 ((-1068 |#1|) $)) (-15 -3815 ($ (-1068 |#1|))) (-15 -2891 ((-85) $)) (-15 -3769 ((-695) $)) (-15 -3769 ((-695) $ (-695))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-962)) (T -531)) -((-3814 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-962))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2189 (($) 8 T CONST)) (-2190 (($) 7 T CONST)) (-2187 (($ $ (-584 $)) 16 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2191 (($) 6 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-1094)) 15 T ELT) (((-1094) $) 10 T ELT)) (-2188 (($) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-532) (-13 (-1013) (-427 (-1094)) (-10 -8 (-15 -2191 ($) -3949) (-15 -2190 ($) -3949) (-15 -2189 ($) -3949) (-15 -2188 ($) -3949) (-15 -2187 ($ $ (-584 $)))))) (T -532)) -((-2191 (*1 *1) (-5 *1 (-532))) (-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1) (-5 *1 (-532))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-532))) (-5 *1 (-532))))) -((-3955 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT))) -(((-533 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3955 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1128) (-1128)) (T -533)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))) -((-3955 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)) 20 T ELT) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT))) -(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3955 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|))) (-15 -3955 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -534)) -((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8))))) -((-2196 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1089))) 57 T ELT)) (-2195 (((-142 |#2|) |#3|) 122 T ELT)) (-2192 ((|#3| (-142 |#2|)) 46 T ELT)) (-2193 ((|#2| |#3|) 21 T ELT)) (-2194 ((|#3| |#2|) 35 T ELT))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2192 (|#3| (-142 |#2|))) (-15 -2193 (|#2| |#3|)) (-15 -2194 (|#3| |#2|)) (-15 -2195 ((-142 |#2|) |#3|)) (-15 -2196 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1089))))) (-495) (-13 (-361 |#1|) (-916) (-1114)) (-13 (-361 (-142 |#1|)) (-916) (-1114))) (T -535)) -((-2196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1089))) (-4 *2 (-13 (-361 (-142 *5)) (-916) (-1114))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-916) (-1114))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-916) (-1114))))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *5 *2))))) -((-3707 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3454 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3453 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3452 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3527 (((-1068 |#1|) $) 20 T ELT)) (-3943 (((-773) $) 25 T ELT))) -(((-536 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3955 ($ (-1 |#1| |#1|) $)) (-15 -3453 ($ (-1 (-85) |#1|) $)) (-15 -3452 ($ (-1 (-85) |#1|) $)) (-15 -3707 ($ (-1 (-85) |#1|) $)) (-15 -3454 ($ (-1 |#1| |#1|) |#1|)) (-15 -3527 ((-1068 |#1|) $)))) (-1128)) (T -536)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3452 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3707 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3832 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3830 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3834 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-537 |#1| |#2|) (-1177 |#1|) (-1128) (-484)) (T -537)) -NIL -((-2197 (((-1184) $ |#2| |#2|) 35 T ELT)) (-2199 ((|#2| $) 23 T ELT)) (-2200 ((|#2| $) 21 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3955 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3798 ((|#3| $) 26 T ELT)) (-2198 (($ $ |#3|) 33 T ELT)) (-2201 (((-85) |#3| $) 17 T ELT)) (-2204 (((-584 |#3|) $) 15 T ELT)) (-3797 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2197 ((-1184) |#1| |#2| |#2|)) (-15 -2198 (|#1| |#1| |#3|)) (-15 -3798 (|#3| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 ((-85) |#3| |#1|)) (-15 -2204 ((-584 |#3|) |#1|)) (-15 -3797 (|#3| |#1| |#2|)) (-15 -3797 (|#3| |#1| |#2| |#3|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3955 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1013) (-1128)) (T -538)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2197 (((-1184) $ |#1| |#1|) 44 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-1574 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) 55 T ELT)) (-2888 (((-584 |#2|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) 47 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#2|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 ((|#1| $) 48 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2202 (((-584 |#1|) $) 50 T ELT)) (-2203 (((-85) |#1| $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3798 ((|#2| $) 46 (|has| |#1| (-757)) ELT)) (-2198 (($ $ |#2|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-539 |#1| |#2|) (-113) (-1013) (-1128)) (T -539)) -((-2204 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *4)))) (-2203 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *3)))) (-2201 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-757)) (-4 *2 (-1128)))) (-2198 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-2197 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-1184))))) -(-13 (-426 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2204 ((-584 |t#2|) $)) (-15 -2203 ((-85) |t#1| $)) (-15 -2202 ((-584 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -3992)) (-15 -2201 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2200 (|t#1| $)) (-15 -2199 (|t#1| $)) (-15 -3798 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3993)) (PROGN (-15 -2198 ($ $ |t#2|)) (-15 -2197 ((-1184) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-426 |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 15 T ELT) (($ (-584 (-1129))) 14 T ELT)) (-2205 (((-584 (-1129)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-540) (-13 (-995) (-553 (-1129)) (-10 -8 (-15 -3943 ($ (-584 (-1129)))) (-15 -2205 ((-584 (-1129)) $))))) (T -540)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3221 (((-1178 (-631 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 (-631 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1727 (((-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3721 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1786 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2406 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1790 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3464 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-3107 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1785 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3797 ((|#1| $ (-484)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3222 (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3969 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1890 (((-584 (-858 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-584 (-858 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3943 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2544 (($ (-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3943 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541)) -((-3943 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-542) (-13 (-1013) (-427 (-101)))) (T -542)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2207 (($) 10 T CONST)) (-2229 (($) 8 T CONST)) (-2206 (($) 11 T CONST)) (-2225 (($) 9 T CONST)) (-2222 (($) 12 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-543) (-13 (-1013) (-605) (-10 -8 (-15 -2229 ($) -3949) (-15 -2225 ($) -3949) (-15 -2207 ($) -3949) (-15 -2206 ($) -3949) (-15 -2222 ($) -3949)))) (T -543)) -((-2229 (*1 *1) (-5 *1 (-543))) (-2225 (*1 *1) (-5 *1 (-543))) (-2207 (*1 *1) (-5 *1 (-543))) (-2206 (*1 *1) (-5 *1 (-543))) (-2222 (*1 *1) (-5 *1 (-543)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2218 (($) 11 T CONST)) (-2212 (($) 17 T CONST)) (-2208 (($) 21 T CONST)) (-2210 (($) 19 T CONST)) (-2215 (($) 14 T CONST)) (-2209 (($) 20 T CONST)) (-2217 (($) 12 T CONST)) (-2216 (($) 13 T CONST)) (-2211 (($) 18 T CONST)) (-2214 (($) 15 T CONST)) (-2213 (($) 16 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-544) (-13 (-1013) (-553 (-101)) (-10 -8 (-15 -2218 ($) -3949) (-15 -2217 ($) -3949) (-15 -2216 ($) -3949) (-15 -2215 ($) -3949) (-15 -2214 ($) -3949) (-15 -2213 ($) -3949) (-15 -2212 ($) -3949) (-15 -2211 ($) -3949) (-15 -2210 ($) -3949) (-15 -2209 ($) -3949) (-15 -2208 ($) -3949)))) (T -544)) -((-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))) (-2209 (*1 *1) (-5 *1 (-544))) (-2208 (*1 *1) (-5 *1 (-544)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2220 (($) 13 T CONST)) (-2219 (($) 14 T CONST)) (-2226 (($) 11 T CONST)) (-2229 (($) 8 T CONST)) (-2227 (($) 10 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-545) (-13 (-1013) (-605) (-10 -8 (-15 -2229 ($) -3949) (-15 -2228 ($) -3949) (-15 -2227 ($) -3949) (-15 -2226 ($) -3949) (-15 -2225 ($) -3949) (-15 -2220 ($) -3949) (-15 -2219 ($) -3949)))) (T -545)) -((-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2224 (($) 13 T CONST)) (-2221 (($) 16 T CONST)) (-2226 (($) 11 T CONST)) (-2229 (($) 8 T CONST)) (-2227 (($) 10 T CONST)) (-2228 (($) 9 T CONST)) (-2223 (($) 14 T CONST)) (-2225 (($) 12 T CONST)) (-2222 (($) 15 T CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-546) (-13 (-1013) (-605) (-10 -8 (-15 -2229 ($) -3949) (-15 -2228 ($) -3949) (-15 -2227 ($) -3949) (-15 -2226 ($) -3949) (-15 -2225 ($) -3949) (-15 -2224 ($) -3949) (-15 -2223 ($) -3949) (-15 -2222 ($) -3949) (-15 -2221 ($) -3949)))) (T -546)) -((-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))) (-2222 (*1 *1) (-5 *1 (-546))) (-2221 (*1 *1) (-5 *1 (-546)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-547) (-13 (-1013) (-427 (-542)) (-427 (-101)))) (T -547)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1695 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) 40 T ELT)) (-3596 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2197 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ (-1072) |#1|) 50 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#1| #1="failed") (-1072) $) 53 T ELT)) (-3721 (($) NIL T CONST)) (-1699 (($ $ (-1072)) 25 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3402 (((-3 |#1| #1#) (-1072) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3403 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3839 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1696 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1574 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-1072)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2270 (($ $) 55 T ELT)) (-1700 (($ (-335)) 23 T ELT) (($ (-335) (-1072)) 22 T ELT)) (-3539 (((-335) $) 41 T ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (((-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2231 (((-584 (-1072)) $) 46 T ELT)) (-2232 (((-85) (-1072) $) NIL T ELT)) (-1697 (((-1072) $) 42 T ELT)) (-1272 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2202 (((-584 (-1072)) $) NIL T ELT)) (-2203 (((-85) (-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 ((|#1| $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 44 T ELT)) (-3797 ((|#1| $ (-1072) |#1|) NIL T ELT) ((|#1| $ (-1072)) 49 T ELT)) (-1464 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (((-695) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-695) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3943 (((-773) $) 21 T ELT)) (-1698 (($ $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-3954 (((-695) $) 48 (|has| $ (-6 -3992)) ELT))) -(((-548 |#1|) (-13 (-313 (-335) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) (-1106 (-1072) |#1|) (-10 -8 (-6 -3992) (-15 -2270 ($ $)))) (-1013)) (T -548)) -((-2270 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1013))))) -((-3243 (((-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2231 (((-584 |#2|) $) 20 T ELT)) (-2232 (((-85) |#2| $) 12 T ELT))) -(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2231 ((-584 |#2|) |#1|)) (-15 -2232 ((-85) |#2| |#1|)) (-15 -3243 ((-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|))) (-550 |#2| |#3|) (-1013) (-1013)) (T -549)) -NIL -((-2567 (((-85) $ $) 19 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3992)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2231 (((-584 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3943 (((-773) $) 17 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-550 |#1| |#2|) (-113) (-1013) (-1013)) (T -550)) -((-2232 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))) (-3402 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2230 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(-13 (-183 (-2 (|:| -3857 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2232 ((-85) |t#1| $)) (-15 -2231 ((-584 |t#1|) $)) (-15 -3402 ((-3 |t#2| "failed") |t#1| $)) (-15 -2230 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ((-124 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-426 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-453 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-13) . T) ((-1013) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2233 (((-3 (-1089) "failed") $) 46 T ELT)) (-1311 (((-1184) $ (-695)) 22 T ELT)) (-3416 (((-695) $) 20 T ELT)) (-3592 (((-86) $) 9 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2234 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1089)) 33 T ELT)) (-2632 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1089)) 13 T ELT)) (-2602 (((-695) $) 17 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (((-801 (-484)) $) 99 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 106 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) 92 (|has| |#1| (-554 (-473))) ELT)) (-3943 (((-773) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2235 (((-584 |#1|) $) 19 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 51 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 53 T ELT))) -(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3592 ((-86) $)) (-15 -2235 ((-584 |#1|) $)) (-15 -2602 ((-695) $)) (-15 -2234 ($ (-86) (-584 |#1|) (-695))) (-15 -2234 ($ (-1089))) (-15 -2233 ((-3 (-1089) "failed") $)) (-15 -2632 ((-85) $ (-86))) (-15 -2632 ((-85) $ (-1089))) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|))) (-1013)) (T -551)) -((-3592 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1013)) (-5 *1 (-551 *5)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2233 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013))))) -((-2236 (((-551 |#2|) |#1|) 17 T ELT)) (-2237 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT))) -(((-552 |#1| |#2|) (-10 -7 (-15 -2236 ((-551 |#2|) |#1|)) (-15 -2237 ((-3 |#1| "failed") (-551 |#2|)))) (-1013) (-1013)) (T -552)) -((-2237 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-552 *2 *4)))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -((-3943 ((|#1| $) 6 T ELT))) -(((-553 |#1|) (-113) (-1128)) (T -553)) -((-3943 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128))))) -(-13 (-10 -8 (-15 -3943 (|t#1| $)))) -((-3969 ((|#1| $) 6 T ELT))) -(((-554 |#1|) (-113) (-1128)) (T -554)) -((-3969 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1128))))) -(-13 (-10 -8 (-15 -3969 (|t#1| $)))) -((-2238 (((-3 (-1084 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)) 15 T ELT) (((-3 (-1084 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 16 T ELT))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2238 ((-3 (-1084 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|))) (-15 -2238 ((-3 (-1084 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -555)) -((-2238 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-1084 (-347 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-347 *6)))) (-2238 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-347 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-347 *5))))) -((-3943 (($ |#1|) 6 T ELT))) -(((-556 |#1|) (-113) (-1128)) (T -556)) -((-3943 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1128))))) -(-13 (-10 -8 (-15 -3943 ($ |t#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-2239 (($) 11 T CONST)) (-2854 (($) 13 T CONST)) (-3134 (((-695)) 36 T ELT)) (-2993 (($) NIL T ELT)) (-2560 (($ $ $) 25 T ELT)) (-2559 (($ $) 23 T ELT)) (-2009 (((-831) $) 43 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 42 T ELT)) (-2852 (($ $ $) 26 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2853 (($) 9 T CONST)) (-2851 (($ $ $) 27 T ELT)) (-3943 (((-773) $) 34 T ELT)) (-3563 (((-85) $ (|[\|\|]| -2853)) 20 T ELT) (((-85) $ (|[\|\|]| -2239)) 22 T ELT) (((-85) $ (|[\|\|]| -2854)) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 24 T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3055 (((-85) $ $) 16 T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-557) (-13 (-881) (-317) (-10 -8 (-15 -2239 ($) -3949) (-15 -3563 ((-85) $ (|[\|\|]| -2853))) (-15 -3563 ((-85) $ (|[\|\|]| -2239))) (-15 -3563 ((-85) $ (|[\|\|]| -2854)))))) (T -557)) -((-2239 (*1 *1) (-5 *1 (-557))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2239)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-557))))) -((-3969 (($ |#1|) 6 T ELT))) -(((-558 |#1|) (-113) (-1128)) (T -558)) -((-3969 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1128))))) -(-13 (-10 -8 (-15 -3969 ($ |t#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2997 ((|#1| $) 13 T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2996 ((|#3| $) 15 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3124 (((-695)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 12 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3946 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3946 ($ $ |#3|)) (-15 -3946 ($ |#1| |#3|)) (-15 -2997 (|#1| $)) (-15 -2996 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559)) -((-3946 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3946 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2996 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-560 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#2|)) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 47 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 48 T ELT))) -(((-561 |#1|) (-113) (-962)) (T -561)) -((-3943 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))) -(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3943 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2240 ((|#2| |#2| (-1089) (-1089)) 16 T ELT))) -(((-562 |#1| |#2|) (-10 -7 (-15 -2240 (|#2| |#2| (-1089) (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -562)) -((-2240 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-29 *4)))))) -((-2567 (((-85) $ $) 64 T ELT)) (-3186 (((-85) $) 58 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2241 ((|#1| $) 55 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3748 (((-2 (|:| -1760 $) (|:| -1759 (-347 |#2|))) (-347 |#2|)) 111 (|has| |#1| (-311)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) 27 T ELT)) (-3464 (((-3 $ #1#) $) 88 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3769 (((-484) $) 22 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) 40 T ELT)) (-2892 (($ |#1| (-484)) 24 T ELT)) (-3172 ((|#1| $) 57 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 101 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $ $) 93 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) 115 (|has| |#1| (-311)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 114 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3945 (((-484) $) 38 T ELT)) (-3969 (((-347 |#2|) $) 47 T ELT)) (-3943 (((-773) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3674 ((|#1| $ (-484)) 72 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 32 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 9 T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-3834 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-563 |#1| |#2|) (-13 (-184 |#2|) (-495) (-554 (-347 |#2|)) (-352 |#1|) (-951 |#2|) (-10 -8 (-15 -3934 ((-85) $)) (-15 -3945 ((-484) $)) (-15 -3769 ((-484) $)) (-15 -3956 ($ $)) (-15 -3172 (|#1| $)) (-15 -2241 (|#1| $)) (-15 -3674 (|#1| $ (-484))) (-15 -2892 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-257)) (-15 -3748 ((-2 (|:| -1760 $) (|:| -1759 (-347 |#2|))) (-347 |#2|)))) |%noBranch|))) (-495) (-1154 |#1|)) (T -563)) -((-3934 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3945 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3769 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3956 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-3172 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-2241 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -1760 (-563 *4 *5)) (|:| -1759 (-347 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-347 *5))))) -((-3679 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2242 ((|#6| |#6|) 48 T ELT))) -(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2242 (|#6| |#6|)) (-15 -3679 ((-584 |#6|) (-584 |#4|) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -564)) -((-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6))))) -((-2243 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2244 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1084 |#3|)))) "failed") |#3| (-584 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-584 (-2 (|:| |irr| |#4|) (|:| -2394 (-484)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT))) -(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2243 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2244 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1084 |#3|)))) "failed") |#3| (-584 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-584 (-2 (|:| |irr| |#4|) (|:| -2394 (-484)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-257) (-862 |#3| |#2| |#1|)) (T -565)) -((-2244 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1777 (-584 (-2 (|:| |irr| *10) (|:| -2394 (-484))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1084 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1084 *3))))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 (((-1048) $) 12 T ELT)) (-3526 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-566) (-13 (-995) (-10 -8 (-15 -3526 ((-1048) $)) (-15 -3525 ((-1048) $))))) (T -566)) -((-3526 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3931 (((-584 |#1|) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3933 (($ $) 77 T ELT)) (-3939 (((-607 |#1| |#2|) $) 60 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 81 T ELT)) (-2245 (((-584 (-248 |#2|)) $ $) 42 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3940 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) 66 T ELT) (((-1194 |#1| |#2|) $) NIL T ELT) (((-1199 |#1| |#2|) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 61 T CONST)) (-2246 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2247 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2664 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3055 (((-85) $ $) 62 T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-567 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -3940 ($ (-607 |#1| |#2|))) (-15 -3939 ((-607 |#1| |#2|) $)) (-15 -2664 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3943 ((-1194 |#1| |#2|) $)) (-15 -3943 ((-1199 |#1| |#2|) $)) (-15 -3933 ($ $)) (-15 -3931 ((-584 |#1|) $)) (-15 -2247 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2246 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2245 ((-584 (-248 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-347 (-484)))) (-831)) (T -567)) -((-3940 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-347 (-484))))) (-14 *4 (-831)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-347 (-484))))) (-14 *6 (-831)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2245 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))) -((-3679 (((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2248 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2252 (((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2251 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2250 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2249 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT))) -(((-568 |#1| |#2|) (-10 -7 (-15 -2248 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2249 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2250 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2251 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2252 ((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3679 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3679 ((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-389) (-584 (-1089))) (T -568)) -((-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))) (-2249 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-389)) (-14 *5 (-584 (-1089))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) -((-3592 (((-86) (-86)) 88 T ELT)) (-2256 ((|#2| |#2|) 28 T ELT)) (-2831 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1089)) 50 T ELT)) (-2254 ((|#2| |#2|) 27 T ELT)) (-2255 ((|#2| |#2|) 29 T ELT)) (-2253 (((-85) (-86)) 33 T ELT)) (-2258 ((|#2| |#2|) 24 T ELT)) (-2259 ((|#2| |#2|) 26 T ELT)) (-2257 ((|#2| |#2|) 25 T ELT))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2253 ((-85) (-86))) (-15 -3592 ((-86) (-86))) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2831 (|#2| |#2| (-1089))) (-15 -2831 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-361 |#1|) (-916) (-1114))) (T -569)) -((-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) (-5 *1 (-569 *4 *2)))) (-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-361 *3) (-916) (-1114))))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114)))))) -((-3489 (($ $) 38 T ELT)) (-3636 (($ $) 21 T ELT)) (-3487 (($ $) 37 T ELT)) (-3635 (($ $) 22 T ELT)) (-3491 (($ $) 36 T ELT)) (-3634 (($ $) 23 T ELT)) (-3624 (($) 48 T ELT)) (-3939 (($ $) 45 T ELT)) (-2256 (($ $) 17 T ELT)) (-2831 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)) (-3940 (($ $) 46 T ELT)) (-2254 (($ $) 15 T ELT)) (-2255 (($ $) 16 T ELT)) (-3492 (($ $) 35 T ELT)) (-3633 (($ $) 24 T ELT)) (-3490 (($ $) 34 T ELT)) (-3632 (($ $) 25 T ELT)) (-3488 (($ $) 33 T ELT)) (-3631 (($ $) 26 T ELT)) (-3495 (($ $) 44 T ELT)) (-3483 (($ $) 32 T ELT)) (-3493 (($ $) 43 T ELT)) (-3481 (($ $) 31 T ELT)) (-3497 (($ $) 42 T ELT)) (-3485 (($ $) 30 T ELT)) (-3498 (($ $) 41 T ELT)) (-3486 (($ $) 29 T ELT)) (-3496 (($ $) 40 T ELT)) (-3484 (($ $) 28 T ELT)) (-3494 (($ $) 39 T ELT)) (-3482 (($ $) 27 T ELT)) (-2258 (($ $) 19 T ELT)) (-2259 (($ $) 20 T ELT)) (-2257 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-570) (-113)) (T -570)) -((-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570))) (-2255 (*1 *1 *1) (-4 *1 (-570))) (-2254 (*1 *1 *1) (-4 *1 (-570)))) -(-13 (-872) (-1114) (-10 -8 (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-872) . T) ((-1114) . T) ((-1117) . T)) -((-2269 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2262 (((-584 (-206 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 90 T ELT)) (-2263 (((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2260 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-484)))) (-584 (-418 |#1| |#2|))) 136 T ELT)) (-2267 (((-584 (-418 |#1| |#2|)) (-774 |#1|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 105 T ELT)) (-2261 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-484)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2265 (((-1178 |#2|) (-418 |#1| |#2|) (-584 (-418 |#1| |#2|))) 70 T ELT)) (-2264 (((-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 47 T ELT)) (-2268 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2266 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2260 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-484)))) (-584 (-418 |#1| |#2|)))) (-15 -2261 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-484)))) (-584 (-206 |#1| |#2|)))) (-15 -2262 ((-584 (-206 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2263 ((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)) (-774 |#1|))) (-15 -2263 ((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-774 |#1|))) (-15 -2264 ((-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2265 ((-1178 |#2|) (-418 |#1| |#2|) (-584 (-418 |#1| |#2|)))) (-15 -2266 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2267 ((-584 (-418 |#1| |#2|)) (-774 |#1|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2269 ((-418 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1089)) (-389)) (T -571)) -((-2269 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-418 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2268 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))) (-2267 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))) (-2266 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-389)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1089))) (-5 *1 (-571 *5 *6)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-1178 *6)) (-5 *1 (-571 *5 *6)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-584 (-418 *3 *4))) (-14 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-571 *3 *4)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))) (-2263 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2261 (*1 *2 *3) (-12 (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-484))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-484))))) (-5 *1 (-571 *4 *5))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-2197 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3993)) ELT)) (-3785 (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089) (-51)) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 (-51) #1="failed") (-1072) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 (-51) #1#) (-1072) $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -3993)) ELT)) (-3111 (((-51) $ (-1072)) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2270 (($ $) NIL T ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-51) (-1013))) ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2271 (($ (-335)) 8 T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-2231 (((-584 (-1072)) $) NIL T ELT)) (-2232 (((-85) (-1072) $) NIL T ELT)) (-1272 (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-2202 (((-584 (-1072)) $) NIL T ELT)) (-2203 (((-85) (-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3798 (((-51) $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2198 (($ $ (-51)) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-248 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-584 (-248 (-51)))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-51) (-1013))) ELT)) (-2204 (((-584 (-51)) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 (((-51) $ (-1072)) NIL T ELT) (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089)) 14 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-695) (-51) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-51) (-1013))) ELT) (((-695) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-572) (-13 (-1106 (-1072) (-51)) (-241 (-1089) (-51)) (-10 -8 (-15 -2271 ($ (-335))) (-15 -2270 ($ $)) (-15 -3785 ((-51) $ (-1089) (-51)))))) (T -572)) -((-2271 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-572)))) (-2270 (*1 *1 *1) (-5 *1 (-572))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-572))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3221 (((-1178 (-631 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 (-631 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1727 (((-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3721 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1786 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2406 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1790 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3464 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-3107 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1785 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3797 ((|#1| $ (-484)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3222 (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3969 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1890 (((-584 (-858 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-584 (-858 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3943 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2544 (($ (-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3943 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573)) -((-3943 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))) -((-3946 (($ $ |#2|) 10 T ELT))) -(((-574 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3527 (($ $ $) 39 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 38 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-575 |#1|) (-113) (-146)) (T -575)) -((-3527 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) -(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3527 ($ $ $)) (IF (|has| |t#1| (-311)) (-15 -3946 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2273 (((-3 (-751 |#2|) #1="failed") |#2| (-248 |#2|) (-1072)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|))) 130 T ELT)) (-2272 (((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|))) 135 T ELT))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2273 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|)))) (-15 -2272 ((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|)))) (-15 -2273 ((-3 (-751 |#2|) #1#) |#2| (-248 |#2|) (-1072)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -576)) -((-2273 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1072)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2272 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-248 (-744 *3))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-751 *3))) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3))))) -((-2273 (((-3 (-751 (-347 (-858 |#1|))) #1="failed") (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))) (-1072)) 86 T ELT) (((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-751 (-858 |#1|)))) 35 T ELT)) (-2272 (((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 23 T ELT) (((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-744 (-858 |#1|)))) 43 T ELT))) -(((-577 |#1|) (-10 -7 (-15 -2273 ((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-751 (-858 |#1|))))) (-15 -2273 ((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -2272 ((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-744 (-858 |#1|))))) (-15 -2272 ((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -2273 ((-3 (-751 (-347 (-858 |#1|))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))) (-1072)))) (-389)) (T -577)) -((-2273 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 (-347 (-858 *6)))) (-5 *5 (-1072)) (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-744 (-347 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-3 (-751 (-347 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 11 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2850 (($ (-168 |#1|)) 12 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2850 ($ (-168 |#1|))))) (-584 (-1089))) (T -578)) -((-2850 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-578 *3))))) -((-2276 (((-3 (-1178 (-347 |#1|)) #1="failed") (-1178 |#2|) |#2|) 64 (-2559 (|has| |#1| (-311))) ELT) (((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|) 49 (|has| |#1| (-311)) ELT)) (-2274 (((-85) (-1178 |#2|)) 33 T ELT)) (-2275 (((-3 (-1178 |#1|) #1#) (-1178 |#2|)) 40 T ELT))) -(((-579 |#1| |#2|) (-10 -7 (-15 -2274 ((-85) (-1178 |#2|))) (-15 -2275 ((-3 (-1178 |#1|) #1="failed") (-1178 |#2|))) (IF (|has| |#1| (-311)) (-15 -2276 ((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|)) (-15 -2276 ((-3 (-1178 (-347 |#1|)) #1#) (-1178 |#2|) |#2|)))) (-495) (-13 (-962) (-581 |#1|))) (T -579)) -((-2276 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2559 (-4 *5 (-311))) (-4 *5 (-495)) (-5 *2 (-1178 (-347 *5))) (-5 *1 (-579 *5 *4)))) (-2276 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-579 *5 *4)))) (-2275 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-579 *4 *5)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3771 (((-584 (-451 |#1| (-578 |#2|))) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-2892 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2277 (($ (-584 |#1|)) 25 T ELT)) (-1982 (((-578 |#2|) $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3908 (((-107)) 16 T ELT)) (-3222 (((-1178 |#1|) $) 44 T ELT)) (-3969 (($ (-584 (-451 |#1| (-578 |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 20 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-580 |#1| |#2|) (-13 (-1186 |#1|) (-556 (-578 |#2|)) (-447 |#1| (-578 |#2|)) (-10 -8 (-15 -2277 ($ (-584 |#1|))) (-15 -3222 ((-1178 |#1|) $)))) (-311) (-584 (-1089))) (T -580)) -((-2277 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1089))))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311)) (-14 *4 (-584 (-1089)))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2278 (((-631 |#1|) (-631 $)) 35 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 34 T ELT)) (-2279 (((-631 |#1|) (-1178 $)) 37 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 36 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-581 |#1|) (-113) (-962)) (T -581)) -((-2279 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2279 (*1 *2 *3 *1) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1178 *4)))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 *5))))))) -(-13 (-591 |t#1|) (-10 -8 (-15 -2279 ((-631 |t#1|) (-1178 $))) (-15 -2279 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-1178 $) $)) (-15 -2278 ((-631 |t#1|) (-631 $))) (-15 -2278 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-631 $) (-1178 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2280 (($ (-584 |#1|)) 23 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3908 (((-107)) 13 T ELT)) (-3222 (((-1178 |#1|) $) 42 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 18 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-582 |#1| |#2|) (-13 (-1186 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2280 ($ (-584 |#1|))) (-15 -3222 ((-1178 |#1|) $)))) (-311) (-584 (-1089))) (T -582)) -((-2280 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1089))))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311)) (-14 *4 (-584 (-1089)))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-583 |#1|) (-113) (-1025)) (T -583)) -NIL -(-13 (-589 |t#1|) (-964 |t#1|)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) NIL T ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 68 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3439 (((-85) $ (-695)) NIL T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 26 (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 24 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-2283 (($ $ $) 74 (|has| |#1| (-1013)) ELT)) (-2282 (($ $ $) 75 (|has| |#1| (-1013)) ELT)) (-2281 (($ $ $) 79 (|has| |#1| (-1013)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) 31 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 32 T ELT)) (-3796 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2367 (($ $) 63 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 73 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3403 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3440 (((-85) $) NIL T ELT)) (-3416 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2285 (((-85) $) 9 T ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2286 (($) 7 T CONST)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-2199 (((-484) $) 34 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3515 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 61 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3531 (($ |#1|) NIL T ELT)) (-3713 (((-85) $ (-695)) NIL T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) 59 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3606 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2303 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3441 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 15 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) 20 T ELT)) (-3562 (($) 19 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 78 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2304 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-3789 (($ $) NIL T ELT)) (-3787 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) NIL T ELT)) (-3791 (($ $) 40 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 36 T ELT)) (-3969 (((-473) $) 87 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 29 T ELT)) (-3458 (($ |#1| $) 10 T ELT)) (-3788 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3799 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3943 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2284 (($ $ $) 11 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 13 (|has| $ (-6 -3992)) ELT))) -(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2286 ($) -3949) (-15 -2285 ((-85) $)) (-15 -3458 ($ |#1| $)) (-15 -2284 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2281 ($ $ $))) |%noBranch|))) (-1128)) (T -584)) -((-2286 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1128)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) -((-3838 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3839 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3955 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3838 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3839 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3955 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1128) (-1128)) (T -585)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))) -((-3419 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3419 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3419 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3419 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3419 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3419 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3419 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1128)) (T -586)) -((-3419 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3419 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-586 *5 *6)))) (-3419 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) -((-3955 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT))) -(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1128) (-1128) (-1128)) (T -587)) -((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 11 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-588 |#1|) (-13 (-995) (-553 |#1|)) (-1013)) (T -588)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-589 |#1|) (-113) (-1025)) (T -589)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1025))))) -(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($ |#1| |#1| $) 45 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2367 (($ $) 47 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) 58 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 9 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 49 T ELT)) (-3606 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 23 T ELT)) (-3562 (($) 29 T ELT)) (-2288 (((-85) $) 56 T ELT)) (-2366 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 69 T ELT)) (-1464 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 65 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 20 T ELT)) (-3969 (((-473) $) 36 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3943 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 17 (|has| $ (-6 -3992)) ELT))) -(((-590 |#1|) (-13 (-635 |#1|) (-10 -8 (-6 -3992) (-15 -2288 ((-85) $)) (-15 -2287 ($ |#1| |#1| $)))) (-1013)) (T -590)) -((-2288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1013)))) (-2287 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1013))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-591 |#1|) (-113) (-970)) (T -591)) -NIL -(-13 (-21) (-589 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695) $) 17 T ELT)) (-2294 (($ $ |#1|) 68 T ELT)) (-2296 (($ $) 39 T ELT)) (-2297 (($ $) 37 T ELT)) (-3155 (((-3 |#1| "failed") $) 60 T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2292 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3530 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-484)) 55 T ELT)) (-2298 ((|#1| $ (-484)) 35 T ELT)) (-2299 ((|#2| $ (-484)) 34 T ELT)) (-2289 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2290 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2295 (($) 13 T ELT)) (-2301 (($ |#1| |#2|) 24 T ELT)) (-2300 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|)))) 25 T ELT)) (-2302 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|))) $) 14 T ELT)) (-2293 (($ |#1| $) 69 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2291 (((-85) $ $) 74 T ELT)) (-3943 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 27 T ELT))) -(((-592 |#1| |#2| |#3|) (-13 (-1013) (-951 |#1|) (-10 -8 (-15 -3530 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-484))) (-15 -2302 ((-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|))) $)) (-15 -2301 ($ |#1| |#2|)) (-15 -2300 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3940 |#2|))))) (-15 -2299 (|#2| $ (-484))) (-15 -2298 (|#1| $ (-484))) (-15 -2297 ($ $)) (-15 -2296 ($ $)) (-15 -3134 ((-695) $)) (-15 -2295 ($)) (-15 -2294 ($ $ |#1|)) (-15 -2293 ($ |#1| $)) (-15 -2292 ($ |#1| |#2| $)) (-15 -2292 ($ $ $)) (-15 -2291 ((-85) $ $)) (-15 -2290 ($ (-1 |#2| |#2|) $)) (-15 -2289 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -592)) -((-3530 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-484)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2301 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2300 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2295 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2200 (((-484) $) 30 T ELT)) (-2303 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) 12 T ELT)) (-2203 (((-85) (-484) $) 17 T ELT)) (-3799 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT))) -(((-593 |#1| |#2|) (-10 -7 (-15 -2303 (|#1| |#1| |#1| (-484))) (-15 -2303 (|#1| |#2| |#1| (-484))) (-15 -3799 (|#1| (-584 |#1|))) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3799 (|#1| |#2| |#1|)) (-15 -3799 (|#1| |#1| |#2|)) (-15 -2200 ((-484) |#1|)) (-15 -2202 ((-584 (-484)) |#1|)) (-15 -2203 ((-85) (-484) |#1|))) (-594 |#2|) (-1128)) (T -593)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-594 |#1|) (-113) (-1128)) (T -594)) -((-3611 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3799 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3955 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2303 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-2303 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3993)) (-4 *1 (-594 *2)) (-4 *2 (-1128))))) -(-13 (-539 (-484) |t#1|) (-124 |t#1|) (-241 (-1145 (-484)) $) (-10 -8 (-15 -3611 ($ (-695) |t#1|)) (-15 -3799 ($ $ |t#1|)) (-15 -3799 ($ |t#1| $)) (-15 -3799 ($ $ $)) (-15 -3799 ($ (-584 $))) (-15 -3955 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2304 ($ $ (-484))) (-15 -2304 ($ $ (-1145 (-484)))) (-15 -2303 ($ |t#1| $ (-484))) (-15 -2303 ($ $ $ (-484))) (IF (|has| $ (-6 -3993)) (-15 -3785 (|t#1| $ (-1145 (-484)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 15 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| |#1| (-715)) ELT)) (-3721 (($) NIL T CONST)) (-3184 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2997 ((|#1| $) 23 T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3240 (((-1072) $) 48 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2996 ((|#3| $) 24 T ELT)) (-3943 (((-773) $) 43 T ELT)) (-1263 (((-85) $ $) 22 T ELT)) (-3380 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2659 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2684 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3946 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3834 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3946 ($ $ |#3|)) (-15 -3946 ($ |#1| |#3|)) (-15 -2997 (|#1| $)) (-15 -2996 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595)) -((-3946 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3946 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2996 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))) -((-3570 (((-3 |#2| #1="failed") |#3| |#2| (-1089) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) #1#) |#3| |#2| (-1089)) 44 T ELT))) -(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3570 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) #1="failed") |#3| |#2| (-1089))) (-15 -3570 ((-3 |#2| #1#) |#3| |#2| (-1089) |#2| (-584 |#2|)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872)) (-601 |#2|)) (T -596)) -((-3570 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2307 (($ $ $) 28 (|has| |#1| (-311)) ELT)) (-2308 (($ $ (-695)) 31 (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3797 ((|#1| $ |#1|) 24 T ELT)) (-2309 (($ $ $) 33 (|has| |#1| (-311)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 8 T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2307 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2308 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3797 ((|#1| $ |#1|) NIL T ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-598 |#1|) (-601 |#1|) (-190)) (T -598)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2305 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2307 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2308 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3797 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2519 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3755 ($ $))))) (T -599)) -NIL -((-2305 (($ $) 29 T ELT)) (-2519 (($ $) 27 T ELT)) (-2668 (($) 13 T ELT))) -(((-600 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -2668 (|#1|))) (-601 |#2|) (-962)) (T -600)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2305 (($ $) 94 (|has| |#1| (-311)) ELT)) (-2307 (($ $ $) 96 (|has| |#1| (-311)) ELT)) (-2308 (($ $ (-695)) 95 (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2535 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ #1="failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #2="failed") $) 86 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #2#) $) 83 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #2#) $) 80 T ELT)) (-3154 (((-484) $) 85 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 82 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 81 T ELT)) (-3956 (($ $) 75 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3500 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2892 (($ |#1| (-695)) 73 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 68 (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 69 (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) 77 T ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) 62 (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) 76 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ #1#) $ |#1|) 70 (|has| |#1| (-495)) ELT)) (-3797 ((|#1| $ |#1|) 99 T ELT)) (-2309 (($ $ $) 93 (|has| |#1| (-311)) ELT)) (-3945 (((-695) $) 78 T ELT)) (-2816 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 84 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 79 T ELT)) (-3814 (((-584 |#1|) $) 72 T ELT)) (-3674 ((|#1| $ (-695)) 74 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2544 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2519 (($ $) 97 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($) 98 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) -(((-601 |#1|) (-113) (-962)) (T -601)) -((-2668 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2519 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2308 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2668 ($)) (-15 -2519 ($ $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -2307 ($ $ $)) (-15 -2308 ($ $ (-695))) (-15 -2305 ($ $)) (-15 -2309 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-352 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-762 |#1|) . T)) -((-2306 (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3729 (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT))) -(((-602 |#1| |#2|) (-10 -7 (-15 -3729 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3729 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)))) (-15 -2306 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))))) |%noBranch|)) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -602)) -((-2306 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-347 *5))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-347 *5))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-598 (-347 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-347 *6)))))) -((-2307 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2308 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-603 |#1| |#2|) (-10 -7 (-15 -2307 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2308 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -603)) -((-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2308 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2307 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4))))) -((-2310 (($ $ $) 9 T ELT))) -(((-604 |#1|) (-10 -7 (-15 -2310 (|#1| |#1| |#1|))) (-605)) (T -604)) -NIL -((-2312 (($ $) 8 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-2311 (($ $ $) 7 T ELT))) -(((-605) (-113)) (T -605)) -((-2312 (*1 *1 *1) (-4 *1 (-605))) (-2311 (*1 *1 *1 *1) (-4 *1 (-605))) (-2310 (*1 *1 *1 *1) (-4 *1 (-605)))) -(-13 (-1128) (-10 -8 (-15 -2312 ($ $)) (-15 -2311 ($ $ $)) (-15 -2310 ($ $ $)))) -(((-13) . T) ((-1128) . T)) -((-2313 (((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|)) 33 T ELT))) -(((-606 |#1|) (-10 -7 (-15 -2313 ((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|)))) (-822)) (T -606)) -((-2313 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3931 (((-584 |#1|) $) 85 T ELT)) (-3944 (($ $ (-695)) 95 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3936 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 50 T ELT)) (-3155 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3154 (((-615 |#1|) $) NIL T ELT)) (-3956 (($ $) 94 T ELT)) (-2419 (((-695) $) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3933 (($ $) 90 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3937 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 49 T ELT)) (-1747 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-615 |#1|) $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3765 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3945 (((-695) $) 92 T ELT)) (-3527 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1194 |#1| |#2|) $) 60 T ELT) (((-1203 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3951 ((|#2| (-1203 |#1| |#2|) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 23 T CONST)) (-2664 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3942 (((-3 $ #1#) (-1194 |#1| |#2|)) 62 T ELT)) (-1731 (($ (-615 |#1|)) 14 T ELT)) (-3055 (((-85) $ $) 46 T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT))) -(((-607 |#1| |#2|) (-13 (-323 |#1| |#2|) (-332 |#2| (-615 |#1|)) (-10 -8 (-15 -3942 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -3527 ($ (-615 |#1|) (-615 |#1|))) (-15 -3527 ($ (-615 |#1|) $)) (-15 -3527 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607)) -((-3942 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3527 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3527 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))) -((-1730 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1728 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1568 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2296 (($ $) 65 T ELT)) (-2367 (($ $) 74 T ELT)) (-3402 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3839 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3416 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3611 (($ (-695) |#2|) 63 T ELT)) (-2855 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3515 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3531 (($ |#2|) 15 T ELT)) (-3606 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1569 (($ $ (-1145 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1729 (($ $ $ (-484)) 70 T ELT)) (-3397 (($ $) 68 T ELT)) (-2684 (((-85) $ $) 76 T ELT))) -(((-608 |#1| |#2|) (-10 -7 (-15 -3531 (|#1| |#2|)) (-15 -1569 (|#1| |#1| (-484))) (-15 -1569 (|#1| |#1| (-1145 (-484)))) (-15 -3402 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3606 (|#1| |#2| |#1| (-484))) (-15 -3606 (|#1| |#1| |#1| (-484))) (-15 -2855 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -3515 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3416 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3416 ((-484) |#2| |#1|)) (-15 -3416 ((-484) |#2| |#1| (-484))) (-15 -3515 (|#1| |#1| |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -1729 (|#1| |#1| |#1| (-484))) (-15 -2296 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3839 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3611 (|#1| (-695) |#2|)) (-15 -3955 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3397 (|#1| |#1|))) (-609 |#2|) (-1128)) (T -608)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3792 ((|#1| $) 71 T ELT)) (-3794 (($ $) 73 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 58 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) $) 153 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1728 (($ $) 157 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3993))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3993)) ELT)) (-2908 (($ $) 152 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3439 (((-85) $ (-695)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 62 (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) 60 (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3707 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3992)) ELT)) (-3793 ((|#1| $) 72 T ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 155 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 145 T ELT)) (-3796 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2367 (($ $) 142 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 141 (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3403 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3992)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 97 T ELT)) (-3440 (((-85) $) 93 T ELT)) (-3416 (((-484) |#1| $ (-484)) 150 (|has| |#1| (-1013)) ELT) (((-484) |#1| $) 149 (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) 148 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3611 (($ (-695) |#1|) 119 T ELT)) (-3716 (((-85) $ (-695)) 91 T ELT)) (-2199 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 163 (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) 143 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3515 (($ $ $) 151 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 162 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3531 (($ |#1|) 133 T ELT)) (-3713 (((-85) $ (-695)) 92 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3606 (($ $ $ (-484)) 138 T ELT) (($ |#1| $ (-484)) 137 T ELT)) (-2303 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2202 (((-584 (-484)) $) 102 T ELT)) (-2203 (((-85) (-484) $) 101 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3993)) ELT)) (-3441 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 100 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-1569 (($ $ (-1145 (-484))) 135 T ELT) (($ $ (-484)) 134 T ELT)) (-2304 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-3789 (($ $) 68 T ELT)) (-3787 (($ $) 65 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) 69 T ELT)) (-3791 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 154 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 117 T ELT)) (-3788 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3799 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 159 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 158 (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-609 |#1|) (-113) (-1128)) (T -609)) -((-3531 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1128))))) -(-13 (-1063 |t#1|) (-321 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3531 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T)) -((-3570 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2011 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2011 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3107 (((-695) |#4| |#3|) 18 T ELT)) (-3337 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2314 (((-85) |#4| |#3|) 14 T ELT))) -(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3570 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2011 (-584 |#3|))) |#4| |#3|)) (-15 -3570 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2011 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3337 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2314 ((-85) |#4| |#3|)) (-15 -3107 ((-695) |#4| |#3|))) (-311) (-13 (-321 |#1|) (-10 -7 (-6 -3993))) (-13 (-321 |#1|) (-10 -7 (-6 -3993))) (-628 |#1| |#2| |#3|)) (T -610)) -((-3107 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3337 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3993)))) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3570 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2011 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3570 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) -((-3570 (((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2011 (-584 (-1178 |#1|))))) (-584 (-584 |#1|)) (-584 (-1178 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|))))) (-631 |#1|) (-584 (-1178 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|)))) (-584 (-584 |#1|)) (-1178 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)) 14 T ELT)) (-3107 (((-695) (-631 |#1|) (-1178 |#1|)) 30 T ELT)) (-3337 (((-3 (-1178 |#1|) #1#) (-631 |#1|) (-1178 |#1|)) 24 T ELT)) (-2314 (((-85) (-631 |#1|) (-1178 |#1|)) 27 T ELT))) -(((-611 |#1|) (-10 -7 (-15 -3570 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2011 (-584 (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|))) (-15 -3570 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|)))) (-584 (-584 |#1|)) (-1178 |#1|))) (-15 -3570 ((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|))))) (-631 |#1|) (-584 (-1178 |#1|)))) (-15 -3570 ((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|))))) (-584 (-584 |#1|)) (-584 (-1178 |#1|)))) (-15 -3337 ((-3 (-1178 |#1|) #1#) (-631 |#1|) (-1178 |#1|))) (-15 -2314 ((-85) (-631 |#1|) (-1178 |#1|))) (-15 -3107 ((-695) (-631 |#1|) (-1178 |#1|)))) (-311)) (T -611)) -((-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3337 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *1 (-611 *4)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1178 *5) #1="failed")) (|:| -2011 (-584 (-1178 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2011 (-584 (-1178 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2011 (-584 (-1178 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1178 *5)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2011 (-584 (-1178 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1178 *5))))) -((-2315 (((-2 (|:| |particular| (-3 (-1178 (-347 |#4|)) "failed")) (|:| -2011 (-584 (-1178 (-347 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT))) -(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2315 ((-2 (|:| |particular| (-3 (-1178 (-347 |#4|)) "failed")) (|:| -2011 (-584 (-1178 (-347 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-495) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612)) -((-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 (-347 *8)) "failed")) (|:| -2011 (-584 (-1178 (-347 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3327 ((|#2| $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3221 (((-1178 (-631 |#2|))) NIL T ELT) (((-1178 (-631 |#2|)) (-1178 $)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1727 (((-1178 $)) 41 T ELT)) (-3330 (($ |#2|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1786 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1784 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1178 $)) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1898 (((-1084 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2406 (($ $ (-831)) NIL T ELT)) (-1723 ((|#2| $) NIL T ELT)) (-1703 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1788 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1721 (((-1084 |#2|) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1790 (($ (-1178 |#2|)) NIL T ELT) (($ (-1178 |#2|) (-1178 $)) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3107 (((-695) $) NIL (|has| |#2| (-495)) ELT) (((-831)) 42 T ELT)) (-3111 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2432 (($ $ (-831)) NIL T ELT)) (-2888 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-3106 (((-695) $) NIL (|has| |#2| (-495)) ELT)) (-3105 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3113 (((-695) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3324 ((|#2| $) NIL (|has| |#2| (-6 (-3994 #2="*"))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-3122 (($ (-584 (-584 |#2|))) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3591 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2011 (-584 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1787 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1785 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1178 $)) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1902 (((-1084 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1704 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1789 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1722 (((-1084 |#2|) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3587 (((-3 $ #1#) $) NIL (|has| |#2| (-311)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3326 ((|#2| $) NIL T ELT)) (-3329 (($ (-584 |#2|)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3328 (((-197 |#1| |#2|) $) NIL T ELT)) (-3325 ((|#2| $) NIL (|has| |#2| (-6 (-3994 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3222 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $ (-1178 $)) 30 T ELT)) (-3969 (($ (-1178 |#2|)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT)) (-1890 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1178 $)) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3109 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 40 T ELT)) (-1705 (((-584 (-1178 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2435 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2544 (($ (-631 |#2|) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-613 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-358 |#2|)) (-831) (-146)) (T -613)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3246 (((-584 (-1048)) $) 12 T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-614) (-13 (-995) (-10 -8 (-15 -3246 ((-584 (-1048)) $))))) (T -614)) -((-3246 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-614))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3931 (((-584 |#1|) $) NIL T ELT)) (-3135 (($ $) 62 T ELT)) (-2663 (((-85) $) NIL T ELT)) (-3155 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2318 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2320 (((-85) (-740 |#1|)) 18 T ELT)) (-2319 (($ (-740 |#1|)) 29 T ELT)) (-2510 (((-85) $ $) 36 T ELT)) (-3830 (((-831) $) 43 T ELT)) (-3136 (($ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3729 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3943 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2317 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2316 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 63 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 46 T ELT))) -(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2663 ((-85) $)) (-15 -3136 ($ $)) (-15 -3135 ($ $)) (-15 -3830 ((-831) $)) (-15 -2510 ((-85) $ $)) (-15 -3943 ((-740 |#1|) $)) (-15 -3943 ((-619 |#1|) $)) (-15 -3729 ((-584 $) (-740 |#1|))) (-15 -2320 ((-85) (-740 |#1|))) (-15 -2319 ($ (-740 |#1|))) (-15 -2318 ((-3 $ "failed") (-740 |#1|))) (-15 -3931 ((-584 |#1|) $)) (-15 -2317 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2316 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615)) -((-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3135 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2318 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5))))) -((-3399 ((|#2| $) 100 T ELT)) (-3794 (($ $) 121 T ELT)) (-3439 (((-85) $ (-695)) 35 T ELT)) (-3796 (($ $) 109 T ELT) (($ $ (-695)) 112 T ELT)) (-3440 (((-85) $) 122 T ELT)) (-3030 (((-584 $) $) 96 T ELT)) (-3026 (((-85) $ $) 92 T ELT)) (-3716 (((-85) $ (-695)) 33 T ELT)) (-2199 (((-484) $) 66 T ELT)) (-2200 (((-484) $) 65 T ELT)) (-3713 (((-85) $ (-695)) 31 T ELT)) (-3524 (((-85) $) 98 T ELT)) (-3795 ((|#2| $) 113 T ELT) (($ $ (-695)) 117 T ELT)) (-2303 (($ $ $ (-484)) 83 T ELT) (($ |#2| $ (-484)) 82 T ELT)) (-2202 (((-584 (-484)) $) 64 T ELT)) (-2203 (((-85) (-484) $) 59 T ELT)) (-3798 ((|#2| $) NIL T ELT) (($ $ (-695)) 108 T ELT)) (-3766 (($ $ (-484)) 125 T ELT)) (-3441 (((-85) $) 124 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2204 (((-584 |#2|) $) 46 T ELT)) (-3797 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1145 (-484))) 79 T ELT) ((|#2| $ (-484)) 57 T ELT) ((|#2| $ (-484) |#2|) 58 T ELT)) (-3028 (((-484) $ $) 91 T ELT)) (-2304 (($ $ (-1145 (-484))) 78 T ELT) (($ $ (-484)) 72 T ELT)) (-3630 (((-85) $) 87 T ELT)) (-3789 (($ $) 105 T ELT)) (-3790 (((-695) $) 104 T ELT)) (-3791 (($ $) 103 T ELT)) (-3527 (($ (-584 |#2|)) 53 T ELT)) (-2890 (($ $) 126 T ELT)) (-3519 (((-584 $) $) 90 T ELT)) (-3027 (((-85) $ $) 89 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3055 (((-85) $ $) 20 T ELT)) (-3954 (((-695) $) 39 T ELT))) -(((-616 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3766 (|#1| |#1| (-484))) (-15 -3439 ((-85) |#1| (-695))) (-15 -3716 ((-85) |#1| (-695))) (-15 -3713 ((-85) |#1| (-695))) (-15 -3440 ((-85) |#1|)) (-15 -3441 ((-85) |#1|)) (-15 -3797 (|#2| |#1| (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484))) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -2203 ((-85) (-484) |#1|)) (-15 -2202 ((-584 (-484)) |#1|)) (-15 -2200 ((-484) |#1|)) (-15 -2199 ((-484) |#1|)) (-15 -3527 (|#1| (-584 |#2|))) (-15 -3797 (|#1| |#1| (-1145 (-484)))) (-15 -2304 (|#1| |#1| (-484))) (-15 -2304 (|#1| |#1| (-1145 (-484)))) (-15 -2303 (|#1| |#2| |#1| (-484))) (-15 -2303 (|#1| |#1| |#1| (-484))) (-15 -3789 (|#1| |#1|)) (-15 -3790 ((-695) |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 (|#1| |#1| (-695))) (-15 -3797 (|#2| |#1| "last")) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#1| (-695))) (-15 -3797 (|#1| |#1| "rest")) (-15 -3796 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-695))) (-15 -3797 (|#2| |#1| "first")) (-15 -3798 (|#2| |#1|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-484) |#1| |#1|)) (-15 -3630 ((-85) |#1|)) (-15 -3797 (|#2| |#1| "value")) (-15 -3399 (|#2| |#1|)) (-15 -3524 ((-85) |#1|)) (-15 -3030 ((-584 |#1|) |#1|)) (-15 -3519 ((-584 |#1|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3954 ((-695) |#1|))) (-617 |#2|) (-1128)) (T -616)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3792 ((|#1| $) 71 T ELT)) (-3794 (($ $) 73 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 58 (|has| $ (-6 -3993)) ELT)) (-3439 (((-85) $ (-695)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 62 (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) 60 (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3793 ((|#1| $) 72 T ELT)) (-3721 (($) 7 T CONST)) (-2322 (($ $) 135 T ELT)) (-3796 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 97 T ELT)) (-3440 (((-85) $) 93 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2321 (((-695) $) 134 T ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3611 (($ (-695) |#1|) 119 T ELT)) (-3716 (((-85) $ (-695)) 91 T ELT)) (-2199 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3713 (((-85) $ (-695)) 92 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-2324 (($ $) 137 T ELT)) (-2325 (((-85) $) 138 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2303 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2202 (((-584 (-484)) $) 102 T ELT)) (-2203 (((-85) (-484) $) 101 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2323 ((|#1| $) 136 T ELT)) (-3798 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-484)) 133 T ELT)) (-3441 (((-85) $) 94 T ELT)) (-2326 (((-85) $) 139 T ELT)) (-2327 (((-85) $) 140 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 100 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-2304 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-3789 (($ $) 68 T ELT)) (-3787 (($ $) 65 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) 69 T ELT)) (-3791 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 117 T ELT)) (-3788 (($ $ $) 67 (|has| $ (-6 -3993)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3993)) ELT)) (-3799 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2890 (($ $) 132 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-617 |#1|) (-113) (-1128)) (T -617)) -((-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-3707 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128))))) -(-13 (-1063 |t#1|) (-10 -8 (-15 -3403 ($ (-1 (-85) |t#1|) $)) (-15 -3707 ($ (-1 (-85) |t#1|) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ((-85) $)) (-15 -2324 ($ $)) (-15 -2323 (|t#1| $)) (-15 -2322 ($ $)) (-15 -2321 ((-695) $)) (-15 -3766 ($ $ (-484))) (-15 -2890 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3176 (((-420) $) 15 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-618) (-13 (-995) (-10 -8 (-15 -3176 ((-420) $)) (-15 -3231 ((-1048) $))))) (T -618)) -((-3176 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-618)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-618))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3931 (((-584 |#1|) $) 15 T ELT)) (-3135 (($ $) 19 T ELT)) (-2663 (((-85) $) 20 T ELT)) (-3155 (((-3 |#1| "failed") $) 23 T ELT)) (-3154 ((|#1| $) 21 T ELT)) (-3796 (($ $) 37 T ELT)) (-3933 (($ $) 25 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2510 (((-85) $ $) 46 T ELT)) (-3830 (((-831) $) 40 T ELT)) (-3136 (($ $) 18 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 ((|#1| $) 36 T ELT)) (-3943 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 13 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3943 ((-740 |#1|) $)) (-15 -3798 (|#1| $)) (-15 -3136 ($ $)) (-15 -3830 ((-831) $)) (-15 -2510 ((-85) $ $)) (-15 -3933 ($ $)) (-15 -3796 ($ $)) (-15 -2663 ((-85) $)) (-15 -3135 ($ $)) (-15 -3931 ((-584 |#1|) $)))) (-757)) (T -619)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3798 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3135 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))) -((-2336 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2328 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT))) -(((-620 |#1|) (-10 -7 (-15 -2328 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2336 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1013)) (T -620)) -((-2336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2)))) (-2328 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2))))) -((-2330 ((|#2| |#1| |#2|) 9 T ELT)) (-2329 ((|#1| |#1| |#2|) 8 T ELT))) -(((-621 |#1| |#2|) (-10 -7 (-15 -2329 (|#1| |#1| |#2|)) (-15 -2330 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -621)) -((-2330 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2329 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -((-2331 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2331 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -622)) -((-2331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-622 *5 *6 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3316 (((-1129) $) 22 T ELT)) (-3315 (((-584 (-1129)) $) 20 T ELT)) (-2332 (($ (-584 (-1129)) (-1129)) 15 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 30 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-623) (-13 (-995) (-553 (-1129)) (-10 -8 (-15 -3943 ($ (-1028))) (-15 -2332 ($ (-584 (-1129)) (-1129))) (-15 -3315 ((-584 (-1129)) $)) (-15 -3316 ((-1129) $))))) (T -623)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-623)))) (-2332 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1129))) (-5 *3 (-1129)) (-5 *1 (-623)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-623)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-623))))) -((-2336 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2333 (((-1 |#1|) |#1|) 8 T ELT)) (-2335 ((|#1| |#1|) 19 T ELT)) (-2334 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3943 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT))) -(((-624 |#1|) (-10 -7 (-15 -2333 ((-1 |#1|) |#1|)) (-15 -3943 ((-1 |#1|) |#1|)) (-15 -2334 (|#1| (-1 |#1| |#1|))) (-15 -2334 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-484))) (-15 -2335 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2336 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1013)) (T -624)) -((-2336 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1013)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1013)) (-5 *1 (-624 *4)))) (-2335 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1013)))) (-2334 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-484)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1013)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1013)))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013)))) (-2333 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013))))) -((-2339 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2338 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3949 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2337 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-625 |#1| |#2|) (-10 -7 (-15 -2337 ((-1 |#2| |#1|) |#2|)) (-15 -2338 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3949 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2339 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -625)) -((-2339 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1013)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013))))) -((-2344 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2340 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2341 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2342 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2341 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2342 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2344 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -626)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1013)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1013)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) -((-3835 (($ (-695) (-695)) 42 T ELT)) (-2349 (($ $ $) 73 T ELT)) (-3411 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3119 (((-85) $) 36 T ELT)) (-2348 (($ $ (-484) (-484)) 84 T ELT)) (-2347 (($ $ (-484) (-484)) 85 T ELT)) (-2346 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2351 (($ $) 71 T ELT)) (-3121 (((-85) $) 15 T ELT)) (-2345 (($ $ (-484) (-484) $) 91 T ELT)) (-3785 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) 89 T ELT)) (-3330 (($ (-695) |#2|) 55 T ELT)) (-3122 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3591 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2350 (($ $ $) 72 T ELT)) (-3463 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3797 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) 88 T ELT)) (-3329 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3120 (((-85) $) 28 T ELT)) (-3943 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3118 (((-85) $) 38 T ELT)) (-3946 (($ $ |#2|) 124 T ELT)) (-3834 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3836 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3943 ((-773) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3946 (|#1| |#1| |#2|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2346 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2347 (|#1| |#1| (-484) (-484))) (-15 -2348 (|#1| |#1| (-484) (-484))) (-15 -3785 (|#1| |#1| (-584 (-484)) (-584 (-484)) |#1|)) (-15 -3797 (|#1| |#1| (-584 (-484)) (-584 (-484)))) (-15 -3591 ((-584 (-584 |#2|)) |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3411 (|#1| |#3|)) (-15 -3943 (|#1| |#4|)) (-15 -3329 (|#1| (-584 |#1|))) (-15 -3329 (|#1| (-584 |#2|))) (-15 -3330 (|#1| (-695) |#2|)) (-15 -3122 (|#1| (-695) (-695) (-1 |#2| (-484) (-484)))) (-15 -3122 (|#1| (-584 (-584 |#2|)))) (-15 -3835 (|#1| (-695) (-695))) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3785 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484) (-484)))) (-628 |#2| |#3| |#4|) (-962) (-321 |#2|) (-321 |#2|)) (T -627)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3835 (($ (-695) (-695)) 103 T ELT)) (-2349 (($ $ $) 92 T ELT)) (-3411 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3119 (((-85) $) 105 T ELT)) (-2348 (($ $ (-484) (-484)) 88 T ELT)) (-2347 (($ $ (-484) (-484)) 87 T ELT)) (-2346 (($ $ (-484) (-484) (-484) (-484)) 86 T ELT)) (-2351 (($ $) 94 T ELT)) (-3121 (((-85) $) 107 T ELT)) (-2345 (($ $ (-484) (-484) $) 85 T ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) 48 T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) 89 T ELT)) (-1255 (($ $ (-484) |#2|) 46 T ELT)) (-1254 (($ $ (-484) |#3|) 45 T ELT)) (-3330 (($ (-695) |#1|) 100 T ELT)) (-3721 (($) 7 T CONST)) (-3108 (($ $) 72 (|has| |#1| (-257)) ELT)) (-3110 ((|#2| $ (-484)) 50 T ELT)) (-3107 (((-695) $) 71 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3111 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2888 (((-584 |#1|) $) 30 T ELT)) (-3106 (((-695) $) 70 (|has| |#1| (-495)) ELT)) (-3105 (((-584 |#3|) $) 69 (|has| |#1| (-495)) ELT)) (-3113 (((-695) $) 55 T ELT)) (-3611 (($ (-695) (-695) |#1|) 61 T ELT)) (-3112 (((-695) $) 54 T ELT)) (-3324 ((|#1| $) 67 (|has| |#1| (-6 (-3994 #1="*"))) ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3116 (((-484) $) 58 T ELT)) (-3114 (((-484) $) 56 T ELT)) (-3122 (($ (-584 (-584 |#1|))) 102 T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) 101 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3591 (((-584 (-584 |#1|)) $) 91 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3587 (((-3 $ "failed") $) 66 (|has| |#1| (-311)) ELT)) (-2350 (($ $ $) 93 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) 60 T ELT)) (-3463 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-584 (-484)) (-584 (-484))) 90 T ELT)) (-3329 (($ (-584 |#1|)) 99 T ELT) (($ (-584 $)) 98 T ELT)) (-3120 (((-85) $) 106 T ELT)) (-3325 ((|#1| $) 68 (|has| |#1| (-6 (-3994 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3109 ((|#3| $ (-484)) 49 T ELT)) (-3943 (($ |#3|) 97 T ELT) (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) 104 T ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3946 (($ $ |#1|) 73 (|has| |#1| (-311)) ELT)) (-3834 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3836 (($ $ $) 84 T ELT)) (** (($ $ (-695)) 75 T ELT) (($ $ (-484)) 65 (|has| |#1| (-311)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-484) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-628 |#1| |#2| |#3|) (-113) (-962) (-321 |t#1|) (-321 |t#1|)) (T -628)) -((-3121 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3835 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3122 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-3330 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3943 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (-3411 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (-3411 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-584 (-584 *3))))) (-3797 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3785 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2347 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2346 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2345 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-495)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (-3108 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-257)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-584 *5)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3994 #1="*"))) (-4 *2 (-962)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3994 #1#))) (-4 *2 (-962)))) (-3587 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-311))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3993) (-6 -3992) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3835 ($ (-695) (-695))) (-15 -3122 ($ (-584 (-584 |t#1|)))) (-15 -3122 ($ (-695) (-695) (-1 |t#1| (-484) (-484)))) (-15 -3330 ($ (-695) |t#1|)) (-15 -3329 ($ (-584 |t#1|))) (-15 -3329 ($ (-584 $))) (-15 -3943 ($ |t#3|)) (-15 -3411 ($ |t#2|)) (-15 -3411 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $ $)) (-15 -2349 ($ $ $)) (-15 -3591 ((-584 (-584 |t#1|)) $)) (-15 -3797 ($ $ (-584 (-484)) (-584 (-484)))) (-15 -3785 ($ $ (-584 (-484)) (-584 (-484)) $)) (-15 -2348 ($ $ (-484) (-484))) (-15 -2347 ($ $ (-484) (-484))) (-15 -2346 ($ $ (-484) (-484) (-484) (-484))) (-15 -2345 ($ $ (-484) (-484) $)) (-15 -3836 ($ $ $)) (-15 -3834 ($ $ $)) (-15 -3834 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-495)) (-15 -3463 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -3946 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-257)) (-15 -3108 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3107 ((-695) $)) (-15 -3106 ((-695) $)) (-15 -3105 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3994 "*"))) (PROGN (-15 -3325 (|t#1| $)) (-15 -3324 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3587 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-57 |#1| |#2| |#3|) . T) ((-1128) . T)) -((-3839 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3955 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3955 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3955 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3839 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|) (-962) (-321 |#5|) (-321 |#5|) (-628 |#5| |#6| |#7|)) (T -629)) -((-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8))))) -((-3108 ((|#4| |#4|) 90 (|has| |#1| (-257)) ELT)) (-3107 (((-695) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3106 (((-695) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3105 (((-584 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2379 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 124 (|has| |#1| (-257)) ELT)) (-3324 ((|#1| |#4|) 52 T ELT)) (-2356 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3587 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-311)) ELT)) (-2355 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2353 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2352 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2354 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3325 ((|#1| |#4|) 96 T ELT)) (-2519 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3325 (|#1| |#4|)) (-15 -3324 (|#1| |#4|)) (-15 -2352 (|#4| |#4| (-484) (-484))) (-15 -2353 (|#4| |#4| |#1| (-484) (-484))) (-15 -2354 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3107 ((-695) |#4|)) (-15 -3106 ((-695) |#4|)) (-15 -3105 ((-584 |#3|) |#4|)) (-15 -2355 (|#4| |#4|)) (-15 -2356 ((-3 |#4| #1="failed") |#4|)) (-15 -2519 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-257)) (PROGN (-15 -3108 (|#4| |#4|)) (-15 -2379 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3587 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -630)) -((-3587 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2379 (*1 *2 *3 *3) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2519 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2356 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2352 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695) (-695)) 63 T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3411 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2348 (($ $ (-484) (-484)) 22 T ELT)) (-2347 (($ $ (-484) (-484)) NIL T ELT)) (-2346 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2351 (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2345 (($ $ (-484) (-484) $) NIL T ELT)) (-3785 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3330 (($ (-695) |#1|) 37 T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) 46 (|has| |#1| (-257)) ELT)) (-3110 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3107 (((-695) $) 48 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3111 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL T ELT)) (-3106 (((-695) $) 50 (|has| |#1| (-495)) ELT)) (-3105 (((-584 (-1178 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3113 (((-695) $) 32 T ELT)) (-3611 (($ (-695) (-695) |#1|) 28 T ELT)) (-3112 (((-695) $) 33 T ELT)) (-3324 ((|#1| $) 44 (|has| |#1| (-6 (-3994 #1="*"))) ELT)) (-3117 (((-484) $) 10 T ELT)) (-3115 (((-484) $) 11 T ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3116 (((-484) $) 14 T ELT)) (-3114 (((-484) $) 64 T ELT)) (-3122 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3591 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3587 (((-3 $ #2="failed") $) 57 (|has| |#1| (-311)) ELT)) (-2350 (($ $ $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2198 (($ $ |#1|) NIL T ELT)) (-3463 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3329 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1178 |#1|)) 69 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3325 ((|#1| $) 42 (|has| |#1| (-6 (-3994 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) 79 (|has| |#1| (-554 (-473))) ELT)) (-3109 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3943 (($ (-1178 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-311)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) NIL T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-631 |#1|) (-13 (-628 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 -3329 ($ (-1178 |#1|))) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3587 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631)) -((-3587 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))) -((-2362 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2358 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2357 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT))) -(((-632 |#1|) (-10 -7 (-15 -2357 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2358 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2362 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2363 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2362 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2358 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2357 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -((-3155 (((-3 |#1| "failed") $) 18 T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-2364 (($) 7 T CONST)) (-2365 (($ |#1|) 8 T ELT)) (-3943 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3563 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2364)) 11 T ELT)) (-3569 ((|#1| $) 15 T ELT))) -(((-633 |#1|) (-13 (-1174) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2365 ($ |#1|)) (-15 -3563 ((-85) $ (|[\|\|]| |#1|))) (-15 -3563 ((-85) $ (|[\|\|]| -2364))) (-15 -3569 (|#1| $)) (-15 -2364 ($) -3949))) (-553 (-773))) (T -633)) -((-2365 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2364)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3569 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2364 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) -((-3738 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3736 ((|#1| (-631 |#2|)) 9 T ELT)) (-3737 (((-631 |#1|) (-631 |#2|)) 18 T ELT))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3736 (|#1| (-631 |#2|))) (-15 -3737 ((-631 |#1|) (-631 |#2|))) (-15 -3738 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-495) (-905 |#1|)) (T -634)) -((-3738 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-634 *2 *4))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-2366 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-635 |#1|) (-113) (-1013)) (T -635)) -((-3606 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1013)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1013)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1944 (-695)))))))) -(-13 (-193 |t#1|) (-10 -8 (-15 -3606 ($ |t#1| $ (-695))) (-15 -2367 ($ $)) (-15 -2366 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1944 (-695)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2370 (((-584 |#1|) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))) (-484)) 66 T ELT)) (-2368 ((|#1| |#1| (-484)) 63 T ELT)) (-3142 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3729 (((-584 |#1|) |#1| (-484)) 49 T ELT)) (-2371 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2369 (((-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))) |#1| (-484)) 62 T ELT))) -(((-636 |#1|) (-10 -7 (-15 -3142 (|#1| |#1| |#1| (-484))) (-15 -2368 (|#1| |#1| (-484))) (-15 -3729 ((-584 |#1|) |#1| (-484))) (-15 -2369 ((-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))) |#1| (-484))) (-15 -2370 ((-584 |#1|) (-584 (-2 (|:| -3729 |#1|) (|:| -3945 (-484)))) (-484))) (-15 -2371 (|#1| |#1| (-484) |#1| (-484)))) (-1154 (-484))) (T -636)) -((-2371 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3729 *5) (|:| -3945 (-484))))) (-5 *4 (-484)) (-4 *5 (-1154 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-584 (-2 (|:| -3729 *3) (|:| -3945 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))) (-3142 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3))))) -((-2375 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2372 (((-1046 (-179)) (-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 53 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 55 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 57 T ELT)) (-2374 (((-1046 (-179)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-584 (-221))) NIL T ELT)) (-2373 (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 58 T ELT))) -(((-637) (-10 -7 (-15 -2372 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2372 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2372 ((-1046 (-179)) (-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2373 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2374 ((-1046 (-179)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2375 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637)) -((-2375 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2373 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2372 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2372 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2372 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637))))) -((-3729 (((-345 (-1084 |#4|)) (-1084 |#4|)) 87 T ELT) (((-345 |#4|) |#4|) 270 T ELT))) -(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4|)) (-15 -3729 ((-345 (-1084 |#4|)) (-1084 |#4|)))) (-757) (-718) (-298) (-862 |#3| |#2| |#1|)) (T -638)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2378 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3108 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2377 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2376 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2379 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 84 T ELT))) -(((-639 |#1|) (-10 -7 (-15 -2376 ((-631 |#1|) (-631 |#1|))) (-15 -3108 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2377 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2378 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2379 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|))) (-257)) (T -639)) -((-2379 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-639 *3)) (-4 *3 (-257)))) (-2378 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2377 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-3108 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))) -((-2385 (((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)) 19 T ELT)) (-2380 (((-1 |#4| |#2| |#3|) (-1089)) 12 T ELT))) -(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2380 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2385 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) (-554 (-473)) (-1128) (-1128) (-1128)) (T -640)) -((-2385 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))) -((-2381 (((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1089)) 48 T ELT))) -(((-641 |#1|) (-10 -7 (-15 -2381 ((-1 (-179) (-179)) |#1| (-1089))) (-15 -2381 ((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)))) (-554 (-473))) (T -641)) -((-2381 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-473))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-473)))))) -((-2382 (((-1089) |#1| (-1089) (-584 (-1089))) 10 T ELT) (((-1089) |#1| (-1089) (-1089) (-1089)) 13 T ELT) (((-1089) |#1| (-1089) (-1089)) 12 T ELT) (((-1089) |#1| (-1089)) 11 T ELT))) -(((-642 |#1|) (-10 -7 (-15 -2382 ((-1089) |#1| (-1089))) (-15 -2382 ((-1089) |#1| (-1089) (-1089))) (-15 -2382 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -2382 ((-1089) |#1| (-1089) (-584 (-1089))))) (-554 (-473))) (T -642)) -((-2382 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1089))) (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2382 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2382 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2382 (*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473)))))) -((-2383 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2383 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -643)) -((-2383 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128))))) -((-2384 (((-1 |#3| |#2|) (-1089)) 11 T ELT)) (-2385 (((-1 |#3| |#2|) |#1| (-1089)) 21 T ELT))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2384 ((-1 |#3| |#2|) (-1089))) (-15 -2385 ((-1 |#3| |#2|) |#1| (-1089)))) (-554 (-473)) (-1128) (-1128)) (T -644)) -((-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) -((-2388 (((-3 (-584 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1178 (-584 (-1084 |#3|))) |#3|) 92 T ELT)) (-2387 (((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2386 (((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1084 |#4|)) (-1178 (-584 (-1084 |#3|))) |#3|) 48 T ELT))) -(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2386 ((-3 (-584 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1084 |#4|)) (-1178 (-584 (-1084 |#3|))) |#3|)) (-15 -2387 ((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2388 ((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1178 (-584 (-1084 |#3|))) |#3|))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -645)) -((-2388 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1084 *13))) (-5 *3 (-1084 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1178 (-584 (-1084 *10)))) (-4 *12 (-757)) (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2387 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1084 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1084 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))) (-2386 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1084 *11))) (-5 *3 (-1084 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1178 (-584 (-1084 *8)))) (-4 *10 (-757)) (-4 *8 (-257)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 54 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2892 (($ |#1| (-695)) 52 T ELT)) (-2819 (((-695) $) 56 T ELT)) (-3172 ((|#1| $) 55 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3945 (((-695) $) 57 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 51 (|has| |#1| (-146)) ELT)) (-3674 ((|#1| $ (-695)) 53 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 59 T ELT) (($ |#1| $) 58 T ELT))) -(((-646 |#1|) (-113) (-962)) (T -646)) -((-3945 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))) -(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3945 ((-695) $)) (-15 -2819 ((-695) $)) (-15 -3172 (|t#1| $)) (-15 -3956 ($ $)) (-15 -3674 (|t#1| $ (-695))) (-15 -2892 ($ |t#1| (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3955 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3955 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1154 |#1|) (-1154 (-347 |#2|)) (-495) (-1154 |#4|) (-1154 (-347 |#5|))) (T -647)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) (-4 *2 (-1154 (-347 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1154 (-347 *6))) (-4 *8 (-1154 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2389 (((-1072) (-773)) 36 T ELT)) (-3614 (((-1184) (-1072)) 29 T ELT)) (-2391 (((-1072) (-773)) 26 T ELT)) (-2390 (((-1072) (-773)) 27 T ELT)) (-3943 (((-773) $) NIL T ELT) (((-1072) (-773)) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-648) (-13 (-1013) (-10 -7 (-15 -3943 ((-1072) (-773))) (-15 -2391 ((-1072) (-773))) (-15 -2390 ((-1072) (-773))) (-15 -2389 ((-1072) (-773))) (-15 -3614 ((-1184) (-1072)))))) (T -648)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-648))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3839 (($ |#1| |#2|) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2613 ((|#2| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-311) (-10 -8 (-15 -2613 (|#2| $)) (-15 -3943 (|#1| $)) (-15 -3839 ($ |#1| |#2|)) (-15 -2401 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649)) -((-2613 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3943 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 37 T ELT)) (-3764 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3762 (($ (-1084 |#1|)) NIL T ELT)) (-3082 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3134 (((-695)) 55 (|has| |#1| (-317)) ELT)) (-3758 (($ $ (-695)) NIL T ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-2398 ((|#2| |#2|) 51 T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3753 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) 72 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3839 (($ |#2|) 49 T ELT)) (-3464 (((-3 $ #1#) $) 98 T ELT)) (-2993 (($) 59 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3756 (($ $ $) NIL T ELT)) (-3750 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3749 (((-2 (|:| -3951 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2394 (((-870 $)) 89 T ELT)) (-1622 (($ $ |#1| (-695) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3083 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3774 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) 86 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2613 ((|#2|) 52 T ELT)) (-2819 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3763 (((-1084 |#1|) $) NIL T ELT)) (-3081 (((-3 (-994) #1#) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3078 ((|#2| $) 48 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) 35 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-994)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3809 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (|has| |#1| (-1065)) CONST)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2392 (($ $) 88 (|has| |#1| (-298)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3761 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 99 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3945 (((-695) $) 39 T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2393 (((-870 $)) 43 T ELT)) (-3751 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3943 (((-773) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) 71 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 26 T CONST)) (-2397 (((-1178 |#1|) $) 84 T ELT)) (-2396 (($ (-1178 |#1|)) 58 T ELT)) (-2665 (($) 9 T CONST)) (-2668 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-2395 (((-1178 |#1|) $) NIL T ELT)) (-3055 (((-85) $ $) 77 T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-650 |#1| |#2|) (-13 (-1154 |#1|) (-556 |#2|) (-10 -8 (-15 -2398 (|#2| |#2|)) (-15 -2613 (|#2|)) (-15 -3839 ($ |#2|)) (-15 -3078 (|#2| $)) (-15 -2397 ((-1178 |#1|) $)) (-15 -2396 ($ (-1178 |#1|))) (-15 -2395 ((-1178 |#1|) $)) (-15 -2394 ((-870 $))) (-15 -2393 ((-870 $))) (IF (|has| |#1| (-298)) (-15 -2392 ($ $)) |%noBranch|) (IF (|has| |#1| (-317)) (-6 (-317)) |%noBranch|))) (-962) (-1154 |#1|)) (T -650)) -((-2398 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))) (-2613 (*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3839 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2395 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2393 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2392 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1154 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 ((|#1| $) 13 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2400 ((|#2| $) 12 T ELT)) (-3527 (($ |#1| |#2|) 16 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) 15 T ELT) (((-2 (|:| -2399 |#1|) (|:| -2400 |#2|)) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 11 T ELT))) -(((-651 |#1| |#2| |#3|) (-13 (-757) (-427 (-2 (|:| -2399 |#1|) (|:| -2400 |#2|))) (-10 -8 (-15 -2400 (|#2| $)) (-15 -2399 (|#1| $)) (-15 -3527 ($ |#1| |#2|)))) (-757) (-1013) (-1 (-85) (-2 (|:| -2399 |#1|) (|:| -2400 |#2|)) (-2 (|:| -2399 |#1|) (|:| -2400 |#2|)))) (T -651)) -((-2400 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *2)) (-2 (|:| -2399 *3) (|:| -2400 *2)))))) (-2399 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) (-2 (|:| -2399 *2) (|:| -2400 *3)))))) (-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) (-2 (|:| -2399 *2) (|:| -2400 *3))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 66 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3464 (((-3 $ #1#) $) 102 T ELT)) (-2515 ((|#2| (-86) |#2|) 93 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2514 (($ |#1| (-309 (-86))) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2516 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2517 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3797 ((|#2| $ |#2|) 33 T ELT)) (-2518 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3943 (((-773) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 37 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 9 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2519 ($ $)) (-15 -2519 ($ $ $)) (-15 -2518 (|#1| |#1|))) |%noBranch|) (-15 -2517 ($ $ (-1 |#2| |#2|))) (-15 -2516 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2515 (|#2| (-86) |#2|)) (-15 -2514 ($ |#1| (-309 (-86)))))) (-962) (-591 |#1|)) (T -652)) -((-2519 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2519 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2518 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2515 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2514 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 33 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3839 (($ |#1| |#2|) 25 T ELT)) (-3464 (((-3 $ #1#) $) 51 T ELT)) (-2409 (((-85) $) 35 T ELT)) (-2613 ((|#2| $) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 52 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2401 (((-3 $ #1#) $ $) 50 T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3124 (((-695)) 28 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 16 T CONST)) (-2665 (($) 30 T CONST)) (-3055 (((-85) $ $) 41 T ELT)) (-3834 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3836 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2613 (|#2| $)) (-15 -3943 (|#1| $)) (-15 -3839 ($ |#1| |#2|)) (-15 -2401 ((-3 $ #1="failed") $ $)) (-15 -3464 ((-3 $ #1#) $)) (-15 -2483 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653)) -((-3464 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3943 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2401 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-655 |#1|) (-113) (-146)) (T -655)) -NIL -(-13 (-82 |t#1| |t#1|) (-583 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2440 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3844 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2402 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 16 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3765 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-3943 (((-773) $) 39 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 9 T CONST)) (-3055 (((-85) $ $) 48 T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-656 |#1|) (-13 (-410) (-10 -8 (-15 -2402 ($ |#1| |#1| |#1| |#1|)) (-15 -2440 ($ |#1|)) (-15 -3844 ($ |#1|)) (-15 -3464 ($)) (-15 -2440 ($ $ |#1|)) (-15 -3844 ($ $ |#1|)) (-15 -3464 ($ $)) (-15 -3765 (|#1| $ |#1|)) (-15 -3765 ((-744 |#1|) $ (-744 |#1|))))) (-311)) (T -656)) -((-2402 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2440 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3844 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3464 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2440 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3844 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3464 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3765 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3765 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3))))) -((-2406 (($ $ (-831)) 19 T ELT)) (-2405 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT))) -(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2405 (|#1| |#1| (-831))) (-15 -2406 (|#1| |#1| (-831)))) (-658)) (T -657)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2406 (($ $ (-831)) 19 T ELT)) (-2405 (($ $ (-831)) 18 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-658) (-113)) (T -658)) -((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2406 ($ $ (-831))) (-15 -2405 ($ $ (-831))) (-15 ** ($ $ (-831))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2406 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2409 (((-85) $) 10 T ELT)) (-2405 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT))) -(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2405 (|#1| |#1| (-695))) (-15 -2406 (|#1| |#1| (-695))) (-15 -2409 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2405 (|#1| |#1| (-831))) (-15 -2406 (|#1| |#1| (-831)))) (-660)) (T -659)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2403 (((-3 $ "failed") $) 22 T ELT)) (-2406 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3464 (((-3 $ "failed") $) 24 T ELT)) (-2409 (((-85) $) 28 T ELT)) (-2404 (((-3 $ "failed") $) 23 T ELT)) (-2405 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 29 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-660) (-113)) (T -660)) -((-2665 (*1 *1) (-4 *1 (-660))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3464 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2403 (*1 *1 *1) (|partial| -4 *1 (-660)))) -(-13 (-658) (-10 -8 (-15 -2665 ($) -3949) (-15 -2409 ((-85) $)) (-15 -2406 ($ $ (-695))) (-15 -2405 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3464 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1013) . T) ((-1128) . T)) -((-3134 (((-695)) 39 T ELT)) (-3155 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3839 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) 49 T ELT)) (-3464 (((-3 $ #1#) $) 69 T ELT)) (-2993 (($) 43 T ELT)) (-3130 ((|#2| $) 21 T ELT)) (-2408 (($) 18 T ELT)) (-3755 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2407 (((-631 |#2|) (-1178 $) (-1 |#2| |#2|)) 64 T ELT)) (-3969 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2448 ((|#3| $) 36 T ELT)) (-2011 (((-1178 $)) 33 T ELT))) -(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2993 (|#1|)) (-15 -3134 ((-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2407 ((-631 |#2|) (-1178 |#1|) (-1 |#2| |#2|))) (-15 -3839 ((-3 |#1| #1="failed") (-347 |#3|))) (-15 -3969 (|#1| |#3|)) (-15 -3839 (|#1| |#3|)) (-15 -2408 (|#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3969 (|#3| |#1|)) (-15 -3969 (|#1| (-1178 |#2|))) (-15 -3969 ((-1178 |#2|) |#1|)) (-15 -2011 ((-1178 |#1|))) (-15 -2448 (|#3| |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3464 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1154 |#2|)) (T -661)) -((-3134 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 112 (|has| |#1| (-311)) ELT)) (-2062 (($ $) 113 (|has| |#1| (-311)) ELT)) (-2060 (((-85) $) 115 (|has| |#1| (-311)) ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3327 ((|#1| $) 65 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 132 (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) 133 (|has| |#1| (-311)) ELT)) (-1606 (((-85) $ $) 123 (|has| |#1| (-311)) ELT)) (-3134 (((-695)) 106 (|has| |#1| (-317)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 192 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3154 (((-484) $) 191 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 188 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2563 (($ $ $) 127 (|has| |#1| (-311)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 184 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 182 T ELT) (((-631 |#1|) (-631 $)) 181 T ELT)) (-3839 (($ |#2|) 176 T ELT) (((-3 $ "failed") (-347 |#2|)) 173 (|has| |#1| (-311)) ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3107 (((-831)) 67 T ELT)) (-2993 (($) 109 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) 126 (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 121 (|has| |#1| (-311)) ELT)) (-2832 (($) 167 (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3720 (((-85) $) 134 (|has| |#1| (-311)) ELT)) (-3769 (((-831) $) 170 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 156 (|has| |#1| (-298)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-3130 ((|#1| $) 64 T ELT)) (-3442 (((-633 $) $) 160 (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| |#1| (-311)) ELT)) (-2013 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-2009 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-3078 ((|#2| $) 174 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 180 T ELT) (((-631 |#1|) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (|has| |#1| (-311)) ELT) (($ $ $) 118 (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3443 (($) 161 (|has| |#1| (-298)) CONST)) (-2399 (($ (-831)) 107 (|has| |#1| (-317)) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2408 (($) 178 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 120 (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) 117 (|has| |#1| (-311)) ELT) (($ $ $) 116 (|has| |#1| (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) 164 (|has| |#1| (-298)) ELT)) (-3729 (((-345 $) $) 131 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 128 (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ "failed") $ $) 111 (|has| |#1| (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 122 (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) 124 (|has| |#1| (-311)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 125 (|has| |#1| (-311)) ELT)) (-3754 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1763 (((-695) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3755 (($ $ (-695)) 154 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 152 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089) (-695)) 147 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089))) 146 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089)) 144 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-311)) ELT)) (-2407 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3183 ((|#2|) 177 T ELT)) (-1672 (($) 166 (|has| |#1| (-298)) ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3969 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT) ((|#2| $) 193 T ELT) (($ |#2|) 175 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 163 (|has| |#1| (-298)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ $) 110 (|has| |#1| (-311)) ELT) (($ (-347 (-484))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (($ $) 162 (|has| |#1| (-298)) ELT) (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 58 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2011 (((-1178 $)) 81 T ELT)) (-2061 (((-85) $ $) 114 (|has| |#1| (-311)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-695)) 155 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 153 (OR (-2561 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089) (-695)) 150 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089))) 149 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089)) 145 (-2561 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 141 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 140 (|has| |#1| (-311)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-311)) ELT))) -(((-662 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -662)) -((-2408 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1154 *2)))) (-3183 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3839 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) (-3969 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3839 (*1 *1 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-311)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *5))))) -(-13 (-350 |t#1| |t#2|) (-146) (-554 |t#2|) (-352 |t#1|) (-326 |t#1|) (-10 -8 (-15 -2408 ($)) (-15 -3183 (|t#2|)) (-15 -3839 ($ |t#2|)) (-15 -3969 ($ |t#2|)) (-15 -3078 (|t#2| $)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-311)) (-6 (-184 |t#1|)) (-15 -3839 ((-3 $ "failed") (-347 |t#2|))) (-15 -2407 ((-631 |t#1|) (-1178 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-184 |#1|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-189) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-225 |#1|) |has| |#1| (-311)) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-245) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| |#2|) . T) ((-350 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-495) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))))) ((-810 (-1089)) -12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) ((-812 (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-298)) ((-1128) . T) ((-1133) OR (|has| |#1| (-298)) (|has| |#1| (-311)))) -((-3721 (($) 11 T CONST)) (-3464 (((-3 $ "failed") $) 14 T ELT)) (-2409 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT))) -(((-663 |#1|) (-10 -7 (-15 -3464 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2409 ((-85) |#1|)) (-15 -3721 (|#1|) -3949) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3721 (($) 23 T CONST)) (-3464 (((-3 $ "failed") $) 20 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-664) (-113)) (T -664)) -((-2665 (*1 *1) (-4 *1 (-664))) (-3721 (*1 *1) (-4 *1 (-664))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3464 (*1 *1 *1) (|partial| -4 *1 (-664)))) -(-13 (-1025) (-10 -8 (-15 -2665 ($) -3949) (-15 -3721 ($) -3949) (-15 -2409 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3464 ((-3 $ "failed") $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2411 ((|#1| $) 16 T ELT)) (-2410 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3943 (((-773) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-665 |#1|) (-13 (-666 |#1|) (-1013) (-553 (-1022 |#1|)) (-10 -8 (-15 -2410 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665)) -((-2410 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) -((-2411 ((|#1| $) 8 T ELT)) (-3797 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-666 |#1|) (-113) (-72)) (T -666)) -((-2411 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -2411 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3055 (|f| |x| (-2411 |f|)) |x|) (|exit| 1 (-3055 (|f| (-2411 |f|) |x|) |x|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1128) . T)) -((-2412 (((-2 (|:| -3088 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3415 (((-2 (|:| -3088 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2413 ((|#2| (-347 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3432 (((-2 (|:| |poly| |#2|) (|:| -3088 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-667 |#1| |#2|) (-10 -7 (-15 -3415 ((-2 (|:| -3088 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2412 ((-2 (|:| -3088 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2413 (|#2| (-347 |#2|) (-1 |#2| |#2|))) (-15 -3432 ((-2 (|:| |poly| |#2|) (|:| -3088 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -667)) -((-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3088 (-347 *6)) (|:| |special| (-347 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-347 *6)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-311)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3088 (-345 *3)) (|:| |special| (-345 *3)))) (-5 *1 (-667 *5 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3088 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) -((-2414 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3955 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3955 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2414 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668)) -((-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) -((-3955 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3955 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))) -((-3729 (((-345 |#4|) |#4|) 42 T ELT))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089))))) (-257) (-862 (-858 |#3|) |#1| |#2|)) (T -670)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089)))))) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3082 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3753 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-469 (-774 |#1|)) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-469 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2819 (((-469 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-469 (-774 |#1|)) (-469 (-774 |#1|))) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3081 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3754 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3755 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3945 (((-469 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-469 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-671 |#1| |#2|) (-862 |#2| (-469 (-774 |#1|)) (-774 |#1|)) (-584 (-1089)) (-962)) (T -671)) -NIL -((-2415 (((-2 (|:| -2482 (-858 |#3|)) (|:| -2057 (-858 |#3|))) |#4|) 14 T ELT)) (-2985 ((|#4| |#4| |#2|) 33 T ELT)) (-2418 ((|#4| (-347 (-858 |#3|)) |#2|) 62 T ELT)) (-2417 ((|#4| (-1084 (-858 |#3|)) |#2|) 74 T ELT)) (-2416 ((|#4| (-1084 |#4|) |#2|) 49 T ELT)) (-2984 ((|#4| |#4| |#2|) 52 T ELT)) (-3729 (((-345 |#4|) |#4|) 40 T ELT))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-2 (|:| -2482 (-858 |#3|)) (|:| -2057 (-858 |#3|))) |#4|)) (-15 -2984 (|#4| |#4| |#2|)) (-15 -2416 (|#4| (-1084 |#4|) |#2|)) (-15 -2985 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1084 (-858 |#3|)) |#2|)) (-15 -2418 (|#4| (-347 (-858 |#3|)) |#2|)) (-15 -3729 ((-345 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)))) (-495) (-862 (-347 (-858 |#3|)) |#1| |#2|)) (T -672)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5)))) (-2418 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-347 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 (-858 *6))) (-4 *6 (-495)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *6 (-495)))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2482 (-858 *6)) (|:| -2057 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5))))) -((-3729 (((-345 |#4|) |#4|) 54 T ELT))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4|))) (-718) (-757) (-13 (-257) (-120)) (-862 (-347 |#3|) |#1| |#2|)) (T -673)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-347 *6) *4 *5))))) -((-3955 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT))) -(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 36 T ELT)) (-3771 (((-584 (-2 (|:| -3951 |#1|) (|:| -3935 |#2|))) $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695)) 22 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3154 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3464 (((-3 $ #1#) $) 83 T ELT)) (-2993 (($) 48 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) 70 T ELT)) (-2820 (((-584 $) $) 52 T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) 17 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2009 (((-831) $) 43 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2893 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3172 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 35 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3951 |#1|) (|:| -3935 |#2|)))) 11 T ELT)) (-3814 (((-584 |#1|) $) 54 T ELT)) (-3674 ((|#1| $ |#2|) 114 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 12 T CONST)) (-2665 (($) 44 T CONST)) (-3055 (((-85) $ $) 104 T ELT)) (-3834 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2892 ($ |#1| |#2|)) (-15 -3674 (|#1| $ |#2|)) (-15 -3943 ($ (-584 (-2 (|:| -3951 |#1|) (|:| -3935 |#2|))))) (-15 -3771 ((-584 (-2 (|:| -3951 |#1|) (|:| -3935 |#2|))) $)) (-15 -3955 ($ (-1 |#1| |#1|) $)) (-15 -3934 ((-85) $)) (-15 -3814 ((-584 |#1|) $)) (-15 -2820 ((-584 $) $)) (-15 -2419 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2893 (|#2| $)) (-15 -3172 (|#1| $)) (-15 -3956 ($ $))) |%noBranch|))) (-962) (-664)) (T -675)) -((-2892 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3674 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3951 *3) (|:| -3935 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3951 *3) (|:| -3935 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2893 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3172 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3232 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3234 (($ $ $) 99 T ELT)) (-3233 (((-85) $ $) 107 T ELT)) (-3237 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2367 (($ $) 88 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) 71 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) 106 T ELT)) (-2420 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2607 (((-584 |#1|) $) 38 T ELT)) (-3243 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3236 (($ $ $) 97 T ELT)) (-1272 ((|#1| $) 63 T ELT)) (-3606 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 57 T ELT)) (-3562 (($) 14 T ELT)) (-2366 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 56 T ELT)) (-3235 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1464 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 69 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 82 T ELT)) (-3969 (((-473) $) 36 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 22 T ELT)) (-3943 (((-773) $) 50 T ELT)) (-3238 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 103 T ELT)) (-3954 (((-695) $) 68 (|has| $ (-6 -3992)) ELT))) -(((-676 |#1|) (-13 (-677 |#1|) (-10 -8 (-6 -3992) (-6 -3993) (-15 -2420 ($)) (-15 -2420 ($ |#1|)) (-15 -2420 ($ (-584 |#1|))) (-15 -2607 ((-584 |#1|) $)) (-15 -3403 ($ |#1| $ (-484))) (-15 -3403 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3402 ($ |#1| $ (-484))) (-15 -3402 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -676)) -((-2420 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-2420 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-676 *3)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1013)))) (-3403 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-3403 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4)))) (-3402 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-3402 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4))))) -((-2567 (((-85) $ $) 19 T ELT)) (-3232 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3234 (($ $ $) 77 T ELT)) (-3233 (((-85) $ $) 78 T ELT)) (-3237 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) 69 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 T ELT)) (-3236 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3241 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-2366 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-3235 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-3943 (((-773) $) 17 T ELT)) (-3238 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-677 |#1|) (-113) (-1013)) (T -677)) -NIL -(-13 (-635 |t#1|) (-1011 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-635 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2421 (((-1184) (-1072)) 8 T ELT))) -(((-678) (-10 -7 (-15 -2421 ((-1184) (-1072))))) (T -678)) -((-2421 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-678))))) -((-2422 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -2422 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679)) -((-2422 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 |#2|) $) 157 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 150 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 149 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 147 (|has| |#1| (-495)) ELT)) (-3489 (($ $) 106 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 89 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3036 (($ $) 88 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 105 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 90 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3491 (($ $) 104 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 91 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 141 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3811 (((-858 |#1|) $ (-695)) 119 T ELT) (((-858 |#1|) $ (-695) (-695)) 118 T ELT)) (-2891 (((-85) $) 158 T ELT)) (-3624 (($) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $ |#2|) 121 T ELT) (((-695) $ |#2| (-695)) 120 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 87 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3934 (((-85) $) 139 T ELT)) (-2892 (($ $ (-584 |#2|) (-584 (-469 |#2|))) 156 T ELT) (($ $ |#2| (-469 |#2|)) 155 T ELT) (($ |#1| (-469 |#2|)) 140 T ELT) (($ $ |#2| (-695)) 123 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 122 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3939 (($ $) 113 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) 136 T ELT)) (-3172 ((|#1| $) 135 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3809 (($ $ |#2|) 117 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3766 (($ $ (-695)) 124 T ELT)) (-3463 (((-3 $ "failed") $ $) 151 (|has| |#1| (-495)) ELT)) (-3940 (($ $) 114 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (($ $ |#2| $) 132 T ELT) (($ $ (-584 |#2|) (-584 $)) 131 T ELT) (($ $ (-584 (-248 $))) 130 T ELT) (($ $ (-248 $)) 129 T ELT) (($ $ $ $) 128 T ELT) (($ $ (-584 $) (-584 $)) 127 T ELT)) (-3755 (($ $ (-584 |#2|) (-584 (-695))) 50 T ELT) (($ $ |#2| (-695)) 49 T ELT) (($ $ (-584 |#2|)) 48 T ELT) (($ $ |#2|) 46 T ELT)) (-3945 (((-469 |#2|) $) 137 T ELT)) (-3492 (($ $) 103 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 92 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 102 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 93 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 101 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 94 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 159 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 154 (|has| |#1| (-146)) ELT) (($ $) 152 (|has| |#1| (-495)) ELT) (($ (-347 (-484))) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3674 ((|#1| $ (-469 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 126 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 125 T ELT)) (-2701 (((-633 $) $) 153 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 100 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 148 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 111 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 99 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 110 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 98 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3498 (($ $) 109 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 97 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 108 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 96 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 107 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 95 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 |#2|) (-584 (-695))) 53 T ELT) (($ $ |#2| (-695)) 52 T ELT) (($ $ (-584 |#2|)) 51 T ELT) (($ $ |#2|) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 143 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ $) 115 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 86 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 146 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 134 T ELT) (($ $ |#1|) 133 T ELT))) -(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680)) -((-3674 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3674 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3769 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3811 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3809 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-347 (-484))))))) -(-13 (-810 |t#2|) (-887 |t#1| (-469 |t#2|) |t#2|) (-453 |t#2| $) (-259 $) (-10 -8 (-15 -3674 ($ $ |t#2| (-695))) (-15 -3674 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3766 ($ $ (-695))) (-15 -2892 ($ $ |t#2| (-695))) (-15 -2892 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3769 ((-695) $ |t#2|)) (-15 -3769 ((-695) $ |t#2| (-695))) (-15 -3811 ((-858 |t#1|) $ (-695))) (-15 -3811 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $ |t#2|)) (-6 (-916)) (-6 (-1114))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-245) |has| |#1| (-495)) ((-259 $) . T) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-453 |#2| $) . T) ((-453 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-469 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T)) -((-3729 (((-345 (-1084 |#4|)) (-1084 |#4|)) 30 T ELT) (((-345 |#4|) |#4|) 26 T ELT))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 |#4|) |#4|)) (-15 -3729 ((-345 (-1084 |#4|)) (-1084 |#4|)))) (-757) (-718) (-13 (-257) (-120)) (-862 |#3| |#2| |#1|)) (T -681)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2425 (((-345 |#4|) |#4| |#2|) 142 T ELT)) (-2423 (((-345 |#4|) |#4|) NIL T ELT)) (-3968 (((-345 (-1084 |#4|)) (-1084 |#4|)) 129 T ELT) (((-345 |#4|) |#4|) 52 T ELT)) (-2427 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3729 (-1084 |#4|)) (|:| -2400 (-484)))))) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2431 (((-1084 |#3|) (-1084 |#3|) (-484)) 169 T ELT)) (-2430 (((-584 (-695)) (-1084 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3078 (((-3 (-584 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2428 (((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2426 (((-2 (|:| -2003 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484)) 72 T ELT)) (-2424 (((-484) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484))))) 165 T ELT)) (-2429 ((|#4| (-484) (-345 |#4|)) 73 T ELT)) (-3354 (((-85) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484)))) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484))))) NIL T ELT))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3968 ((-345 |#4|) |#4|)) (-15 -3968 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2423 ((-345 |#4|) |#4|)) (-15 -2424 ((-484) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484)))))) (-15 -2425 ((-345 |#4|) |#4| |#2|)) (-15 -2426 ((-2 (|:| -2003 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484))) (-15 -2427 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3729 (-1084 |#4|)) (|:| -2400 (-484)))))) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2428 ((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2429 (|#4| (-484) (-345 |#4|))) (-15 -3354 ((-85) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484)))) (-584 (-2 (|:| -3729 (-1084 |#3|)) (|:| -2400 (-484)))))) (-15 -3078 ((-3 (-584 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2430 ((-584 (-695)) (-1084 |#4|) (-584 |#2|) (-695))) (-15 -2431 ((-1084 |#3|) (-1084 |#3|) (-484)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -682)) -((-2431 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3078 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1084 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) (-3354 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3729 (-1084 *6)) (|:| -2400 (-484))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-345 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3729 (-1084 *8)) (|:| -2400 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3729 (-1084 *9)) (|:| -2400 (-484))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2003 (-1084 *9)) (|:| |polval| (-1084 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))) (-2425 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3729 (-1084 *6)) (|:| -2400 (-484))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) -((-2432 (($ $ (-831)) 17 T ELT))) -(((-683 |#1| |#2|) (-10 -7 (-15 -2432 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2406 (($ $ (-831)) 36 T ELT)) (-2432 (($ $ (-831)) 43 T ELT)) (-2405 (($ $ (-831)) 37 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 34 T ELT)) (-2433 (($ $ $) 32 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-684 |#1|) (-113) (-146)) (T -684)) -((-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) -(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2432 ($ $ (-831))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2434 (($ $ $) 10 T ELT)) (-2435 (($ $ $ $) 9 T ELT)) (-2433 (($ $ $) 12 T ELT))) -(((-685 |#1|) (-10 -7 (-15 -2433 (|#1| |#1| |#1|)) (-15 -2434 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1| |#1|))) (-686)) (T -685)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2406 (($ $ (-831)) 36 T ELT)) (-2405 (($ $ (-831)) 37 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 34 T ELT)) (-2433 (($ $ $) 32 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-686) (-113)) (T -686)) -((-2435 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2434 (*1 *1 *1 *1) (-4 *1 (-686))) (-2433 (*1 *1 *1 *1) (-4 *1 (-686)))) -(-13 (-21) (-658) (-10 -8 (-15 -2435 ($ $ $ $)) (-15 -2434 ($ $ $)) (-15 -2433 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-658) . T) ((-1013) . T) ((-1128) . T)) -((-3943 (((-773) $) NIL T ELT) (($ (-484)) 10 T ELT))) -(((-687 |#1|) (-10 -7 (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-688)) (T -687)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2403 (((-3 $ #1="failed") $) 48 T ELT)) (-2406 (($ $ (-831)) 36 T ELT) (($ $ (-695)) 43 T ELT)) (-3464 (((-3 $ #1#) $) 46 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2404 (((-3 $ #1#) $) 47 T ELT)) (-2405 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2435 (($ $ $ $) 34 T ELT)) (-2433 (($ $ $) 32 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 41 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-688) (-113)) (T -688)) -((-3124 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-688))))) -(-13 (-686) (-660) (-10 -8 (-15 -3124 ((-695)) -3949) (-15 -3943 ($ (-484))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1013) . T) ((-1128) . T)) -((-2437 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-347 (-484)))) |#1|) 33 T ELT)) (-2436 (((-584 (-142 |#1|)) (-631 (-142 (-347 (-484)))) |#1|) 23 T ELT)) (-2448 (((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))) (-1089)) 20 T ELT) (((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484))))) 19 T ELT))) -(((-689 |#1|) (-10 -7 (-15 -2448 ((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))))) (-15 -2448 ((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))) (-1089))) (-15 -2436 ((-584 (-142 |#1|)) (-631 (-142 (-347 (-484)))) |#1|)) (-15 -2437 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-347 (-484)))) |#1|))) (-13 (-311) (-756))) (T -689)) -((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *4 (-1089)) (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-311) (-756))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756)))))) -((-2615 (((-148 (-484)) |#1|) 27 T ELT))) -(((-690 |#1|) (-10 -7 (-15 -2615 ((-148 (-484)) |#1|))) (-344)) (T -690)) -((-2615 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-690 *3)) (-4 *3 (-344))))) -((-2541 ((|#1| |#1| |#1|) 28 T ELT)) (-2542 ((|#1| |#1| |#1|) 27 T ELT)) (-2531 ((|#1| |#1| |#1|) 38 T ELT)) (-2539 ((|#1| |#1| |#1|) 33 T ELT)) (-2540 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2547 (((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|) 26 T ELT))) -(((-691 |#1| |#2|) (-10 -7 (-15 -2547 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2531 (|#1| |#1| |#1|))) (-646 |#2|) (-311)) (T -691)) -((-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2539 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2540 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2547 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))) -((-2554 (((-633 (-1137)) $ (-1137)) 27 T ELT)) (-2555 (((-633 (-488)) $ (-488)) 26 T ELT)) (-2553 (((-695) $ (-102)) 28 T ELT)) (-2556 (((-633 (-101)) $ (-101)) 25 T ELT)) (-1999 (((-633 (-1137)) $) 12 T ELT)) (-1995 (((-633 (-1135)) $) 8 T ELT)) (-1997 (((-633 (-1134)) $) 10 T ELT)) (-2000 (((-633 (-488)) $) 13 T ELT)) (-1996 (((-633 (-486)) $) 9 T ELT)) (-1998 (((-633 (-485)) $) 11 T ELT)) (-1994 (((-695) $ (-102)) 7 T ELT)) (-2001 (((-633 (-101)) $) 14 T ELT)) (-2438 (((-85) $) 32 T ELT)) (-2439 (((-633 $) |#1| (-866)) 33 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-692 |#1|) (-113) (-1013)) (T -692)) -((-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1013)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-512) (-10 -8 (-15 -2439 ((-633 $) |t#1| (-866))) (-15 -2438 ((-85) $)))) -(((-147) . T) ((-465) . T) ((-512) . T) ((-771) . T)) -((-3916 (((-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))) (-484)) 72 T ELT)) (-3915 (((-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484))))) 70 T ELT)) (-3754 (((-484)) 86 T ELT))) -(((-693 |#1| |#2|) (-10 -7 (-15 -3754 ((-484))) (-15 -3915 ((-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))))) (-15 -3916 ((-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))) (-484)))) (-1154 (-484)) (-350 (-484) |#1|)) (T -693)) -((-3916 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3915 (*1 *2) (-12 (-4 *3 (-1154 (-484))) (-5 *2 (-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-350 (-484) *3)))) (-3754 (*1 *2) (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-693 *3 *4)) (-4 *4 (-350 *2 *3))))) -((-2507 (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089))) 18 T ELT)) (-3570 (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089))) 20 T ELT))) -(((-694 |#1|) (-10 -7 (-15 -2507 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2507 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))))) (-495)) (T -694)) -((-3570 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2482 (($ $ $) 10 T ELT)) (-1310 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2440 (($ $ (-484)) 11 T ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3142 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 6 T CONST)) (-2665 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2562 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3142 ($ $ $)) (-15 -2878 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3463 ((-3 $ "failed") $ $)) (-15 -2440 ($ $ (-484))) (-15 -2993 ($ $)) (-6 (-3994 "*"))))) (T -695)) -((-2562 (*1 *1 *1 *1) (-5 *1 (-695))) (-2563 (*1 *1 *1 *1) (-5 *1 (-695))) (-3142 (*1 *1 *1 *1) (-5 *1 (-695))) (-2878 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 (-695)) (|:| -2901 (-695)))) (-5 *1 (-695)))) (-3463 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2440 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-695)))) (-2993 (*1 *1 *1) (-5 *1 (-695)))) -((-484) (|%not| (|%ilt| |#1| 0))) -((-3570 (((-3 |#2| "failed") |#2| |#2| (-86) (-1089)) 37 T ELT))) -(((-696 |#1| |#2|) (-10 -7 (-15 -3570 ((-3 |#2| "failed") |#2| |#2| (-86) (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -696)) -((-3570 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-872)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-697) (-1013)) (T -697)) -NIL -((-3943 (((-697) |#1|) 8 T ELT))) -(((-698 |#1|) (-10 -7 (-15 -3943 ((-697) |#1|))) (-1128)) (T -698)) -((-3943 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1128))))) -((-3130 ((|#2| |#4|) 35 T ELT))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3130 (|#2| |#4|))) (-389) (-1154 |#1|) (-662 |#1| |#2|) (-1154 |#3|)) (T -699)) -((-3130 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1154 *5))))) -((-3464 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2443 (((-1184) (-1072) (-1072) |#4| |#5|) 33 T ELT)) (-2441 ((|#4| |#4| |#5|) 74 T ELT)) (-2442 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 79 T ELT)) (-2444 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 16 T ELT))) -(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3464 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2441 (|#4| |#4| |#5|)) (-15 -2442 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -2443 ((-1184) (-1072) (-1072) |#4| |#5|)) (-15 -2444 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -700)) -((-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2443 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1072)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2441 (*1 *2 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -((-3155 (((-3 (-1084 (-1084 |#1|)) "failed") |#4|) 53 T ELT)) (-2445 (((-584 |#4|) |#4|) 22 T ELT)) (-3925 ((|#4| |#4|) 17 T ELT))) -(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2445 ((-584 |#4|) |#4|)) (-15 -3155 ((-3 (-1084 (-1084 |#1|)) "failed") |#4|)) (-15 -3925 (|#4| |#4|))) (-298) (-279 |#1|) (-1154 |#2|) (-1154 |#3|) (-831)) (T -701)) -((-3925 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1154 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-831)))) (-3155 (*1 *2 *3) (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831))))) -((-2446 (((-2 (|:| |deter| (-584 (-1084 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1084 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2447 (((-584 (-695)) |#1|) 20 T ELT))) -(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2446 ((-2 (|:| |deter| (-584 (-1084 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1084 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2447 ((-584 (-695)) |#1|))) (-1154 |#4|) (-718) (-757) (-257) (-862 |#4| |#2| |#3|)) (T -702)) -((-2447 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1154 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1084 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10))))) -((-2450 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-347 (-484))) |#1|) 31 T ELT)) (-2449 (((-584 |#1|) (-631 (-347 (-484))) |#1|) 21 T ELT)) (-2448 (((-858 (-347 (-484))) (-631 (-347 (-484))) (-1089)) 18 T ELT) (((-858 (-347 (-484))) (-631 (-347 (-484)))) 17 T ELT))) -(((-703 |#1|) (-10 -7 (-15 -2448 ((-858 (-347 (-484))) (-631 (-347 (-484))))) (-15 -2448 ((-858 (-347 (-484))) (-631 (-347 (-484))) (-1089))) (-15 -2449 ((-584 |#1|) (-631 (-347 (-484))) |#1|)) (-15 -2450 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-347 (-484))) |#1|))) (-13 (-311) (-756))) (T -703)) -((-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *4 (-1089)) (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-311) (-756))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 36 T ELT)) (-3080 (((-584 |#2|) $) NIL T ELT)) (-3082 (((-1084 $) $ |#2|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3794 (($ $) 30 T ELT)) (-3164 (((-85) $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3752 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3146 (((-584 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (((-3 $ #1#) (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-905 (-484)))))) ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 21 T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (($ (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-905 (-484)))))) ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3753 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3956 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3170 (((-85) $) NIL T ELT)) (-3749 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 81 T ELT)) (-3141 (($ $) 136 (|has| |#1| (-389)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3152 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3153 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3163 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3162 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1622 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) 57 T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3143 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3178 ((|#2| $) 22 T ELT)) (-3083 (($ (-1084 |#1|) |#2|) NIL T ELT) (($ (-1084 $) |#2|) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3157 (($ $ $) 63 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3171 (((-85) $) NIL T ELT)) (-2819 (((-469 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3177 (((-695) $) 23 T ELT)) (-1623 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3081 (((-3 |#2| #1#) $) NIL T ELT)) (-3138 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3166 (((-584 $) $) NIL T ELT)) (-3169 (($ $) 39 T ELT)) (-3140 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3167 (((-584 $) $) 43 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3168 (($ $) 41 T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3478 (-695))) $ $) 96 T ELT)) (-3158 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $) 78 T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3159 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $) NIL T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-3161 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3160 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3188 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3174 (((-584 $) $) 32 T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3688 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3683 (($ $ $) NIL T ELT)) (-3443 (($ $) 24 T ELT)) (-3696 (((-85) $ $) NIL T ELT)) (-3689 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3684 (($ $ $) NIL T ELT)) (-3176 (($ $) 26 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3147 (((-2 (|:| -3142 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3148 (((-2 (|:| -3142 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 56 T ELT)) (-1794 ((|#1| $) 58 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 ((|#1| |#1| $) 133 (|has| |#1| (-389)) ELT) (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3149 (((-2 (|:| -3142 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3150 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3151 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3754 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3945 (((-469 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3175 (($ $) NIL T ELT)) (-3173 (($ $) 35 T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT) (($ (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (($ (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2559 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1089))) ELT) (((-1072) $) NIL (-12 (|has| |#1| (-951 (-484))) (|has| |#2| (-554 (-1089)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1089))) ELT)) (-2816 ((|#1| $) 132 (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1089))) ELT) (((-1038 |#1| |#2|) $) 18 T ELT) (($ (-1038 |#1| |#2|)) 19 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 13 T CONST)) (-3165 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2665 (($) 37 T CONST)) (-3144 (($ $ $ $ (-695)) 105 (|has| |#1| (-495)) ELT)) (-3145 (($ $ $ (-695)) 104 (|has| |#1| (-495)) ELT)) (-2668 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3836 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-704 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-553 (-1038 |#1| |#2|)) (-951 (-1038 |#1| |#2|))) (-962) (-757)) (T -704)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 12 T ELT)) (-3764 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3762 (($ (-1084 |#1|)) NIL T ELT)) (-3082 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2454 (((-584 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3752 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3758 (($ $ (-695)) NIL T ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1084 |#1|) #1#) $) 10 T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-3753 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3756 (($ $ $) NIL T ELT)) (-3750 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3749 (((-2 (|:| -3951 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3083 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3774 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3157 (($ $ $) 27 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2819 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3763 (((-1084 |#1|) $) NIL T ELT)) (-3081 (((-3 (-994) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3156 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3478 (-695))) $ $) 37 T ELT)) (-2456 (($ $ $) 41 T ELT)) (-2455 (($ $ $) 47 T ELT)) (-3158 (((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $) 46 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3188 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-994)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3809 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (|has| |#1| (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-3147 (((-2 (|:| -3142 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3148 (((-2 (|:| -3142 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2451 (((-2 (|:| -3753 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2452 (((-2 (|:| -3753 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 13 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3735 (($ $ (-695) |#1| $) 26 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3149 (((-2 (|:| -3142 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2453 (((-2 (|:| -3753 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3761 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3945 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3751 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1084 |#1|) $) 7 T ELT) (($ (-1084 |#1|)) 8 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 32 T CONST)) (-2668 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-705 |#1|) (-13 (-1154 |#1|) (-553 (-1084 |#1|)) (-951 (-1084 |#1|)) (-10 -8 (-15 -3735 ($ $ (-695) |#1| $)) (-15 -3157 ($ $ $)) (-15 -3156 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3478 (-695))) $ $)) (-15 -2456 ($ $ $)) (-15 -3158 ((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2455 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2454 ((-584 $) $ $)) (-15 -3188 ($ $ $)) (-15 -3149 ((-2 (|:| -3142 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3148 ((-2 (|:| -3142 $) (|:| |coef1| $)) $ $)) (-15 -3147 ((-2 (|:| -3142 $) (|:| |coef2| $)) $ $)) (-15 -2453 ((-2 (|:| -3753 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2452 ((-2 (|:| -3753 |#1|) (|:| |coef1| $)) $ $)) (-15 -2451 ((-2 (|:| -3753 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705)) -((-3735 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3157 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3478 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3951 *3) (|:| |gap| (-695)) (|:| -1971 (-705 *3)) (|:| -2901 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3188 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-495)) (-4 *2 (-962)))) (-3149 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3142 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3142 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3147 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3142 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3753 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3753 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3753 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962))))) -((-3955 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT))) -(((-706 |#1| |#2|) (-10 -7 (-15 -3955 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))) -((-2458 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2800 ((|#1| (-695) |#1|) 23 T ELT)) (-2457 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-707 |#1|) (-10 -7 (-15 -2800 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -2457 (|#1| (-695) |#1|)) (-15 -2458 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707)) -((-2458 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2457 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3679 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3685 ((|#4| |#4| $) 97 T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-3796 (((-3 $ #1#) $) 87 T ELT)) (-3682 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3680 ((|#4| |#4| $) 92 T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3195 (((-85) |#4| $) 143 T ELT)) (-3193 (((-85) |#4| $) 140 T ELT)) (-3196 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3795 (((-3 |#4| #1#) $) 88 T ELT)) (-3190 (((-584 $) |#4| $) 136 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3236 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3437 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3694 (((-584 |#4|) $) 112 T ELT)) (-3688 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3683 ((|#4| |#4| $) 95 T ELT)) (-3696 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3684 ((|#4| |#4| $) 96 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3766 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-3945 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3681 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3675 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3187 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) 86 T ELT)) (-3194 (((-85) |#4| $) 142 T ELT)) (-3930 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-708 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -708)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) -((-2461 (((-3 (-327) #1="failed") (-264 |#1|) (-831)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-327) #1#) (-264 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-327) #1#) (-347 (-858 |#1|)) (-831)) 39 (|has| |#1| (-495)) ELT) (((-3 (-327) #1#) (-347 (-858 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-327) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-327) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2459 (((-327) (-264 |#1|) (-831)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-327) (-264 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-327) (-347 (-858 |#1|)) (-831)) 84 (|has| |#1| (-495)) ELT) (((-327) (-347 (-858 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-327) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-327) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-327) |#1| (-831)) 73 T ELT) (((-327) |#1|) 22 T ELT)) (-2462 (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|) (-831)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)) (-831)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-327)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-327)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-327)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2460 (((-142 (-327)) (-264 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 |#1|) (-831)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-347 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 |#1|)) (-831)) 83 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-327)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-327)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-327)) |#1| (-831)) 27 T ELT) (((-142 (-327)) |#1|) 25 T ELT))) -(((-709 |#1|) (-10 -7 (-15 -2459 ((-327) |#1|)) (-15 -2459 ((-327) |#1| (-831))) (-15 -2460 ((-142 (-327)) |#1|)) (-15 -2460 ((-142 (-327)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2460 ((-142 (-327)) (-142 |#1|))) (-15 -2460 ((-142 (-327)) (-142 |#1|) (-831))) (-15 -2460 ((-142 (-327)) (-858 (-142 |#1|)))) (-15 -2460 ((-142 (-327)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2459 ((-327) (-858 |#1|))) (-15 -2459 ((-327) (-858 |#1|) (-831))) (-15 -2460 ((-142 (-327)) (-858 |#1|))) (-15 -2460 ((-142 (-327)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2459 ((-327) (-347 (-858 |#1|)))) (-15 -2459 ((-327) (-347 (-858 |#1|)) (-831))) (-15 -2460 ((-142 (-327)) (-347 (-858 |#1|)))) (-15 -2460 ((-142 (-327)) (-347 (-858 |#1|)) (-831))) (-15 -2460 ((-142 (-327)) (-347 (-858 (-142 |#1|))))) (-15 -2460 ((-142 (-327)) (-347 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2459 ((-327) (-264 |#1|))) (-15 -2459 ((-327) (-264 |#1|) (-831))) (-15 -2460 ((-142 (-327)) (-264 |#1|))) (-15 -2460 ((-142 (-327)) (-264 |#1|) (-831))) (-15 -2460 ((-142 (-327)) (-264 (-142 |#1|)))) (-15 -2460 ((-142 (-327)) (-264 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2462 ((-3 (-142 (-327)) #1="failed") (-858 (-142 |#1|)))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2461 ((-3 (-327) #1#) (-858 |#1|))) (-15 -2461 ((-3 (-327) #1#) (-858 |#1|) (-831))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-858 |#1|))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2461 ((-3 (-327) #1#) (-347 (-858 |#1|)))) (-15 -2461 ((-3 (-327) #1#) (-347 (-858 |#1|)) (-831))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)) (-831))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2461 ((-3 (-327) #1#) (-264 |#1|))) (-15 -2461 ((-3 (-327) #1#) (-264 |#1|) (-831))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-264 |#1|))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-264 |#1|) (-831))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)))) (-15 -2462 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-327))) (T -709)) -((-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327))))) (-2460 (*1 *2 *3) (-12 (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327))))) (-2459 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))) -((-2466 (((-831) (-1072)) 90 T ELT)) (-2468 (((-3 (-327) "failed") (-1072)) 36 T ELT)) (-2467 (((-327) (-1072)) 34 T ELT)) (-2464 (((-831) (-1072)) 64 T ELT)) (-2465 (((-1072) (-831)) 74 T ELT)) (-2463 (((-1072) (-831)) 63 T ELT))) -(((-710) (-10 -7 (-15 -2463 ((-1072) (-831))) (-15 -2464 ((-831) (-1072))) (-15 -2465 ((-1072) (-831))) (-15 -2466 ((-831) (-1072))) (-15 -2467 ((-327) (-1072))) (-15 -2468 ((-3 (-327) "failed") (-1072))))) (T -710)) -((-2468 (*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710))))) -((-2471 (((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327))) 54 T ELT) (((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 51 T ELT)) (-2472 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 61 T ELT)) (-2470 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 49 T ELT)) (-2469 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327))) 63 T ELT) (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 62 T ELT))) -(((-711) (-10 -7 (-15 -2469 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2469 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)))) (-15 -2470 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2471 ((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2471 ((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)))) (-15 -2472 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))))) (T -711)) -((-2472 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2470 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2469 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2469 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))) -((-2481 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 65 T ELT)) (-2478 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 40 T ELT)) (-2480 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 64 T ELT)) (-2477 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 38 T ELT)) (-2479 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 63 T ELT)) (-2476 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 24 T ELT)) (-2475 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 41 T ELT)) (-2474 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 39 T ELT)) (-2473 (((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 37 T ELT))) -(((-712) (-10 -7 (-15 -2473 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2474 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2475 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2476 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2477 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2478 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2479 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2480 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2481 ((-2 (|:| -3399 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))))) (T -712)) -((-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2473 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484))))) -((-3702 (((-1124 |#1|) |#1| (-179) (-484)) 69 T ELT))) -(((-713 |#1|) (-10 -7 (-15 -3702 ((-1124 |#1|) |#1| (-179) (-484)))) (-888)) (T -713)) -((-3702 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888))))) -((-3620 (((-484) $) 17 T ELT)) (-3185 (((-85) $) 10 T ELT)) (-3380 (($ $) 19 T ELT))) -(((-714 |#1|) (-10 -7 (-15 -3380 (|#1| |#1|)) (-15 -3620 ((-484) |#1|)) (-15 -3185 ((-85) |#1|))) (-715)) (T -714)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3620 (((-484) $) 37 T ELT)) (-3721 (($) 30 T CONST)) (-3184 (((-85) $) 28 T ELT)) (-3185 (((-85) $) 38 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3380 (($ $) 36 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3834 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3836 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-484) $) 39 T ELT))) -(((-715) (-113)) (T -715)) -((-3185 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-484)))) (-3380 (*1 *1 *1) (-4 *1 (-715)))) -(-13 (-722) (-21) (-10 -8 (-15 -3185 ((-85) $)) (-15 -3620 ((-484) $)) (-15 -3380 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-3184 (((-85) $) 10 T ELT))) -(((-716 |#1|) (-10 -7 (-15 -3184 ((-85) |#1|))) (-717)) (T -716)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-3721 (($) 30 T CONST)) (-3184 (((-85) $) 28 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) -(((-717) (-113)) (T -717)) -((-3184 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))) -(-13 (-719) (-23) (-10 -8 (-15 -3184 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-2482 (($ $ $) 35 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3721 (($) 30 T CONST)) (-3184 (((-85) $) 28 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) +((-2007 (((-1086 |#1|) (-696)) 114 T ELT)) (-3331 (((-1180 |#1|) (-1180 |#1|) (-832)) 107 T ELT)) (-2005 (((-1186) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) |#1|) 122 T ELT)) (-2009 (((-1180 |#1|) (-1180 |#1|) (-696)) 53 T ELT)) (-2996 (((-1180 |#1|) (-832)) 109 T ELT)) (-2011 (((-1180 |#1|) (-1180 |#1|) (-485)) 30 T ELT)) (-2006 (((-1086 |#1|) (-1180 |#1|)) 115 T ELT)) (-2015 (((-1180 |#1|) (-832)) 136 T ELT)) (-2013 (((-85) (-1180 |#1|)) 119 T ELT)) (-3134 (((-1180 |#1|) (-1180 |#1|) (-832)) 99 T ELT)) (-2016 (((-1086 |#1|) (-1180 |#1|)) 130 T ELT)) (-2012 (((-832) (-1180 |#1|)) 95 T ELT)) (-2486 (((-1180 |#1|) (-1180 |#1|)) 38 T ELT)) (-2402 (((-1180 |#1|) (-832) (-832)) 139 T ELT)) (-2010 (((-1180 |#1|) (-1180 |#1|) (-1035) (-1035)) 29 T ELT)) (-2008 (((-1180 |#1|) (-1180 |#1|) (-696) (-1035)) 54 T ELT)) (-2014 (((-1180 (-1180 |#1|)) (-832)) 135 T ELT)) (-3950 (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 120 T ELT)) (** (((-1180 |#1|) (-1180 |#1|) (-485)) 67 T ELT)) (* (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 31 T ELT))) +(((-467 |#1|) (-10 -7 (-15 -2005 ((-1186) (-1180 (-585 (-2 (|:| -3403 |#1|) (|:| -2402 (-1035))))) |#1|)) (-15 -2996 ((-1180 |#1|) (-832))) (-15 -2402 ((-1180 |#1|) (-832) (-832))) (-15 -2006 ((-1086 |#1|) (-1180 |#1|))) (-15 -2007 ((-1086 |#1|) (-696))) (-15 -2008 ((-1180 |#1|) (-1180 |#1|) (-696) (-1035))) (-15 -2009 ((-1180 |#1|) (-1180 |#1|) (-696))) (-15 -2010 ((-1180 |#1|) (-1180 |#1|) (-1035) (-1035))) (-15 -2011 ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 ** ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 * ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3950 ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3134 ((-1180 |#1|) (-1180 |#1|) (-832))) (-15 -3331 ((-1180 |#1|) (-1180 |#1|) (-832))) (-15 -2486 ((-1180 |#1|) (-1180 |#1|))) (-15 -2012 ((-832) (-1180 |#1|))) (-15 -2013 ((-85) (-1180 |#1|))) (-15 -2014 ((-1180 (-1180 |#1|)) (-832))) (-15 -2015 ((-1180 |#1|) (-832))) (-15 -2016 ((-1086 |#1|) (-1180 |#1|)))) (-299)) (T -467)) +((-2016 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-467 *4)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1180 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) (-5 *1 (-467 *5)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) +((-2002 (((-634 (-1139)) $) NIL T ELT)) (-1998 (((-634 (-1137)) $) NIL T ELT)) (-2000 (((-634 (-1136)) $) NIL T ELT)) (-2003 (((-634 (-489)) $) NIL T ELT)) (-1999 (((-634 (-487)) $) NIL T ELT)) (-2001 (((-634 (-486)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) 26 T ELT)) (-2017 (((-1035) $ (-1035)) 31 T ELT)) (-3420 (((-1035) $) 30 T ELT)) (-2560 (((-85) $) 20 T ELT)) (-2019 (($ (-336)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-2018 (((-85) $) 27 T ELT)) (-3947 (((-774) $) 34 T ELT)) (-1701 (($ $) 28 T ELT))) +(((-468) (-13 (-466) (-554 (-774)) (-10 -8 (-15 -2019 ($ (-336))) (-15 -2019 ($ (-1074))) (-15 -2018 ((-85) $)) (-15 -2560 ((-85) $)) (-15 -3420 ((-1035) $)) (-15 -2017 ((-1035) $ (-1035)))))) (T -468)) +((-2019 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-468)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-468)))) (-2017 (*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-468))))) +((-2021 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2020 (((-1 |#1| |#1|)) 10 T ELT))) +(((-469 |#1|) (-10 -7 (-15 -2020 ((-1 |#1| |#1|))) (-15 -2021 ((-1 |#1| |#1|) |#1|))) (-13 (-665) (-25))) (T -469)) +((-2021 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-665) (-25))))) (-2020 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-665) (-25)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 (-696) |#1|)) $) NIL T ELT)) (-2485 (($ $ $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ (-696) |#1|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3959 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-1985 ((|#1| $) NIL T ELT)) (-3176 (((-696) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (($ (-585 (-452 (-696) |#1|))) NIL T ELT)) (-3947 (((-774) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT))) +(((-470 |#1|) (-13 (-719) (-448 (-696) |#1|)) (-758)) (T -470)) +NIL +((-2023 (((-585 |#2|) (-1086 |#1|) |#3|) 98 T ELT)) (-2024 (((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-346 (-1086 |#1|)) (-1086 |#1|))) 114 T ELT)) (-2022 (((-1086 |#1|) (-632 |#1|)) 110 T ELT))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-1086 |#1|) (-632 |#1|))) (-15 -2023 ((-585 |#2|) (-1086 |#1|) |#3|)) (-15 -2024 ((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-346 (-1086 |#1|)) (-1086 |#1|))))) (-312) (-312) (-13 (-312) (-757))) (T -471)) +((-2024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-346 (-1086 *6)) (-1086 *6))) (-4 *6 (-312)) (-5 *2 (-585 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) +((-2557 (((-634 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-634 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-696) $ (-102)) 39 T ELT)) (-2559 (((-634 (-101)) $ (-101)) 40 T ELT)) (-2002 (((-634 (-1139)) $) NIL T ELT)) (-1998 (((-634 (-1137)) $) NIL T ELT)) (-2000 (((-634 (-1136)) $) NIL T ELT)) (-2003 (((-634 (-489)) $) NIL T ELT)) (-1999 (((-634 (-487)) $) NIL T ELT)) (-2001 (((-634 (-486)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) 35 T ELT)) (-2004 (((-634 (-101)) $) 37 T ELT)) (-2441 (((-85) $) 27 T ELT)) (-2442 (((-634 $) (-516) (-867)) 18 T ELT) (((-634 $) (-429) (-867)) 24 T ELT)) (-3947 (((-774) $) 48 T ELT)) (-1701 (($ $) 42 T ELT))) +(((-472) (-13 (-693 (-516)) (-554 (-774)) (-10 -8 (-15 -2442 ((-634 $) (-429) (-867)))))) (T -472)) +((-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-429)) (-5 *4 (-867)) (-5 *2 (-634 (-472))) (-5 *1 (-472))))) +((-2529 (((-752 (-485))) 12 T ELT)) (-2528 (((-752 (-485))) 14 T ELT)) (-2516 (((-745 (-485))) 9 T ELT))) +(((-473) (-10 -7 (-15 -2516 ((-745 (-485)))) (-15 -2529 ((-752 (-485)))) (-15 -2528 ((-752 (-485)))))) (T -473)) +((-2528 (*1 *2) (-12 (-5 *2 (-752 (-485))) (-5 *1 (-473)))) (-2529 (*1 *2) (-12 (-5 *2 (-752 (-485))) (-5 *1 (-473)))) (-2516 (*1 *2) (-12 (-5 *2 (-745 (-485))) (-5 *1 (-473))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2028 (((-1074) $) 55 T ELT)) (-3262 (((-85) $) 51 T ELT)) (-3258 (((-1091) $) 52 T ELT)) (-3263 (((-85) $) 49 T ELT)) (-3536 (((-1074) $) 50 T ELT)) (-2027 (($ (-1074)) 56 T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2030 (($ $ (-585 (-1091))) 21 T ELT)) (-2033 (((-51) $) 23 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2385 (($ $ (-585 (-1091)) (-1091)) 73 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-2029 (($ $) 44 T ELT)) (-3255 (((-774) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-485)) NIL T ELT) (($ $ (-585 (-485))) NIL T ELT)) (-3259 (((-585 $) $) 30 T ELT)) (-2026 (((-1091) (-585 $)) 57 T ELT)) (-3973 (($ (-1074)) NIL T ELT) (($ (-1091)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) 65 T ELT) (((-1017) $) 12 T ELT) (($ (-1017)) 13 T ELT)) (-2025 (((-1091) (-1091) (-585 $)) 60 T ELT)) (-3947 (((-774) $) 54 T ELT)) (-3253 (($ $) 59 T ELT)) (-3254 (($ $) 58 T ELT)) (-2031 (($ $ (-585 $)) 66 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 29 T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 74 T ELT)) (-3950 (($ $ $) 82 T ELT)) (-3840 (($ $ $) 75 T ELT)) (** (($ $ (-696)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3958 (((-485) $) NIL T ELT))) +(((-474) (-13 (-1018 (-1074) (-1091) (-485) (-179) (-774)) (-555 (-1017)) (-10 -8 (-15 -2033 ((-51) $)) (-15 -3973 ($ (-1017))) (-15 -2031 ($ $ (-585 $))) (-15 -2385 ($ $ (-585 (-1091)) (-1091))) (-15 -2030 ($ $ (-585 (-1091)))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ (-485))) (-15 -2662 ($) -3953) (-15 -2668 ($) -3953) (-15 -2029 ($ $)) (-15 -2028 ((-1074) $)) (-15 -2027 ($ (-1074))) (-15 -2026 ((-1091) (-585 $))) (-15 -2025 ((-1091) (-1091) (-585 $)))))) (T -474)) +((-2033 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-474)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-474))) (-5 *1 (-474)))) (-2385 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-474)))) (-3840 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3950 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) (-2662 (*1 *1) (-5 *1 (-474))) (-2668 (*1 *1) (-5 *1 (-474))) (-2029 (*1 *1 *1) (-5 *1 (-474))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-585 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-585 (-474))) (-5 *1 (-474))))) +((-2032 (((-474) (-1091)) 15 T ELT)) (-2033 ((|#1| (-474)) 20 T ELT))) +(((-475 |#1|) (-10 -7 (-15 -2032 ((-474) (-1091))) (-15 -2033 (|#1| (-474)))) (-1130)) (T -475)) +((-2033 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) +((-3454 ((|#2| |#2|) 17 T ELT)) (-3452 ((|#2| |#2|) 13 T ELT)) (-3455 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3453 ((|#2| |#2|) 15 T ELT))) +(((-476 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-485) (-485)))) (-13 (-496) (-120)) (-1173 |#1|)) (T -476)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1173 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))) +((-2036 (((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1091))) 32 T ELT)) (-2034 (((-585 |#2|) (-859 |#1|) |#3|) 54 T ELT) (((-585 |#2|) (-1086 |#1|) |#3|) 53 T ELT)) (-2035 (((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091)) |#3|) 106 T ELT))) +(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2034 ((-585 |#2|) (-1086 |#1|) |#3|)) (-15 -2034 ((-585 |#2|) (-859 |#1|) |#3|)) (-15 -2035 ((-585 (-585 |#2|)) (-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091)) |#3|)) (-15 -2036 ((-585 (-249 (-859 |#2|))) (-585 |#2|) (-585 (-1091))))) (-390) (-312) (-13 (-312) (-757))) (T -477)) +((-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1091))) (-4 *6 (-312)) (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-13 (-312) (-757))))) (-2035 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) (-4 *6 (-390)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-4 *5 (-390)) (-5 *2 (-585 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-390)) (-5 *2 (-585 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) +((-2039 ((|#2| |#2| |#1|) 17 T ELT)) (-2037 ((|#2| (-585 |#2|)) 30 T ELT)) (-2038 ((|#2| (-585 |#2|)) 51 T ELT))) +(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 (|#2| (-585 |#2|))) (-15 -2038 (|#2| (-585 |#2|))) (-15 -2039 (|#2| |#2| |#1|))) (-258) (-1156 |#1|) |#1| (-1 |#1| |#1| (-696))) (T -478)) +((-2039 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696))))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) +((-3733 (((-346 (-1086 |#4|)) (-1086 |#4|) (-1 (-346 (-1086 |#3|)) (-1086 |#3|))) 90 T ELT) (((-346 |#4|) |#4| (-1 (-346 (-1086 |#3|)) (-1086 |#3|))) 213 T ELT))) +(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4| (-1 (-346 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3733 ((-346 (-1086 |#4|)) (-1086 |#4|) (-1 (-346 (-1086 |#3|)) (-1086 |#3|))))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -479)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) (-5 *2 (-346 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-346 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-863 *7 *6 *5))))) +((-3454 ((|#4| |#4|) 74 T ELT)) (-3452 ((|#4| |#4|) 70 T ELT)) (-3455 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3453 ((|#4| |#4|) 72 T ELT))) +(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4| (-485) (-485)))) (-13 (-312) (-318) (-555 (-485))) (-1156 |#1|) (-663 |#1| |#2|) (-1173 |#3|)) (T -480)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-318) (-555 *3))) (-4 *5 (-1156 *4)) (-4 *6 (-663 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))) +((-3454 ((|#2| |#2|) 27 T ELT)) (-3452 ((|#2| |#2|) 23 T ELT)) (-3455 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3453 ((|#2| |#2|) 25 T ELT))) +(((-481 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-485) (-485)))) (-13 (-312) (-318) (-555 (-485))) (-1173 |#1|)) (T -481)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-318) (-555 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3))))) +((-2040 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT))) +(((-482 |#1| |#2|) (-10 -7 (-15 -2040 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2040 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2040 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-963) (-1156 |#1|)) (T -482)) +((-2040 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2040 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2040 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-963)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5))))) +((-2049 (($ $ $) 87 T ELT)) (-3972 (((-346 $) $) 50 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3158 (((-485) $) 40 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 80 T ELT)) (-3025 (((-85) $) 24 T ELT)) (-3024 (((-348 (-485)) $) 78 T ELT)) (-3724 (((-85) $) 53 T ELT)) (-2042 (($ $ $ $) 94 T ELT)) (-1370 (($ $ $) 60 T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 75 T ELT)) (-3446 (((-634 $) $) 70 T ELT)) (-2046 (($ $) 22 T ELT)) (-2041 (($ $ $) 92 T ELT)) (-3447 (($) 63 T CONST)) (-1368 (($ $) 56 T ELT)) (-3733 (((-346 $) $) 48 T ELT)) (-2676 (((-85) $) 15 T ELT)) (-1608 (((-696) $) 30 T ELT)) (-3759 (($ $) 11 T ELT) (($ $ (-696)) NIL T ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-802 (-485)) $) 43 T ELT) (((-328) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3128 (((-696)) 9 T CONST)) (-2051 (((-85) $ $) 19 T ELT)) (-3103 (($ $ $) 58 T ELT))) +(((-483 |#1|) (-10 -7 (-15 -2041 (|#1| |#1| |#1|)) (-15 -2042 (|#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -3026 ((-3 (-348 (-485)) #1="failed") |#1|)) (-15 -3024 ((-348 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -2049 (|#1| |#1| |#1|)) (-15 -2051 ((-85) |#1| |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-634 |#1|) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-328) |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2798 ((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|))) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3973 ((-485) |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -1608 ((-696) |#1|)) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3972 ((-346 |#1|) |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3128 ((-696)) -3953)) (-484)) (T -483)) +((-3128 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-483 *3)) (-4 *3 (-484))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-2049 (($ $ $) 102 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2044 (($ $ $ $) 91 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-346 $) $) 67 T ELT)) (-1609 (((-85) $ $) 145 T ELT)) (-3624 (((-485) $) 134 T ELT)) (-2443 (($ $ $) 105 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 126 T ELT)) (-3158 (((-485) $) 127 T ELT)) (-2566 (($ $ $) 149 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 124 T ELT) (((-632 (-485)) (-632 $)) 123 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3026 (((-3 (-348 (-485)) "failed") $) 99 T ELT)) (-3025 (((-85) $) 101 T ELT)) (-3024 (((-348 (-485)) $) 100 T ELT)) (-2996 (($) 98 T ELT) (($ $) 97 T ELT)) (-2565 (($ $ $) 148 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 143 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-2042 (($ $ $ $) 89 T ELT)) (-2050 (($ $ $) 103 T ELT)) (-3188 (((-85) $) 136 T ELT)) (-1370 (($ $ $) 114 T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 109 T ELT)) (-3446 (((-634 $) $) 111 T ELT)) (-3189 (((-85) $) 135 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 152 T ELT)) (-2043 (($ $ $ $) 90 T ELT)) (-2533 (($ $ $) 142 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-2046 (($ $) 93 T ELT)) (-3834 (($ $) 106 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 122 T ELT) (((-632 (-485)) (-1180 $)) 121 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2041 (($ $ $) 88 T ELT)) (-3447 (($) 110 T CONST)) (-2048 (($ $) 95 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1368 (($ $) 115 T ELT)) (-3733 (((-346 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 150 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 144 T ELT)) (-2676 (((-85) $) 108 T ELT)) (-1608 (((-696) $) 146 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 147 T ELT)) (-3759 (($ $) 132 T ELT) (($ $ (-696)) 130 T ELT)) (-2047 (($ $) 94 T ELT)) (-3401 (($ $) 96 T ELT)) (-3973 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-802 (-485)) $) 118 T ELT) (((-328) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3128 (((-696)) 40 T CONST)) (-2051 (((-85) $ $) 104 T ELT)) (-3103 (($ $ $) 116 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (($) 107 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2045 (($ $ $ $) 92 T ELT)) (-3384 (($ $) 133 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 131 T ELT) (($ $ (-696)) 129 T ELT)) (-2568 (((-85) $ $) 140 T ELT)) (-2569 (((-85) $ $) 138 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 139 T ELT)) (-2687 (((-85) $ $) 137 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT))) +(((-484) (-113)) (T -484)) +((-2675 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2696 (*1 *1) (-4 *1 (-484))) (-3834 (*1 *1 *1) (-4 *1 (-484))) (-2443 (*1 *1 *1 *1) (-4 *1 (-484))) (-2051 (*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2050 (*1 *1 *1 *1) (-4 *1 (-484))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-348 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-348 (-485))))) (-2996 (*1 *1) (-4 *1 (-484))) (-2996 (*1 *1 *1) (-4 *1 (-484))) (-3401 (*1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1) (-4 *1 (-484)))) +(-13 (-1135) (-258) (-742) (-190) (-555 (-485)) (-952 (-485)) (-582 (-485)) (-555 (-474)) (-555 (-802 (-485))) (-798 (-485)) (-116) (-935) (-120) (-1067) (-10 -8 (-15 -2675 ((-85) $)) (-15 -2676 ((-85) $)) (-6 -3995) (-15 -2696 ($)) (-15 -3834 ($ $)) (-15 -2443 ($ $ $)) (-15 -2051 ((-85) $ $)) (-15 -2050 ($ $ $)) (-15 -2049 ($ $ $)) (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $)) (-15 -2996 ($)) (-15 -2996 ($ $)) (-15 -3401 ($ $)) (-15 -2048 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $ $ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $)) (-6 -3994))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-116) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-328)) . T) ((-555 (-474)) . T) ((-555 (-485)) . T) ((-555 (-802 (-485))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-485)) . T) ((-592 $) . T) ((-584 $) . T) ((-582 (-485)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-742) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-485)) . T) ((-834) . T) ((-935) . T) ((-952 (-485)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 8 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 77 T ELT)) (-2065 (($ $) 78 T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 31 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 71 T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 45 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 53 T ELT) (((-632 (-485)) (-632 $)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 74 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-348 (-485)) $) NIL T ELT)) (-2996 (($) 55 T ELT) (($ $) 56 T ELT)) (-2565 (($ $ $) 70 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 46 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) 110 T ELT)) (-2412 (((-85) $) 9 T ELT)) (-2675 (((-85) $) 64 T ELT)) (-3446 (((-634 $) $) NIL T ELT)) (-3189 (((-85) $) 21 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 32 T ELT)) (-2533 (($ $ $) 67 T ELT)) (-2859 (($ $ $) 66 T ELT)) (-2046 (($ $) NIL T ELT)) (-3834 (($ $) 29 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) 44 T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2048 (($ $) 15 T ELT)) (-3245 (((-1035) $) 19 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 109 T ELT)) (-3146 (($ $ $) 75 T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-346 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2676 (((-85) $) 65 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 69 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 17 T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-802 (-485)) $) NIL T ELT) (((-328) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3947 (((-774) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3128 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 12 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) 112 T ELT)) (-2045 (($ $ $ $) 30 T ELT)) (-3384 (($ $) 54 T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 11 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2568 (((-85) $ $) 59 T ELT)) (-2569 (((-85) $ $) 57 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 58 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-3838 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 14 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 63 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT))) +(((-485) (-13 (-484) (-10 -7 (-6 -3983) (-6 -3988) (-6 -3984)))) (T -485)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-486) (-13 (-754) (-10 -8 (-15 -3725 ($) -3953)))) (T -486)) +((-3725 (*1 *1) (-5 *1 (-486)))) +((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-487) (-13 (-754) (-10 -8 (-15 -3725 ($) -3953)))) (T -487)) +((-3725 (*1 *1) (-5 *1 (-487)))) +((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-488) (-13 (-754) (-10 -8 (-15 -3725 ($) -3953)))) (T -488)) +((-3725 (*1 *1) (-5 *1 (-488)))) +((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-489) (-13 (-754) (-10 -8 (-15 -3725 ($) -3953)))) (T -489)) +((-3725 (*1 *1) (-5 *1 (-489)))) +((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-490 |#1| |#2| |#3|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -3996))) (-1015) (-1015) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -3996)))) (T -490)) +NIL +((-2052 (((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 50 T ELT))) +(((-491 |#1| |#2|) (-10 -7 (-15 -2052 ((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-496) (-13 (-27) (-362 |#1|))) (T -491)) +((-2052 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-362 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3))))) +((-2054 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2055 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2055 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-496) (-952 (-485))) (-13 (-27) (-362 |#1|)) (-1156 |#2|) (-1156 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -492)) +((-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-27) (-362 *4))) (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *7 (-1156 (-348 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-362 *5))) (-4 *5 (-13 (-496) (-952 (-485)))) (-4 *8 (-1156 (-348 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-362 *5))) (-4 *5 (-13 (-496) (-952 (-485)))) (-4 *8 (-1156 (-348 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) +((-2058 (((-85) (-485) (-485)) 12 T ELT)) (-2056 (((-485) (-485)) 7 T ELT)) (-2057 (((-485) (-485) (-485)) 10 T ELT))) +(((-493) (-10 -7 (-15 -2056 ((-485) (-485))) (-15 -2057 ((-485) (-485) (-485))) (-15 -2058 ((-85) (-485) (-485))))) (T -493)) +((-2058 (*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))) (-2056 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2606 ((|#1| $) 77 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3493 (($ $) 107 T ELT)) (-3640 (($ $) 90 T ELT)) (-2485 ((|#1| $) 78 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 89 T ELT)) (-3491 (($ $) 106 T ELT)) (-3639 (($ $) 91 T ELT)) (-3495 (($ $) 105 T ELT)) (-3638 (($ $) 92 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 85 T ELT)) (-3158 (((-485) $) 86 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2061 (($ |#1| |#1|) 82 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-3628 (($) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 88 T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2533 (($ $ $) 118 T ELT)) (-2859 (($ $ $) 119 T ELT)) (-3943 (($ $) 114 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2062 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-348 (-485))) 80 T ELT)) (-2060 ((|#1| $) 79 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (($ $) 115 T ELT)) (-3496 (($ $) 104 T ELT)) (-3637 (($ $) 93 T ELT)) (-3494 (($ $) 103 T ELT)) (-3636 (($ $) 94 T ELT)) (-3492 (($ $) 102 T ELT)) (-3635 (($ $) 95 T ELT)) (-2059 (((-85) $ |#1|) 74 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 101 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3497 (($ $) 112 T ELT)) (-3485 (($ $) 100 T ELT)) (-3501 (($ $) 111 T ELT)) (-3489 (($ $) 99 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 110 T ELT)) (-3490 (($ $) 98 T ELT)) (-3500 (($ $) 109 T ELT)) (-3488 (($ $) 97 T ELT)) (-3498 (($ $) 108 T ELT)) (-3486 (($ $) 96 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 120 T ELT)) (-2569 (((-85) $ $) 122 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 121 T ELT)) (-2687 (((-85) $ $) 123 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-348 (-485))) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-494 |#1|) (-113) (-13 (-345) (-1116))) (T -494)) +((-2062 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-2062 (*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85))))) +(-13 (-390) (-758) (-1116) (-917) (-952 (-485)) (-10 -8 (-6 -3771) (-15 -2062 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2062 ($ |t#1|)) (-15 -2062 ($ (-348 (-485)))) (-15 -2060 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2606 (|t#1| $)) (-15 -3188 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -2059 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-390) . T) ((-431) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-758) . T) ((-761) . T) ((-917) . T) ((-952 (-485)) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) . T) ((-1119) . T) ((-1130) . T)) +((-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 9 T ELT)) (-2065 (($ $) 11 T ELT)) (-2063 (((-85) $) 20 T ELT)) (-3468 (((-3 $ "failed") $) 16 T ELT)) (-2064 (((-85) $ $) 22 T ELT))) +(((-495 |#1|) (-10 -7 (-15 -2063 ((-85) |#1|)) (-15 -2064 ((-85) |#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2066 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|))) (-496)) (T -495)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-496) (-113)) (T -496)) +((-3467 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1773 *1) (|:| -3983 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2065 (*1 *1 *1) (-4 *1 (-496))) (-2064 (*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2066 ((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $)) (-15 -2065 ($ $)) (-15 -2064 ((-85) $ $)) (-15 -2063 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2068 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1091) (-585 |#2|)) 38 T ELT)) (-2070 (((-520 |#2|) |#2| (-1091)) 63 T ELT)) (-2069 (((-3 |#2| #1#) |#2| (-1091)) 156 T ELT)) (-2071 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-552 |#2|) (-585 (-552 |#2|))) 159 T ELT)) (-2067 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) |#2|) 41 T ELT))) +(((-497 |#1| |#2|) (-10 -7 (-15 -2067 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1091) |#2|)) (-15 -2068 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1091) (-585 |#2|))) (-15 -2069 ((-3 |#2| #1#) |#2| (-1091))) (-15 -2070 ((-520 |#2|) |#2| (-1091))) (-15 -2071 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-552 |#2|) (-585 (-552 |#2|))))) (-13 (-390) (-120) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -497)) +((-2071 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *7))) (-4 *7 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-2069 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-2068 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2067 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) +((-3972 (((-346 |#1|) |#1|) 17 T ELT)) (-3733 (((-346 |#1|) |#1|) 32 T ELT)) (-2073 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2072 (((-346 |#1|) |#1|) 59 T ELT))) +(((-498 |#1|) (-10 -7 (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3972 ((-346 |#1|) |#1|)) (-15 -2072 ((-346 |#1|) |#1|)) (-15 -2073 ((-3 |#1| "failed") |#1|))) (-484)) (T -498)) +((-2073 (*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) +((-3085 (((-1086 (-348 (-1086 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1086 |#2|)) 35 T ELT)) (-2076 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1086 |#2|)) 115 T ELT)) (-2074 (((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1086 |#2|)) 55 T ELT)) (-2075 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-348 (-1086 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1086 |#2|)) 114 T ELT)) (-2077 (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-552 |#2|) |#2| (-348 (-1086 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|)) 116 T ELT)) (-2078 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|))) 133 (|has| |#3| (-602 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1086 |#2|)) 132 (|has| |#3| (-602 |#2|)) ELT)) (-3086 ((|#2| (-1086 (-348 (-1086 |#2|))) (-552 |#2|) |#2|) 53 T ELT)) (-3081 (((-1086 (-348 (-1086 |#2|))) (-1086 |#2|) (-552 |#2|)) 34 T ELT))) +(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2074 ((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) |#2| (-1086 |#2|))) (-15 -2074 ((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|)))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2075 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2| (-552 |#2|) |#2| (-348 (-1086 |#2|)))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) |#2| (-1086 |#2|))) (-15 -2076 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|)))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|))) (-15 -2077 ((-3 |#2| #1#) |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-552 |#2|) |#2| (-348 (-1086 |#2|)))) (-15 -3085 ((-1086 (-348 (-1086 |#2|))) |#2| (-552 |#2|) (-552 |#2|) (-1086 |#2|))) (-15 -3086 (|#2| (-1086 (-348 (-1086 |#2|))) (-552 |#2|) |#2|)) (-15 -3081 ((-1086 (-348 (-1086 |#2|))) (-1086 |#2|) (-552 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) |#2| (-1086 |#2|))) (-15 -2078 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-552 |#2|) |#2| (-348 (-1086 |#2|))))) |%noBranch|)) (-13 (-390) (-952 (-485)) (-120) (-582 (-485))) (-13 (-362 |#1|) (-27) (-1116)) (-1015)) (T -499)) +((-2078 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-348 (-1086 *4))) (-4 *4 (-13 (-362 *7) (-27) (-1116))) (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2078 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-362 *7) (-27) (-1116))) (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-362 *5) (-27) (-1116))) (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-1086 (-348 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1015)))) (-3086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-348 (-1086 *2)))) (-5 *4 (-552 *2)) (-4 *2 (-13 (-362 *5) (-27) (-1116))) (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1015)))) (-3085 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-1086 (-348 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1091))) (-5 *5 (-348 (-1086 *2))) (-4 *2 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1015)))) (-2077 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1091))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-348 (-1086 *3))) (-4 *3 (-13 (-362 *7) (-27) (-1116))) (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1015)))) (-2076 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-362 *7) (-27) (-1116))) (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-348 (-1086 *3))) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015)))) (-2075 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-348 (-1086 *3))) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015)))) (-2074 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-552 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015))))) +((-2088 (((-485) (-485) (-696)) 87 T ELT)) (-2087 (((-485) (-485)) 85 T ELT)) (-2086 (((-485) (-485)) 82 T ELT)) (-2085 (((-485) (-485)) 89 T ELT)) (-2807 (((-485) (-485) (-485)) 67 T ELT)) (-2084 (((-485) (-485) (-485)) 64 T ELT)) (-2083 (((-348 (-485)) (-485)) 29 T ELT)) (-2082 (((-485) (-485)) 34 T ELT)) (-2081 (((-485) (-485)) 76 T ELT)) (-2804 (((-485) (-485)) 47 T ELT)) (-2080 (((-585 (-485)) (-485)) 81 T ELT)) (-2079 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2800 (((-348 (-485)) (-485)) 56 T ELT))) +(((-500) (-10 -7 (-15 -2800 ((-348 (-485)) (-485))) (-15 -2079 ((-485) (-485) (-485) (-485) (-485))) (-15 -2080 ((-585 (-485)) (-485))) (-15 -2804 ((-485) (-485))) (-15 -2081 ((-485) (-485))) (-15 -2082 ((-485) (-485))) (-15 -2083 ((-348 (-485)) (-485))) (-15 -2084 ((-485) (-485) (-485))) (-15 -2807 ((-485) (-485) (-485))) (-15 -2085 ((-485) (-485))) (-15 -2086 ((-485) (-485))) (-15 -2087 ((-485) (-485))) (-15 -2088 ((-485) (-485) (-696))))) (T -500)) +((-2088 (*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-696)) (-5 *1 (-500)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2807 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2079 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +((-2089 (((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| |#4|) (|:| -2137 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -501)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-1156 (-348 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) +((-2089 (((-2 (|:| |answer| (-348 |#2|)) (|:| -2137 (-348 |#2|)) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-502 |#1| |#2|) (-10 -7 (-15 -2089 ((-2 (|:| |answer| (-348 |#2|)) (|:| -2137 (-348 |#2|)) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -502)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-348 *6)) (|:| -2137 (-348 *6)) (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-348 *6))))) +((-2092 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|)) 195 T ELT)) (-2090 (((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|)) 97 T ELT)) (-2091 (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-552 |#2|) (-552 |#2|) |#2|) 191 T ELT)) (-2093 (((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091))) 200 T ELT)) (-2094 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1091)) 209 (|has| |#3| (-602 |#2|)) ELT))) +(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2090 ((-520 |#2|) |#2| (-552 |#2|) (-552 |#2|))) (-15 -2091 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-552 |#2|) (-552 |#2|) |#2|)) (-15 -2092 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-552 |#2|) (-552 |#2|) (-585 |#2|))) (-15 -2093 ((-3 |#2| #1#) |#2| |#2| |#2| (-552 |#2|) (-552 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)))) (IF (|has| |#3| (-602 |#2|)) (-15 -2094 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2014 (-585 |#2|))) |#3| |#2| (-552 |#2|) (-552 |#2|) (-1091))) |%noBranch|)) (-13 (-390) (-952 (-485)) (-120) (-582 (-485))) (-13 (-362 |#1|) (-27) (-1116)) (-1015)) (T -503)) +((-2094 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-552 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-362 *7) (-27) (-1116))) (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) (-2093 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-4 *2 (-13 (-362 *5) (-27) (-1116))) (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1015)))) (-2092 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1116))) (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1015)))) (-2091 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1116))) (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1015)))) (-2090 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1116))) (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1015))))) +((-2095 (((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64 T ELT)) (-2097 (((-3 |#2| #1="failed") |#2| (-1091) (-752 |#2|) (-752 |#2|)) 174 (-12 (|has| |#2| (-1054)) (|has| |#1| (-555 (-802 (-485)))) (|has| |#1| (-798 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 145 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-485)))) (|has| |#1| (-798 (-485)))) ELT)) (-2096 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 156 (-12 (|has| |#2| (-571)) (|has| |#1| (-555 (-802 (-485)))) (|has| |#1| (-798 (-485)))) ELT))) +(((-504 |#1| |#2|) (-10 -7 (-15 -2095 ((-2 (|:| -2340 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-555 (-802 (-485)))) (IF (|has| |#1| (-798 (-485))) (PROGN (IF (|has| |#2| (-571)) (PROGN (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1091))) (-15 -2097 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2097 ((-3 |#2| #1#) |#2| (-1091) (-752 |#2|) (-752 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-952 (-485)) (-390) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -504)) +((-2097 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-752 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-555 (-802 (-485)))) (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) (-5 *1 (-504 *5 *2)))) (-2097 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-555 (-802 (-485)))) (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-555 (-802 (-485)))) (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) +((-2100 (((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1="failed") (-348 |#2|) (-585 (-348 |#2|))) 41 T ELT)) (-3813 (((-520 (-348 |#2|)) (-348 |#2|)) 28 T ELT)) (-2098 (((-3 (-348 |#2|) #1#) (-348 |#2|)) 17 T ELT)) (-2099 (((-3 (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-348 |#2|)) 48 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -3813 ((-520 (-348 |#2|)) (-348 |#2|))) (-15 -2098 ((-3 (-348 |#2|) #1="failed") (-348 |#2|))) (-15 -2099 ((-3 (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-348 |#2|))) (-15 -2100 ((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-585 (-348 |#2|))))) (-13 (-312) (-120) (-952 (-485))) (-1156 |#1|)) (T -505)) +((-2100 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-585 (-348 *6))) (-5 *3 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2099 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2138 (-348 *5)) (|:| |coeff| (-348 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-348 *5)))) (-2098 (*1 *2 *2) (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120) (-952 (-485)))) (-5 *1 (-505 *3 *4)))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-520 (-348 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-348 *5))))) +((-2101 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3261 (((-85) |#1|) 13 T ELT)) (-3257 (((-485) |#1|) 9 T ELT))) +(((-506 |#1|) (-10 -7 (-15 -3257 ((-485) |#1|)) (-15 -3261 ((-85) |#1|)) (-15 -2101 ((-3 (-485) "failed") |#1|))) (-952 (-485))) (T -506)) +((-2101 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-952 *2)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-952 (-485))))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-952 *2))))) +((-2104 (((-3 (-2 (|:| |mainpart| (-348 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 (-859 |#1|))) (|:| |logand| (-348 (-859 |#1|))))))) #1="failed") (-348 (-859 |#1|)) (-1091) (-585 (-348 (-859 |#1|)))) 48 T ELT)) (-2102 (((-520 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-1091)) 28 T ELT)) (-2103 (((-3 (-348 (-859 |#1|)) #1#) (-348 (-859 |#1|)) (-1091)) 23 T ELT)) (-2105 (((-3 (-2 (|:| -2138 (-348 (-859 |#1|))) (|:| |coeff| (-348 (-859 |#1|)))) #1#) (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|))) 35 T ELT))) +(((-507 |#1|) (-10 -7 (-15 -2102 ((-520 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-1091))) (-15 -2103 ((-3 (-348 (-859 |#1|)) #1="failed") (-348 (-859 |#1|)) (-1091))) (-15 -2104 ((-3 (-2 (|:| |mainpart| (-348 (-859 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 (-859 |#1|))) (|:| |logand| (-348 (-859 |#1|))))))) #1#) (-348 (-859 |#1|)) (-1091) (-585 (-348 (-859 |#1|))))) (-15 -2105 ((-3 (-2 (|:| -2138 (-348 (-859 |#1|))) (|:| |coeff| (-348 (-859 |#1|)))) #1#) (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|))))) (-13 (-496) (-952 (-485)) (-120))) (T -507)) +((-2105 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-120))) (-5 *2 (-2 (|:| -2138 (-348 (-859 *5))) (|:| |coeff| (-348 (-859 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-348 (-859 *5))))) (-2104 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 (-348 (-859 *6)))) (-5 *3 (-348 (-859 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-348 (-859 *4))) (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-120))) (-5 *1 (-507 *4)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-120))) (-5 *2 (-520 (-348 (-859 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-348 (-859 *5)))))) +((-2570 (((-85) $ $) 77 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-2606 ((|#1| $) 39 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) 81 T ELT)) (-3493 (($ $) 142 T ELT)) (-3640 (($ $) 120 T ELT)) (-2485 ((|#1| $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-3491 (($ $) 144 T ELT)) (-3639 (($ $) 116 T ELT)) (-3495 (($ $) 146 T ELT)) (-3638 (($ $) 124 T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 95 T ELT)) (-3158 (((-485) $) 97 T ELT)) (-3468 (((-3 $ #1#) $) 80 T ELT)) (-2061 (($ |#1| |#1|) 35 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3628 (($) 106 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 56 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 46 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3943 (($ $) 108 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2062 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-348 (-485))) 94 T ELT)) (-2060 ((|#1| $) 36 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 83 T ELT) (($ (-585 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 82 T ELT)) (-3944 (($ $) 110 T ELT)) (-3496 (($ $) 150 T ELT)) (-3637 (($ $) 122 T ELT)) (-3494 (($ $) 152 T ELT)) (-3636 (($ $) 126 T ELT)) (-3492 (($ $) 148 T ELT)) (-3635 (($ $) 118 T ELT)) (-2059 (((-85) $ |#1|) 42 T ELT)) (-3947 (((-774) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3128 (((-696)) 104 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 164 T ELT)) (-3487 (($ $) 132 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 162 T ELT)) (-3485 (($ $) 128 T ELT)) (-3501 (($ $) 160 T ELT)) (-3489 (($ $) 140 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 158 T ELT)) (-3490 (($ $) 138 T ELT)) (-3500 (($ $) 156 T ELT)) (-3488 (($ $) 134 T ELT)) (-3498 (($ $) 154 T ELT)) (-3486 (($ $) 130 T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 48 T ELT)) (-3838 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3840 (($ $ $) 53 T ELT)) (** (($ $ (-832)) 73 T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-348 (-485))) 166 T ELT)) (* (($ (-832) $) 67 T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-508 |#1|) (-494 |#1|) (-13 (-345) (-1116))) (T -508)) +NIL +((-2706 (((-3 (-585 (-1086 (-485))) "failed") (-585 (-1086 (-485))) (-1086 (-485))) 27 T ELT))) +(((-509) (-10 -7 (-15 -2706 ((-3 (-585 (-1086 (-485))) "failed") (-585 (-1086 (-485))) (-1086 (-485)))))) (T -509)) +((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 (-485)))) (-5 *3 (-1086 (-485))) (-5 *1 (-509))))) +((-2106 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1091)) 19 T ELT)) (-2109 (((-585 (-552 |#2|)) (-585 |#2|) (-1091)) 23 T ELT)) (-3236 (((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|))) 11 T ELT)) (-2110 ((|#2| |#2| (-1091)) 59 (|has| |#1| (-496)) ELT)) (-2111 ((|#2| |#2| (-1091)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-390))) ELT)) (-2108 (((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1091)) 25 T ELT)) (-2107 (((-552 |#2|) (-585 (-552 |#2|))) 24 T ELT)) (-2112 (((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-571)) (|has| |#2| (-952 (-1091))) (|has| |#1| (-555 (-802 (-485)))) (|has| |#1| (-390)) (|has| |#1| (-798 (-485)))) ELT))) +(((-510 |#1| |#2|) (-10 -7 (-15 -2106 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-1091))) (-15 -2107 ((-552 |#2|) (-585 (-552 |#2|)))) (-15 -2108 ((-552 |#2|) (-552 |#2|) (-585 (-552 |#2|)) (-1091))) (-15 -3236 ((-585 (-552 |#2|)) (-585 (-552 |#2|)) (-585 (-552 |#2|)))) (-15 -2109 ((-585 (-552 |#2|)) (-585 |#2|) (-1091))) (IF (|has| |#1| (-496)) (-15 -2110 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-390)) (IF (|has| |#2| (-239)) (PROGN (-15 -2111 (|#2| |#2| (-1091))) (IF (|has| |#1| (-555 (-802 (-485)))) (IF (|has| |#1| (-798 (-485))) (IF (|has| |#2| (-571)) (IF (|has| |#2| (-952 (-1091))) (-15 -2112 ((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1015) (-362 |#1|)) (T -510)) +((-2112 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-362 *7)) (-5 *4 (-1091)) (-4 *7 (-555 (-802 (-485)))) (-4 *7 (-390)) (-4 *7 (-798 (-485))) (-4 *7 (-1015)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2111 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-390)) (-4 *4 (-1015)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-362 *4)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1015)) (-5 *1 (-510 *4 *2)) (-4 *2 (-362 *4)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-1091)) (-4 *6 (-362 *5)) (-4 *5 (-1015)) (-5 *2 (-585 (-552 *6))) (-5 *1 (-510 *5 *6)))) (-3236 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-362 *3)) (-4 *3 (-1015)) (-5 *1 (-510 *3 *4)))) (-2108 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1091)) (-5 *2 (-552 *6)) (-4 *6 (-362 *5)) (-4 *5 (-1015)) (-5 *1 (-510 *5 *6)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-362 *4)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1091)) (-4 *5 (-362 *4)) (-4 *4 (-1015)) (-5 *1 (-510 *4 *5))))) +((-2115 (((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-348 |#2|))) 174 T ELT)) (-2121 (((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-585 (-348 |#2|))) 171 T ELT)) (-2122 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2120 (((-3 (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-348 |#2|)) 202 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-348 |#2|)) 205 T ELT)) (-2124 (((-2 (|:| |ir| (-520 (-348 |#2|))) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2125 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2119 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-585 (-348 |#2|))) 178 T ELT)) (-2123 (((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 166 T ELT)) (-2114 (((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 189 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-348 |#2|)) 210 T ELT))) +(((-511 |#1| |#2|) (-10 -7 (-15 -2113 ((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2114 ((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2115 ((-2 (|:| |answer| (-520 (-348 |#2|))) (|:| |a0| |#1|)) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) #1#) (-485) |#1| |#1|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-348 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-348 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-348 |#2|))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-585 (-348 |#2|)))) (-15 -2119 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|))))))) (|:| |a0| |#1|)) #1#) (-348 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-585 (-348 |#2|)))) (-15 -2120 ((-3 (-2 (|:| -2138 (-348 |#2|)) (|:| |coeff| (-348 |#2|))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-348 |#2|))) (-15 -2121 ((-3 (-2 (|:| |mainpart| (-348 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-348 |#2|)) (|:| |logand| (-348 |#2|)))))) #1#) (-348 |#2|) (-1 |#2| |#2|) (-585 (-348 |#2|)))) (-15 -2122 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2123 ((-3 (-564 |#1| |#2|) #1#) (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2124 ((-2 (|:| |ir| (-520 (-348 |#2|))) (|:| |specpart| (-348 |#2|)) (|:| |polypart| |#2|)) (-348 |#2|) (-1 |#2| |#2|))) (-15 -2125 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -511)) +((-2125 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-520 (-348 *6))) (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-348 *6)))) (-2123 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))) (-2122 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-348 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-348 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2120 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2138 (-348 *6)) (|:| |coeff| (-348 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-348 *6)))) (-2119 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7)) (-5 *6 (-585 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-585 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) (-2 (|:| -2138 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-485) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) +((-2126 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10 T ELT))) +(((-512 |#1| |#2|) (-10 -7 (-15 -2126 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-873) (-1054) (-29 |#1|))) (T -512)) +((-2126 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-1116) (-873) (-1054) (-29 *4)))))) +((-2557 (((-634 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-634 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-696) $ (-102)) 28 T ELT)) (-2559 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1139)) $) 12 T ELT)) (-1998 (((-634 (-1137)) $) 8 T ELT)) (-2000 (((-634 (-1136)) $) 10 T ELT)) (-2003 (((-634 (-489)) $) 13 T ELT)) (-1999 (((-634 (-487)) $) 9 T ELT)) (-2001 (((-634 (-486)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-513) (-113)) (T -513)) +NIL +(-13 (-466) (-772)) +(((-147) . T) ((-466) . T) ((-772) . T)) +((-2557 (((-634 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-634 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-696) $ (-102)) NIL T ELT)) (-2559 (((-634 (-101)) $ (-101)) NIL T ELT)) (-2002 (((-634 (-1139)) $) NIL T ELT)) (-1998 (((-634 (-1137)) $) NIL T ELT)) (-2000 (((-634 (-1136)) $) NIL T ELT)) (-2003 (((-634 (-489)) $) NIL T ELT)) (-1999 (((-634 (-487)) $) NIL T ELT)) (-2001 (((-634 (-486)) $) NIL T ELT)) (-1997 (((-696) $ (-102)) NIL T ELT)) (-2004 (((-634 (-101)) $) NIL T ELT)) (-2560 (((-85) $) NIL T ELT)) (-2127 (($ (-336)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1701 (($ $) NIL T ELT))) +(((-514) (-13 (-513) (-554 (-774)) (-10 -8 (-15 -2127 ($ (-336))) (-15 -2127 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -514)) +((-2127 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-514)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3461 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-2130 (($) 6 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 15 T ELT)) (-2128 (($) 9 T CONST)) (-2129 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) +(((-515) (-13 (-1015) (-10 -8 (-15 -2130 ($) -3953) (-15 -3461 ($) -3953) (-15 -2129 ($) -3953) (-15 -2128 ($) -3953)))) (T -515)) +((-2130 (*1 *1) (-5 *1 (-515))) (-3461 (*1 *1) (-5 *1 (-515))) (-2129 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2131 (((-634 $) (-429)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2133 (($ (-1074)) 16 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 33 T ELT)) (-2132 (((-166 4 (-101)) $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 26 T ELT))) +(((-516) (-13 (-1015) (-10 -8 (-15 -2133 ($ (-1074))) (-15 -2132 ((-166 4 (-101)) $)) (-15 -2131 ((-634 $) (-429)))))) (T -516)) +((-2133 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-429)) (-5 *2 (-634 (-516))) (-5 *1 (-516))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) 73 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 79 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2614 (($ $) 43 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3773 (((-696) $) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2616 (((-485)) 37 T ELT)) (-2615 (((-485) $) 41 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) 24 T ELT)) (-3467 (((-3 $ #1#) $ $) 70 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) 17 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 71 T ELT)) (-2617 (((-1070 (-485)) $) 19 T ELT)) (-2893 (($ $) 26 T ELT)) (-3947 (((-774) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3128 (((-696)) 15 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) 46 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 44 T CONST)) (-2668 (($) 21 T CONST)) (-3058 (((-85) $ $) 51 T ELT)) (-3838 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3840 (($ $ $) 57 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-517 |#1| |#2|) (-781 |#1|) (-485) (-85)) (T -517)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 30 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (($ $ (-832)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) 95 T ELT)) (-3158 (($ $) 94 T ELT)) (-1793 (($ (-1180 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) 61 T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1765 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) 49 (|has| $ (-318)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-318)) ELT)) (-3134 (($ $ (-832)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-3446 (((-634 $) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 $) $ (-832)) NIL (|has| $ (-318)) ELT) (((-1086 $) $) 104 T ELT)) (-2012 (((-832) $) 67 T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-318)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-318)) ELT) (((-1086 $) $) NIL (|has| $ (-318)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2402 (($ (-832)) 60 T ELT)) (-3932 (((-85) $) 87 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) 28 (|has| $ (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 54 T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-832)) 86 T ELT) (((-745 (-832))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3949 (((-832) $) 85 T ELT) (((-745 (-832)) $) NIL T ELT)) (-3187 (((-1086 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-318)) ELT)) (-3226 (((-632 $) (-1180 $)) NIL T ELT) (((-1180 $) $) 91 T ELT)) (-3973 (((-485) $) 42 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT)) (-2704 (((-634 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3128 (((-696)) 51 T CONST)) (-1266 (((-85) $ $) 107 T ELT)) (-2014 (((-1180 $) (-832)) 97 T ELT) (((-1180 $)) 96 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 27 T CONST)) (-3929 (($ $ (-696)) NIL (|has| $ (-318)) ELT) (($ $) NIL (|has| $ (-318)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-518 |#1|) (-13 (-299) (-280 $) (-555 (-485))) (-832)) (T -518)) +NIL +((-2134 (((-1186) (-1074)) 10 T ELT))) +(((-519) (-10 -7 (-15 -2134 ((-1186) (-1074))))) (T -519)) +((-2134 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 77 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2138 ((|#1| $) 30 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2136 (((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2139 (($ |#1| (-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2137 (((-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2834 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1091)) 49 (|has| |#1| (-952 (-1091))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2135 (((-85) $) 35 T ELT)) (-3759 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1091)) 90 (|has| |#1| (-811 (-1091))) ELT)) (-3947 (((-774) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 86 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-348 (-485)) $) 41 T ELT) (($ $ (-348 (-485))) NIL T ELT))) +(((-520 |#1|) (-13 (-656 (-348 (-485))) (-952 |#1|) (-10 -8 (-15 -2139 ($ |#1| (-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2138 (|#1| $)) (-15 -2137 ((-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -2136 ((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2135 ((-85) $)) (-15 -2834 ($ |#1| |#1|)) (-15 -3759 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-811 (-1091))) (-15 -3759 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-952 (-1091))) (-15 -2834 ($ |#1| (-1091))) |%noBranch|))) (-312)) (T -520)) +((-2139 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-520 *2)))) (-2138 (*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2834 (*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) (-2834 (*1 *1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312))))) +((-3959 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT))) +(((-521 |#1| |#2|) (-10 -7 (-15 -3959 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-15 -3959 ((-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2138 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3959 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -521)) +((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))) +((-3419 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3964 (((-585 |#2|) (-520 |#2|)) 44 T ELT)) (-2150 ((|#2| (-520 |#2|)) 50 T ELT))) +(((-522 |#1| |#2|) (-10 -7 (-15 -3419 ((-520 |#2|) (-520 |#2|))) (-15 -3964 ((-585 |#2|) (-520 |#2|))) (-15 -2150 (|#2| (-520 |#2|)))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-29 |#1|) (-1116))) (T -522)) +((-2150 (*1 *2 *3) (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-585 *5)) (-5 *1 (-522 *4 *5)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-522 *3 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2142 (($ (-445) (-533)) 14 T ELT)) (-2140 (($ (-445) (-533) $) 16 T ELT)) (-2141 (($ (-445) (-533)) 15 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-1096)) 7 T ELT) (((-1096) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-523) (-13 (-1015) (-428 (-1096)) (-10 -8 (-15 -2142 ($ (-445) (-533))) (-15 -2141 ($ (-445) (-533))) (-15 -2140 ($ (-445) (-533) $))))) (T -523)) +((-2142 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523))))) +((-2146 (((-85) |#1|) 16 T ELT)) (-2147 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2144 (((-2 (|:| -2696 |#1|) (|:| -2403 (-696))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-696)) 18 T ELT)) (-2143 (((-85) |#1| (-696)) 19 T ELT)) (-2148 ((|#1| |#1|) 41 T ELT)) (-2145 ((|#1| |#1| (-696)) 44 T ELT))) +(((-524 |#1|) (-10 -7 (-15 -2143 ((-85) |#1| (-696))) (-15 -2144 ((-3 |#1| #1="failed") |#1| (-696))) (-15 -2144 ((-2 (|:| -2696 |#1|) (|:| -2403 (-696))) |#1|)) (-15 -2145 (|#1| |#1| (-696))) (-15 -2146 ((-85) |#1|)) (-15 -2147 ((-3 |#1| #1#) |#1|)) (-15 -2148 (|#1| |#1|))) (-484)) (T -524)) +((-2148 (*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2147 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2403 (-696)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +((-2149 (((-1086 |#1|) (-832)) 44 T ELT))) +(((-525 |#1|) (-10 -7 (-15 -2149 ((-1086 |#1|) (-832)))) (-299)) (T -525)) +((-2149 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) +((-3419 (((-520 (-348 (-859 |#1|))) (-520 (-348 (-859 |#1|)))) 27 T ELT)) (-3813 (((-3 (-265 |#1|) (-585 (-265 |#1|))) (-348 (-859 |#1|)) (-1091)) 33 (|has| |#1| (-120)) ELT)) (-3964 (((-585 (-265 |#1|)) (-520 (-348 (-859 |#1|)))) 19 T ELT)) (-2151 (((-265 |#1|) (-348 (-859 |#1|)) (-1091)) 31 (|has| |#1| (-120)) ELT)) (-2150 (((-265 |#1|) (-520 (-348 (-859 |#1|)))) 21 T ELT))) +(((-526 |#1|) (-10 -7 (-15 -3419 ((-520 (-348 (-859 |#1|))) (-520 (-348 (-859 |#1|))))) (-15 -3964 ((-585 (-265 |#1|)) (-520 (-348 (-859 |#1|))))) (-15 -2150 ((-265 |#1|) (-520 (-348 (-859 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3813 ((-3 (-265 |#1|) (-585 (-265 |#1|))) (-348 (-859 |#1|)) (-1091))) (-15 -2151 ((-265 |#1|) (-348 (-859 |#1|)) (-1091)))) |%noBranch|)) (-13 (-390) (-952 (-485)) (-582 (-485)))) (T -526)) +((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-265 *5)) (-5 *1 (-526 *5)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-526 *5)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-520 (-348 (-859 *4)))) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-526 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-520 (-348 (-859 *4)))) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-585 (-265 *4))) (-5 *1 (-526 *4)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-520 (-348 (-859 *3)))) (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-526 *3))))) +((-2153 (((-585 (-632 (-485))) (-585 (-832)) (-585 (-815 (-485)))) 80 T ELT) (((-585 (-632 (-485))) (-585 (-832))) 81 T ELT) (((-632 (-485)) (-585 (-832)) (-815 (-485))) 74 T ELT)) (-2152 (((-696) (-585 (-832))) 71 T ELT))) +(((-527) (-10 -7 (-15 -2152 ((-696) (-585 (-832)))) (-15 -2153 ((-632 (-485)) (-585 (-832)) (-815 (-485)))) (-15 -2153 ((-585 (-632 (-485))) (-585 (-832)))) (-15 -2153 ((-585 (-632 (-485))) (-585 (-832)) (-585 (-815 (-485))))))) (T -527)) +((-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-485)))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-527)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-527)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-527))))) +((-3215 (((-585 |#5|) |#5| (-85)) 97 T ELT)) (-2154 (((-85) |#5| (-585 |#5|)) 34 T ELT))) +(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3215 ((-585 |#5|) |#5| (-85))) (-15 -2154 ((-85) |#5| (-585 |#5|)))) (-13 (-258) (-120)) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -528)) +((-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-529) (-13 (-997) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -529)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529))))) +((-3533 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1003 |#4|)) 32 T ELT))) +(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1003 |#4|))) (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-719) (-758) (-496) (-863 |#3| |#1| |#2|)) (T -530)) +((-3533 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-3533 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 71 T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2185 (($ $) 109 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2183 (((-774) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-941 (-752 (-485))) (-1091) |#1| (-348 (-485))) 232 T ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3773 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3778 (($ $ (-832)) 83 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3938 (((-85) $) 26 T ELT)) (-2895 (($ |#1| (-485)) 22 T ELT) (($ $ (-996) (-485)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-485))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2189 (($ (-941 (-752 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3813 (($ $) 120 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2186 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2184 (($ $ $) 116 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2187 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2188 (((-941 (-752 (-485))) $) 14 T ELT)) (-3770 (($ $ (-485)) 47 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-3801 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1027)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3949 (((-485) $) NIL T ELT)) (-2893 (($ $) 48 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-485)) 61 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 39 T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-2164 (($ $) 192 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2176 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2166 (($ $) 189 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2178 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2162 (($ $) 194 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2174 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2181 (($ $ (-348 (-485))) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2182 (($ $ |#1|) 128 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2179 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2180 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2161 (($ $) 195 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2173 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2163 (($ $) 193 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2175 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2165 (($ $) 190 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2177 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2158 (($ $) 200 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2170 (($ $) 180 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2160 (($ $) 197 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2172 (($ $) 176 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2156 (($ $) 204 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2168 (($ $) 184 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2155 (($ $) 206 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2167 (($ $) 186 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2157 (($ $) 202 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2169 (($ $) 182 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2159 (($ $) 199 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2171 (($ $) 178 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 40 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 73 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3840 (($ $ $) 88 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 111 T ELT)) (* (($ (-832) $) 98 T ELT) (($ (-696) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-531 |#1|) (-13 (-1159 |#1| (-485)) (-10 -8 (-15 -2189 ($ (-941 (-752 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -2188 ((-941 (-752 (-485))) $)) (-15 -2187 ((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-15 -3819 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -3938 ((-85) $)) (-15 -3816 ($ (-1 |#1| (-485)) $)) (-15 -2186 ((-3 $ "failed") $ $ (-85))) (-15 -2185 ($ $)) (-15 -2184 ($ $ $)) (-15 -2183 ((-774) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-941 (-752 (-485))) (-1091) |#1| (-348 (-485)))) (IF (|has| |#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $)) (-15 -2182 ($ $ |#1|)) (-15 -2181 ($ $ (-348 (-485)))) (-15 -2180 ($ $)) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $))) |%noBranch|))) (-963)) (T -531)) +((-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-963)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-752 (-485)))) (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-963)) (-5 *1 (-531 *4)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-941 (-752 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-963)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-963)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-963)) (-5 *1 (-531 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-963)) (-5 *1 (-531 *3)))) (-2186 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-963)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-963)))) (-2184 (*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-963)))) (-2183 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-941 (-752 (-485)))) (-5 *5 (-1091)) (-5 *7 (-348 (-485))) (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-531 *6)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) (-4 *3 (-963)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 62 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3819 (($ (-1070 |#1|)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 44 T ELT)) (-2894 (((-85) $) 56 T ELT)) (-3773 (((-696) $) 61 T ELT) (((-696) $ (-696)) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-1070 |#1|) $) 25 T ELT)) (-3128 (((-696)) 55 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 14 T CONST)) (-3058 (((-85) $ $) 24 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 27 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT))) +(((-532 |#1|) (-13 (-963) (-82 |#1| |#1|) (-10 -8 (-15 -3818 ((-1070 |#1|) $)) (-15 -3819 ($ (-1070 |#1|))) (-15 -2894 ((-85) $)) (-15 -3773 ((-696) $)) (-15 -3773 ((-696) $ (-696))) (-15 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-963)) (T -532)) +((-3818 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-532 *3)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (-3773 (*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-963))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2192 (($) 8 T CONST)) (-2193 (($) 7 T CONST)) (-2190 (($ $ (-585 $)) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2194 (($) 6 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-1096)) 15 T ELT) (((-1096) $) 10 T ELT)) (-2191 (($) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-533) (-13 (-1015) (-428 (-1096)) (-10 -8 (-15 -2194 ($) -3953) (-15 -2193 ($) -3953) (-15 -2192 ($) -3953) (-15 -2191 ($) -3953) (-15 -2190 ($ $ (-585 $)))))) (T -533)) +((-2194 (*1 *1) (-5 *1 (-533))) (-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-533))) (-5 *1 (-533))))) +((-3959 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT))) +(((-534 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3959 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1130) (-1130)) (T -534)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))) +((-3959 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)) 20 T ELT) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|))) (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -535)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8))))) +((-2199 ((|#3| |#3| (-585 (-552 |#3|)) (-585 (-1091))) 57 T ELT)) (-2198 (((-142 |#2|) |#3|) 122 T ELT)) (-2195 ((|#3| (-142 |#2|)) 46 T ELT)) (-2196 ((|#2| |#3|) 21 T ELT)) (-2197 ((|#3| |#2|) 35 T ELT))) +(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2195 (|#3| (-142 |#2|))) (-15 -2196 (|#2| |#3|)) (-15 -2197 (|#3| |#2|)) (-15 -2198 ((-142 |#2|) |#3|)) (-15 -2199 (|#3| |#3| (-585 (-552 |#3|)) (-585 (-1091))))) (-496) (-13 (-362 |#1|) (-917) (-1116)) (-13 (-362 (-142 |#1|)) (-917) (-1116))) (T -536)) +((-2199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1091))) (-4 *2 (-13 (-362 (-142 *5)) (-917) (-1116))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-362 *5) (-917) (-1116))))) (-2198 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-13 (-362 *4) (-917) (-1116))) (-4 *3 (-13 (-362 (-142 *4)) (-917) (-1116))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-362 (-142 *4)) (-917) (-1116))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-362 *4) (-917) (-1116))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-362 *4) (-917) (-1116))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-362 (-142 *4)) (-917) (-1116))))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-362 *4) (-917) (-1116))) (-4 *4 (-496)) (-4 *2 (-13 (-362 (-142 *4)) (-917) (-1116))) (-5 *1 (-536 *4 *5 *2))))) +((-3711 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3458 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3531 (((-1070 |#1|) $) 20 T ELT)) (-3947 (((-774) $) 25 T ELT))) +(((-537 |#1|) (-13 (-554 (-774)) (-10 -8 (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3711 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3531 ((-1070 |#1|) $)))) (-1130)) (T -537)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3836 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-538 |#1| |#2|) (-1179 |#1|) (-1130) (-485)) (T -538)) +NIL +((-2200 (((-1186) $ |#2| |#2|) 35 T ELT)) (-2202 ((|#2| $) 23 T ELT)) (-2203 ((|#2| $) 21 T ELT)) (-1950 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3959 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3802 ((|#3| $) 26 T ELT)) (-2201 (($ $ |#3|) 33 T ELT)) (-2204 (((-85) |#3| $) 17 T ELT)) (-2207 (((-585 |#3|) $) 15 T ELT)) (-3801 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2200 ((-1186) |#1| |#2| |#2|)) (-15 -2201 (|#1| |#1| |#3|)) (-15 -3802 (|#3| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 (|#2| |#1|)) (-15 -2204 ((-85) |#3| |#1|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -3801 (|#3| |#1| |#2|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -1950 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|))) (-540 |#2| |#3|) (-1015) (-1130)) (T -539)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2200 (((-1186) $ |#1| |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) 55 T ELT)) (-2891 (((-585 |#2|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) 47 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#2|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 ((|#1| $) 48 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#2| (-1015)) ELT)) (-2205 (((-585 |#1|) $) 50 T ELT)) (-2206 (((-85) |#1| $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#2| (-1015)) ELT)) (-3802 ((|#2| $) 46 (|has| |#1| (-758)) ELT)) (-2201 (($ $ |#2|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) 28 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#2| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-540 |#1| |#2|) (-113) (-1015) (-1130)) (T -540)) +((-2207 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-585 *4)))) (-2206 (*1 *2 *3 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-585 *3)))) (-2204 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-540 *4 *3)) (-4 *4 (-1015)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1015)) (-4 *2 (-758)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *3 (-758)) (-4 *2 (-1130)))) (-2201 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) (-2200 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-1186))))) +(-13 (-427 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2207 ((-585 |t#2|) $)) (-15 -2206 ((-85) |t#1| $)) (-15 -2205 ((-585 |t#1|) $)) (IF (|has| |t#2| (-1015)) (IF (|has| $ (-6 -3996)) (-15 -2204 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-758)) (PROGN (-15 -2203 (|t#1| $)) (-15 -2202 (|t#1| $)) (-15 -3802 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -2201 ($ $ |t#2|)) (-15 -2200 ((-1186) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-427 |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-1015) |has| |#2| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 15 T ELT) (($ (-585 (-1131))) 14 T ELT)) (-2208 (((-585 (-1131)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-541) (-13 (-997) (-554 (-1131)) (-10 -8 (-15 -3947 ($ (-585 (-1131)))) (-15 -2208 ((-585 (-1131)) $))))) (T -541)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-541)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-541))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-632 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 (-632 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-632 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1901 (((-1086 (-859 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1793 (($ (-1180 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 (((-632 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1788 (((-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-859 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-485)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-3226 (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1180 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1893 (((-585 (-859 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-585 (-859 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-774) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1708 (((-585 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-542 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -542)) +((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-543) (-13 (-1015) (-428 (-101)))) (T -543)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2210 (($) 10 T CONST)) (-2232 (($) 8 T CONST)) (-2209 (($) 11 T CONST)) (-2228 (($) 9 T CONST)) (-2225 (($) 12 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-544) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3953) (-15 -2228 ($) -3953) (-15 -2210 ($) -3953) (-15 -2209 ($) -3953) (-15 -2225 ($) -3953)))) (T -544)) +((-2232 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))) (-2209 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2221 (($) 11 T CONST)) (-2215 (($) 17 T CONST)) (-2211 (($) 21 T CONST)) (-2213 (($) 19 T CONST)) (-2218 (($) 14 T CONST)) (-2212 (($) 20 T CONST)) (-2220 (($) 12 T CONST)) (-2219 (($) 13 T CONST)) (-2214 (($) 18 T CONST)) (-2217 (($) 15 T CONST)) (-2216 (($) 16 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-545) (-13 (-1015) (-554 (-101)) (-10 -8 (-15 -2221 ($) -3953) (-15 -2220 ($) -3953) (-15 -2219 ($) -3953) (-15 -2218 ($) -3953) (-15 -2217 ($) -3953) (-15 -2216 ($) -3953) (-15 -2215 ($) -3953) (-15 -2214 ($) -3953) (-15 -2213 ($) -3953) (-15 -2212 ($) -3953) (-15 -2211 ($) -3953)))) (T -545)) +((-2221 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545))) (-2217 (*1 *1) (-5 *1 (-545))) (-2216 (*1 *1) (-5 *1 (-545))) (-2215 (*1 *1) (-5 *1 (-545))) (-2214 (*1 *1) (-5 *1 (-545))) (-2213 (*1 *1) (-5 *1 (-545))) (-2212 (*1 *1) (-5 *1 (-545))) (-2211 (*1 *1) (-5 *1 (-545)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2223 (($) 13 T CONST)) (-2222 (($) 14 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2228 (($) 12 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-546) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3953) (-15 -2231 ($) -3953) (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2223 ($) -3953) (-15 -2222 ($) -3953)))) (T -546)) +((-2232 (*1 *1) (-5 *1 (-546))) (-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))) (-2222 (*1 *1) (-5 *1 (-546)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2227 (($) 13 T CONST)) (-2224 (($) 16 T CONST)) (-2229 (($) 11 T CONST)) (-2232 (($) 8 T CONST)) (-2230 (($) 10 T CONST)) (-2231 (($) 9 T CONST)) (-2226 (($) 14 T CONST)) (-2228 (($) 12 T CONST)) (-2225 (($) 15 T CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-547) (-13 (-1015) (-606) (-10 -8 (-15 -2232 ($) -3953) (-15 -2231 ($) -3953) (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2227 ($) -3953) (-15 -2226 ($) -3953) (-15 -2225 ($) -3953) (-15 -2224 ($) -3953)))) (T -547)) +((-2232 (*1 *1) (-5 *1 (-547))) (-2231 (*1 *1) (-5 *1 (-547))) (-2230 (*1 *1) (-5 *1 (-547))) (-2229 (*1 *1) (-5 *1 (-547))) (-2228 (*1 *1) (-5 *1 (-547))) (-2227 (*1 *1) (-5 *1 (-547))) (-2226 (*1 *1) (-5 *1 (-547))) (-2225 (*1 *1) (-5 *1 (-547))) (-2224 (*1 *1) (-5 *1 (-547)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 19 T ELT) (($ (-543)) 12 T ELT) (((-543) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-548) (-13 (-1015) (-428 (-543)) (-428 (-101)))) (T -548)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) 40 T ELT)) (-3600 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1074) |#1|) 50 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#1| #1="failed") (-1074) $) 53 T ELT)) (-3725 (($) NIL T CONST)) (-1702 (($ $ (-1074)) 25 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-3406 (((-3 |#1| #1#) (-1074) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3407 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1699 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2273 (($ $) 55 T ELT)) (-1703 (($ (-336)) 23 T ELT) (($ (-336) (-1074)) 22 T ELT)) (-3543 (((-336) $) 41 T ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2234 (((-585 (-1074)) $) 46 T ELT)) (-2235 (((-85) (-1074) $) NIL T ELT)) (-1700 (((-1074) $) 42 T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1074)) $) NIL T ELT)) (-2206 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-1074) (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 44 T ELT)) (-3801 ((|#1| $ (-1074) |#1|) NIL T ELT) ((|#1| $ (-1074)) 49 T ELT)) (-1467 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (((-696) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (((-696) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-774) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-3958 (((-696) $) 48 (|has| $ (-6 -3996)) ELT))) +(((-549 |#1|) (-13 (-314 (-336) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-1108 (-1074) |#1|) (-10 -8 (-6 -3996) (-15 -2273 ($ $)))) (-1015)) (T -549)) +((-2273 (*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015))))) +((-3247 (((-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2234 (((-585 |#2|) $) 20 T ELT)) (-2235 (((-85) |#2| $) 12 T ELT))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2234 ((-585 |#2|) |#1|)) (-15 -2235 ((-85) |#2| |#1|)) (-15 -3247 ((-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|))) (-551 |#2| |#3|) (-1015) (-1015)) (T -550)) +NIL +((-2570 (((-85) $ $) 19 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-2234 (((-585 |#1|) $) 67 T ELT)) (-2235 (((-85) |#1| $) 68 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3947 (((-774) $) 17 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-551 |#1| |#2|) (-113) (-1015) (-1015)) (T -551)) +((-2235 (*1 *2 *3 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) (-3406 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2233 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(-13 (-183 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2235 ((-85) |t#1| $)) (-15 -2234 ((-585 |t#1|) $)) (-15 -3406 ((-3 |t#2| "failed") |t#1| $)) (-15 -2233 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-427 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-454 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-13) . T) ((-1015) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2236 (((-3 (-1091) "failed") $) 46 T ELT)) (-1314 (((-1186) $ (-696)) 22 T ELT)) (-3420 (((-696) $) 20 T ELT)) (-3596 (((-86) $) 9 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2237 (($ (-86) (-585 |#1|) (-696)) 32 T ELT) (($ (-1091)) 33 T ELT)) (-2635 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1091)) 13 T ELT)) (-2605 (((-696) $) 17 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (((-802 (-485)) $) 99 (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) 106 (|has| |#1| (-555 (-802 (-328)))) ELT) (((-474) $) 92 (|has| |#1| (-555 (-474))) ELT)) (-3947 (((-774) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2238 (((-585 |#1|) $) 19 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 51 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 53 T ELT))) +(((-552 |#1|) (-13 (-105) (-758) (-796 |#1|) (-10 -8 (-15 -3596 ((-86) $)) (-15 -2238 ((-585 |#1|) $)) (-15 -2605 ((-696) $)) (-15 -2237 ($ (-86) (-585 |#1|) (-696))) (-15 -2237 ($ (-1091))) (-15 -2236 ((-3 (-1091) "failed") $)) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (IF (|has| |#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|))) (-1015)) (T -552)) +((-3596 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2237 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) (-5 *1 (-552 *5)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2236 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015))))) +((-2239 (((-552 |#2|) |#1|) 17 T ELT)) (-2240 (((-3 |#1| "failed") (-552 |#2|)) 21 T ELT))) +(((-553 |#1| |#2|) (-10 -7 (-15 -2239 ((-552 |#2|) |#1|)) (-15 -2240 ((-3 |#1| "failed") (-552 |#2|)))) (-1015) (-1015)) (T -553)) +((-2240 (*1 *2 *3) (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-553 *2 *4)))) (-2239 (*1 *2 *3) (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +((-3947 ((|#1| $) 6 T ELT))) +(((-554 |#1|) (-113) (-1130)) (T -554)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3947 (|t#1| $)))) +((-3973 ((|#1| $) 6 T ELT))) +(((-555 |#1|) (-113) (-1130)) (T -555)) +((-3973 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3973 (|t#1| $)))) +((-2241 (((-3 (-1086 (-348 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 (-346 |#2|) |#2|)) 15 T ELT) (((-3 (-1086 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)) 16 T ELT))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2241 ((-3 (-1086 (-348 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|))) (-15 -2241 ((-3 (-1086 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 (-346 |#2|) |#2|)))) (-13 (-120) (-27) (-952 (-485)) (-952 (-348 (-485)))) (-1156 |#1|)) (T -556)) +((-2241 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-120) (-27) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-1086 (-348 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-348 *6)))) (-2241 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-485)) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-348 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-348 *5))))) +((-3947 (($ |#1|) 6 T ELT))) +(((-557 |#1|) (-113) (-1130)) (T -557)) +((-3947 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3947 ($ |t#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-2242 (($) 11 T CONST)) (-2857 (($) 13 T CONST)) (-3138 (((-696)) 36 T ELT)) (-2996 (($) NIL T ELT)) (-2563 (($ $ $) 25 T ELT)) (-2562 (($ $) 23 T ELT)) (-2012 (((-832) $) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 42 T ELT)) (-2855 (($ $ $) 26 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2856 (($) 9 T CONST)) (-2854 (($ $ $) 27 T ELT)) (-3947 (((-774) $) 34 T ELT)) (-3567 (((-85) $ (|[\|\|]| -2856)) 20 T ELT) (((-85) $ (|[\|\|]| -2242)) 22 T ELT) (((-85) $ (|[\|\|]| -2857)) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 24 T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-558) (-13 (-882) (-318) (-10 -8 (-15 -2242 ($) -3953) (-15 -3567 ((-85) $ (|[\|\|]| -2856))) (-15 -3567 ((-85) $ (|[\|\|]| -2242))) (-15 -3567 ((-85) $ (|[\|\|]| -2857)))))) (T -558)) +((-2242 (*1 *1) (-5 *1 (-558))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558))))) +((-3973 (($ |#1|) 6 T ELT))) +(((-559 |#1|) (-113) (-1130)) (T -559)) +((-3973 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3973 ($ |t#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-757)) ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3000 ((|#1| $) 13 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2999 ((|#3| $) 15 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3128 (((-696)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3950 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-560 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -560)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-561 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-562 |#2|) (-963)) (T -561)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) +(((-562 |#1|) (-113) (-963)) (T -562)) +((-3947 (*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963))))) +(-13 (-963) (-592 |t#1|) (-10 -8 (-15 -3947 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-665) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2243 ((|#2| |#2| (-1091) (-1091)) 16 T ELT))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2243 (|#2| |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-873) (-29 |#1|))) (T -563)) +((-2243 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1116) (-873) (-29 *4)))))) +((-2570 (((-85) $ $) 64 T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2244 ((|#1| $) 55 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3752 (((-2 (|:| -1763 $) (|:| -1762 (-348 |#2|))) (-348 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 27 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-485) $) 22 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 40 T ELT)) (-2895 (($ |#1| (-485)) 24 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) 115 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3949 (((-485) $) 38 T ELT)) (-3973 (((-348 |#2|) $) 47 T ELT)) (-3947 (((-774) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3678 ((|#1| $ (-485)) 72 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 32 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-564 |#1| |#2|) (-13 (-184 |#2|) (-496) (-555 (-348 |#2|)) (-353 |#1|) (-952 |#2|) (-10 -8 (-15 -3938 ((-85) $)) (-15 -3949 ((-485) $)) (-15 -3773 ((-485) $)) (-15 -3960 ($ $)) (-15 -3176 (|#1| $)) (-15 -2244 (|#1| $)) (-15 -3678 (|#1| $ (-485))) (-15 -2895 ($ |#1| (-485))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3752 ((-2 (|:| -1763 $) (|:| -1762 (-348 |#2|))) (-348 |#2|)))) |%noBranch|))) (-496) (-1156 |#1|)) (T -564)) +((-3938 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) (-3960 (*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2)))) (-2244 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1156 *2)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1156 *2)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -1763 (-564 *4 *5)) (|:| -1762 (-348 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-348 *5))))) +((-3683 (((-585 |#6|) (-585 |#4|) (-85)) 54 T ELT)) (-2245 ((|#6| |#6|) 48 T ELT))) +(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2245 (|#6| |#6|)) (-15 -3683 ((-585 |#6|) (-585 |#4|) (-85)))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|) (-1022 |#1| |#2| |#3| |#4|)) (T -565)) +((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *10 (-1022 *5 *6 *7 *8)))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6))))) +((-2246 (((-85) |#3| (-696) (-585 |#3|)) 30 T ELT)) (-2247 (((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1086 |#3|)))) "failed") |#3| (-585 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1780 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-485)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)) 68 T ELT))) +(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2246 ((-85) |#3| (-696) (-585 |#3|))) (-15 -2247 ((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1086 |#3|)))) "failed") |#3| (-585 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1780 (-585 (-2 (|:| |irr| |#4|) (|:| -2397 (-485)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)))) (-758) (-719) (-258) (-863 |#3| |#2| |#1|)) (T -566)) +((-2247 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1780 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-485))))))) (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) (-5 *2 (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) (|:| |corrfact| (-585 (-1086 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1086 *3))))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-863 *3 *7 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-567) (-13 (-997) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -567)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-567)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-567))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3935 (((-585 |#1|) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3937 (($ $) 77 T ELT)) (-3943 (((-608 |#1| |#2|) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 81 T ELT)) (-2248 (((-585 (-249 |#2|)) $ $) 42 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3944 (($ (-608 |#1| |#2|)) 56 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) 66 T ELT) (((-1196 |#1| |#2|) $) NIL T ELT) (((-1201 |#1| |#2|) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 61 T CONST)) (-2249 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2250 (((-585 (-608 |#1| |#2|)) (-585 |#1|)) 73 T ELT)) (-2667 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3058 (((-85) $ $) 62 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-568 |#1| |#2| |#3|) (-13 (-411) (-10 -8 (-15 -3944 ($ (-608 |#1| |#2|))) (-15 -3943 ((-608 |#1| |#2|) $)) (-15 -2667 ((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $)) (-15 -3947 ((-1196 |#1| |#2|) $)) (-15 -3947 ((-1201 |#1| |#2|) $)) (-15 -3937 ($ $)) (-15 -3935 ((-585 |#1|) $)) (-15 -2250 ((-585 (-608 |#1| |#2|)) (-585 |#1|))) (-15 -2249 ((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $)) (-15 -2248 ((-585 (-249 |#2|)) $ $)))) (-758) (-13 (-146) (-656 (-348 (-485)))) (-832)) (T -568)) +((-3944 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-5 *1 (-568 *3 *4 *5)) (-14 *5 (-832)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-13 (-146) (-656 (-348 (-485))))) (-14 *4 (-832)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-348 (-485))))) (-14 *6 (-832)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832))))) +((-3683 (((-585 (-1061 |#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 103 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 77 T ELT)) (-2251 (((-85) (-585 (-705 |#1| (-775 |#2|)))) 26 T ELT)) (-2255 (((-585 (-1061 |#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)) 102 T ELT)) (-2254 (((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85)) 76 T ELT)) (-2253 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) 30 T ELT)) (-2252 (((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|)))) 29 T ELT))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2251 ((-85) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2252 ((-3 (-585 (-705 |#1| (-775 |#2|))) "failed") (-585 (-705 |#1| (-775 |#2|))))) (-15 -2253 ((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))))) (-15 -2254 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -2255 ((-585 (-1061 |#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3683 ((-585 (-960 |#1| |#2|)) (-585 (-705 |#1| (-775 |#2|))) (-85))) (-15 -3683 ((-585 (-1061 |#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|)))) (-585 (-705 |#1| (-775 |#2|))) (-85)))) (-390) (-585 (-1091))) (T -569)) +((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-1061 *5 (-470 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-1061 *5 (-470 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) (-5 *1 (-569 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-390)) (-14 *4 (-585 (-1091))) (-5 *1 (-569 *3 *4)))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-390)) (-14 *4 (-585 (-1091))) (-5 *1 (-569 *3 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-390)) (-14 *5 (-585 (-1091))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) +((-3596 (((-86) (-86)) 88 T ELT)) (-2259 ((|#2| |#2|) 28 T ELT)) (-2834 ((|#2| |#2| (-1006 |#2|)) 84 T ELT) ((|#2| |#2| (-1091)) 50 T ELT)) (-2257 ((|#2| |#2|) 27 T ELT)) (-2258 ((|#2| |#2|) 29 T ELT)) (-2256 (((-85) (-86)) 33 T ELT)) (-2261 ((|#2| |#2|) 24 T ELT)) (-2262 ((|#2| |#2|) 26 T ELT)) (-2260 ((|#2| |#2|) 25 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2256 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -2262 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2834 (|#2| |#2| (-1091))) (-15 -2834 (|#2| |#2| (-1006 |#2|)))) (-496) (-13 (-362 |#1|) (-917) (-1116))) (T -570)) +((-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-362 *4) (-917) (-1116))) (-4 *4 (-496)) (-5 *1 (-570 *4 *2)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-362 *4) (-917) (-1116))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-362 *3) (-917) (-1116))))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-362 *3) (-917) (-1116))))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-362 *4) (-917) (-1116)))))) +((-3493 (($ $) 38 T ELT)) (-3640 (($ $) 21 T ELT)) (-3491 (($ $) 37 T ELT)) (-3639 (($ $) 22 T ELT)) (-3495 (($ $) 36 T ELT)) (-3638 (($ $) 23 T ELT)) (-3628 (($) 48 T ELT)) (-3943 (($ $) 45 T ELT)) (-2259 (($ $) 17 T ELT)) (-2834 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)) (-3944 (($ $) 46 T ELT)) (-2257 (($ $) 15 T ELT)) (-2258 (($ $) 16 T ELT)) (-3496 (($ $) 35 T ELT)) (-3637 (($ $) 24 T ELT)) (-3494 (($ $) 34 T ELT)) (-3636 (($ $) 25 T ELT)) (-3492 (($ $) 33 T ELT)) (-3635 (($ $) 26 T ELT)) (-3499 (($ $) 44 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 43 T ELT)) (-3485 (($ $) 31 T ELT)) (-3501 (($ $) 42 T ELT)) (-3489 (($ $) 30 T ELT)) (-3502 (($ $) 41 T ELT)) (-3490 (($ $) 29 T ELT)) (-3500 (($ $) 40 T ELT)) (-3488 (($ $) 28 T ELT)) (-3498 (($ $) 39 T ELT)) (-3486 (($ $) 27 T ELT)) (-2261 (($ $) 19 T ELT)) (-2262 (($ $) 20 T ELT)) (-2260 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-571) (-113)) (T -571)) +((-2262 (*1 *1 *1) (-4 *1 (-571))) (-2261 (*1 *1 *1) (-4 *1 (-571))) (-2260 (*1 *1 *1) (-4 *1 (-571))) (-2259 (*1 *1 *1) (-4 *1 (-571))) (-2258 (*1 *1 *1) (-4 *1 (-571))) (-2257 (*1 *1 *1) (-4 *1 (-571)))) +(-13 (-873) (-1116) (-10 -8 (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-431) . T) ((-873) . T) ((-1116) . T) ((-1119) . T)) +((-2272 (((-419 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2265 (((-585 (-206 |#1| |#2|)) (-585 (-419 |#1| |#2|))) 90 T ELT)) (-2266 (((-419 |#1| |#2|) (-585 (-419 |#1| |#2|)) (-775 |#1|)) 92 T ELT) (((-419 |#1| |#2|) (-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|)) (-775 |#1|)) 91 T ELT)) (-2263 (((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-485)))) (-585 (-419 |#1| |#2|))) 136 T ELT)) (-2270 (((-585 (-419 |#1| |#2|)) (-775 |#1|) (-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|))) 105 T ELT)) (-2264 (((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-485)))) (-585 (-206 |#1| |#2|))) 147 T ELT)) (-2268 (((-1180 |#2|) (-419 |#1| |#2|) (-585 (-419 |#1| |#2|))) 70 T ELT)) (-2267 (((-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|))) 47 T ELT)) (-2271 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 61 T ELT)) (-2269 (((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|))) 113 T ELT))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2263 ((-2 (|:| |gblist| (-585 (-206 |#1| |#2|))) (|:| |gvlist| (-585 (-485)))) (-585 (-419 |#1| |#2|)))) (-15 -2264 ((-2 (|:| |glbase| (-585 (-206 |#1| |#2|))) (|:| |glval| (-585 (-485)))) (-585 (-206 |#1| |#2|)))) (-15 -2265 ((-585 (-206 |#1| |#2|)) (-585 (-419 |#1| |#2|)))) (-15 -2266 ((-419 |#1| |#2|) (-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|)) (-775 |#1|))) (-15 -2266 ((-419 |#1| |#2|) (-585 (-419 |#1| |#2|)) (-775 |#1|))) (-15 -2267 ((-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|)))) (-15 -2268 ((-1180 |#2|) (-419 |#1| |#2|) (-585 (-419 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-585 |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2270 ((-585 (-419 |#1| |#2|)) (-775 |#1|) (-585 (-419 |#1| |#2|)) (-585 (-419 |#1| |#2|)))) (-15 -2271 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-585 (-206 |#1| |#2|)))) (-15 -2272 ((-419 |#1| |#2|) (-206 |#1| |#2|)))) (-585 (-1091)) (-390)) (T -572)) +((-2272 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *2 (-419 *4 *5)) (-5 *1 (-572 *4 *5)))) (-2271 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *1 (-572 *4 *5)))) (-2270 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-585 (-419 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *1 (-572 *4 *5)))) (-2269 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-390)) (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1091))) (-5 *1 (-572 *5 *6)))) (-2268 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-419 *5 *6))) (-5 *3 (-419 *5 *6)) (-14 *5 (-585 (-1091))) (-4 *6 (-390)) (-5 *2 (-1180 *6)) (-5 *1 (-572 *5 *6)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-585 (-419 *3 *4))) (-14 *3 (-585 (-1091))) (-4 *4 (-390)) (-5 *1 (-572 *3 *4)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-419 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1091))) (-5 *2 (-419 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-390)))) (-2266 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-419 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1091))) (-5 *2 (-419 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-390)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-585 (-419 *4 *5))) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5)))) (-2264 (*1 *2 *3) (-12 (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-485))))) (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5))))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-585 (-419 *4 *5))) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-485))))) (-5 *1 (-572 *4 *5))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 (((-51) $ (-1074) (-51)) NIL T ELT) (((-51) $ (-1091) (-51)) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 (-51) #1="failed") (-1074) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 (-51) #1#) (-1074) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-3114 (((-51) $ (-1074)) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-51)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2273 (($ $) NIL T ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 (-51)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-1015))) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2274 (($ (-336)) 8 T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT)) (-2234 (((-585 (-1074)) $) NIL T ELT)) (-2235 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-2205 (((-585 (-1074)) $) NIL T ELT)) (-2206 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-51) (-1015)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT)) (-3802 (((-51) $) NIL (|has| (-1074) (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2201 (($ $ (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT) (($ $ (-585 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-1015))) ELT)) (-2207 (((-585 (-51)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (((-51) $ (-1074)) NIL T ELT) (((-51) $ (-1074) (-51)) NIL T ELT) (((-51) $ (-1091)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1015))) ELT) (((-696) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-1015))) ELT) (((-696) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-554 (-774))) (|has| (-51) (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-573) (-13 (-1108 (-1074) (-51)) (-241 (-1091) (-51)) (-10 -8 (-15 -2274 ($ (-336))) (-15 -2273 ($ $)) (-15 -3789 ((-51) $ (-1091) (-51)))))) (T -573)) +((-2274 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-573)))) (-2273 (*1 *1 *1) (-5 *1 (-573))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-573))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-632 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 (-632 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-632 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1901 (((-1086 (-859 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1793 (($ (-1180 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-832)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 (((-632 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1788 (((-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2407 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-859 |#1|))) NIL (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 ((|#1|) NIL (|has| |#2| (-359 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-485)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-3226 (((-632 |#1|) (-1180 $)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT) (((-632 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1180 |#1|)) NIL (|has| |#2| (-359 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1893 (((-585 (-859 |#1|))) NIL (|has| |#2| (-359 |#1|)) ELT) (((-585 (-859 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-774) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL (|has| |#2| (-359 |#1|)) ELT)) (-1708 (((-585 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-632 |#1|) $) NIL (|has| |#2| (-359 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-574 |#1| |#2|) (-13 (-685 |#1|) (-554 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-685 |#1|)) (T -574)) +((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3))))) +((-3950 (($ $ |#2|) 10 T ELT))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-576 |#2|) (-146)) (T -575)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-576 |#1|) (-113) (-146)) (T -576)) +((-3531 (*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-656 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3531 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2276 (((-3 (-752 |#2|) #1="failed") |#2| (-249 |#2|) (-1074)) 105 T ELT) (((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|))) 130 T ELT)) (-2275 (((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|))) 135 T ELT))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2276 ((-3 (-752 |#2|) (-2 (|:| |leftHandLimit| (-3 (-752 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-752 |#2|) #1#))) #1#) |#2| (-249 (-752 |#2|)))) (-15 -2275 ((-3 (-745 |#2|) #1#) |#2| (-249 (-745 |#2|)))) (-15 -2276 ((-3 (-752 |#2|) #1#) |#2| (-249 |#2|) (-1074)))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -577)) +((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-752 *3)) (-5 *1 (-577 *6 *3)))) (-2275 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-745 *3))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-745 *3)) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) "failed")) (-5 *1 (-577 *5 *3))))) +((-2276 (((-3 (-752 (-348 (-859 |#1|))) #1="failed") (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|))) (-1074)) 86 T ELT) (((-3 (-752 (-348 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#))) #1#) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|)))) 20 T ELT) (((-3 (-752 (-348 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#))) #1#) (-348 (-859 |#1|)) (-249 (-752 (-859 |#1|)))) 35 T ELT)) (-2275 (((-745 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|)))) 23 T ELT) (((-745 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-249 (-745 (-859 |#1|)))) 43 T ELT))) +(((-578 |#1|) (-10 -7 (-15 -2276 ((-3 (-752 (-348 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#))) #1#) (-348 (-859 |#1|)) (-249 (-752 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-348 (-859 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-348 (-859 |#1|))) #1#))) #1#) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|))))) (-15 -2275 ((-745 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-249 (-745 (-859 |#1|))))) (-15 -2275 ((-745 (-348 (-859 |#1|))) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|))))) (-15 -2276 ((-3 (-752 (-348 (-859 |#1|))) #1#) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|))) (-1074)))) (-390)) (T -578)) +((-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-348 (-859 *6)))) (-5 *5 (-1074)) (-5 *3 (-348 (-859 *6))) (-4 *6 (-390)) (-5 *2 (-752 *3)) (-5 *1 (-578 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-390)) (-5 *2 (-745 *3)) (-5 *1 (-578 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-390)) (-5 *2 (-745 (-348 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-348 (-859 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-390)) (-5 *2 (-3 (-752 *3) (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-752 *3) #1#))) #2="failed")) (-5 *1 (-578 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-390)) (-5 *2 (-3 (-752 (-348 (-859 *5))) (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 *5))) #1#)) (|:| |rightHandLimit| (-3 (-752 (-348 (-859 *5))) #1#))) #2#)) (-5 *1 (-578 *5)) (-5 *3 (-348 (-859 *5)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 11 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2853 (($ (-168 |#1|)) 12 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-775 |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-579 |#1|) (-13 (-754) (-557 (-775 |#1|)) (-10 -8 (-15 -2853 ($ (-168 |#1|))))) (-585 (-1091))) (T -579)) +((-2853 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1091))) (-5 *1 (-579 *3))))) +((-2279 (((-3 (-1180 (-348 |#1|)) #1="failed") (-1180 |#2|) |#2|) 64 (-2562 (|has| |#1| (-312))) ELT) (((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2277 (((-85) (-1180 |#2|)) 33 T ELT)) (-2278 (((-3 (-1180 |#1|) #1#) (-1180 |#2|)) 40 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2277 ((-85) (-1180 |#2|))) (-15 -2278 ((-3 (-1180 |#1|) #1="failed") (-1180 |#2|))) (IF (|has| |#1| (-312)) (-15 -2279 ((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|)) (-15 -2279 ((-3 (-1180 (-348 |#1|)) #1#) (-1180 |#2|) |#2|)))) (-496) (-13 (-963) (-582 |#1|))) (T -580)) +((-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-348 *5))) (-5 *1 (-580 *5 *4)))) (-2279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 *5))) (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-580 *5 *4)))) (-2278 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-580 *4 *5)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3775 (((-585 (-452 |#1| (-579 |#2|))) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| (-579 |#2|)) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (($ (-585 |#1|)) 25 T ELT)) (-1985 (((-579 |#2|) $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3912 (((-107)) 16 T ELT)) (-3226 (((-1180 |#1|) $) 44 T ELT)) (-3973 (($ (-585 (-452 |#1| (-579 |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-579 |#2|)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 17 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-581 |#1| |#2|) (-13 (-1188 |#1|) (-557 (-579 |#2|)) (-448 |#1| (-579 |#2|)) (-10 -8 (-15 -2280 ($ (-585 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-585 (-1091))) (T -581)) +((-2280 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-585 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1091)))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2281 (((-632 |#1|) (-632 $)) 36 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 35 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2282 (((-632 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-582 |#1|) (-113) (-963)) (T -582)) +((-2282 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2282 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1180 *4)))))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1180 *5))))))) +(-13 (-592 |t#1|) (-10 -8 (-15 -2282 ((-632 |t#1|) (-1180 $))) (-15 -2282 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-1180 $) $)) (-15 -2281 ((-632 |t#1|) (-632 $))) (-15 -2281 ((-2 (|:| |mat| (-632 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-632 $) (-1180 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1215 (((-85) $ $) NIL T ELT)) (-2283 (($ (-585 |#1|)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#1| $ (-581 |#1| |#2|)) 46 T ELT)) (-3912 (((-107)) 13 T ELT)) (-3226 (((-1180 |#1|) $) 42 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 14 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-583 |#1| |#2|) (-13 (-1188 |#1|) (-241 (-581 |#1| |#2|) |#1|) (-10 -8 (-15 -2283 ($ (-585 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-585 (-1091))) (T -583)) +((-2283 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) (-14 *4 (-585 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) (-14 *4 (-585 (-1091)))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-584 |#1|) (-113) (-1027)) (T -584)) +NIL +(-13 (-590 |t#1|) (-965 |t#1|)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 |#1|) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 68 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-696)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 26 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-2286 (($ $ $) 74 (|has| |#1| (-1015)) ELT)) (-2285 (($ $ $) 75 (|has| |#1| (-1015)) ELT)) (-2284 (($ $ $) 79 (|has| |#1| (-1015)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) 31 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 32 T ELT)) (-3800 (($ $) 21 T ELT) (($ $ (-696)) 35 T ELT)) (-2370 (($ $) 63 (|has| |#1| (-1015)) ELT)) (-1354 (($ $) 73 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1015)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2288 (((-85) $) 9 T ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-2289 (($) 7 T CONST)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-3720 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-485) $) 34 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 61 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-696)) NIL T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 59 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 16 T ELT) (($ $ (-696)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 15 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) NIL T ELT)) (-3795 (($ $) 40 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 36 T ELT)) (-3973 (((-474) $) 87 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 29 T ELT)) (-3462 (($ |#1| $) 10 T ELT)) (-3792 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-585 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (((-774) $) 51 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($ $ $) 11 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 13 (|has| $ (-6 -3996)) ELT))) +(((-585 |#1|) (-13 (-610 |#1|) (-10 -8 (-15 -2289 ($) -3953) (-15 -2288 ((-85) $)) (-15 -3462 ($ |#1| $)) (-15 -2287 ($ $ $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -2286 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $))) |%noBranch|))) (-1130)) (T -585)) +((-2289 (*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1130)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130)))) (-2287 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130))))) +((-3842 (((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 18 T ELT)) (-3959 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 13 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3842 ((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3959 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1130) (-1130)) (T -586)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5))))) +((-3423 ((|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|) 17 T ELT) ((|#2| (-585 |#1|) (-585 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|)) 12 T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -3423 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|))) (-15 -3423 (|#2| (-585 |#1|) (-585 |#2|) |#1|)) (-15 -3423 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|)) (-15 -3423 (|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|)) (-15 -3423 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|))) (-15 -3423 (|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)))) (-1015) (-1130)) (T -587)) +((-3423 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) (-4 *2 (-1130)) (-5 *1 (-587 *5 *2)))) (-3423 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1130)) (-5 *1 (-587 *5 *6)))) (-3423 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1130)) (-5 *1 (-587 *5 *2)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1130)) (-5 *1 (-587 *5 *2)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6))))) +((-3959 (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 21 T ELT))) +(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)))) (-1130) (-1130) (-1130)) (T -588)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-585 *8)) (-5 *1 (-588 *6 *7 *8))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 11 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-589 |#1|) (-13 (-997) (-554 |#1|)) (-1015)) (T -589)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-590 |#1|) (-113) (-1027)) (T -590)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027))))) +(-13 (-1015) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2290 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2370 (($ $) 47 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) 58 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 9 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 49 T ELT)) (-3610 (($ |#1| $) 30 T ELT) (($ |#1| $ (-696)) 44 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 52 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 23 T ELT)) (-3566 (($) 29 T ELT)) (-2291 (((-85) $) 56 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1947 (-696)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-585 |#1|)) 19 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 65 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 20 T ELT)) (-3973 (((-474) $) 36 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3947 (((-774) $) 14 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 24 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 17 (|has| $ (-6 -3996)) ELT))) +(((-591 |#1|) (-13 (-636 |#1|) (-10 -8 (-6 -3996) (-15 -2291 ((-85) $)) (-15 -2290 ($ |#1| |#1| $)))) (-1015)) (T -591)) +((-2291 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015)))) (-2290 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-592 |#1|) (-113) (-972)) (T -592)) +NIL +(-13 (-21) (-590 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696) $) 17 T ELT)) (-2297 (($ $ |#1|) 68 T ELT)) (-2299 (($ $) 39 T ELT)) (-2300 (($ $) 37 T ELT)) (-3159 (((-3 |#1| "failed") $) 60 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2295 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3534 (((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-485)) 55 T ELT)) (-2301 ((|#1| $ (-485)) 35 T ELT)) (-2302 ((|#2| $ (-485)) 34 T ELT)) (-2292 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2293 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2298 (($) 13 T ELT)) (-2304 (($ |#1| |#2|) 24 T ELT)) (-2303 (($ (-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|)))) 25 T ELT)) (-2305 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 14 T ELT)) (-2296 (($ |#1| $) 69 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2294 (((-85) $ $) 74 T ELT)) (-3947 (((-774) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 27 T ELT))) +(((-593 |#1| |#2| |#3|) (-13 (-1015) (-952 |#1|) (-10 -8 (-15 -3534 ((-774) $ (-1 (-774) (-774) (-774)) (-1 (-774) (-774) (-774)) (-485))) (-15 -2305 ((-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $)) (-15 -2304 ($ |#1| |#2|)) (-15 -2303 ($ (-585 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))))) (-15 -2302 (|#2| $ (-485))) (-15 -2301 (|#1| $ (-485))) (-15 -2300 ($ $)) (-15 -2299 ($ $)) (-15 -3138 ((-696) $)) (-15 -2298 ($)) (-15 -2297 ($ $ |#1|)) (-15 -2296 ($ |#1| $)) (-15 -2295 ($ |#1| |#2| $)) (-15 -2295 ($ $ $)) (-15 -2294 ((-85) $ $)) (-15 -2293 ($ (-1 |#2| |#2|) $)) (-15 -2292 ($ (-1 |#1| |#1|) $)))) (-1015) (-23) |#2|) (T -593)) +((-3534 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-485)) (-5 *2 (-774)) (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2304 (*1 *1 *2 *3) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2303 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) (-14 *5 *2))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *2 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) (-2293 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2203 (((-485) $) 30 T ELT)) (-2306 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) 12 T ELT)) (-2206 (((-85) (-485) $) 17 T ELT)) (-3803 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT))) +(((-594 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1| |#1| (-485))) (-15 -2306 (|#1| |#2| |#1| (-485))) (-15 -3803 (|#1| (-585 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -2203 ((-485) |#1|)) (-15 -2205 ((-585 (-485)) |#1|)) (-15 -2206 ((-85) (-485) |#1|))) (-595 |#2|) (-1130)) (T -594)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-595 |#1|) (-113) (-1130)) (T -595)) +((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-595 *2)) (-4 *2 (-1130)))) (-2306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3997)) (-4 *1 (-595 *2)) (-4 *2 (-1130))))) +(-13 (-540 (-485) |t#1|) (-124 |t#1|) (-241 (-1147 (-485)) $) (-10 -8 (-15 -3615 ($ (-696) |t#1|)) (-15 -3803 ($ $ |t#1|)) (-15 -3803 ($ |t#1| $)) (-15 -3803 ($ $ $)) (-15 -3803 ($ (-585 $))) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2307 ($ $ (-485))) (-15 -2307 ($ $ (-1147 (-485)))) (-15 -2306 ($ |t#1| $ (-485))) (-15 -2306 ($ $ $ (-485))) (IF (|has| $ (-6 -3997)) (-15 -3789 (|t#1| $ (-1147 (-485)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-716)) ELT)) (-3725 (($) NIL T CONST)) (-3188 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| $) 23 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-716)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-716)) ELT)) (-3244 (((-1074) $) 48 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2999 ((|#3| $) 24 T ELT)) (-3947 (((-774) $) 43 T ELT)) (-1266 (((-85) $ $) 22 T ELT)) (-3384 (($ $) NIL (|has| |#1| (-716)) ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-716)) ELT)) (-2687 (((-85) $ $) 26 (|has| |#1| (-716)) ELT)) (-3950 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-596 |#1| |#2| |#3|) (-13 (-656 |#2|) (-10 -8 (IF (|has| |#1| (-716)) (-6 (-716)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-656 |#2|) (-146) (|SubsetCategory| (-665) |#2|)) (T -596)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) (-4 *2 (|SubsetCategory| (-665) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) (-4 *3 (|SubsetCategory| (-665) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-665) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4))))) +((-3574 (((-3 |#2| #1="failed") |#3| |#2| (-1091) |#2| (-585 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1#) |#3| |#2| (-1091)) 44 T ELT))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) #1="failed") |#3| |#2| (-1091))) (-15 -3574 ((-3 |#2| #1#) |#3| |#2| (-1091) |#2| (-585 |#2|)))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-873)) (-602 |#2|)) (T -597)) +((-3574 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 31 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) NIL T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) 24 T ELT)) (-2312 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-598 |#1| |#2|) (-602 |#1|) (-963) (-1 |#1| |#1|)) (T -598)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) NIL T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-599 |#1|) (-602 |#1|) (-190)) (T -599)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) NIL T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2312 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-600 |#1| |#2|) (-13 (-602 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-592 |#1|) (-10 -8 (-15 -3759 ($ $))))) (T -600)) +NIL +((-2308 (($ $) 29 T ELT)) (-2522 (($ $) 27 T ELT)) (-2671 (($) 13 T ELT))) +(((-601 |#1| |#2|) (-10 -7 (-15 -2308 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -2671 (|#1|))) (-602 |#2|) (-963)) (T -601)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2308 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2310 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2311 (($ $ (-696)) 97 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #2#) $) 85 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 84 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-390)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-696)) 75 T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) 101 T ELT)) (-2312 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3949 (((-696) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 86 (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-585 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-696)) 76 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2522 (($ $) 99 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($) 100 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-602 |#1|) (-113) (-963)) (T -602)) +((-2671 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2312 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(-13 (-763 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2671 ($)) (-15 -2522 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2310 ($ $ $)) (-15 -2311 ($ $ (-696))) (-15 -2308 ($ $)) (-15 -2312 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-353 |#1|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-763 |#1|) . T)) +((-2309 (((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3733 (((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|)) 19 T ELT))) +(((-603 |#1| |#2|) (-10 -7 (-15 -3733 ((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3733 ((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|)))) (-15 -2309 ((-585 (-599 (-348 |#2|))) (-599 (-348 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485)))) (-1156 |#1|)) (T -603)) +((-2309 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-599 (-348 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-348 *5))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-599 (-348 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-348 *5))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-599 (-348 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-348 *6)))))) +((-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2311 ((|#2| |#2| (-696) (-1 |#1| |#1|)) 45 T ELT)) (-2312 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-604 |#1| |#2|) (-10 -7 (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| (-696) (-1 |#1| |#1|))) (-15 -2312 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -604)) +((-2312 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4)))) (-2311 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) (-4 *2 (-602 *5)))) (-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) (-4 *2 (-602 *4))))) +((-2313 (($ $ $) 9 T ELT))) +(((-605 |#1|) (-10 -7 (-15 -2313 (|#1| |#1| |#1|))) (-606)) (T -605)) +NIL +((-2315 (($ $) 8 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-2314 (($ $ $) 7 T ELT))) +(((-606) (-113)) (T -606)) +((-2315 (*1 *1 *1) (-4 *1 (-606))) (-2314 (*1 *1 *1 *1) (-4 *1 (-606))) (-2313 (*1 *1 *1 *1) (-4 *1 (-606)))) +(-13 (-1130) (-10 -8 (-15 -2315 ($ $)) (-15 -2314 ($ $ $)) (-15 -2313 ($ $ $)))) +(((-13) . T) ((-1130) . T)) +((-2316 (((-3 (-585 (-1086 |#1|)) "failed") (-585 (-1086 |#1|)) (-1086 |#1|)) 33 T ELT))) +(((-607 |#1|) (-10 -7 (-15 -2316 ((-3 (-585 (-1086 |#1|)) "failed") (-585 (-1086 |#1|)) (-1086 |#1|)))) (-823)) (T -607)) +((-2316 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-823)) (-5 *1 (-607 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3935 (((-585 |#1|) $) 85 T ELT)) (-3948 (($ $ (-696)) 95 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 50 T ELT)) (-3159 (((-3 (-616 |#1|) #1#) $) NIL T ELT)) (-3158 (((-616 |#1|) $) NIL T ELT)) (-3960 (($ $) 94 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-616 |#1|) |#2|) 70 T ELT)) (-3937 (($ $) 90 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 49 T ELT)) (-1750 (((-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-616 |#1|) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3769 (($ $ |#1| $) 32 T ELT) (($ $ (-585 |#1|) (-585 $)) 34 T ELT)) (-3949 (((-696) $) 92 T ELT)) (-3531 (($ $ $) 20 T ELT) (($ (-616 |#1|) (-616 |#1|)) 79 T ELT) (($ (-616 |#1|) $) 77 T ELT) (($ $ (-616 |#1|)) 78 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1196 |#1| |#2|) $) 60 T ELT) (((-1205 |#1| |#2|) $) 43 T ELT) (($ (-616 |#1|)) 27 T ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-616 |#1|)) NIL T ELT)) (-3955 ((|#2| (-1205 |#1| |#2|) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2667 (((-585 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 $ #1#) (-1196 |#1| |#2|)) 62 T ELT)) (-1734 (($ (-616 |#1|)) 14 T ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-616 |#1|)) NIL T ELT))) +(((-608 |#1| |#2|) (-13 (-324 |#1| |#2|) (-333 |#2| (-616 |#1|)) (-10 -8 (-15 -3946 ((-3 $ "failed") (-1196 |#1| |#2|))) (-15 -3531 ($ (-616 |#1|) (-616 |#1|))) (-15 -3531 ($ (-616 |#1|) $)) (-15 -3531 ($ $ (-616 |#1|))))) (-758) (-146)) (T -608)) +((-3946 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-608 *3 *4)))) (-3531 (*1 *1 *2 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *2 *1) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146))))) +((-1733 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1731 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2299 (($ $) 65 T ELT)) (-2370 (($ $) 74 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3420 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-85) |#2|) $) 54 T ELT)) (-3615 (($ (-696) |#2|) 63 T ELT)) (-2858 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3519 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3535 (($ |#2|) 15 T ELT)) (-3610 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1147 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1732 (($ $ $ (-485)) 70 T ELT)) (-3401 (($ $) 68 T ELT)) (-2687 (((-85) $ $) 76 T ELT))) +(((-609 |#1| |#2|) (-10 -7 (-15 -3535 (|#1| |#2|)) (-15 -1572 (|#1| |#1| (-485))) (-15 -1572 (|#1| |#1| (-1147 (-485)))) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3610 (|#1| |#2| |#1| (-485))) (-15 -3610 (|#1| |#1| |#1| (-485))) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3519 (|#1| |#1| |#1|)) (-15 -1733 ((-85) |#1|)) (-15 -1732 (|#1| |#1| |#1| (-485))) (-15 -2299 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3615 (|#1| (-696) |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-610 |#2|) (-1130)) (T -609)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) 153 (|has| |#1| (-758)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1731 (($ $) 157 (-12 (|has| |#1| (-758)) (|has| $ (-6 -3997))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3997)) ELT)) (-2911 (($ $) 152 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3443 (((-85) $ (-696)) 90 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 155 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 145 T ELT)) (-3800 (($ $) 79 T ELT) (($ $ (-696)) 77 T ELT)) (-2370 (($ $) 142 (|has| |#1| (-1015)) ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 141 (|has| |#1| (-1015)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3407 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-3420 (((-485) |#1| $ (-485)) 150 (|has| |#1| (-1015)) ELT) (((-485) |#1| $) 149 (|has| |#1| (-1015)) ELT) (((-485) (-1 (-85) |#1|) $) 148 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-3615 (($ (-696) |#1|) 119 T ELT)) (-3720 (((-85) $ (-696)) 91 T ELT)) (-2202 (((-485) $) 105 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 163 (|has| |#1| (-758)) ELT)) (-2858 (($ $ $) 143 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3519 (($ $ $) 151 (|has| |#1| (-758)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 104 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 162 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3535 (($ |#1|) 133 T ELT)) (-3717 (((-85) $ (-696)) 92 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-696)) 74 T ELT)) (-3610 (($ $ $ (-485)) 138 T ELT) (($ |#1| $ (-485)) 137 T ELT)) (-2306 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2205 (((-585 (-485)) $) 102 T ELT)) (-2206 (((-85) (-485) $) 101 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-696)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2201 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) 94 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-1572 (($ $ (-1147 (-485))) 135 T ELT) (($ $ (-485)) 134 T ELT)) (-2307 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 154 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-585 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 161 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 159 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 160 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 158 (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-610 |#1|) (-113) (-1130)) (T -610)) +((-3535 (*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1130))))) +(-13 (-1065 |t#1|) (-322 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3535 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-237 |#1|) . T) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-925 |#1|) . T) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) +((-3574 (((-585 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|))) |#4| |#3|) 60 T ELT)) (-3110 (((-696) |#4| |#3|) 18 T ELT)) (-3341 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2317 (((-85) |#4| |#3|) 14 T ELT))) +(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|)) (-15 -3574 ((-585 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2014 (-585 |#3|)))) |#4| (-585 |#3|))) (-15 -3341 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2317 ((-85) |#4| |#3|)) (-15 -3110 ((-696) |#4| |#3|))) (-312) (-13 (-322 |#1|) (-10 -7 (-6 -3997))) (-13 (-322 |#1|) (-10 -7 (-6 -3997))) (-629 |#1| |#2| |#3|)) (T -611)) +((-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-696)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-2317 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-85)) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-322 *4) (-10 -7 (-6 -3997)))) (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997)))) (-5 *1 (-611 *4 *5 *2 *3)) (-4 *3 (-629 *4 *5 *2)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-4 *7 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2014 (-585 *7))))) (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) +((-3574 (((-585 (-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-585 (-1180 |#1|))))) (-585 (-585 |#1|)) (-585 (-1180 |#1|))) 22 T ELT) (((-585 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|))))) (-632 |#1|) (-585 (-1180 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|)))) (-585 (-585 |#1|)) (-1180 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|)))) (-632 |#1|) (-1180 |#1|)) 14 T ELT)) (-3110 (((-696) (-632 |#1|) (-1180 |#1|)) 30 T ELT)) (-3341 (((-3 (-1180 |#1|) #1#) (-632 |#1|) (-1180 |#1|)) 24 T ELT)) (-2317 (((-85) (-632 |#1|) (-1180 |#1|)) 27 T ELT))) +(((-612 |#1|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-585 (-1180 |#1|)))) (-632 |#1|) (-1180 |#1|))) (-15 -3574 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|)))) (-585 (-585 |#1|)) (-1180 |#1|))) (-15 -3574 ((-585 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|))))) (-632 |#1|) (-585 (-1180 |#1|)))) (-15 -3574 ((-585 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|))))) (-585 (-585 |#1|)) (-585 (-1180 |#1|)))) (-15 -3341 ((-3 (-1180 |#1|) #1#) (-632 |#1|) (-1180 |#1|))) (-15 -2317 ((-85) (-632 |#1|) (-1180 |#1|))) (-15 -3110 ((-696) (-632 |#1|) (-1180 |#1|)))) (-312)) (T -612)) +((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-612 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-612 *5)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *1 (-612 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1180 *5) #1="failed")) (|:| -2014 (-585 (-1180 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1180 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-585 (-1180 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-585 (-1180 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-585 (-1180 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1180 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2014 (-585 (-1180 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1180 *5))))) +((-2318 (((-2 (|:| |particular| (-3 (-1180 (-348 |#4|)) "failed")) (|:| -2014 (-585 (-1180 (-348 |#4|))))) (-585 |#4|) (-585 |#3|)) 51 T ELT))) +(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2318 ((-2 (|:| |particular| (-3 (-1180 (-348 |#4|)) "failed")) (|:| -2014 (-585 (-1180 (-348 |#4|))))) (-585 |#4|) (-585 |#3|)))) (-496) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -613)) +((-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 (-348 *8)) "failed")) (|:| -2014 (-585 (-1180 (-348 *8)))))) (-5 *1 (-613 *5 *6 *7 *8))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-632 |#2|))) NIL T ELT) (((-1180 (-632 |#2|)) (-1180 $)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-1730 (((-1180 $)) 41 T ELT)) (-3334 (($ |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1789 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1787 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1180 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1901 (((-1086 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2409 (($ $ (-832)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1791 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1724 (((-1086 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1793 (($ (-1180 |#2|)) NIL T ELT) (($ (-1180 |#2|) (-1180 $)) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-696) $) NIL (|has| |#2| (-496)) ELT) (((-832)) 42 T ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-832)) NIL T ELT)) (-2891 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3109 (((-696) $) NIL (|has| |#2| (-496)) ELT)) (-3108 (((-585 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3116 (((-696) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3328 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-585 (-585 |#2|))) NIL T ELT)) (-1950 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-585 (-585 |#2|)) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2014 (-585 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1790 (((-632 |#2|)) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1788 (((-632 |#2|) $) NIL T ELT) (((-632 |#2|) $ (-1180 $)) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2407 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1905 (((-1086 (-859 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-832)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1792 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1725 (((-1086 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3591 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-585 |#2|)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3226 (((-632 |#2|) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT) (((-632 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $ (-1180 $)) 30 T ELT)) (-3973 (($ (-1180 |#2|)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT)) (-1893 (((-585 (-859 |#2|))) NIL T ELT) (((-585 (-859 |#2|)) (-1180 $)) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 40 T ELT)) (-1708 (((-585 (-1180 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-632 |#2|) $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-614 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-359 |#2|)) (-832) (-146)) (T -614)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3250 (((-585 (-1050)) $) 12 T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-615) (-13 (-997) (-10 -8 (-15 -3250 ((-585 (-1050)) $))))) (T -615)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-615))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3935 (((-585 |#1|) $) NIL T ELT)) (-3139 (($ $) 62 T ELT)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2321 (((-3 $ #1#) (-741 |#1|)) 28 T ELT)) (-2323 (((-85) (-741 |#1|)) 18 T ELT)) (-2322 (($ (-741 |#1|)) 29 T ELT)) (-2513 (((-85) $ $) 36 T ELT)) (-3834 (((-832) $) 43 T ELT)) (-3140 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3733 (((-585 $) (-741 |#1|)) 20 T ELT)) (-3947 (((-774) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-741 |#1|) $) 47 T ELT) (((-620 |#1|) $) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2320 (((-58 (-585 $)) (-585 |#1|) (-832)) 67 T ELT)) (-2319 (((-585 $) (-585 |#1|) (-832)) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 63 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 46 T ELT))) +(((-616 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 -2666 ((-85) $)) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3834 ((-832) $)) (-15 -2513 ((-85) $ $)) (-15 -3947 ((-741 |#1|) $)) (-15 -3947 ((-620 |#1|) $)) (-15 -3733 ((-585 $) (-741 |#1|))) (-15 -2323 ((-85) (-741 |#1|))) (-15 -2322 ($ (-741 |#1|))) (-15 -2321 ((-3 $ "failed") (-741 |#1|))) (-15 -3935 ((-585 |#1|) $)) (-15 -2320 ((-58 (-585 $)) (-585 |#1|) (-832))) (-15 -2319 ((-585 $) (-585 |#1|) (-832))))) (-758)) (T -616)) +((-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) (-5 *1 (-616 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-2321 (*1 *1 *2) (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) (-5 *1 (-616 *5))))) +((-3403 ((|#2| $) 100 T ELT)) (-3798 (($ $) 121 T ELT)) (-3443 (((-85) $ (-696)) 35 T ELT)) (-3800 (($ $) 109 T ELT) (($ $ (-696)) 112 T ELT)) (-3444 (((-85) $) 122 T ELT)) (-3033 (((-585 $) $) 96 T ELT)) (-3029 (((-85) $ $) 92 T ELT)) (-3720 (((-85) $ (-696)) 33 T ELT)) (-2202 (((-485) $) 66 T ELT)) (-2203 (((-485) $) 65 T ELT)) (-3717 (((-85) $ (-696)) 31 T ELT)) (-3528 (((-85) $) 98 T ELT)) (-3799 ((|#2| $) 113 T ELT) (($ $ (-696)) 117 T ELT)) (-2306 (($ $ $ (-485)) 83 T ELT) (($ |#2| $ (-485)) 82 T ELT)) (-2205 (((-585 (-485)) $) 64 T ELT)) (-2206 (((-85) (-485) $) 59 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-696)) 108 T ELT)) (-3770 (($ $ (-485)) 125 T ELT)) (-3445 (((-85) $) 124 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2207 (((-585 |#2|) $) 46 T ELT)) (-3801 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1147 (-485))) 79 T ELT) ((|#2| $ (-485)) 57 T ELT) ((|#2| $ (-485) |#2|) 58 T ELT)) (-3031 (((-485) $ $) 91 T ELT)) (-2307 (($ $ (-1147 (-485))) 78 T ELT) (($ $ (-485)) 72 T ELT)) (-3634 (((-85) $) 87 T ELT)) (-3793 (($ $) 105 T ELT)) (-3794 (((-696) $) 104 T ELT)) (-3795 (($ $) 103 T ELT)) (-3531 (($ (-585 |#2|)) 53 T ELT)) (-2893 (($ $) 126 T ELT)) (-3523 (((-585 $) $) 90 T ELT)) (-3030 (((-85) $ $) 89 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-3958 (((-696) $) 39 T ELT))) +(((-617 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3770 (|#1| |#1| (-485))) (-15 -3443 ((-85) |#1| (-696))) (-15 -3720 ((-85) |#1| (-696))) (-15 -3717 ((-85) |#1| (-696))) (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -2207 ((-585 |#2|) |#1|)) (-15 -2206 ((-85) (-485) |#1|)) (-15 -2205 ((-585 (-485)) |#1|)) (-15 -2203 ((-485) |#1|)) (-15 -2202 ((-485) |#1|)) (-15 -3531 (|#1| (-585 |#2|))) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -2307 (|#1| |#1| (-485))) (-15 -2307 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| |#1| (-485))) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-696) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-696))) (-15 -3801 (|#2| |#1| "last")) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-696))) (-15 -3801 (|#1| |#1| "rest")) (-15 -3800 (|#1| |#1|)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3801 (|#2| |#1| "first")) (-15 -3802 (|#2| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3031 ((-485) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| "value")) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3033 ((-585 |#1|) |#1|)) (-15 -3523 ((-585 |#1|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-696) |#1|))) (-618 |#2|) (-1130)) (T -617)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-696)) 90 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-2325 (($ $) 135 T ELT)) (-3800 (($ $) 79 T ELT) (($ $ (-696)) 77 T ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 110 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2324 (((-696) $) 134 T ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-3615 (($ (-696) |#1|) 119 T ELT)) (-3720 (((-85) $ (-696)) 91 T ELT)) (-2202 (((-485) $) 105 (|has| (-485) (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 104 (|has| (-485) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3717 (((-85) $ (-696)) 92 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-2327 (($ $) 137 T ELT)) (-2328 (((-85) $) 138 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-696)) 74 T ELT)) (-2306 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2205 (((-585 (-485)) $) 102 T ELT)) (-2206 (((-85) (-485) $) 101 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-2326 ((|#1| $) 136 T ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-696)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2201 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-485)) 133 T ELT)) (-3445 (((-85) $) 94 T ELT)) (-2329 (((-85) $) 139 T ELT)) (-2330 (((-85) $) 140 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-2307 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-585 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2893 (($ $) 132 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-618 |#1|) (-113) (-1130)) (T -618)) +((-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130))))) +(-13 (-1065 |t#1|) (-10 -8 (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (-15 -2330 ((-85) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ($ $)) (-15 -2326 (|t#1| $)) (-15 -2325 ($ $)) (-15 -2324 ((-696) $)) (-15 -3770 ($ $ (-485))) (-15 -2893 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-421) $) 15 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-619) (-13 (-997) (-10 -8 (-15 -3180 ((-421) $)) (-15 -3235 ((-1050) $))))) (T -619)) +((-3180 (*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-619)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-619))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3935 (((-585 |#1|) $) 15 T ELT)) (-3139 (($ $) 19 T ELT)) (-2666 (((-85) $) 20 T ELT)) (-3159 (((-3 |#1| "failed") $) 23 T ELT)) (-3158 ((|#1| $) 21 T ELT)) (-3800 (($ $) 37 T ELT)) (-3937 (($ $) 25 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2513 (((-85) $ $) 46 T ELT)) (-3834 (((-832) $) 40 T ELT)) (-3140 (($ $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 ((|#1| $) 36 T ELT)) (-3947 (((-774) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-741 |#1|) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-620 |#1|) (-13 (-758) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3947 ((-741 |#1|) $)) (-15 -3802 (|#1| $)) (-15 -3140 ($ $)) (-15 -3834 ((-832) $)) (-15 -2513 ((-85) $ $)) (-15 -3937 ($ $)) (-15 -3800 ($ $)) (-15 -2666 ((-85) $)) (-15 -3139 ($ $)) (-15 -3935 ((-585 |#1|) $)))) (-758)) (T -620)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3802 (*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758))))) +((-2339 ((|#1| (-1 |#1| (-696) |#1|) (-696) |#1|) 11 T ELT)) (-2331 ((|#1| (-1 |#1| |#1|) (-696) |#1|) 9 T ELT))) +(((-621 |#1|) (-10 -7 (-15 -2331 (|#1| (-1 |#1| |#1|) (-696) |#1|)) (-15 -2339 (|#1| (-1 |#1| (-696) |#1|) (-696) |#1|))) (-1015)) (T -621)) +((-2339 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2)))) (-2331 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) +((-2333 ((|#2| |#1| |#2|) 9 T ELT)) (-2332 ((|#1| |#1| |#2|) 8 T ELT))) +(((-622 |#1| |#2|) (-10 -7 (-15 -2332 (|#1| |#1| |#2|)) (-15 -2333 (|#2| |#1| |#2|))) (-1015) (-1015)) (T -622)) +((-2333 (*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-2332 (*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +((-2334 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -2334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1015) (-1015) (-1015)) (T -623)) +((-2334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 22 T ELT)) (-3319 (((-585 (-1131)) $) 20 T ELT)) (-2335 (($ (-585 (-1131)) (-1131)) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 30 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 23 T ELT) (($ (-1030)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-624) (-13 (-997) (-554 (-1131)) (-10 -8 (-15 -3947 ($ (-1030))) (-15 -2335 ($ (-585 (-1131)) (-1131))) (-15 -3319 ((-585 (-1131)) $)) (-15 -3320 ((-1131) $))))) (T -624)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1131))) (-5 *3 (-1131)) (-5 *1 (-624)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-624)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-624))))) +((-2339 (((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)) 26 T ELT)) (-2336 (((-1 |#1|) |#1|) 8 T ELT)) (-2338 ((|#1| |#1|) 19 T ELT)) (-2337 (((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3947 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-696)) 23 T ELT))) +(((-625 |#1|) (-10 -7 (-15 -2336 ((-1 |#1|) |#1|)) (-15 -3947 ((-1 |#1|) |#1|)) (-15 -2337 (|#1| (-1 |#1| |#1|))) (-15 -2337 ((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-485))) (-15 -2338 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-696))) (-15 -2339 ((-1 |#1| (-696) |#1|) (-1 |#1| (-696) |#1|)))) (-1015)) (T -625)) +((-2339 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) (-2338 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-485)) (-5 *2 (-585 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1015)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) +((-2342 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2341 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3953 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2340 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2340 ((-1 |#2| |#1|) |#2|)) (-15 -2341 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3953 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2342 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1015) (-1015)) (T -626)) +((-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1015)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) (-4 *3 (-1015))))) +((-2347 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2343 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2344 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2346 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -2343 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2344 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2346 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2347 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1015) (-1015) (-1015)) (T -627)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) +((-3839 (($ (-696) (-696)) 42 T ELT)) (-2352 (($ $ $) 73 T ELT)) (-3415 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3122 (((-85) $) 36 T ELT)) (-2351 (($ $ (-485) (-485)) 84 T ELT)) (-2350 (($ $ (-485) (-485)) 85 T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2354 (($ $) 71 T ELT)) (-3124 (((-85) $) 15 T ELT)) (-2348 (($ $ (-485) (-485) $) 91 T ELT)) (-3789 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485)) $) 89 T ELT)) (-3334 (($ (-696) |#2|) 55 T ELT)) (-3125 (($ (-585 (-585 |#2|))) 51 T ELT) (($ (-696) (-696) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3595 (((-585 (-585 |#2|)) $) 80 T ELT)) (-2353 (($ $ $) 72 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3801 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485))) 88 T ELT)) (-3333 (($ (-585 |#2|)) 56 T ELT) (($ (-585 $)) 58 T ELT)) (-3123 (((-85) $) 28 T ELT)) (-3947 (($ |#4|) 63 T ELT) (((-774) $) NIL T ELT)) (-3121 (((-85) $) 38 T ELT)) (-3950 (($ $ |#2|) 124 T ELT)) (-3838 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3840 (($ $ $) 93 T ELT)) (** (($ $ (-696)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-774) |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3950 (|#1| |#1| |#2|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-696))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| (-485) (-485) |#1|)) (-15 -2349 (|#1| |#1| (-485) (-485) (-485) (-485))) (-15 -2350 (|#1| |#1| (-485) (-485))) (-15 -2351 (|#1| |#1| (-485) (-485))) (-15 -3789 (|#1| |#1| (-585 (-485)) (-585 (-485)) |#1|)) (-15 -3801 (|#1| |#1| (-585 (-485)) (-585 (-485)))) (-15 -3595 ((-585 (-585 |#2|)) |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3415 (|#1| |#3|)) (-15 -3947 (|#1| |#4|)) (-15 -3333 (|#1| (-585 |#1|))) (-15 -3333 (|#1| (-585 |#2|))) (-15 -3334 (|#1| (-696) |#2|)) (-15 -3125 (|#1| (-696) (-696) (-1 |#2| (-485) (-485)))) (-15 -3125 (|#1| (-585 (-585 |#2|)))) (-15 -3839 (|#1| (-696) (-696))) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485)))) (-629 |#2| |#3| |#4|) (-963) (-322 |#2|) (-322 |#2|)) (T -628)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-696) (-696)) 103 T ELT)) (-2352 (($ $ $) 92 T ELT)) (-3415 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3122 (((-85) $) 105 T ELT)) (-2351 (($ $ (-485) (-485)) 88 T ELT)) (-2350 (($ $ (-485) (-485)) 87 T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) 86 T ELT)) (-2354 (($ $) 94 T ELT)) (-3124 (((-85) $) 107 T ELT)) (-2348 (($ $ (-485) (-485) $) 85 T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 48 T ELT) (($ $ (-585 (-485)) (-585 (-485)) $) 89 T ELT)) (-1258 (($ $ (-485) |#2|) 46 T ELT)) (-1257 (($ $ (-485) |#3|) 45 T ELT)) (-3334 (($ (-696) |#1|) 100 T ELT)) (-3725 (($) 7 T CONST)) (-3111 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3113 ((|#2| $ (-485)) 50 T ELT)) (-3110 (((-696) $) 71 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 47 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 52 T ELT)) (-2891 (((-585 |#1|) $) 30 T ELT)) (-3109 (((-696) $) 70 (|has| |#1| (-496)) ELT)) (-3108 (((-585 |#3|) $) 69 (|has| |#1| (-496)) ELT)) (-3116 (((-696) $) 55 T ELT)) (-3615 (($ (-696) (-696) |#1|) 61 T ELT)) (-3115 (((-696) $) 54 T ELT)) (-3328 ((|#1| $) 67 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3120 (((-485) $) 59 T ELT)) (-3118 (((-485) $) 57 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3119 (((-485) $) 58 T ELT)) (-3117 (((-485) $) 56 T ELT)) (-3125 (($ (-585 (-585 |#1|))) 102 T ELT) (($ (-696) (-696) (-1 |#1| (-485) (-485))) 101 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3595 (((-585 (-585 |#1|)) $) 91 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3591 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) 93 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) 60 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) (-485)) 53 T ELT) ((|#1| $ (-485) (-485) |#1|) 51 T ELT) (($ $ (-585 (-485)) (-585 (-485))) 90 T ELT)) (-3333 (($ (-585 |#1|)) 99 T ELT) (($ (-585 $)) 98 T ELT)) (-3123 (((-85) $) 106 T ELT)) (-3329 ((|#1| $) 68 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3112 ((|#3| $ (-485)) 49 T ELT)) (-3947 (($ |#3|) 97 T ELT) (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) 104 T ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3840 (($ $ $) 84 T ELT)) (** (($ $ (-696)) 75 T ELT) (($ $ (-485)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-485) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-629 |#1| |#2| |#3|) (-113) (-963) (-322 |t#1|) (-322 |t#1|)) (T -629)) +((-3124 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-85)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3125 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-963)) (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-322 *3)) (-4 *2 (-322 *3)))) (-3415 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-322 *3)) (-4 *4 (-322 *3)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-585 (-585 *3))))) (-3801 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-585 (-485))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3789 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-585 (-485))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2351 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2349 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-2348 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *2 (-322 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-322 *3)) (-4 *4 (-322 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-496)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-696)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-585 *5)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-963)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-963)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-4 *3 (-312))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3997) (-6 -3996) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3839 ($ (-696) (-696))) (-15 -3125 ($ (-585 (-585 |t#1|)))) (-15 -3125 ($ (-696) (-696) (-1 |t#1| (-485) (-485)))) (-15 -3334 ($ (-696) |t#1|)) (-15 -3333 ($ (-585 |t#1|))) (-15 -3333 ($ (-585 $))) (-15 -3947 ($ |t#3|)) (-15 -3415 ($ |t#2|)) (-15 -3415 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -3595 ((-585 (-585 |t#1|)) $)) (-15 -3801 ($ $ (-585 (-485)) (-585 (-485)))) (-15 -3789 ($ $ (-585 (-485)) (-585 (-485)) $)) (-15 -2351 ($ $ (-485) (-485))) (-15 -2350 ($ $ (-485) (-485))) (-15 -2349 ($ $ (-485) (-485) (-485) (-485))) (-15 -2348 ($ $ (-485) (-485) $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-485) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-696))) (IF (|has| |t#1| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3110 ((-696) $)) (-15 -3109 ((-696) $)) (-15 -3108 ((-585 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3998 "*"))) (PROGN (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-57 |#1| |#2| |#3|) . T) ((-1130) . T)) +((-3843 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3959 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-630 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3959 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3843 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-963) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|) (-963) (-322 |#5|) (-322 |#5|) (-629 |#5| |#6| |#7|)) (T -630)) +((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *8 (-322 *2)) (-4 *9 (-322 *2)) (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) (-4 *10 (-629 *2 *8 *9)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-322 *8)) (-4 *10 (-322 *8))))) +((-3111 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3110 (((-696) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3109 (((-696) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3108 (((-585 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3328 ((|#1| |#4|) 52 T ELT)) (-2359 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3591 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2358 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2355 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2357 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3329 ((|#1| |#4|) 96 T ELT)) (-2522 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3329 (|#1| |#4|)) (-15 -3328 (|#1| |#4|)) (-15 -2355 (|#4| |#4| (-485) (-485))) (-15 -2356 (|#4| |#4| |#1| (-485) (-485))) (-15 -2357 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-15 -3110 ((-696) |#4|)) (-15 -3109 ((-696) |#4|)) (-15 -3108 ((-585 |#3|) |#4|)) (-15 -2358 (|#4| |#4|)) (-15 -2359 ((-3 |#4| #1="failed") |#4|)) (-15 -2522 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3111 (|#4| |#4|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|)) (T -631)) +((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-629 *3 *4 *5)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2359 (*1 *2 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2357 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696) (-696)) 63 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3415 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2351 (($ $ (-485) (-485)) 22 T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2354 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2348 (($ $ (-485) (-485) $) NIL T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3334 (($ (-696) |#1|) 37 T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3110 (((-696) $) 48 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL T ELT)) (-3109 (((-696) $) 50 (|has| |#1| (-496)) ELT)) (-3108 (((-585 (-1180 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3116 (((-696) $) 32 T ELT)) (-3615 (($ (-696) (-696) |#1|) 28 T ELT)) (-3115 (((-696) $) 33 T ELT)) (-3328 ((|#1| $) 44 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3120 (((-485) $) 10 T ELT)) (-3118 (((-485) $) 11 T ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3119 (((-485) $) 14 T ELT)) (-3117 (((-485) $) 64 T ELT)) (-3125 (($ (-585 (-585 |#1|))) NIL T ELT) (($ (-696) (-696) (-1 |#1| (-485) (-485))) NIL T ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-585 (-585 |#1|)) $) 75 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3591 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2353 (($ $ $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-2201 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-585 (-485)) (-585 (-485))) NIL T ELT)) (-3333 (($ (-585 |#1|)) NIL T ELT) (($ (-585 $)) NIL T ELT) (($ (-1180 |#1|)) 69 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) 42 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 79 (|has| |#1| (-555 (-474))) ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3947 (($ (-1180 |#1|)) NIL T ELT) (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) NIL T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-632 |#1|) (-13 (-629 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 -3333 ($ (-1180 |#1|))) (IF (|has| |#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 $ "failed") $)) |%noBranch|))) (-963)) (T -632)) +((-3591 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3))))) +((-2365 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 37 T ELT)) (-2364 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 32 T ELT)) (-2366 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696)) 43 T ELT)) (-2361 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25 T ELT)) (-2362 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 29 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 27 T ELT)) (-2363 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 31 T ELT)) (-2360 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 23 T ELT)) (** (((-632 |#1|) (-632 |#1|) (-696)) 46 T ELT))) +(((-633 |#1|) (-10 -7 (-15 -2360 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2361 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2362 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2363 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -2364 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2365 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2366 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-696))) (-15 ** ((-632 |#1|) (-632 |#1|) (-696)))) (-963)) (T -633)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2366 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) (-2365 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2364 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2363 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +((-3159 (((-3 |#1| "failed") $) 18 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2367 (($) 7 T CONST)) (-2368 (($ |#1|) 8 T ELT)) (-3947 (($ |#1|) 16 T ELT) (((-774) $) 23 T ELT)) (-3567 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2367)) 11 T ELT)) (-3573 ((|#1| $) 15 T ELT))) +(((-634 |#1|) (-13 (-1176) (-952 |#1|) (-554 (-774)) (-10 -8 (-15 -2368 ($ |#1|)) (-15 -3567 ((-85) $ (|[\|\|]| |#1|))) (-15 -3567 ((-85) $ (|[\|\|]| -2367))) (-15 -3573 (|#1| $)) (-15 -2367 ($) -3953))) (-554 (-774))) (T -634)) +((-2368 (*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) (-5 *1 (-634 *4)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) (-4 *4 (-554 (-774))))) (-3573 (*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) (-2367 (*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) +((-3742 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20 T ELT)) (-3740 ((|#1| (-632 |#2|)) 9 T ELT)) (-3741 (((-632 |#1|) (-632 |#2|)) 18 T ELT))) +(((-635 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| (-632 |#2|))) (-15 -3741 ((-632 |#1|) (-632 |#2|))) (-15 -3742 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-496) (-906 |#1|)) (T -635)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-496)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-635 *2 *4))))) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2370 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-696)) 67 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1947 (-696)))) $) 65 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-636 |#1|) (-113) (-1015)) (T -636)) +((-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1947 (-696)))))))) +(-13 (-193 |t#1|) (-10 -8 (-15 -3610 ($ |t#1| $ (-696))) (-15 -2370 ($ $)) (-15 -2369 ((-585 (-2 (|:| |entry| |t#1|) (|:| -1947 (-696)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2373 (((-585 |#1|) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) (-485)) 66 T ELT)) (-2371 ((|#1| |#1| (-485)) 63 T ELT)) (-3146 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3733 (((-585 |#1|) |#1| (-485)) 49 T ELT)) (-2374 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2372 (((-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) |#1| (-485)) 62 T ELT))) +(((-637 |#1|) (-10 -7 (-15 -3146 (|#1| |#1| |#1| (-485))) (-15 -2371 (|#1| |#1| (-485))) (-15 -3733 ((-585 |#1|) |#1| (-485))) (-15 -2372 ((-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) |#1| (-485))) (-15 -2373 ((-585 |#1|) (-585 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) (-485))) (-15 -2374 (|#1| |#1| (-485) |#1| (-485)))) (-1156 (-485))) (T -637)) +((-2374 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| -3733 *5) (|:| -3949 (-485))))) (-5 *4 (-485)) (-4 *5 (-1156 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-585 (-2 (|:| -3733 *3) (|:| -3949 *4)))) (-5 *1 (-637 *3)) (-4 *3 (-1156 *4)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1156 *4)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3)))) (-3146 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3))))) +((-2378 (((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2375 (((-1048 (-179)) (-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 53 T ELT) (((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 55 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 57 T ELT)) (-2377 (((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221))) NIL T ELT)) (-2376 (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221))) 58 T ELT))) +(((-638) (-10 -7 (-15 -2375 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2375 ((-1048 (-179)) (-1048 (-179)) (-1 (-856 (-179)) (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2376 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1003 (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2377 ((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1003 (-179)) (-585 (-221)))) (-15 -2378 ((-1 (-856 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -638)) +((-2378 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638)))) (-2377 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638))))) +((-3733 (((-346 (-1086 |#4|)) (-1086 |#4|)) 87 T ELT) (((-346 |#4|) |#4|) 270 T ELT))) +(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4|)) (-15 -3733 ((-346 (-1086 |#4|)) (-1086 |#4|)))) (-758) (-719) (-299) (-863 |#3| |#2| |#1|)) (T -639)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2381 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 85 T ELT)) (-3111 (((-632 |#1|) (-632 |#1|) |#1|) 66 T ELT)) (-2380 (((-632 |#1|) (-632 |#1|) |#1|) 86 T ELT)) (-2379 (((-632 |#1|) (-632 |#1|)) 67 T ELT)) (-2382 (((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 84 T ELT))) +(((-640 |#1|) (-10 -7 (-15 -2379 ((-632 |#1|) (-632 |#1|))) (-15 -3111 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2380 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2381 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2382 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) (-258)) (T -640)) +((-2382 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-640 *3)) (-4 *3 (-258)))) (-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-3111 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +((-2388 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19 T ELT)) (-2383 (((-1 |#4| |#2| |#3|) (-1091)) 12 T ELT))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2383 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2388 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-555 (-474)) (-1130) (-1130) (-1130)) (T -641)) +((-2388 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) (-4 *3 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) (-4 *4 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) +((-2384 (((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1091)) 48 T ELT))) +(((-642 |#1|) (-10 -7 (-15 -2384 ((-1 (-179) (-179)) |#1| (-1091))) (-15 -2384 ((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)))) (-555 (-474))) (T -642)) +((-2384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-474))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) (-4 *3 (-555 (-474)))))) +((-2385 (((-1091) |#1| (-1091) (-585 (-1091))) 10 T ELT) (((-1091) |#1| (-1091) (-1091) (-1091)) 13 T ELT) (((-1091) |#1| (-1091) (-1091)) 12 T ELT) (((-1091) |#1| (-1091)) 11 T ELT))) +(((-643 |#1|) (-10 -7 (-15 -2385 ((-1091) |#1| (-1091))) (-15 -2385 ((-1091) |#1| (-1091) (-1091))) (-15 -2385 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2385 ((-1091) |#1| (-1091) (-585 (-1091))))) (-555 (-474))) (T -643)) +((-2385 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-585 (-1091))) (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) (-2385 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) (-2385 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474)))))) +((-2386 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-644 |#1| |#2|) (-10 -7 (-15 -2386 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1130) (-1130)) (T -644)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) +((-2387 (((-1 |#3| |#2|) (-1091)) 11 T ELT)) (-2388 (((-1 |#3| |#2|) |#1| (-1091)) 21 T ELT))) +(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -2387 ((-1 |#3| |#2|) (-1091))) (-15 -2388 ((-1 |#3| |#2|) |#1| (-1091)))) (-555 (-474)) (-1130) (-1130)) (T -645)) +((-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) (-4 *3 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) (-4 *4 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) +((-2391 (((-3 (-585 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-585 |#2|) (-585 (-1086 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1180 (-585 (-1086 |#3|))) |#3|) 92 T ELT)) (-2390 (((-3 (-585 (-1086 |#4|)) #1#) (-1086 |#4|) (-585 |#2|) (-585 (-1086 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|) 110 T ELT)) (-2389 (((-3 (-585 (-1086 |#4|)) #1#) (-1086 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1086 |#4|)) (-1180 (-585 (-1086 |#3|))) |#3|) 48 T ELT))) +(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2389 ((-3 (-585 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-696)) (-585 (-1086 |#4|)) (-1180 (-585 (-1086 |#3|))) |#3|)) (-15 -2390 ((-3 (-585 (-1086 |#4|)) #1#) (-1086 |#4|) (-585 |#2|) (-585 (-1086 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-696)) |#3|)) (-15 -2391 ((-3 (-585 (-1086 |#4|)) #1#) (-1086 |#4|) (-585 |#2|) (-585 (-1086 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| |#4|)))) (-585 (-696)) (-1180 (-585 (-1086 |#3|))) |#3|))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -646)) +((-2391 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-585 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) (-5 *7 (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| *13))))) (-5 *8 (-585 (-696))) (-5 *9 (-1180 (-585 (-1086 *10)))) (-4 *12 (-758)) (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) (-5 *1 (-646 *11 *12 *10 *13)))) (-2390 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1086 *9))) (-5 *6 (-585 *9)) (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1086 *12))) (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-2389 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-585 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) (-5 *7 (-1180 (-585 (-1086 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 56 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-696)) 54 T ELT)) (-2822 (((-696) $) 58 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3949 (((-696) $) 59 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-696)) 55 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) +(((-647 |#1|) (-113) (-963)) (T -647)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963))))) +(-13 (-963) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3949 ((-696) $)) (-15 -2822 ((-696) $)) (-15 -3176 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-696))) (-15 -2895 ($ |t#1| (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3959 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-648 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1156 |#1|) (-1156 (-348 |#2|)) (-496) (-1156 |#4|) (-1156 (-348 |#5|))) (T -648)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) (-4 *2 (-1156 (-348 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1156 (-348 *6))) (-4 *8 (-1156 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2392 (((-1074) (-774)) 36 T ELT)) (-3618 (((-1186) (-1074)) 29 T ELT)) (-2394 (((-1074) (-774)) 26 T ELT)) (-2393 (((-1074) (-774)) 27 T ELT)) (-3947 (((-774) $) NIL T ELT) (((-1074) (-774)) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-649) (-13 (-1015) (-10 -7 (-15 -3947 ((-1074) (-774))) (-15 -2394 ((-1074) (-774))) (-15 -2393 ((-1074) (-774))) (-15 -2392 ((-1074) (-774))) (-15 -3618 ((-1186) (-1074)))))) (T -649)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-649))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3843 (($ |#1| |#2|) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2616 ((|#2| $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-650 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -650)) +((-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-3768 (((-1180 |#1|) $ (-696)) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-996)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-696)) 55 (|has| |#1| (-318)) ELT)) (-3762 (($ $ (-696)) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT)) (-2401 ((|#2| |#2|) 51 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-996) $) NIL T ELT)) (-3757 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 72 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3843 (($ |#2|) 49 T ELT)) (-3468 (((-3 $ #1#) $) 98 T ELT)) (-2996 (($) 59 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-2397 (((-871 $)) 89 T ELT)) (-1625 (($ $ |#1| (-696) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-996) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-996) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-996)) NIL T ELT) (($ (-1086 $) (-996)) NIL T ELT)) (-3778 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) 86 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2616 ((|#2|) 52 T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-996) #1#) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-3081 ((|#2| $) 48 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 35 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2395 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3949 (((-696) $) 39 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-996) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-996) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-996) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-2396 (((-871 $)) 43 T ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-774) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-996)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) 71 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2400 (((-1180 |#1|) $) 84 T ELT)) (-2399 (($ (-1180 |#1|)) 58 T ELT)) (-2668 (($) 9 T CONST)) (-2671 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-2398 (((-1180 |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 77 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 40 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 93 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-651 |#1| |#2|) (-13 (-1156 |#1|) (-557 |#2|) (-10 -8 (-15 -2401 (|#2| |#2|)) (-15 -2616 (|#2|)) (-15 -3843 ($ |#2|)) (-15 -3081 (|#2| $)) (-15 -2400 ((-1180 |#1|) $)) (-15 -2399 ($ (-1180 |#1|))) (-15 -2398 ((-1180 |#1|) $)) (-15 -2397 ((-871 $))) (-15 -2396 ((-871 $))) (IF (|has| |#1| (-299)) (-15 -2395 ($ $)) |%noBranch|) (IF (|has| |#1| (-318)) (-6 (-318)) |%noBranch|))) (-963) (-1156 |#1|)) (T -651)) +((-2401 (*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1156 *3)))) (-2616 (*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) (-2400 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1180 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1156 *3)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1156 *3)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-1180 *3)) (-5 *1 (-651 *3 *4)) (-4 *4 (-1156 *3)))) (-2397 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1156 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) (-4 *4 (-1156 *3)))) (-2395 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1156 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 ((|#1| $) 13 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2403 ((|#2| $) 12 T ELT)) (-3531 (($ |#1| |#2|) 16 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) 15 T ELT) (((-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 11 T ELT))) +(((-652 |#1| |#2| |#3|) (-13 (-758) (-428 (-2 (|:| -2402 |#1|) (|:| -2403 |#2|))) (-10 -8 (-15 -2403 (|#2| $)) (-15 -2402 (|#1| $)) (-15 -3531 ($ |#1| |#2|)))) (-758) (-1015) (-1 (-85) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)) (-2 (|:| -2402 |#1|) (|:| -2403 |#2|)))) (T -652)) +((-2403 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) (-2 (|:| -2402 *3) (|:| -2403 *2)))))) (-2402 (*1 *2 *1) (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3)))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) (-14 *4 (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) (-2 (|:| -2402 *2) (|:| -2403 *3))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 66 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3468 (((-3 $ #1#) $) 102 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#2| (-86) |#2|) 93 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3801 ((|#2| $ |#2|) 33 T ELT)) (-2521 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3947 (((-774) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 37 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 83 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-653 |#1| |#2|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#2| |#2|))) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#2| (-86) |#2|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-963) (-592 |#1|)) (T -653)) +((-2522 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2521 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) (-4 *5 (-592 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) (-4 *4 (-592 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 33 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#1| |#2|) 25 T ELT)) (-3468 (((-3 $ #1#) $) 51 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 35 T ELT)) (-2616 ((|#2| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 52 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2404 (((-3 $ #1#) $ $) 50 T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3128 (((-696)) 28 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 16 T CONST)) (-2668 (($) 30 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3840 (($ $ $) 43 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-963) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2404 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -654)) +((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2486 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-655 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-656 |#2|) (-146)) (T -655)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-656 |#1|) (-113) (-146)) (T -656)) +NIL +(-13 (-82 |t#1| |t#1|) (-584 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2443 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3848 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2405 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3769 ((|#1| $ |#1|) 24 T ELT) (((-745 |#1|) $ (-745 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3947 (((-774) $) 39 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) 48 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-657 |#1|) (-13 (-411) (-10 -8 (-15 -2405 ($ |#1| |#1| |#1| |#1|)) (-15 -2443 ($ |#1|)) (-15 -3848 ($ |#1|)) (-15 -3468 ($)) (-15 -2443 ($ $ |#1|)) (-15 -3848 ($ $ |#1|)) (-15 -3468 ($ $)) (-15 -3769 (|#1| $ |#1|)) (-15 -3769 ((-745 |#1|) $ (-745 |#1|))))) (-312)) (T -657)) +((-2405 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3468 (*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3))))) +((-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 20 T ELT)) (** (($ $ (-832)) 10 T ELT))) +(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-659)) (T -658)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-2409 (($ $ (-832)) 19 T ELT)) (-2408 (($ $ (-832)) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-659) (-113)) (T -659)) +((* (*1 *1 *1 *1) (-4 *1 (-659))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 -2409 ($ $ (-832))) (-15 -2408 ($ $ (-832))) (-15 ** ($ $ (-832))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2409 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 18 T ELT)) (-2412 (((-85) $) 10 T ELT)) (-2408 (($ $ (-832)) NIL T ELT) (($ $ (-696)) 19 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 16 T ELT))) +(((-660 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-696))) (-15 -2408 (|#1| |#1| (-696))) (-15 -2409 (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 ** (|#1| |#1| (-832))) (-15 -2408 (|#1| |#1| (-832))) (-15 -2409 (|#1| |#1| (-832)))) (-661)) (T -660)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-2406 (((-3 $ "failed") $) 22 T ELT)) (-2409 (($ $ (-832)) 19 T ELT) (($ $ (-696)) 27 T ELT)) (-3468 (((-3 $ "failed") $) 24 T ELT)) (-2412 (((-85) $) 28 T ELT)) (-2407 (((-3 $ "failed") $) 23 T ELT)) (-2408 (($ $ (-832)) 18 T ELT) (($ $ (-696)) 26 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-661) (-113)) (T -661)) +((-2668 (*1 *1) (-4 *1 (-661))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) (-2409 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2407 (*1 *1 *1) (|partial| -4 *1 (-661))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-661)))) +(-13 (-659) (-10 -8 (-15 -2668 ($) -3953) (-15 -2412 ((-85) $)) (-15 -2409 ($ $ (-696))) (-15 -2408 ($ $ (-696))) (-15 ** ($ $ (-696))) (-15 -3468 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-659) . T) ((-1015) . T) ((-1130) . T)) +((-3138 (((-696)) 39 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-348 |#3|)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 69 T ELT)) (-2996 (($) 43 T ELT)) (-3134 ((|#2| $) 21 T ELT)) (-2411 (($) 18 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-632 |#2|) (-1180 $) (-1 |#2| |#2|)) 64 T ELT)) (-3973 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2451 ((|#3| $) 36 T ELT)) (-2014 (((-1180 $)) 33 T ELT))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -2996 (|#1|)) (-15 -3138 ((-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2410 ((-632 |#2|) (-1180 |#1|) (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1="failed") (-348 |#3|))) (-15 -3973 (|#1| |#3|)) (-15 -3843 (|#1| |#3|)) (-15 -2411 (|#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3973 (|#3| |#1|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -2014 ((-1180 |#1|))) (-15 -2451 (|#3| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|))) (-663 |#2| |#3|) (-146) (-1156 |#2|)) (T -662)) +((-3138 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-663 *4 *5))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2065 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1783 (((-632 |#1|) (-1180 $)) 61 T ELT) (((-632 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) 135 (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3138 (((-696)) 108 (|has| |#1| (-318)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 192 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 191 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) 68 T ELT) (((-632 |#1|) $) 75 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 186 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 185 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 184 T ELT) (((-632 |#1|) (-632 $)) 183 T ELT)) (-3843 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-348 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-832)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 123 (|has| |#1| (-312)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-696)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3773 (((-832) $) 172 (|has| |#1| (-299)) ELT) (((-745 (-832)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3446 (((-634 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 132 (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 110 (|has| |#1| (-318)) ELT)) (-3081 ((|#2| $) 176 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 188 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-632 |#1|) (-1180 $)) 181 T ELT)) (-1892 (($ (-585 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 109 (|has| |#1| (-318)) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2411 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-3733 (((-346 $) $) 133 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 124 (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) 126 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1766 (((-696) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-696) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-696)) 156 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 150 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-696)) 149 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091))) 148 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 146 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 144 (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-632 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 165 (|has| |#1| (-299)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-348 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-634 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2014 (((-1180 $)) 83 T ELT)) (-2064 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-696)) 157 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 153 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-696)) 152 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091))) 151 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 147 (-2564 (|has| |#1| (-813 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) 142 (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-348 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-348 (-485))) 139 (|has| |#1| (-312)) ELT))) +(((-663 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -663)) +((-2411 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1156 *2)))) (-3187 (*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1156 *3)))) (-3973 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3843 (*1 *1 *2) (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-632 *5))))) +(-13 (-351 |t#1| |t#2|) (-146) (-555 |t#2|) (-353 |t#1|) (-327 |t#1|) (-10 -8 (-15 -2411 ($)) (-15 -3187 (|t#2|)) (-15 -3843 ($ |t#2|)) (-15 -3973 ($ |t#2|)) (-15 -3081 (|t#2| $)) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3843 ((-3 $ "failed") (-348 |t#2|))) (-15 -2410 ((-632 |t#1|) (-1180 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) . T) ((-555 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-343) |has| |#1| (-299)) ((-318) OR (|has| |#1| (-299)) (|has| |#1| (-318))) ((-299) |has| |#1| (-299)) ((-320 |#1| |#2|) . T) ((-351 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-496) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-584 |#1|) . T) ((-584 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-656 |#1|) . T) ((-656 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))))) ((-811 (-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091)))) ((-813 (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1091))))) ((-834) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-348 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| |#1| (-299)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) +((-3725 (($) 11 T CONST)) (-3468 (((-3 $ "failed") $) 14 T ELT)) (-2412 (((-85) $) 10 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 20 T ELT))) +(((-664 |#1|) (-10 -7 (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-696))) (-15 -2412 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 ** (|#1| |#1| (-832)))) (-665)) (T -664)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-665) (-113)) (T -665)) +((-2668 (*1 *1) (-4 *1 (-665))) (-3725 (*1 *1) (-4 *1 (-665))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-665)))) +(-13 (-1027) (-10 -8 (-15 -2668 ($) -3953) (-15 -3725 ($) -3953) (-15 -2412 ((-85) $)) (-15 ** ($ $ (-696))) (-15 -3468 ((-3 $ "failed") $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2414 ((|#1| $) 16 T ELT)) (-2413 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3947 (((-774) $) NIL T ELT) (((-1024 |#1|) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-666 |#1|) (-13 (-667 |#1|) (-1015) (-554 (-1024 |#1|)) (-10 -8 (-15 -2413 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -666)) +((-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) +((-2414 ((|#1| $) 8 T ELT)) (-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-667 |#1|) (-113) (-72)) (T -667)) +((-2414 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) +(-13 (-1025 |t#1|) (-10 -8 (-15 -2414 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3058 (|f| |x| (-2414 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2414 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1025 |#1|) . T) ((-1130) . T)) +((-2415 (((-2 (|:| -3091 (-346 |#2|)) (|:| |special| (-346 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3419 (((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2416 ((|#2| (-348 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3436 (((-2 (|:| |poly| |#2|) (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) (-348 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-668 |#1| |#2|) (-10 -7 (-15 -3419 ((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2415 ((-2 (|:| -3091 (-346 |#2|)) (|:| |special| (-346 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2416 (|#2| (-348 |#2|) (-1 |#2| |#2|))) (-15 -3436 ((-2 (|:| |poly| |#2|) (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) (-348 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -668)) +((-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-348 *6)) (|:| |special| (-348 *6)))) (-5 *1 (-668 *5 *6)) (-5 *3 (-348 *6)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-668 *5 *2)) (-4 *5 (-312)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 (-346 *3)) (|:| |special| (-346 *3)))) (-5 *1 (-668 *5 *3)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3))))) +((-2417 ((|#7| (-585 |#5|) |#6|) NIL T ELT)) (-3959 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2417 (|#7| (-585 |#5|) |#6|))) (-758) (-719) (-719) (-963) (-963) (-863 |#4| |#2| |#1|) (-863 |#5| |#3| |#1|)) (T -669)) +((-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) +((-3959 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-670 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#2| |#1|) |#6|))) (-758) (-758) (-719) (-719) (-963) (-863 |#5| |#3| |#1|) (-863 |#5| |#4| |#2|)) (T -670)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5))))) +((-3733 (((-346 |#4|) |#4|) 42 T ELT))) +(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-258) (-863 (-859 |#3|) |#1| |#2|)) (T -671)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-863 (-859 *6) *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-775 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-775 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-775 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-775 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-470 (-775 |#1|)) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-775 |#1|) (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-775 |#1|)) NIL T ELT) (($ (-1086 $) (-775 |#1|)) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-470 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-775 |#1|)) NIL T ELT)) (-2822 (((-470 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-470 (-775 |#1|)) (-470 (-775 |#1|))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-775 |#1|) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-775 |#1|)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-775 |#1|) |#2|) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 |#2|)) NIL T ELT) (($ $ (-775 |#1|) $) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 $)) NIL T ELT)) (-3758 (($ $ (-775 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3949 (((-470 (-775 |#1|)) $) NIL T ELT) (((-696) $ (-775 |#1|)) NIL T ELT) (((-585 (-696)) $ (-585 (-775 |#1|))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-775 |#1|) (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-775 |#1|) (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-775 |#1|)) NIL (|has| |#2| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-775 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-348 (-485))) NIL (OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-470 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-775 |#1|)) (-585 (-696))) NIL T ELT) (($ $ (-775 |#1|) (-696)) NIL T ELT) (($ $ (-585 (-775 |#1|))) NIL T ELT) (($ $ (-775 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-672 |#1| |#2|) (-863 |#2| (-470 (-775 |#1|)) (-775 |#1|)) (-585 (-1091)) (-963)) (T -672)) +NIL +((-2418 (((-2 (|:| -2485 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|) 14 T ELT)) (-2988 ((|#4| |#4| |#2|) 33 T ELT)) (-2421 ((|#4| (-348 (-859 |#3|)) |#2|) 62 T ELT)) (-2420 ((|#4| (-1086 (-859 |#3|)) |#2|) 74 T ELT)) (-2419 ((|#4| (-1086 |#4|) |#2|) 49 T ELT)) (-2987 ((|#4| |#4| |#2|) 52 T ELT)) (-3733 (((-346 |#4|) |#4|) 40 T ELT))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-2 (|:| -2485 (-859 |#3|)) (|:| -2060 (-859 |#3|))) |#4|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1086 |#4|) |#2|)) (-15 -2988 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1086 (-859 |#3|)) |#2|)) (-15 -2421 (|#4| (-348 (-859 |#3|)) |#2|)) (-15 -3733 ((-346 |#4|) |#4|))) (-719) (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)))) (-496) (-863 (-348 (-859 |#3|)) |#1| |#2|)) (T -673)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-346 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-348 (-859 *6)) *4 *5)))) (-2421 (*1 *2 *3 *4) (-12 (-4 *6 (-496)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-5 *3 (-348 (-859 *6))) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-859 *6))) (-4 *6 (-496)) (-4 *2 (-863 (-348 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-348 (-859 *5)) *4 *3)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-863 (-348 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-673 *4 *3 *5 *2)) (-4 *2 (-863 (-348 (-859 *5)) *4 *3)))) (-2418 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-859 *6)) (|:| -2060 (-859 *6)))) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-348 (-859 *6)) *4 *5))))) +((-3733 (((-346 |#4|) |#4|) 54 T ELT))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4|))) (-719) (-758) (-13 (-258) (-120)) (-863 (-348 |#3|) |#1| |#2|)) (T -674)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-863 (-348 *6) *4 *5))))) +((-3959 (((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)) 18 T ELT))) +(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-676 |#2| |#3|) (-1 |#2| |#1|) (-676 |#1| |#3|)))) (-963) (-963) (-665)) (T -675)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3775 (((-585 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696)) 22 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3158 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 99 (|has| |#2| (-758)) ELT)) (-3468 (((-3 $ #1#) $) 83 T ELT)) (-2996 (($) 48 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 70 T ELT)) (-2823 (((-585 $) $) 52 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) 17 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2012 (((-832) $) 43 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-2896 ((|#2| $) 98 (|has| |#2| (-758)) ELT)) (-3176 ((|#1| $) 97 (|has| |#2| (-758)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 35 (-12 (|has| |#2| (-318)) (|has| |#1| (-318))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-585 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|)))) 11 T ELT)) (-3818 (((-585 |#1|) $) 54 T ELT)) (-3678 ((|#1| $ |#2|) 114 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 44 T CONST)) (-3058 (((-85) $ $) 104 T ELT)) (-3838 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 33 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-676 |#1| |#2|) (-13 (-963) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -2895 ($ |#1| |#2|)) (-15 -3678 (|#1| $ |#2|)) (-15 -3947 ($ (-585 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))))) (-15 -3775 ((-585 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3938 ((-85) $)) (-15 -3818 ((-585 |#1|) $)) (-15 -2823 ((-585 $) $)) (-15 -2422 ((-696) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-758)) (PROGN (-15 -2896 (|#2| $)) (-15 -3176 (|#1| $)) (-15 -3960 ($ $))) |%noBranch|))) (-963) (-665)) (T -676)) +((-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-963)) (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-676 *3 *4)) (-4 *4 (-665)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) (-2896 (*1 *2 *1) (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3238 (($ $ $) 99 T ELT)) (-3237 (((-85) $ $) 107 T ELT)) (-3241 (($ (-585 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2370 (($ $) 88 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) 71 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 81 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 84 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) 106 T ELT)) (-2423 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-585 |#1|)) 23 T ELT)) (-2610 (((-585 |#1|) $) 38 T ELT)) (-3247 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 97 T ELT)) (-1275 ((|#1| $) 63 T ELT)) (-3610 (($ |#1| $) 64 T ELT) (($ |#1| $ (-696)) 89 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 62 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 57 T ELT)) (-3566 (($) 14 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1947 (-696)))) $) 56 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-585 |#1|)) 25 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 69 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 82 T ELT)) (-3973 (((-474) $) 36 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 22 T ELT)) (-3947 (((-774) $) 50 T ELT)) (-3242 (($ (-585 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-585 |#1|)) 24 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 103 T ELT)) (-3958 (((-696) $) 68 (|has| $ (-6 -3996)) ELT))) +(((-677 |#1|) (-13 (-678 |#1|) (-10 -8 (-6 -3996) (-6 -3997) (-15 -2423 ($)) (-15 -2423 ($ |#1|)) (-15 -2423 ($ (-585 |#1|))) (-15 -2610 ((-585 |#1|) $)) (-15 -3407 ($ |#1| $ (-485))) (-15 -3407 ($ (-1 (-85) |#1|) $ (-485))) (-15 -3406 ($ |#1| $ (-485))) (-15 -3406 ($ (-1 (-85) |#1|) $ (-485))))) (-1015)) (T -677)) +((-2423 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2423 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1015)) (-5 *1 (-677 *4))))) +((-2570 (((-85) $ $) 19 T ELT)) (-3236 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3238 (($ $ $) 77 T ELT)) (-3237 (((-85) $ $) 78 T ELT)) (-3241 (($ (-585 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2370 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) 69 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 T ELT)) (-3240 (($ $ $) 74 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-696)) 67 T ELT)) (-3245 (((-1035) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1947 (-696)))) $) 65 T ELT)) (-3239 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-3947 (((-774) $) 17 T ELT)) (-3242 (($ (-585 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-678 |#1|) (-113) (-1015)) (T -678)) +NIL +(-13 (-636 |t#1|) (-1013 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2424 (((-1186) (-1074)) 8 T ELT))) +(((-679) (-10 -7 (-15 -2424 ((-1186) (-1074))))) (T -679)) +((-2424 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-679))))) +((-2425 (((-585 |#1|) (-585 |#1|) (-585 |#1|)) 15 T ELT))) +(((-680 |#1|) (-10 -7 (-15 -2425 ((-585 |#1|) (-585 |#1|) (-585 |#1|)))) (-758)) (T -680)) +((-2425 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 |#2|) $) 159 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 152 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 151 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 149 (|has| |#1| (-496)) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 91 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 90 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) 107 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 92 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3495 (($ $) 106 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 93 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 143 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3815 (((-859 |#1|) $ (-696)) 121 T ELT) (((-859 |#1|) $ (-696) (-696)) 120 T ELT)) (-2894 (((-85) $) 160 T ELT)) (-3628 (($) 118 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $ |#2|) 123 T ELT) (((-696) $ |#2| (-696)) 122 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 89 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3938 (((-85) $) 141 T ELT)) (-2895 (($ $ (-585 |#2|) (-585 (-470 |#2|))) 158 T ELT) (($ $ |#2| (-470 |#2|)) 157 T ELT) (($ |#1| (-470 |#2|)) 142 T ELT) (($ $ |#2| (-696)) 125 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 124 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3943 (($ $) 115 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) 138 T ELT)) (-3176 ((|#1| $) 137 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3813 (($ $ |#2|) 119 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3770 (($ $ (-696)) 126 T ELT)) (-3467 (((-3 $ "failed") $ $) 153 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 116 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (($ $ |#2| $) 134 T ELT) (($ $ (-585 |#2|) (-585 $)) 133 T ELT) (($ $ (-585 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-585 $) (-585 $)) 129 T ELT)) (-3759 (($ $ (-585 |#2|) (-585 (-696))) 52 T ELT) (($ $ |#2| (-696)) 51 T ELT) (($ $ (-585 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3949 (((-470 |#2|) $) 139 T ELT)) (-3496 (($ $) 105 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 94 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 104 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 95 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 103 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 96 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 161 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-496)) ELT) (($ (-348 (-485))) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3678 ((|#1| $ (-470 |#2|)) 144 T ELT) (($ $ |#2| (-696)) 128 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 127 T ELT)) (-2704 (((-634 $) $) 155 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 114 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 150 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 113 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 101 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 112 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 100 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 111 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 99 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 110 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 109 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 97 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 |#2|) (-585 (-696))) 55 T ELT) (($ $ |#2| (-696)) 54 T ELT) (($ $ (-585 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 88 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 148 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) +(((-681 |#1| |#2|) (-113) (-963) (-758)) (T -681)) +((-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3773 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) (-5 *2 (-859 *4)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) (-4 *3 (-38 (-348 (-485))))))) +(-13 (-811 |t#2|) (-888 |t#1| (-470 |t#2|) |t#2|) (-454 |t#2| $) (-260 $) (-10 -8 (-15 -3678 ($ $ |t#2| (-696))) (-15 -3678 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3770 ($ $ (-696))) (-15 -2895 ($ $ |t#2| (-696))) (-15 -2895 ($ $ (-585 |t#2|) (-585 (-696)))) (-15 -3773 ((-696) $ |t#2|)) (-15 -3773 ((-696) $ |t#2| (-696))) (-15 -3815 ((-859 |t#1|) $ (-696))) (-15 -3815 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $ |t#2|)) (-6 (-917)) (-6 (-1116))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-470 |#2|)) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-246) |has| |#1| (-496)) ((-260 $) . T) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-454 |#2| $) . T) ((-454 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-808 $ |#2|) . T) ((-811 |#2|) . T) ((-813 |#2|) . T) ((-888 |#1| (-470 |#2|) |#2|) . T) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T)) +((-3733 (((-346 (-1086 |#4|)) (-1086 |#4|)) 30 T ELT) (((-346 |#4|) |#4|) 26 T ELT))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 |#4|) |#4|)) (-15 -3733 ((-346 (-1086 |#4|)) (-1086 |#4|)))) (-758) (-719) (-13 (-258) (-120)) (-863 |#3| |#2| |#1|)) (T -682)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2428 (((-346 |#4|) |#4| |#2|) 142 T ELT)) (-2426 (((-346 |#4|) |#4|) NIL T ELT)) (-3972 (((-346 (-1086 |#4|)) (-1086 |#4|)) 129 T ELT) (((-346 |#4|) |#4|) 52 T ELT)) (-2430 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3733 (-1086 |#4|)) (|:| -2403 (-485)))))) (-1086 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 81 T ELT)) (-2434 (((-1086 |#3|) (-1086 |#3|) (-485)) 169 T ELT)) (-2433 (((-585 (-696)) (-1086 |#4|) (-585 |#2|) (-696)) 75 T ELT)) (-3081 (((-3 (-585 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|)) 79 T ELT)) (-2431 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 27 T ELT)) (-2429 (((-2 (|:| -2006 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485)) 72 T ELT)) (-2427 (((-485) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485))))) 165 T ELT)) (-2432 ((|#4| (-485) (-346 |#4|)) 73 T ELT)) (-3358 (((-85) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485)))) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485))))) NIL T ELT))) +(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-346 |#4|) |#4|)) (-15 -3972 ((-346 (-1086 |#4|)) (-1086 |#4|))) (-15 -2426 ((-346 |#4|) |#4|)) (-15 -2427 ((-485) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485)))))) (-15 -2428 ((-346 |#4|) |#4| |#2|)) (-15 -2429 ((-2 (|:| -2006 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485))) (-15 -2430 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -3733 (-1086 |#4|)) (|:| -2403 (-485)))))) (-1086 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2431 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2432 (|#4| (-485) (-346 |#4|))) (-15 -3358 ((-85) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485)))) (-585 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2403 (-485)))))) (-15 -3081 ((-3 (-585 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-585 |#2|) (-585 (-696)) (-585 |#3|))) (-15 -2433 ((-585 (-696)) (-1086 |#4|) (-585 |#2|) (-696))) (-15 -2434 ((-1086 |#3|) (-1086 |#3|) (-485)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -683)) +((-2434 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696)))) (-3081 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1086 *5))) (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3358 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-2 (|:| -3733 (-1086 *6)) (|:| -2403 (-485))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-346 *2)) (-4 *2 (-863 *7 *5 *6)) (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-585 *8)) (|:| |Lfact| (-585 (-2 (|:| -3733 (-1086 *8)) (|:| -2403 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-683 *6 *7 *8 *9)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-585 (-2 (|:| -3733 (-1086 *9)) (|:| -2403 (-485))))))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-485)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| -2006 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2428 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3733 (-1086 *6)) (|:| -2403 (-485))))) (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-485)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) +((-2435 (($ $ (-832)) 17 T ELT))) +(((-684 |#1| |#2|) (-10 -7 (-15 -2435 (|#1| |#1| (-832)))) (-685 |#2|) (-146)) (T -684)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-2435 (($ $ (-832)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-685 |#1|) (-113) (-146)) (T -685)) +((-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) +(-13 (-687) (-656 |t#1|) (-10 -8 (-15 -2435 ($ $ (-832))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-659) . T) ((-687) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2437 (($ $ $) 10 T ELT)) (-2438 (($ $ $ $) 9 T ELT)) (-2436 (($ $ $) 12 T ELT))) +(((-686 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2438 (|#1| |#1| |#1| |#1|))) (-687)) (T -686)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2409 (($ $ (-832)) 37 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2408 (($ $ (-832)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-687) (-113)) (T -687)) +((-2438 (*1 *1 *1 *1 *1) (-4 *1 (-687))) (-2437 (*1 *1 *1 *1) (-4 *1 (-687))) (-2436 (*1 *1 *1 *1) (-4 *1 (-687)))) +(-13 (-21) (-659) (-10 -8 (-15 -2438 ($ $ $ $)) (-15 -2437 ($ $ $)) (-15 -2436 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-659) . T) ((-1015) . T) ((-1130) . T)) +((-3947 (((-774) $) NIL T ELT) (($ (-485)) 10 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-689)) (T -688)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2406 (((-3 $ #1="failed") $) 49 T ELT)) (-2409 (($ $ (-832)) 37 T ELT) (($ $ (-696)) 44 T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 43 T ELT)) (-2407 (((-3 $ #1#) $) 48 T ELT)) (-2408 (($ $ (-832)) 38 T ELT) (($ $ (-696)) 45 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3128 (((-696)) 41 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 42 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 39 T ELT) (($ $ (-696)) 46 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-689) (-113)) (T -689)) +((-3128 (*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-689))))) +(-13 (-687) (-661) (-10 -8 (-15 -3128 ((-696)) -3953) (-15 -3947 ($ (-485))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-659) . T) ((-661) . T) ((-687) . T) ((-1015) . T) ((-1130) . T)) +((-2440 (((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-348 (-485)))) |#1|) 33 T ELT)) (-2439 (((-585 (-142 |#1|)) (-632 (-142 (-348 (-485)))) |#1|) 23 T ELT)) (-2451 (((-859 (-142 (-348 (-485)))) (-632 (-142 (-348 (-485)))) (-1091)) 20 T ELT) (((-859 (-142 (-348 (-485)))) (-632 (-142 (-348 (-485))))) 19 T ELT))) +(((-690 |#1|) (-10 -7 (-15 -2451 ((-859 (-142 (-348 (-485)))) (-632 (-142 (-348 (-485)))))) (-15 -2451 ((-859 (-142 (-348 (-485)))) (-632 (-142 (-348 (-485)))) (-1091))) (-15 -2439 ((-585 (-142 |#1|)) (-632 (-142 (-348 (-485)))) |#1|)) (-15 -2440 ((-585 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 (-142 |#1|)))))) (-632 (-142 (-348 (-485)))) |#1|))) (-13 (-312) (-757))) (T -690)) +((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *2 (-585 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 (-142 *4))))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *2 (-585 (-142 *4))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *4 (-1091)) (-5 *2 (-859 (-142 (-348 (-485))))) (-5 *1 (-690 *5)) (-4 *5 (-13 (-312) (-757))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *2 (-859 (-142 (-348 (-485))))) (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-2618 (((-148 (-485)) |#1|) 27 T ELT))) +(((-691 |#1|) (-10 -7 (-15 -2618 ((-148 (-485)) |#1|))) (-345)) (T -691)) +((-2618 (*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-691 *3)) (-4 *3 (-345))))) +((-2544 ((|#1| |#1| |#1|) 28 T ELT)) (-2545 ((|#1| |#1| |#1|) 27 T ELT)) (-2534 ((|#1| |#1| |#1|) 38 T ELT)) (-2542 ((|#1| |#1| |#1|) 33 T ELT)) (-2543 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2550 (((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 26 T ELT))) +(((-692 |#1| |#2|) (-10 -7 (-15 -2550 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|))) (-647 |#2|) (-312)) (T -692)) +((-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2543 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2545 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) (-2550 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4))))) +((-2557 (((-634 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-634 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-696) $ (-102)) 28 T ELT)) (-2559 (((-634 (-101)) $ (-101)) 25 T ELT)) (-2002 (((-634 (-1139)) $) 12 T ELT)) (-1998 (((-634 (-1137)) $) 8 T ELT)) (-2000 (((-634 (-1136)) $) 10 T ELT)) (-2003 (((-634 (-489)) $) 13 T ELT)) (-1999 (((-634 (-487)) $) 9 T ELT)) (-2001 (((-634 (-486)) $) 11 T ELT)) (-1997 (((-696) $ (-102)) 7 T ELT)) (-2004 (((-634 (-101)) $) 14 T ELT)) (-2441 (((-85) $) 32 T ELT)) (-2442 (((-634 $) |#1| (-867)) 33 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-693 |#1|) (-113) (-1015)) (T -693)) +((-2442 (*1 *2 *3 *4) (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-513) (-10 -8 (-15 -2442 ((-634 $) |t#1| (-867))) (-15 -2441 ((-85) $)))) +(((-147) . T) ((-466) . T) ((-513) . T) ((-772) . T)) +((-3920 (((-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-632 (-485)))) (-485)) 72 T ELT)) (-3919 (((-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-632 (-485))))) 70 T ELT)) (-3758 (((-485)) 86 T ELT))) +(((-694 |#1| |#2|) (-10 -7 (-15 -3758 ((-485))) (-15 -3919 ((-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-632 (-485)))))) (-15 -3920 ((-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-632 (-485)))) (-485)))) (-1156 (-485)) (-351 (-485) |#1|)) (T -694)) +((-3920 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-694 *4 *5)) (-4 *5 (-351 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-1156 (-485))) (-5 *2 (-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-632 (-485))))) (-5 *1 (-694 *3 *4)) (-4 *4 (-351 (-485) *3)))) (-3758 (*1 *2) (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-694 *3 *4)) (-4 *4 (-351 *2 *3))))) +((-2510 (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|))) 19 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1091))) 18 T ELT)) (-3574 (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|))) 21 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1091))) 20 T ELT))) +(((-695 |#1|) (-10 -7 (-15 -2510 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1091)))) (-15 -2510 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|)) (-585 (-1091)))) (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-859 |#1|))))) (-496)) (T -695)) +((-3574 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-695 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-695 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-695 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-695 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2485 (($ $ $) 10 T ELT)) (-1313 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2443 (($ $ (-485)) 11 T ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-696) (-13 (-719) (-665) (-10 -8 (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -2881 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2443 ($ $ (-485))) (-15 -2996 ($ $)) (-6 (-3998 "*"))))) (T -696)) +((-2565 (*1 *1 *1 *1) (-5 *1 (-696))) (-2566 (*1 *1 *1 *1) (-5 *1 (-696))) (-3146 (*1 *1 *1 *1) (-5 *1 (-696))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2904 (-696)))) (-5 *1 (-696)))) (-3467 (*1 *1 *1 *1) (|partial| -5 *1 (-696))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-696)))) (-2996 (*1 *1 *1) (-5 *1 (-696)))) +((-485) (|%not| (|%ilt| |#1| 0))) +((-3574 (((-3 |#2| "failed") |#2| |#2| (-86) (-1091)) 37 T ELT))) +(((-697 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 |#2| "failed") |#2| |#2| (-86) (-1091)))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-873))) (T -697)) +((-3574 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-697 *5 *2)) (-4 *2 (-13 (-29 *5) (-1116) (-873)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) +(((-698) (-1015)) (T -698)) +NIL +((-3947 (((-698) |#1|) 8 T ELT))) +(((-699 |#1|) (-10 -7 (-15 -3947 ((-698) |#1|))) (-1130)) (T -699)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1130))))) +((-3134 ((|#2| |#4|) 35 T ELT))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3134 (|#2| |#4|))) (-390) (-1156 |#1|) (-663 |#1| |#2|) (-1156 |#3|)) (T -700)) +((-3134 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1156 *5))))) +((-3468 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2446 (((-1186) (-1074) (-1074) |#4| |#5|) 33 T ELT)) (-2444 ((|#4| |#4| |#5|) 74 T ELT)) (-2445 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2447 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3468 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2444 (|#4| |#4| |#5|)) (-15 -2445 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -2446 ((-1186) (-1074) (-1074) |#4| |#5|)) (-15 -2447 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -701)) +((-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2446 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1074)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-701 *6 *7 *8 *4 *5)) (-4 *5 (-985 *6 *7 *8 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +((-3159 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 53 T ELT)) (-2448 (((-585 |#4|) |#4|) 22 T ELT)) (-3929 ((|#4| |#4|) 17 T ELT))) +(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-585 |#4|) |#4|)) (-15 -3159 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3929 (|#4| |#4|))) (-299) (-280 |#1|) (-1156 |#2|) (-1156 |#3|) (-832)) (T -702)) +((-3929 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-832)))) (-3159 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-832)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-585 *3)) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-832))))) +((-2449 (((-2 (|:| |deter| (-585 (-1086 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1086 |#5|) (-585 |#1|) (-585 |#5|)) 72 T ELT)) (-2450 (((-585 (-696)) |#1|) 20 T ELT))) +(((-703 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-2 (|:| |deter| (-585 (-1086 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1086 |#5|) (-585 |#1|) (-585 |#5|))) (-15 -2450 ((-585 (-696)) |#1|))) (-1156 |#4|) (-719) (-758) (-258) (-863 |#4| |#2| |#3|)) (T -703)) +((-2450 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-863 *6 *4 *5)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1156 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) (-4 *10 (-863 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-585 (-1086 *10))) (|:| |dterm| (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| *10))))) (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-585 *6)) (-5 *5 (-585 *10))))) +((-2453 (((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-348 (-485))) |#1|) 31 T ELT)) (-2452 (((-585 |#1|) (-632 (-348 (-485))) |#1|) 21 T ELT)) (-2451 (((-859 (-348 (-485))) (-632 (-348 (-485))) (-1091)) 18 T ELT) (((-859 (-348 (-485))) (-632 (-348 (-485)))) 17 T ELT))) +(((-704 |#1|) (-10 -7 (-15 -2451 ((-859 (-348 (-485))) (-632 (-348 (-485))))) (-15 -2451 ((-859 (-348 (-485))) (-632 (-348 (-485))) (-1091))) (-15 -2452 ((-585 |#1|) (-632 (-348 (-485))) |#1|)) (-15 -2453 ((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 |#1|))))) (-632 (-348 (-485))) |#1|))) (-13 (-312) (-757))) (T -704)) +((-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 (-585 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-585 (-632 *4)))))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *4 (-1091)) (-5 *2 (-859 (-348 (-485)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 (-859 (-348 (-485)))) (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3083 (((-585 |#2|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#2|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) NIL T ELT)) (-3798 (($ $) 30 T ELT)) (-3168 (((-85) $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3150 (((-585 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-348 (-485)))) NIL (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091)))) ELT) (((-3 $ #1#) (-859 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485)))))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091))))) ELT) (((-3 $ #1#) (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-906 (-485)))))) ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 21 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-859 (-348 (-485)))) NIL (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091)))) ELT) (($ (-859 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485)))))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091))))) ELT) (($ (-859 |#1|)) NIL (OR (-12 (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-906 (-485)))))) ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-3753 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 81 T ELT)) (-3145 (($ $) 136 (|has| |#1| (-390)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| |#1| (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| |#1| (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 57 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3147 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3182 ((|#2| $) 22 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) NIL T ELT) (($ (-1086 $) |#2|) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 38 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3161 (($ $ $) 63 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3175 (((-85) $) NIL T ELT)) (-2822 (((-470 |#2|) $) NIL T ELT) (((-696) $ |#2|) NIL T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3181 (((-696) $) 23 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 |#2| #1#) $) NIL T ELT)) (-3142 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3143 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3170 (((-585 $) $) NIL T ELT)) (-3173 (($ $) 39 T ELT)) (-3144 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3171 (((-585 $) $) 43 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-3172 (($ $) 41 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-696))) $ $) 96 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $) 78 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3163 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $) NIL T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3178 (((-585 $) $) 32 T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3687 (($ $ $) NIL T ELT)) (-3447 (($ $) 24 T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-585 $)) NIL T ELT)) (-3688 (($ $ $) NIL T ELT)) (-3180 (($ $) 26 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 56 T ELT)) (-1797 ((|#1| $) 58 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 ((|#1| |#1| $) 133 (|has| |#1| (-390)) ELT) (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-585 |#2|) (-585 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-585 |#2|) (-585 $)) NIL T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3949 (((-470 |#2|) $) NIL T ELT) (((-696) $ |#2|) 45 T ELT) (((-585 (-696)) $ (-585 |#2|)) NIL T ELT)) (-3179 (($ $) NIL T ELT)) (-3177 (($ $) 35 T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT) (($ (-859 (-348 (-485)))) NIL (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091)))) ELT) (($ (-859 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-555 (-1091))) (-2562 (|has| |#1| (-38 (-348 (-485)))))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#2| (-555 (-1091))))) ELT) (($ (-859 |#1|)) NIL (|has| |#2| (-555 (-1091))) ELT) (((-1074) $) NIL (-12 (|has| |#1| (-952 (-485))) (|has| |#2| (-555 (-1091)))) ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1091))) ELT)) (-2819 ((|#1| $) 132 (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-859 |#1|) $) NIL (|has| |#2| (-555 (-1091))) ELT) (((-1040 |#1| |#2|) $) 18 T ELT) (($ (-1040 |#1| |#2|)) 19 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-3169 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2668 (($) 37 T CONST)) (-3148 (($ $ $ $ (-696)) 105 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-696)) 104 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3840 (($ $ $) 85 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 70 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-705 |#1| |#2|) (-13 (-979 |#1| (-470 |#2|) |#2|) (-554 (-1040 |#1| |#2|)) (-952 (-1040 |#1| |#2|))) (-963) (-758)) (T -705)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-3768 (((-1180 |#1|) $ (-696)) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-996)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2457 (((-585 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3756 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-696)) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-996) #1#) $) NIL T ELT) (((-3 (-1086 |#1|) #1#) $) 10 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-996) $) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1974 $) (|:| -2904 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-996) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-996) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-996)) NIL T ELT) (($ (-1086 $) (-996)) NIL T ELT)) (-3778 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3161 (($ $ $) 27 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-696))) $ $) 37 T ELT)) (-2459 (($ $ $) 41 T ELT)) (-2458 (($ $ $) 47 T ELT)) (-3162 (((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $) 46 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2454 (((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 13 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3739 (($ $ (-696) |#1| $) 26 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2456 (((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3949 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-996) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-996) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-996) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-996)) NIL T ELT) (((-1086 |#1|) $) 7 T ELT) (($ (-1086 |#1|)) 8 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-706 |#1|) (-13 (-1156 |#1|) (-554 (-1086 |#1|)) (-952 (-1086 |#1|)) (-10 -8 (-15 -3739 ($ $ (-696) |#1| $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-696))) $ $)) (-15 -2459 ($ $ $)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -2458 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-15 -2457 ((-585 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -2456 ((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $)) (-15 -2454 ((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-963)) (T -706)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-3161 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3482 (-696)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-3162 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3955 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) (|:| -2904 (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-963)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-3192 (*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-496)) (-4 *2 (-963)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-706 *3)) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963))))) +((-3959 (((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)) 13 T ELT))) +(((-707 |#1| |#2|) (-10 -7 (-15 -3959 ((-706 |#2|) (-1 |#2| |#1|) (-706 |#1|)))) (-963) (-963)) (T -707)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6))))) +((-2461 ((|#1| (-696) |#1|) 33 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2803 ((|#1| (-696) |#1|) 23 T ELT)) (-2460 ((|#1| (-696) |#1|) 35 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-708 |#1|) (-10 -7 (-15 -2803 (|#1| (-696) |#1|)) (IF (|has| |#1| (-38 (-348 (-485)))) (PROGN (-15 -2460 (|#1| (-696) |#1|)) (-15 -2461 (|#1| (-696) |#1|))) |%noBranch|)) (-146)) (T -708)) +((-2461 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146)))) (-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 90 T ELT)) (-3683 (((-585 $) (-585 |#4|)) 91 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 133 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-3800 (((-3 $ #1#) $) 87 T ELT)) (-3686 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3684 ((|#4| |#4| $) 92 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 143 T ELT)) (-3197 (((-85) |#4| $) 140 T ELT)) (-3200 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) 135 T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 134 T ELT)) (-3799 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-585 $) |#4| $) 136 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) 139 T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3240 (((-585 $) |#4| $) 132 T ELT) (((-585 $) (-585 |#4|) $) 131 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT)) (-3441 (($ |#4| $) 124 T ELT) (($ (-585 |#4|) $) 123 T ELT)) (-3698 (((-585 |#4|) $) 112 T ELT)) (-3692 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-3700 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3770 (($ $ |#4|) 82 T ELT) (((-585 $) |#4| $) 122 T ELT) (((-585 $) |#4| (-585 $)) 121 T ELT) (((-585 $) (-585 |#4|) $) 120 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 119 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-3949 (((-696) $) 111 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-3685 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-3679 (((-696) $) 81 (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 103 T ELT)) (-3191 (((-585 $) |#4| $) 128 T ELT) (((-585 $) |#4| (-585 $)) 127 T ELT) (((-585 $) (-585 |#4|) $) 126 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 125 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3934 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-709 |#1| |#2| |#3| |#4|) (-113) (-390) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -709)) +NIL +(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-2464 (((-3 (-328) #1="failed") (-265 |#1|) (-832)) 60 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-328) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-328) #1#) (-348 (-859 |#1|)) (-832)) 39 (|has| |#1| (-496)) ELT) (((-3 (-328) #1#) (-348 (-859 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-328) #1#) (-859 |#1|) (-832)) 30 (|has| |#1| (-963)) ELT) (((-3 (-328) #1#) (-859 |#1|)) 24 (|has| |#1| (-963)) ELT)) (-2462 (((-328) (-265 |#1|) (-832)) 92 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-328) (-265 |#1|)) 87 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-328) (-348 (-859 |#1|)) (-832)) 84 (|has| |#1| (-496)) ELT) (((-328) (-348 (-859 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-328) (-859 |#1|) (-832)) 80 (|has| |#1| (-963)) ELT) (((-328) (-859 |#1|)) 77 (|has| |#1| (-963)) ELT) (((-328) |#1| (-832)) 73 T ELT) (((-328) |#1|) 22 T ELT)) (-2465 (((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)) (-832)) 68 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-328)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-328)) #1#) (-265 |#1|) (-832)) 61 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-328)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-3 (-142 (-328)) #1#) (-348 (-859 (-142 |#1|))) (-832)) 44 (|has| |#1| (-496)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-859 (-142 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-859 |#1|)) (-832)) 38 (|has| |#1| (-496)) ELT) (((-3 (-142 (-328)) #1#) (-348 (-859 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-142 (-328)) #1#) (-859 |#1|) (-832)) 28 (|has| |#1| (-963)) ELT) (((-3 (-142 (-328)) #1#) (-859 |#1|)) 26 (|has| |#1| (-963)) ELT) (((-3 (-142 (-328)) #1#) (-859 (-142 |#1|)) (-832)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-328)) #1#) (-859 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2463 (((-142 (-328)) (-265 (-142 |#1|)) (-832)) 95 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-142 (-328)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-142 (-328)) (-265 |#1|) (-832)) 93 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-142 (-328)) (-265 |#1|)) 91 (-12 (|has| |#1| (-496)) (|has| |#1| (-758))) ELT) (((-142 (-328)) (-348 (-859 (-142 |#1|))) (-832)) 86 (|has| |#1| (-496)) ELT) (((-142 (-328)) (-348 (-859 (-142 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-142 (-328)) (-348 (-859 |#1|)) (-832)) 83 (|has| |#1| (-496)) ELT) (((-142 (-328)) (-348 (-859 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-142 (-328)) (-859 |#1|) (-832)) 79 (|has| |#1| (-963)) ELT) (((-142 (-328)) (-859 |#1|)) 78 (|has| |#1| (-963)) ELT) (((-142 (-328)) (-859 (-142 |#1|)) (-832)) 75 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-859 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-142 |#1|) (-832)) 17 (|has| |#1| (-146)) ELT) (((-142 (-328)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-328)) |#1| (-832)) 27 T ELT) (((-142 (-328)) |#1|) 25 T ELT))) +(((-710 |#1|) (-10 -7 (-15 -2462 ((-328) |#1|)) (-15 -2462 ((-328) |#1| (-832))) (-15 -2463 ((-142 (-328)) |#1|)) (-15 -2463 ((-142 (-328)) |#1| (-832))) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-142 (-328)) (-142 |#1|))) (-15 -2463 ((-142 (-328)) (-142 |#1|) (-832))) (-15 -2463 ((-142 (-328)) (-859 (-142 |#1|)))) (-15 -2463 ((-142 (-328)) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2462 ((-328) (-859 |#1|))) (-15 -2462 ((-328) (-859 |#1|) (-832))) (-15 -2463 ((-142 (-328)) (-859 |#1|))) (-15 -2463 ((-142 (-328)) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2462 ((-328) (-348 (-859 |#1|)))) (-15 -2462 ((-328) (-348 (-859 |#1|)) (-832))) (-15 -2463 ((-142 (-328)) (-348 (-859 |#1|)))) (-15 -2463 ((-142 (-328)) (-348 (-859 |#1|)) (-832))) (-15 -2463 ((-142 (-328)) (-348 (-859 (-142 |#1|))))) (-15 -2463 ((-142 (-328)) (-348 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2462 ((-328) (-265 |#1|))) (-15 -2462 ((-328) (-265 |#1|) (-832))) (-15 -2463 ((-142 (-328)) (-265 |#1|))) (-15 -2463 ((-142 (-328)) (-265 |#1|) (-832))) (-15 -2463 ((-142 (-328)) (-265 (-142 |#1|)))) (-15 -2463 ((-142 (-328)) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2465 ((-3 (-142 (-328)) #1="failed") (-859 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-859 (-142 |#1|)) (-832)))) |%noBranch|) (IF (|has| |#1| (-963)) (PROGN (-15 -2464 ((-3 (-328) #1#) (-859 |#1|))) (-15 -2464 ((-3 (-328) #1#) (-859 |#1|) (-832))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-859 |#1|))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-859 |#1|) (-832)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2464 ((-3 (-328) #1#) (-348 (-859 |#1|)))) (-15 -2464 ((-3 (-328) #1#) (-348 (-859 |#1|)) (-832))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-348 (-859 |#1|)))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-348 (-859 |#1|)) (-832))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-348 (-859 (-142 |#1|))))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-348 (-859 (-142 |#1|))) (-832))) (IF (|has| |#1| (-758)) (PROGN (-15 -2464 ((-3 (-328) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-328) #1#) (-265 |#1|) (-832))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-265 |#1|))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-265 |#1|) (-832))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-328)) #1#) (-265 (-142 |#1|)) (-832)))) |%noBranch|)) |%noBranch|)) (-555 (-328))) (T -710)) +((-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-859 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-142 (-328))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-328))))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-142 (-328))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-328))))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-328)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-328)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2))))) +((-2469 (((-832) (-1074)) 90 T ELT)) (-2471 (((-3 (-328) "failed") (-1074)) 36 T ELT)) (-2470 (((-328) (-1074)) 34 T ELT)) (-2467 (((-832) (-1074)) 64 T ELT)) (-2468 (((-1074) (-832)) 74 T ELT)) (-2466 (((-1074) (-832)) 63 T ELT))) +(((-711) (-10 -7 (-15 -2466 ((-1074) (-832))) (-15 -2467 ((-832) (-1074))) (-15 -2468 ((-1074) (-832))) (-15 -2469 ((-832) (-1074))) (-15 -2470 ((-328) (-1074))) (-15 -2471 ((-3 (-328) "failed") (-1074))))) (T -711)) +((-2471 (*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-328)) (-5 *1 (-711)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-328)) (-5 *1 (-711)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1074)) (-5 *1 (-711)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-832)) (-5 *1 (-711)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1074)) (-5 *1 (-711))))) +((-2474 (((-1186) (-1180 (-328)) (-485) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328))) (-328) (-1180 (-328)) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328))) 54 T ELT) (((-1186) (-1180 (-328)) (-485) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328))) (-328) (-1180 (-328)) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328))) 51 T ELT)) (-2475 (((-1186) (-1180 (-328)) (-485) (-328) (-328) (-485) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328))) 61 T ELT)) (-2473 (((-1186) (-1180 (-328)) (-485) (-328) (-328) (-328) (-328) (-485) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328))) 49 T ELT)) (-2472 (((-1186) (-1180 (-328)) (-485) (-328) (-328) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328))) 63 T ELT) (((-1186) (-1180 (-328)) (-485) (-328) (-328) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328))) 62 T ELT))) +(((-712) (-10 -7 (-15 -2472 ((-1186) (-1180 (-328)) (-485) (-328) (-328) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)))) (-15 -2472 ((-1186) (-1180 (-328)) (-485) (-328) (-328) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)))) (-15 -2473 ((-1186) (-1180 (-328)) (-485) (-328) (-328) (-328) (-328) (-485) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)))) (-15 -2474 ((-1186) (-1180 (-328)) (-485) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328))) (-328) (-1180 (-328)) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)))) (-15 -2474 ((-1186) (-1180 (-328)) (-485) (-328) (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328))) (-328) (-1180 (-328)) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)) (-1180 (-328)))) (-15 -2475 ((-1186) (-1180 (-328)) (-485) (-328) (-328) (-485) (-1 (-1186) (-1180 (-328)) (-1180 (-328)) (-328)))))) (T -712)) +((-2475 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) (-2472 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) (-2472 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712))))) +((-2484 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 65 T ELT)) (-2481 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 40 T ELT)) (-2483 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 64 T ELT)) (-2480 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 38 T ELT)) (-2482 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 63 T ELT)) (-2479 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485)) 24 T ELT)) (-2478 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485)) 41 T ELT)) (-2477 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485)) 39 T ELT)) (-2476 (((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485)) 37 T ELT))) +(((-713) (-10 -7 (-15 -2476 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485))) (-15 -2477 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485))) (-15 -2478 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485) (-485))) (-15 -2479 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))) (-15 -2480 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))) (-15 -2481 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))) (-15 -2482 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))) (-15 -2483 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))) (-15 -2484 ((-2 (|:| -3403 (-328)) (|:| -1597 (-328)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-328) (-328)) (-328) (-328) (-328) (-328) (-485) (-485))))) (T -713)) +((-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-713)) (-5 *5 (-485))))) +((-3706 (((-1126 |#1|) |#1| (-179) (-485)) 69 T ELT))) +(((-714 |#1|) (-10 -7 (-15 -3706 ((-1126 |#1|) |#1| (-179) (-485)))) (-889)) (T -714)) +((-3706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-714 *3)) (-4 *3 (-889))))) +((-3624 (((-485) $) 17 T ELT)) (-1215 (((-85) $ $) 21 T ELT)) (-3189 (((-85) $) 10 T ELT)) (-3384 (($ $) 19 T ELT))) +(((-715 |#1|) (-10 -7 (-15 -3384 (|#1| |#1|)) (-15 -3624 ((-485) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 -1215 ((-85) |#1| |#1|))) (-716)) (T -715)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-485) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3384 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-485) $) 40 T ELT))) +(((-716) (-113)) (T -716)) +((-3189 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-485)))) (-3384 (*1 *1 *1) (-4 *1 (-716)))) +(-13 (-723) (-21) (-10 -8 (-15 -3189 ((-85) $)) (-15 -3624 ((-485) $)) (-15 -3384 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-3188 (((-85) $) 10 T ELT))) +(((-717 |#1|) (-10 -7 (-15 -3188 ((-85) |#1|))) (-718)) (T -717)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) (((-718) (-113)) (T -718)) -((-2482 (*1 *1 *1 *1) (-4 *1 (-718)))) -(-13 (-722) (-10 -8 (-15 -2482 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT))) +((-3188 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85))))) +(-13 (-720) (-23) (-10 -8 (-15 -3188 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-2485 (($ $ $) 36 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) (((-719) (-113)) (T -719)) -NIL -(-13 (-757) (-25)) -(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-3186 (((-85) $) 42 T ELT)) (-3155 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 78 T ELT)) (-3022 (((-85) $) 72 T ELT)) (-3021 (((-347 (-484)) $) 76 T ELT)) (-3130 ((|#2| $) 26 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2483 (($ $) 58 T ELT)) (-3969 (((-473) $) 67 T ELT)) (-3008 (($ $) 21 T ELT)) (-3943 (((-773) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3124 (((-695)) 10 T CONST)) (-3380 ((|#2| $) 71 T ELT)) (-3055 (((-85) $ $) 30 T ELT)) (-2684 (((-85) $ $) 69 T ELT)) (-3834 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-720 |#1| |#2|) (-10 -7 (-15 -2684 ((-85) |#1| |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3023 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3021 ((-347 (-484)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3380 (|#2| |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3124 ((-695)) -3949) (-15 -3943 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3186 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720)) -((-3124 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3134 (((-695)) 65 (|has| |#1| (-317)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 107 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3154 (((-484) $) 106 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 102 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3640 ((|#1| $) 91 T ELT)) (-3023 (((-3 (-347 (-484)) "failed") $) 78 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 79 (|has| |#1| (-483)) ELT)) (-2993 (($) 68 (|has| |#1| (-317)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2488 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 82 T ELT)) (-3130 ((|#1| $) 83 T ELT)) (-2530 (($ $ $) 69 (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) 70 (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-2009 (((-831) $) 67 (|has| |#1| (-317)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 77 (|has| |#1| (-311)) ELT)) (-2399 (($ (-831)) 66 (|has| |#1| (-317)) ELT)) (-2485 ((|#1| $) 88 T ELT)) (-2486 ((|#1| $) 89 T ELT)) (-2487 ((|#1| $) 90 T ELT)) (-3005 ((|#1| $) 84 T ELT)) (-3006 ((|#1| $) 85 T ELT)) (-3007 ((|#1| $) 86 T ELT)) (-2484 ((|#1| $) 87 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 98 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 97 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 96 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 95 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 94 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3797 (($ $ |#1|) 100 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3969 (((-473) $) 75 (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) 92 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 105 (|has| |#1| (-951 (-347 (-484)))) ELT)) (-2701 (((-633 $) $) 76 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3380 ((|#1| $) 81 (|has| |#1| (-973)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 71 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 72 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-721 |#1|) (-113) (-146)) (T -721)) -((-3008 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2488 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) -(-13 (-38 |t#1|) (-352 |t#1|) (-287 |t#1|) (-10 -8 (-15 -3008 ($ $)) (-15 -3640 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3130 (|t#1| $)) (-15 -2488 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3380 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -2483 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-317) |has| |#1| (-317)) ((-287 |#1|) . T) ((-352 |#1|) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3721 (($) 30 T CONST)) (-3184 (((-85) $) 28 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 29 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3836 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) -(((-722) (-113)) (T -722)) -NIL -(-13 (-717) (-104)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3154 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-910 |#1|) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT) (((-347 (-484)) $) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3640 ((|#1| $) 16 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2488 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3130 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2485 ((|#1| $) 22 T ELT)) (-2486 ((|#1| $) 20 T ELT)) (-2487 ((|#1| $) 18 T ELT)) (-3005 ((|#1| $) 26 T ELT)) (-3006 ((|#1| $) 25 T ELT)) (-3007 ((|#1| $) 24 T ELT)) (-2484 ((|#1| $) 23 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3797 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-347 (-484))) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3380 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 12 T CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-723 |#1|) (-13 (-721 |#1|) (-352 (-910 |#1|)) (-10 -8 (-15 -2488 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723)) -((-2488 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) -((-3955 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))) -((-2489 (((-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#3| |#2| (-1089)) 19 T ELT))) -(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2489 ((-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#3| |#2| (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872)) (-601 |#2|)) (T -725)) -((-2489 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) -((-3570 (((-3 |#2| #1="failed") |#2| (-86) (-248 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1089)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1089)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1089)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-86)) (-1089)) 26 T ELT) (((-3 (-584 (-1178 |#2|)) #1#) (-631 |#2|) (-1089)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1#) (-631 |#2|) (-1178 |#2|) (-1089)) 35 T ELT))) -(((-726 |#1| |#2|) (-10 -7 (-15 -3570 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1="failed") (-631 |#2|) (-1178 |#2|) (-1089))) (-15 -3570 ((-3 (-584 (-1178 |#2|)) #1#) (-631 |#2|) (-1089))) (-15 -3570 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-86)) (-1089))) (-15 -3570 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2011 (-584 (-1178 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1089))) (-15 -3570 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1089))) (-15 -3570 ((-3 (-2 (|:| |particular| |#2|) (|:| -2011 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1089))) (-15 -3570 ((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|))) (-15 -3570 ((-3 |#2| #1#) |#2| (-86) (-248 |#2|) (-584 |#2|)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -726)) -((-3570 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-726 *6 *2)))) (-3570 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))))) (-3570 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2011 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-872))))) (-3570 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2011 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)))) (-3570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)))) (-3570 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089)) (-4 *6 (-13 (-29 *5) (-1114) (-872))) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-1178 *6))) (-5 *1 (-726 *5 *6)))) (-3570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1178 *7))))) -((-3467 ((|#2| |#2| (-1089)) 17 T ELT)) (-2490 ((|#2| |#2| (-1089)) 56 T ELT)) (-2491 (((-1 |#2| |#2|) (-1089)) 11 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -3467 (|#2| |#2| (-1089))) (-15 -2490 (|#2| |#2| (-1089))) (-15 -2491 ((-1 |#2| |#2|) (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -727)) -((-2491 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-872))))) (-2490 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872))))) (-3467 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872)))))) -((-2492 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2011 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2492 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2011 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -728)) -((-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4))))) -((-3738 (((-2 (|:| -3264 |#3|) (|:| |rh| (-584 (-347 |#2|)))) |#4| (-584 (-347 |#2|))) 53 T ELT)) (-2494 (((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#3|) 21 T ELT)) (-2495 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2493 ((|#2| |#3| (-584 (-347 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-347 |#2|)) 105 T ELT))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 ((-3 |#2| "failed") |#3| (-347 |#2|))) (-15 -2493 (|#2| |#3| (-584 (-347 |#2|)))) (-15 -2494 ((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#3|)) (-15 -2494 ((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#3| |#2|)) (-15 -2495 (|#2| |#3| |#1|)) (-15 -2494 ((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#4|)) (-15 -2494 ((-584 (-2 (|:| -3770 |#2|) (|:| -3224 |#2|))) |#4| |#2|)) (-15 -2495 (|#2| |#4| |#1|)) (-15 -3738 ((-2 (|:| -3264 |#3|) (|:| |rh| (-584 (-347 |#2|)))) |#4| (-584 (-347 |#2|))))) (-13 (-311) (-120) (-951 (-347 (-484)))) (-1154 |#1|) (-601 |#2|) (-601 (-347 |#2|))) (T -729)) -((-3738 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -3264 *7) (|:| |rh| (-584 (-347 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-347 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-347 *6))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-347 *2))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3770 *4) (|:| -3224 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-347 *4))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| -3770 *5) (|:| -3224 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-347 *5))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-347 *2))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3770 *4) (|:| -3224 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-347 *4))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| -3770 *5) (|:| -3224 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))) (-2493 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-347 *2))))) (-2493 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))) -((-2503 (((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3264 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1084 |#2|)) (-1 (-345 |#2|) |#2|)) 156 T ELT)) (-2504 (((-584 (-2 (|:| |poly| |#2|) (|:| -3264 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2497 (((-584 (-2 (|:| |deg| (-695)) (|:| -3264 |#2|))) |#3|) 123 T ELT)) (-2496 ((|#2| |#3|) 42 T ELT)) (-2498 (((-584 (-2 (|:| -3949 |#1|) (|:| -3264 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2499 ((|#3| |#3| (-347 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 (|#2| |#3|)) (-15 -2497 ((-584 (-2 (|:| |deg| (-695)) (|:| -3264 |#2|))) |#3|)) (-15 -2498 ((-584 (-2 (|:| -3949 |#1|) (|:| -3264 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2504 ((-584 (-2 (|:| |poly| |#2|) (|:| -3264 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2503 ((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3264 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1084 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-347 |#2|)))) (-13 (-311) (-120) (-951 (-347 (-484)))) (-1154 |#1|) (-601 |#2|) (-601 (-347 |#2|))) (T -730)) -((-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2499 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-1154 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-347 *3))))) (-2503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1084 *7))) (-5 *5 (-1 (-345 *7) *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |frac| (-347 *7)) (|:| -3264 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-347 *7))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3264 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3949 *5) (|:| -3264 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3264 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))) (-2496 (*1 *2 *3) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-347 *2)))))) -((-2500 (((-2 (|:| -2011 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-347 |#2|)) (-584 (-347 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2011 (-584 (-347 |#2|)))) (-599 |#2| (-347 |#2|)) (-347 |#2|)) 145 T ELT) (((-2 (|:| -2011 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-347 |#2|)) (-584 (-347 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2011 (-584 (-347 |#2|)))) (-598 (-347 |#2|)) (-347 |#2|)) 138 T ELT)) (-2501 ((|#2| (-599 |#2| (-347 |#2|))) 86 T ELT) ((|#2| (-598 (-347 |#2|))) 89 T ELT))) -(((-731 |#1| |#2|) (-10 -7 (-15 -2500 ((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2011 (-584 (-347 |#2|)))) (-598 (-347 |#2|)) (-347 |#2|))) (-15 -2500 ((-2 (|:| -2011 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-347 |#2|)) (-584 (-347 |#2|)))) (-15 -2500 ((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2011 (-584 (-347 |#2|)))) (-599 |#2| (-347 |#2|)) (-347 |#2|))) (-15 -2500 ((-2 (|:| -2011 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-347 |#2|)) (-584 (-347 |#2|)))) (-15 -2501 (|#2| (-598 (-347 |#2|)))) (-15 -2501 (|#2| (-599 |#2| (-347 |#2|))))) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -731)) -((-2501 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-598 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| -2011 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| -2011 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-584 *4)))) (-5 *1 (-731 *5 *6))))) -((-2502 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|) 49 T ELT))) -(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2502 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|))) (-311) (-601 |#1|) (-1154 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732)) -((-2502 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *7 (-1154 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -((-2503 (((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3264 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 47 T ELT)) (-2505 (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 38 T ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 36 T ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2504 (((-584 (-2 (|:| |poly| |#2|) (|:| -3264 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT))) -(((-733 |#1| |#2|) (-10 -7 (-15 -2505 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2505 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2505 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2505 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2503 ((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3264 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2504 ((-584 (-2 (|:| |poly| |#2|) (|:| -3264 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2505 ((-584 (-347 |#2|)) (-598 (-347 |#2|)))) (-15 -2505 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2505 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)))) (-15 -2505 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)))) |%noBranch|)) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -733)) -((-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-598 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3264 (-599 *6 (-347 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |frac| (-347 *6)) (|:| -3264 (-599 *6 (-347 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6))))) -((-2506 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) (-631 |#2|) (-1178 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3264 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1178 |#1|)) 15 T ELT)) (-2507 (((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2011 (-584 (-1178 |#1|)))) (-631 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2011 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3570 (((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2011 (-631 |#1|))) #1#) (-631 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-734 |#1| |#2|) (-10 -7 (-15 -2506 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3264 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1178 |#1|))) (-15 -2506 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) (-631 |#2|) (-1178 |#1|))) (-15 -3570 ((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2011 (-631 |#1|))) #1="failed") (-631 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2011 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2507 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2011 (-584 (-1178 |#1|)))) (-631 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2011 (-584 |#1|))) |#2| |#1|)))) (-311) (-601 |#1|)) (T -734)) -((-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2011 (-584 *6))) *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *6) "failed")) (|:| -2011 (-584 (-1178 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1178 *6)))) (-3570 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2011 (-584 *6))) "failed") *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2011 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *6)))) (-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5)) (|:| -3264 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *6 (-601 *5))))) -((-2508 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2509 (((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3337 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-735 |#1| |#2|) (-10 -7 (-15 -2508 ((-631 |#1|) (-584 |#1|))) (-15 -2508 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2509 ((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3337 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -735)) -((-3337 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2509 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1178 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4))))) -((-2567 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3704 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3134 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3785 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3154 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2993 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ (-484)) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2888 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2607 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3240 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3241 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3798 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3833 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) NIL T ELT)) (-3908 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3124 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) NIL (|has| |#2| (-23)) CONST)) (-2665 (($) NIL (|has| |#2| (-962)) CONST)) (-2668 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2684 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1178 |#2|) (-1178 |#2|))) (T -736)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1089)) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3080 (((-584 (-739 (-1089))) $) NIL T ELT)) (-3082 (((-1084 $) $ (-739 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1089)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-739 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-739 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3753 (($ $ $ (-739 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-739 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-739 (-1089))) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-739 (-1089)) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-739 (-1089)) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ (-1089)) NIL T ELT) (((-695) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#1|) (-739 (-1089))) NIL T ELT) (($ (-1084 $) (-739 (-1089))) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-469 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-739 (-1089))) NIL T ELT)) (-2819 (((-469 (-739 (-1089))) $) NIL T ELT) (((-695) $ (-739 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1089)))) NIL T ELT)) (-1623 (($ (-1 (-469 (-739 (-1089))) (-469 (-739 (-1089)))) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) (-1089)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 (-739 (-1089)) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1484 (((-739 (-1089)) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-739 (-1089))) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1089)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1089)) $) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3754 (($ $ (-739 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 (-1089)) $) NIL T ELT)) (-3945 (((-469 (-739 (-1089))) $) NIL T ELT) (((-695) $ (-739 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1089)))) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-739 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-469 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-737 |#1|) (-13 (-213 |#1| (-1089) (-739 (-1089)) (-469 (-739 (-1089)))) (-951 (-1038 |#1| (-1089)))) (-962)) (T -737)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-311)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-311)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#2| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 20 (|has| |#2| (-311)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1605 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-311)) ELT) (($ $) NIL (|has| |#2| (-311)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) 15 (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-311)) ELT))) -(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-427 |#2|) (-10 -7 (IF (|has| |#2| (-311)) (-6 (-311)) |%noBranch|))) (-1013) (-810 |#1|) |#1|) (T -738)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) NIL T ELT)) (-3828 ((|#1| $) 10 T ELT)) (-3155 (((-3 |#1| "failed") $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-3769 (((-695) $) 11 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-695)) 9 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3755 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-739 |#1|) (-228 |#1|) (-757)) (T -739)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3931 (((-584 |#1|) $) 39 T ELT)) (-3134 (((-695) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3936 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3155 (((-3 |#1| #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-3796 (($ $) 43 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2298 ((|#1| $ (-484)) NIL T ELT)) (-2299 (((-695) $ (-484)) NIL T ELT)) (-3933 (($ $) 55 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2289 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2290 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3937 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2510 (((-85) $ $) 52 T ELT)) (-3830 (((-695) $) 35 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1749 (($ $ $) NIL T ELT)) (-1750 (($ $ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 ((|#1| $) 42 T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3940 (-695)))) $) NIL T ELT)) (-2878 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2564 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 7 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-740 |#1|) (-13 (-333 |#1|) (-755) (-10 -8 (-15 -3798 (|#1| $)) (-15 -3796 ($ $)) (-15 -3933 ($ $)) (-15 -2510 ((-85) $ $)) (-15 -3937 ((-3 $ #1="failed") $ |#1|)) (-15 -3936 ((-3 $ #1#) $ |#1|)) (-15 -2564 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3830 ((-695) $)) (-15 -3931 ((-584 |#1|) $)))) (-757)) (T -740)) -((-3798 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3937 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3936 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2564 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3620 (((-484) $) 66 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3184 (((-85) $) 64 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3185 (((-85) $) 65 T ELT)) (-2530 (($ $ $) 58 T ELT)) (-2856 (($ $ $) 59 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3380 (($ $) 67 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 60 T ELT)) (-2566 (((-85) $ $) 62 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 61 T ELT)) (-2684 (((-85) $ $) 63 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-741) (-113)) (T -741)) -NIL -(-13 (-495) (-756)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2511 ((|#1| $) 10 T ELT)) (-2512 (($ |#1|) 9 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-695)) NIL T ELT)) (-2819 (((-695) $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3755 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-3943 (((-773) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3674 ((|#2| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2512 ($ |#1|)) (-15 -2511 (|#1| $)))) (-646 |#2|) (-962)) (T -742)) -((-2512 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) -((-2567 (((-85) $ $) 19 T ELT)) (-3232 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3234 (($ $ $) 77 T ELT)) (-3233 (((-85) $ $) 78 T ELT)) (-3237 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2367 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ |#1| $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) 69 T ELT)) (-2530 ((|#1| $) 83 T ELT)) (-2855 (($ $ $) 86 T ELT)) (-3515 (($ $ $) 85 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2856 ((|#1| $) 84 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 T ELT)) (-3236 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3241 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-2366 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-3235 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 54 T ELT)) (-3943 (((-773) $) 17 T ELT)) (-3238 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-743 |#1|) (-113) (-757)) (T -743)) -((-2530 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757))))) -(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2530 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3620 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3721 (($) NIL (|has| |#1| (-21)) CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3464 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2513 (($) 13 T ELT)) (-2523 (((-85) $) 12 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2524 (((-85) $) 11 T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ELT)) (-3124 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1263 (((-85) $ $) 53 T ELT)) (-3380 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2659 (($) 23 (|has| |#1| (-21)) CONST)) (-2665 (($) 33 (|has| |#1| (-756)) CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2684 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3834 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) -(((-744 |#1|) (-13 (-1013) (-352 |#1|) (-10 -8 (-15 -2513 ($)) (-15 -2524 ((-85) $)) (-15 -2523 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -744)) -((-2513 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) -((-3955 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT))) -(((-745 |#1| |#2|) (-10 -7 (-15 -3955 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3955 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1013) (-1013)) (T -745)) -((-3955 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-745 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2515 ((|#1| (-86) |#1|) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2514 (($ |#1| (-309 (-86))) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2516 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2517 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3797 ((|#1| $ |#1|) NIL T ELT)) (-2518 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2519 ($ $)) (-15 -2519 ($ $ $)) (-15 -2518 (|#1| |#1|))) |%noBranch|) (-15 -2517 ($ $ (-1 |#1| |#1|))) (-15 -2516 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2515 (|#1| (-86) |#1|)) (-15 -2514 ($ |#1| (-309 (-86)))))) (-962)) (T -746)) -((-2519 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2519 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2518 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2515 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2514 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) -((-2632 (((-85) $ |#2|) 14 T ELT)) (-3943 (((-773) $) 11 T ELT))) -(((-747 |#1| |#2|) (-10 -7 (-15 -2632 ((-85) |#1| |#2|)) (-15 -3943 ((-773) |#1|))) (-748 |#2|) (-1013)) (T -747)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3539 ((|#1| $) 19 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2632 (((-85) $ |#1|) 17 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2520 (((-55) $) 18 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-748 |#1|) (-113) (-1013)) (T -748)) -((-3539 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1013)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2632 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-1013) (-10 -8 (-15 -3539 (|t#1| $)) (-15 -2520 ((-55) $)) (-15 -2632 ((-85) $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2521 (((-167 (-439)) (-1072)) 9 T ELT))) -(((-749) (-10 -7 (-15 -2521 ((-167 (-439)) (-1072))))) (T -749)) -((-2521 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-439))) (-5 *1 (-749))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3317 (((-1028) $) 10 T ELT)) (-3539 (((-444) $) 9 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2632 (((-85) $ (-444)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3527 (($ (-444) (-1028)) 8 T ELT)) (-3943 (((-773) $) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 20 T ELT)) (-3055 (((-85) $ $) 12 T ELT))) -(((-750) (-13 (-748 (-444)) (-10 -8 (-15 -3317 ((-1028) $)) (-15 -3527 ($ (-444) (-1028)))))) (T -750)) -((-3317 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-750)))) (-3527 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-750))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2522 (((-1033) $) 31 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3620 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3721 (($) NIL (|has| |#1| (-21)) CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3464 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2526 (($) 14 T ELT)) (-2409 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2525 (($) 16 T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2523 (((-85) $) 12 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2524 (((-85) $) 11 T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ELT)) (-3124 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2659 (($) 37 (|has| |#1| (-21)) CONST)) (-2665 (($) 47 (|has| |#1| (-756)) CONST)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3055 (((-85) $ $) 35 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2684 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3834 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) -(((-751 |#1|) (-13 (-1013) (-352 |#1|) (-10 -8 (-15 -2526 ($)) (-15 -2525 ($)) (-15 -2524 ((-85) $)) (-15 -2523 ((-85) $)) (-15 -2522 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -751)) -((-2526 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))) (-2525 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) -((-3955 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT))) -(((-752 |#1| |#2|) (-10 -7 (-15 -3955 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3955 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1013) (-1013)) (T -752)) -((-3955 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-752 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3134 (((-695)) 27 T ELT)) (-2993 (($) 30 T ELT)) (-2530 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2856 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2009 (((-831) $) 29 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2399 (($ (-831)) 28 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) -(((-753) (-113)) (T -753)) -((-2530 (*1 *1) (-4 *1 (-753))) (-2856 (*1 *1) (-4 *1 (-753)))) -(-13 (-757) (-317) (-10 -8 (-15 -2530 ($) -3949) (-15 -2856 ($) -3949))) -(((-72) . T) ((-553 (-773)) . T) ((-317) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-2528 (((-85) (-1178 |#2|) (-1178 |#2|)) 19 T ELT)) (-2529 (((-85) (-1178 |#2|) (-1178 |#2|)) 20 T ELT)) (-2527 (((-85) (-1178 |#2|) (-1178 |#2|)) 16 T ELT))) -(((-754 |#1| |#2|) (-10 -7 (-15 -2527 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2528 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2529 ((-85) (-1178 |#2|) (-1178 |#2|)))) (-695) (-717)) (T -754)) -((-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3721 (($) 29 T CONST)) (-3464 (((-3 $ "failed") $) 32 T ELT)) (-2409 (((-85) $) 30 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 28 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-755) (-113)) (T -755)) -NIL -(-13 (-767) (-664)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3620 (((-484) $) 37 T ELT)) (-3721 (($) 30 T CONST)) (-3464 (((-3 $ "failed") $) 53 T ELT)) (-3184 (((-85) $) 28 T ELT)) (-2409 (((-85) $) 51 T ELT)) (-3185 (((-85) $) 38 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 54 T ELT)) (-3124 (((-695)) 55 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3380 (($ $) 36 T ELT)) (-2659 (($) 29 T CONST)) (-2665 (($) 50 T CONST)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (-3834 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3836 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 52 T ELT) (($ $ (-831)) 48 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-484) $) 39 T ELT) (($ $ $) 49 T ELT))) +((-2485 (*1 *1 *1 *1) (-4 *1 (-719)))) +(-13 (-723) (-10 -8 (-15 -2485 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT))) +(((-720) (-113)) (T -720)) +NIL +(-13 (-758) (-25)) +(((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-3190 (((-85) $) 42 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-348 (-485)) $) 76 T ELT)) (-3134 ((|#2| $) 26 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2486 (($ $) 58 T ELT)) (-3973 (((-474) $) 67 T ELT)) (-3011 (($ $) 21 T ELT)) (-3947 (((-774) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-348 (-485))) NIL T ELT)) (-3128 (((-696)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 30 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-721 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3026 ((-3 (-348 (-485)) #1="failed") |#1|)) (-15 -3024 ((-348 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-696)) -3953) (-15 -3947 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-722 |#2|) (-146)) (T -721)) +((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-696)) 67 (|has| |#1| (-318)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 106 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 105 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 93 T ELT)) (-3026 (((-3 (-348 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 82 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2996 (($) 70 (|has| |#1| (-318)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3134 ((|#1| $) 85 T ELT)) (-2533 (($ $ $) 71 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 72 (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2012 (((-832) $) 69 (|has| |#1| (-318)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) 68 (|has| |#1| (-318)) ELT)) (-2488 ((|#1| $) 90 T ELT)) (-2489 ((|#1| $) 91 T ELT)) (-2490 ((|#1| $) 92 T ELT)) (-3008 ((|#1| $) 86 T ELT)) (-3009 ((|#1| $) 87 T ELT)) (-3010 ((|#1| $) 88 T ELT)) (-2487 ((|#1| $) 89 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 97 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 96 (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-474) $) 77 (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) 94 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-485))) 107 (|has| |#1| (-952 (-348 (-485)))) ELT)) (-2704 (((-634 $) $) 78 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 83 (|has| |#1| (-975)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 73 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 75 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 74 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 76 (|has| |#1| (-758)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-722 |#1|) (-113) (-146)) (T -722)) +((-3011 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-2491 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-38 |t#1|) (-353 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3644 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -2491 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2486 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-318) |has| |#1| (-318)) ((-288 |#1|) . T) ((-353 |#1|) . T) ((-454 (-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT))) +(((-723) (-113)) (T -723)) +NIL +(-13 (-718) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-718) . T) ((-720) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-911 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-485))) (|has| |#1| (-952 (-485)))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (OR (|has| (-911 |#1|) (-952 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3158 ((|#1| $) NIL T ELT) (((-911 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-911 |#1|) (-952 (-485))) (|has| |#1| (-952 (-485)))) ELT) (((-348 (-485)) $) NIL (OR (|has| (-911 |#1|) (-952 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 16 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-911 |#1|) (-911 |#1|)) 29 T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-2488 ((|#1| $) 22 T ELT)) (-2489 ((|#1| $) 20 T ELT)) (-2490 ((|#1| $) 18 T ELT)) (-3008 ((|#1| $) 26 T ELT)) (-3009 ((|#1| $) 25 T ELT)) (-3010 ((|#1| $) 24 T ELT)) (-2487 ((|#1| $) 23 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-911 |#1|)) 30 T ELT) (($ (-348 (-485))) NIL (OR (|has| (-911 |#1|) (-952 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-724 |#1|) (-13 (-722 |#1|) (-353 (-911 |#1|)) (-10 -8 (-15 -2491 ($ (-911 |#1|) (-911 |#1|))))) (-146)) (T -724)) +((-2491 (*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-722 |#2|) (-146) (-722 |#4|) (-146)) (T -725)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5))))) +((-2492 (((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1091)) 19 T ELT))) +(((-726 |#1| |#2| |#3|) (-10 -7 (-15 -2492 ((-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#3| |#2| (-1091)))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-873)) (-602 |#2|)) (T -726)) +((-2492 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-873))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) +((-3574 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-585 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1091)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1091)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1091)) 26 T ELT) (((-3 (-585 (-1180 |#2|)) #1#) (-632 |#2|) (-1091)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1#) (-632 |#2|) (-1180 |#2|) (-1091)) 35 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1="failed") (-632 |#2|) (-1180 |#2|) (-1091))) (-15 -3574 ((-3 (-585 (-1180 |#2|)) #1#) (-632 |#2|) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1#) (-585 (-249 |#2|)) (-585 (-86)) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2014 (-585 (-1180 |#2|)))) #1#) (-585 |#2|) (-585 (-86)) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2014 (-585 |#2|))) |#2| #1#) |#2| (-86) (-1091))) (-15 -3574 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-585 |#2|))) (-15 -3574 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-585 |#2|)))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-873))) (T -727)) +((-3574 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-727 *6 *2)))) (-3574 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-873))) (-5 *1 (-727 *6 *2)) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #1="failed")) (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-873))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #1#)) (-5 *1 (-727 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) (-5 *1 (-727 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) (-5 *1 (-727 *6 *7)))) (-3574 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1091)) (-4 *6 (-13 (-29 *5) (-1116) (-873))) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-1180 *6))) (-5 *1 (-727 *5 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-873))) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) (-5 *1 (-727 *6 *7)) (-5 *4 (-1180 *7))))) +((-3471 ((|#2| |#2| (-1091)) 17 T ELT)) (-2493 ((|#2| |#2| (-1091)) 56 T ELT)) (-2494 (((-1 |#2| |#2|) (-1091)) 11 T ELT))) +(((-728 |#1| |#2|) (-10 -7 (-15 -3471 (|#2| |#2| (-1091))) (-15 -2493 (|#2| |#2| (-1091))) (-15 -2494 ((-1 |#2| |#2|) (-1091)))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-873))) (T -728)) +((-2494 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) (-4 *5 (-13 (-29 *4) (-1116) (-873))))) (-2493 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-873))))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-873)))))) +((-2495 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|) 33 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2014 (-585 |#4|))) (-599 |#4|) |#4|))) (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485)))) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|)) (T -729)) +((-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-729 *5 *6 *7 *4))))) +((-3742 (((-2 (|:| -3268 |#3|) (|:| |rh| (-585 (-348 |#2|)))) |#4| (-585 (-348 |#2|))) 53 T ELT)) (-2497 (((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#4| |#2|) 62 T ELT) (((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#4|) 61 T ELT) (((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#3| |#2|) 20 T ELT) (((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#3|) 21 T ELT)) (-2498 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2496 ((|#2| |#3| (-585 (-348 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-348 |#2|)) 105 T ELT))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-3 |#2| "failed") |#3| (-348 |#2|))) (-15 -2496 (|#2| |#3| (-585 (-348 |#2|)))) (-15 -2497 ((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#3|)) (-15 -2497 ((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#3| |#2|)) (-15 -2498 (|#2| |#3| |#1|)) (-15 -2497 ((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#4|)) (-15 -2497 ((-585 (-2 (|:| -3774 |#2|) (|:| -3228 |#2|))) |#4| |#2|)) (-15 -2498 (|#2| |#4| |#1|)) (-15 -3742 ((-2 (|:| -3268 |#3|) (|:| |rh| (-585 (-348 |#2|)))) |#4| (-585 (-348 |#2|))))) (-13 (-312) (-120) (-952 (-348 (-485)))) (-1156 |#1|) (-602 |#2|) (-602 (-348 |#2|))) (T -730)) +((-3742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-585 (-348 *6))))) (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-348 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-348 *6))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-348 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-585 (-2 (|:| -3774 *4) (|:| -3228 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-348 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-2 (|:| -3774 *5) (|:| -3228 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-348 *5))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-348 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-585 (-2 (|:| -3774 *4) (|:| -3228 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-348 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-2 (|:| -3774 *5) (|:| -3228 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-348 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-348 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-348 *2))))) (-2496 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))) +((-2506 (((-585 (-2 (|:| |frac| (-348 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1086 |#2|)) (-1 (-346 |#2|) |#2|)) 156 T ELT)) (-2507 (((-585 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 52 T ELT)) (-2500 (((-585 (-2 (|:| |deg| (-696)) (|:| -3268 |#2|))) |#3|) 123 T ELT)) (-2499 ((|#2| |#3|) 42 T ELT)) (-2501 (((-585 (-2 (|:| -3953 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 100 T ELT)) (-2502 ((|#3| |#3| (-348 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 (|#2| |#3|)) (-15 -2500 ((-585 (-2 (|:| |deg| (-696)) (|:| -3268 |#2|))) |#3|)) (-15 -2501 ((-585 (-2 (|:| -3953 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -2506 ((-585 (-2 (|:| |frac| (-348 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1086 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2502 (|#3| |#3| |#2|)) (-15 -2502 (|#3| |#3| (-348 |#2|)))) (-13 (-312) (-120) (-952 (-348 (-485)))) (-1156 |#1|) (-602 |#2|) (-602 (-348 |#2|))) (T -731)) +((-2502 (*1 *2 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-2502 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-1156 *4)) (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-348 *3))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-585 *7) *7 (-1086 *7))) (-5 *5 (-1 (-346 *7) *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-348 (-485))))) (-5 *2 (-585 (-2 (|:| |frac| (-348 *7)) (|:| -3268 *3)))) (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-348 *7))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3268 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-348 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-2 (|:| -3953 *5) (|:| -3268 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-348 *6))))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3268 *5)))) (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-348 *5))))) (-2499 (*1 *2 *3) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-348 *2)))))) +((-2503 (((-2 (|:| -2014 (-585 (-348 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-348 |#2|)) (-585 (-348 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-348 |#2|) #1="failed")) (|:| -2014 (-585 (-348 |#2|)))) (-600 |#2| (-348 |#2|)) (-348 |#2|)) 145 T ELT) (((-2 (|:| -2014 (-585 (-348 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-348 |#2|)) (-585 (-348 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-348 |#2|) #1#)) (|:| -2014 (-585 (-348 |#2|)))) (-599 (-348 |#2|)) (-348 |#2|)) 138 T ELT)) (-2504 ((|#2| (-600 |#2| (-348 |#2|))) 86 T ELT) ((|#2| (-599 (-348 |#2|))) 89 T ELT))) +(((-732 |#1| |#2|) (-10 -7 (-15 -2503 ((-2 (|:| |particular| (-3 (-348 |#2|) #1="failed")) (|:| -2014 (-585 (-348 |#2|)))) (-599 (-348 |#2|)) (-348 |#2|))) (-15 -2503 ((-2 (|:| -2014 (-585 (-348 |#2|))) (|:| |mat| (-632 |#1|))) (-599 (-348 |#2|)) (-585 (-348 |#2|)))) (-15 -2503 ((-2 (|:| |particular| (-3 (-348 |#2|) #1#)) (|:| -2014 (-585 (-348 |#2|)))) (-600 |#2| (-348 |#2|)) (-348 |#2|))) (-15 -2503 ((-2 (|:| -2014 (-585 (-348 |#2|))) (|:| |mat| (-632 |#1|))) (-600 |#2| (-348 |#2|)) (-585 (-348 |#2|)))) (-15 -2504 (|#2| (-599 (-348 |#2|)))) (-15 -2504 (|#2| (-600 |#2| (-348 |#2|))))) (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485)))) (-1156 |#1|)) (T -732)) +((-2504 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-599 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-732 *4 *2)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-348 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-2 (|:| -2014 (-585 (-348 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-348 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-348 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-2 (|:| -2014 (-585 (-348 *6))) (|:| |mat| (-632 *5)))) (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-348 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) (-5 *1 (-732 *5 *6))))) +((-2505 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|) 49 T ELT))) +(((-733 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2505 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|))) (-312) (-602 |#1|) (-1156 |#1|) (-663 |#1| |#3|) (-602 |#4|)) (T -733)) +((-2505 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-663 *5 *7)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +((-2506 (((-585 (-2 (|:| |frac| (-348 |#2|)) (|:| -3268 (-600 |#2| (-348 |#2|))))) (-600 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 47 T ELT)) (-2508 (((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-346 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-585 (-348 |#2|)) (-599 (-348 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-346 |#2|) |#2|)) 38 T ELT) (((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|)) 39 T ELT) (((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-346 |#2|) |#2|)) 36 T ELT) (((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|)) 37 T ELT)) (-2507 (((-585 (-2 (|:| |poly| |#2|) (|:| -3268 (-600 |#2| (-348 |#2|))))) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|)) 96 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2508 ((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2508 ((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-346 |#2|) |#2|))) (-15 -2508 ((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -2508 ((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-346 |#2|) |#2|))) (-15 -2506 ((-585 (-2 (|:| |frac| (-348 |#2|)) (|:| -3268 (-600 |#2| (-348 |#2|))))) (-600 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2507 ((-585 (-2 (|:| |poly| |#2|) (|:| -3268 (-600 |#2| (-348 |#2|))))) (-600 |#2| (-348 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2508 ((-585 (-348 |#2|)) (-599 (-348 |#2|)))) (-15 -2508 ((-585 (-348 |#2|)) (-599 (-348 |#2|)) (-1 (-346 |#2|) |#2|))) (-15 -2508 ((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)))) (-15 -2508 ((-585 (-348 |#2|)) (-600 |#2| (-348 |#2|)) (-1 (-346 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485)))) (-1156 |#1|)) (T -734)) +((-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-348 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-585 (-348 *5))) (-5 *1 (-734 *4 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-599 (-348 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-585 (-348 *5))) (-5 *1 (-734 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3268 (-600 *6 (-348 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-348 *6))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-5 *2 (-585 (-2 (|:| |frac| (-348 *6)) (|:| -3268 (-600 *6 (-348 *6)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-348 *6))))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-348 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-346 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-585 (-348 *7))) (-5 *1 (-734 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-348 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-346 *7) *7)) (-4 *6 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-585 (-348 *7))) (-5 *1 (-734 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6))))) +((-2509 (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#1|))) (-632 |#2|) (-1180 |#1|)) 110 T ELT) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1180 |#1|)) 15 T ELT)) (-2510 (((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2014 (-585 (-1180 |#1|)))) (-632 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)) 116 T ELT)) (-3574 (((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2014 (-632 |#1|))) #1#) (-632 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-735 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1180 |#1|))) (-15 -2509 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#1|))) (-632 |#2|) (-1180 |#1|))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2014 (-632 |#1|))) #1="failed") (-632 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2014 (-585 |#1|))) #1#) |#2| |#1|))) (-15 -2510 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2014 (-585 (-1180 |#1|)))) (-632 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2014 (-585 |#1|))) |#2| |#1|)))) (-312) (-602 |#1|)) (T -735)) +((-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-585 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *6) "failed")) (|:| -2014 (-585 (-1180 *6))))) (-5 *1 (-735 *6 *7)) (-5 *4 (-1180 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2014 (-632 *6)))) (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1180 *6)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1180 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6) (|:| |rh| *5)))))) (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) (-4 *6 (-602 *5))))) +((-2511 (((-632 |#1|) (-585 |#1|) (-696)) 14 T ELT) (((-632 |#1|) (-585 |#1|)) 15 T ELT)) (-2512 (((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-585 |#1|)) 39 T ELT)) (-3341 (((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-736 |#1| |#2|) (-10 -7 (-15 -2511 ((-632 |#1|) (-585 |#1|))) (-15 -2511 ((-632 |#1|) (-585 |#1|) (-696))) (-15 -2512 ((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-585 |#1|))) (-15 -3341 ((-3 |#1| #1#) |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)))) (-312) (-602 |#1|)) (T -736)) +((-3341 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) (-2512 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) (-4 *5 (-602 *4))))) +((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-832)) NIL (|has| |#2| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-696)) NIL (|has| |#2| (-318)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1015)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) ((|#2| $) NIL (|has| |#2| (-1015)) ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-963)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-963)) ELT)) (-2996 (($) NIL (|has| |#2| (-318)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-719)) ELT)) (-2891 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#2| (-963)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2610 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-1950 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#2| (-318)) ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-582 (-485))) (|has| |#2| (-963))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-963)) ELT) (((-632 |#2|) (-1180 $)) NIL (|has| |#2| (-963)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1015)) ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#2| (-318)) ELT)) (-3245 (((-1035) $) NIL (|has| |#2| (-1015)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-963)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-952 (-485))) (|has| |#2| (-1015))) (|has| |#2| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#2| (-952 (-348 (-485)))) (|has| |#2| (-1015))) ELT) (($ |#2|) NIL (|has| |#2| (-1015)) ELT) (((-774) $) NIL (|has| |#2| (-554 (-774))) ELT)) (-3128 (((-696)) NIL (|has| |#2| (-963)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-963)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-963)) CONST)) (-2671 (($ $ (-696)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-813 (-1091))) (|has| |#2| (-963))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-963)) ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#2| (-963)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2687 (((-85) $ $) 11 (|has| |#2| (-758)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#2| (-963)) ELT) (($ $ (-832)) NIL (|has| |#2| (-963)) ELT)) (* (($ $ $) NIL (|has| |#2| (-963)) ELT) (($ $ |#2|) NIL (|has| |#2| (-665)) ELT) (($ |#2| $) NIL (|has| |#2| (-665)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-696) $) NIL (|has| |#2| (-23)) ELT) (($ (-832) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-737 |#1| |#2| |#3|) (-196 |#1| |#2|) (-696) (-719) (-1 (-85) (-1180 |#2|) (-1180 |#2|))) (T -737)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1091)) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ (-1091)) NIL T ELT)) (-3083 (((-585 (-740 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-740 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-740 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-740 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-740 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3757 (($ $ $ (-740 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-740 (-1091))) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-470 (-740 (-1091))) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-740 (-1091)) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-740 (-1091)) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ (-1091)) NIL T ELT) (((-696) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-740 (-1091))) NIL T ELT) (($ (-1086 $) (-740 (-1091))) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-740 (-1091)))) NIL T ELT) (($ $ (-740 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1091))) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-740 (-1091))) NIL T ELT)) (-2822 (((-470 (-740 (-1091))) $) NIL T ELT) (((-696) $ (-740 (-1091))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-740 (-1091))) (-470 (-740 (-1091)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) (-1091)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-740 (-1091)) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-740 (-1091)) $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-740 (-1091))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-740 (-1091)) |#1|) NIL T ELT) (($ $ (-585 (-740 (-1091))) (-585 |#1|)) NIL T ELT) (($ $ (-740 (-1091)) $) NIL T ELT) (($ $ (-585 (-740 (-1091))) (-585 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1091)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-740 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-740 (-1091))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1091)))) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 (-1091)) $) NIL T ELT)) (-3949 (((-470 (-740 (-1091))) $) NIL T ELT) (((-696) $ (-740 (-1091))) NIL T ELT) (((-585 (-696)) $ (-585 (-740 (-1091)))) NIL T ELT) (((-696) $ (-1091)) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-740 (-1091)) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-740 (-1091)) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-740 (-1091)) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-740 (-1091))) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-740 (-1091)))) NIL T ELT) (($ $ (-740 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1091))) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-740 (-1091))) (-585 (-696))) NIL T ELT) (($ $ (-740 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-740 (-1091)))) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-738 |#1|) (-13 (-213 |#1| (-1091) (-740 (-1091)) (-470 (-740 (-1091)))) (-952 (-1040 |#1| (-1091)))) (-963)) (T -738)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $) 13 T ELT) (($ $ (-696)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-348 (-485))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-312)) ELT))) +(((-739 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-428 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1015) (-811 |#1|) |#1|) (T -739)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3773 (((-696) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-696)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3759 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-740 |#1|) (-228 |#1|) (-758)) (T -740)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3935 (((-585 |#1|) $) 39 T ELT)) (-3138 (((-696) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3800 (($ $) 43 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2301 ((|#1| $ (-485)) NIL T ELT)) (-2302 (((-696) $ (-485)) NIL T ELT)) (-3937 (($ $) 55 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2292 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2293 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3941 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2513 (((-85) $ $) 52 T ELT)) (-3834 (((-696) $) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1752 (($ $ $) NIL T ELT)) (-1753 (($ $ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 ((|#1| $) 42 T ELT)) (-1780 (((-585 (-2 (|:| |gen| |#1|) (|:| -3944 (-696)))) $) NIL T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2567 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 54 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ |#1| (-696)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-741 |#1|) (-13 (-334 |#1|) (-756) (-10 -8 (-15 -3802 (|#1| $)) (-15 -3800 ($ $)) (-15 -3937 ($ $)) (-15 -2513 ((-85) $ $)) (-15 -3941 ((-3 $ #1="failed") $ |#1|)) (-15 -3940 ((-3 $ #1#) $ |#1|)) (-15 -2567 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3834 ((-696) $)) (-15 -3935 ((-585 |#1|) $)))) (-758)) (T -741)) +((-3802 (*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3941 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-3940 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) (-2567 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3624 (((-485) $) 68 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3189 (((-85) $) 67 T ELT)) (-2533 (($ $ $) 60 T ELT)) (-2859 (($ $ $) 61 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 69 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 62 T ELT)) (-2569 (((-85) $ $) 64 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 63 T ELT)) (-2687 (((-85) $ $) 65 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-742) (-113)) (T -742)) +NIL +(-13 (-496) (-757)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2514 ((|#1| $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2515 (($ |#1|) 9 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-696)) NIL T ELT)) (-2822 (((-696) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-3947 (((-774) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3678 ((|#2| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-696)) NIL (|has| |#1| (-190)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-743 |#1| |#2|) (-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2515 ($ |#1|)) (-15 -2514 (|#1| $)))) (-647 |#2|) (-963)) (T -743)) +((-2515 (*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) +((-2570 (((-85) $ $) 19 T ELT)) (-3236 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3238 (($ $ $) 77 T ELT)) (-3237 (((-85) $ $) 78 T ELT)) (-3241 (($ (-585 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2370 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) 69 T ELT)) (-2533 ((|#1| $) 83 T ELT)) (-2858 (($ $ $) 86 T ELT)) (-3519 (($ $ $) 85 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2859 ((|#1| $) 84 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 T ELT)) (-3240 (($ $ $) 74 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-696)) 67 T ELT)) (-3245 (((-1035) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2369 (((-585 (-2 (|:| |entry| |#1|) (|:| -1947 (-696)))) $) 65 T ELT)) (-3239 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 |#1|)) 52 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 54 T ELT)) (-3947 (((-774) $) 17 T ELT)) (-3242 (($ (-585 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-744 |#1|) (-113) (-758)) (T -744)) +((-2533 (*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758))))) +(-13 (-678 |t#1|) (-883 |t#1|) (-10 -8 (-15 -2533 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-636 |#1|) . T) ((-678 |#1|) . T) ((-883 |#1|) . T) ((-1013 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-757)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 42 (|has| |#1| (-757)) ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 46 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2516 (($) 13 T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-485)))) ELT)) (-3128 (((-696)) 36 (|has| |#1| (-757)) CONST)) (-1266 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2662 (($) 23 (|has| |#1| (-21)) CONST)) (-2668 (($) 33 (|has| |#1| (-757)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 45 (|has| |#1| (-757)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 39 (|has| |#1| (-757)) ELT) (($ (-485) $) 27 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) +(((-745 |#1|) (-13 (-1015) (-353 |#1|) (-10 -8 (-15 -2516 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|))) (-1015)) (T -745)) +((-2516 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-745 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-745 *3)) (-4 *3 (-484)) (-4 *3 (-1015))))) +((-3959 (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)) 12 T ELT) (((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|)) 13 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3959 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|))) (-15 -3959 ((-745 |#2|) (-1 |#2| |#1|) (-745 |#1|) (-745 |#2|)))) (-1015) (-1015)) (T -746)) +((-3959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#1| (-86) |#1|) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2521 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-747 |#1|) (-13 (-963) (-952 |#1|) (-952 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#1| |#1|))) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#1| (-86) |#1|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-963)) (T -747)) +((-2522 (*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2522 (*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2521 (*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) +((-2635 (((-85) $ |#2|) 14 T ELT)) (-3947 (((-774) $) 11 T ELT))) +(((-748 |#1| |#2|) (-10 -7 (-15 -2635 ((-85) |#1| |#2|)) (-15 -3947 ((-774) |#1|))) (-749 |#2|) (-1015)) (T -748)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3543 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2635 (((-85) $ |#1|) 17 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-749 |#1|) (-113) (-1015)) (T -749)) +((-3543 (*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-1015) (-10 -8 (-15 -3543 (|t#1| $)) (-15 -2523 ((-55) $)) (-15 -2635 ((-85) $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2524 (((-167 (-440)) (-1074)) 9 T ELT))) +(((-750) (-10 -7 (-15 -2524 ((-167 (-440)) (-1074))))) (T -750)) +((-2524 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-440))) (-5 *1 (-750))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1030) $) 10 T ELT)) (-3543 (((-445) $) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-445)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3531 (($ (-445) (-1030)) 8 T ELT)) (-3947 (((-774) $) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 20 T ELT)) (-3058 (((-85) $ $) 12 T ELT))) +(((-751) (-13 (-749 (-445)) (-10 -8 (-15 -3321 ((-1030) $)) (-15 -3531 ($ (-445) (-1030)))))) (T -751)) +((-3321 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1030)) (-5 *1 (-751))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2525 (((-1035) $) 31 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-757)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 57 (|has| |#1| (-757)) ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 60 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2529 (($) 14 T ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2412 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-2528 (($) 16 T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-757)) (|has| |#1| (-952 (-485)))) ELT)) (-3128 (((-696)) 50 (|has| |#1| (-757)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-757)) ELT)) (-2662 (($) 37 (|has| |#1| (-21)) CONST)) (-2668 (($) 47 (|has| |#1| (-757)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 59 (|has| |#1| (-757)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-832)) NIL (|has| |#1| (-757)) ELT) (($ $ (-696)) NIL (|has| |#1| (-757)) ELT)) (* (($ $ $) 54 (|has| |#1| (-757)) ELT) (($ (-485) $) 41 (|has| |#1| (-21)) ELT) (($ (-696) $) NIL (|has| |#1| (-21)) ELT) (($ (-832) $) NIL (|has| |#1| (-21)) ELT))) +(((-752 |#1|) (-13 (-1015) (-353 |#1|) (-10 -8 (-15 -2529 ($)) (-15 -2528 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (-15 -2525 ((-1035) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|))) (-1015)) (T -752)) +((-2529 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2528 (*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-752 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-752 *3)) (-4 *3 (-484)) (-4 *3 (-1015))))) +((-3959 (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)) 13 T ELT) (((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|)) 14 T ELT))) +(((-753 |#1| |#2|) (-10 -7 (-15 -3959 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|))) (-15 -3959 ((-752 |#2|) (-1 |#2| |#1|) (-752 |#1|) (-752 |#2|) (-752 |#2|)))) (-1015) (-1015)) (T -753)) +((-3959 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-696)) 27 T ELT)) (-2996 (($) 30 T ELT)) (-2533 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2859 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) +(((-754) (-113)) (T -754)) +((-2533 (*1 *1) (-4 *1 (-754))) (-2859 (*1 *1) (-4 *1 (-754)))) +(-13 (-758) (-318) (-10 -8 (-15 -2533 ($) -3953) (-15 -2859 ($) -3953))) +(((-72) . T) ((-554 (-774)) . T) ((-318) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-2531 (((-85) (-1180 |#2|) (-1180 |#2|)) 19 T ELT)) (-2532 (((-85) (-1180 |#2|) (-1180 |#2|)) 20 T ELT)) (-2530 (((-85) (-1180 |#2|) (-1180 |#2|)) 16 T ELT))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2530 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2531 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2532 ((-85) (-1180 |#2|) (-1180 |#2|)))) (-696) (-718)) (T -755)) +((-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) (-14 *4 (-696))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3725 (($) 29 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 28 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT) (($ $ (-696)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-756) (-113)) (T -756)) NIL -(-13 (-715) (-962) (-664)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT))) +(-13 (-768) (-665)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-768) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-485) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 55 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2412 (((-85) $) 53 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3128 (((-696)) 57 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 51 T ELT)) (-3384 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 52 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-696)) 54 T ELT) (($ $ (-832)) 49 T ELT)) (* (($ (-832) $) 26 T ELT) (($ (-696) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT))) (((-757) (-113)) (T -757)) NIL -(-13 (-1013) (-760)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3943 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 12 T ELT))) -(((-758 |#1| |#2|) (-13 (-760) (-427 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1128) (-1 (-85) |#1| |#1|)) (T -758)) -NIL -((-2530 (($ $ $) 16 T ELT)) (-2856 (($ $ $) 15 T ELT)) (-1263 (((-85) $ $) 17 T ELT)) (-2565 (((-85) $ $) 12 T ELT)) (-2566 (((-85) $ $) 9 T ELT)) (-3055 (((-85) $ $) 14 T ELT)) (-2683 (((-85) $ $) 11 T ELT))) -(((-759 |#1|) (-10 -7 (-15 -2530 (|#1| |#1| |#1|)) (-15 -2856 (|#1| |#1| |#1|)) (-15 -2565 ((-85) |#1| |#1|)) (-15 -2683 ((-85) |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-760)) (T -759)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 10 T ELT)) (-2856 (($ $ $) 11 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 12 T ELT)) (-2566 (((-85) $ $) 14 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) 15 T ELT))) -(((-760) (-113)) (T -760)) -((-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2565 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2856 (*1 *1 *1 *1) (-4 *1 (-760))) (-2530 (*1 *1 *1 *1) (-4 *1 (-760)))) -(-13 (-72) (-10 -8 (-15 -2684 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -2683 ((-85) $ $)) (-15 -2565 ((-85) $ $)) (-15 -2856 ($ $ $)) (-15 -2530 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1128) . T)) -((-2535 (($ $ $) 49 T ELT)) (-2536 (($ $ $) 48 T ELT)) (-2537 (($ $ $) 46 T ELT)) (-2533 (($ $ $) 55 T ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 50 T ELT)) (-2534 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3155 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3500 (($ $) 39 T ELT)) (-2541 (($ $ $) 43 T ELT)) (-2542 (($ $ $) 42 T ELT)) (-2531 (($ $ $) 51 T ELT)) (-2539 (($ $ $) 57 T ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 45 T ELT)) (-2540 (((-3 $ #1#) $ $) 52 T ELT)) (-3463 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2816 ((|#2| $) 36 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3814 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-761 |#1| |#2|) (-10 -7 (-15 -2531 (|#1| |#1| |#1|)) (-15 -2532 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2408 |#1|)) |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3814 ((-584 |#2|) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3943 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3943 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-2535 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ "failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #1="failed") $) 86 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 83 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 80 T ELT)) (-3154 (((-484) $) 85 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 82 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 81 T ELT)) (-3956 (($ $) 75 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3500 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2892 (($ |#1| (-695)) 73 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 68 (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 69 (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) 77 T ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ "failed") $ $) 62 (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) 76 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-495)) ELT)) (-3945 (((-695) $) 78 T ELT)) (-2816 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 84 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 79 T ELT)) (-3814 (((-584 |#1|) $) 72 T ELT)) (-3674 ((|#1| $ (-695)) 74 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2544 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT))) -(((-762 |#1|) (-113) (-962)) (T -762)) -((-3945 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2892 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2544 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-762 *3)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-762 *3)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) (-3500 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-762 *3)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2540 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2538 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-762 *3)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-762 *3)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2534 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) (-4 *1 (-762 *3)))) (-2531 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(-13 (-962) (-82 |t#1| |t#1|) (-352 |t#1|) (-10 -8 (-15 -3945 ((-695) $)) (-15 -2819 ((-695) $)) (-15 -3172 (|t#1| $)) (-15 -3956 ($ $)) (-15 -3674 (|t#1| $ (-695))) (-15 -2892 ($ |t#1| (-695))) (-15 -3814 ((-584 |t#1|) $)) (-15 -2544 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3463 ((-3 $ "failed") $ |t#1|)) (-15 -2545 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2546 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2816 (|t#1| $)) (-15 -3500 ($ $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -2547 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ((-3 $ "failed") $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -2537 ($ $ $)) (-15 -2548 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ((-3 $ "failed") $ $)) (-15 -2533 ($ $ $)) (-15 -2532 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $)) (-15 -2531 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-352 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2543 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2548 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-311)) ELT)) (-2544 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-763 |#1| |#2|) (-10 -7 (-15 -2543 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2544 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2545 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2546 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -2547 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2548 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763)) -((-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2544 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2543 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 34 (|has| |#1| (-311)) ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3530 (((-773) $ (-773)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) NIL T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2819 (((-695) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 32 (|has| |#1| (-311)) ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 23 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3530 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764)) -((-3530 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2535 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2532 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2534 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2548 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-695)) 17 T ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-695) $) NIL T ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2540 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3172 ((|#2| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3945 (((-695) $) NIL T ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-389)) ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1175 |#1|)) 19 T ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-695)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2544 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 13 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1175 |#1|))) (-1089) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765)) -NIL -((-2551 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2550 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2549 ((|#1| (-695) |#1|) 40 T ELT)) (-2799 ((|#1| (-695) |#1|) 38 T ELT)) (-2798 ((|#1| (-695) |#1|) 37 T ELT))) -(((-766 |#1|) (-10 -7 (-15 -2798 (|#1| (-695) |#1|)) (-15 -2799 (|#1| (-695) |#1|)) (-15 -2549 (|#1| (-695) |#1|)) (-15 -2550 (|#1| (-695) |#1|)) (-15 -2550 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -2551 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766)) -((-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2549 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2798 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2530 (($ $ $) 23 T ELT)) (-2856 (($ $ $) 22 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2565 (((-85) $ $) 21 T ELT)) (-2566 (((-85) $ $) 19 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-767) (-113)) (T -767)) -NIL -(-13 (-757) (-1025)) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3399 (((-484) $) 14 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 10 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 12 T ELT))) -(((-768) (-13 (-757) (-10 -8 (-15 -3943 ($ (-484))) (-15 -3399 ((-484) $))))) (T -768)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-768)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-768))))) -((-2552 (((-1184) (-584 (-51))) 23 T ELT)) (-3457 (((-1184) (-1072) (-773)) 13 T ELT) (((-1184) (-773)) 8 T ELT) (((-1184) (-1072)) 10 T ELT))) -(((-769) (-10 -7 (-15 -3457 ((-1184) (-1072))) (-15 -3457 ((-1184) (-773))) (-15 -3457 ((-1184) (-1072) (-773))) (-15 -2552 ((-1184) (-584 (-51)))))) (T -769)) -((-2552 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-769))))) -((-2554 (((-633 (-1137)) $ (-1137)) 15 T ELT)) (-2555 (((-633 (-488)) $ (-488)) 12 T ELT)) (-2553 (((-695) $ (-102)) 30 T ELT))) -(((-770 |#1|) (-10 -7 (-15 -2553 ((-695) |#1| (-102))) (-15 -2554 ((-633 (-1137)) |#1| (-1137))) (-15 -2555 ((-633 (-488)) |#1| (-488)))) (-771)) (T -770)) -NIL -((-2554 (((-633 (-1137)) $ (-1137)) 8 T ELT)) (-2555 (((-633 (-488)) $ (-488)) 9 T ELT)) (-2553 (((-695) $ (-102)) 7 T ELT)) (-2556 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1698 (($ $) 6 T ELT))) -(((-771) (-113)) (T -771)) -((-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-488))) (-5 *3 (-488)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1137))) (-5 *3 (-1137)))) (-2553 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) -(-13 (-147) (-10 -8 (-15 -2556 ((-633 (-101)) $ (-101))) (-15 -2555 ((-633 (-488)) $ (-488))) (-15 -2554 ((-633 (-1137)) $ (-1137))) (-15 -2553 ((-695) $ (-102))))) +(-13 (-716) (-963) (-665)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-758) . T) ((-761) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT))) +(((-758) (-113)) (T -758)) +NIL +(-13 (-1015) (-761)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-761) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3947 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT))) +(((-759 |#1| |#2|) (-13 (-761) (-428 |#1|) (-10 -7 (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|))) (-1130) (-1 (-85) |#1| |#1|)) (T -759)) +NIL +((-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 15 T ELT)) (-1266 (((-85) $ $) 17 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) 11 T ELT))) +(((-760 |#1|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-761)) (T -760)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 10 T ELT)) (-2859 (($ $ $) 11 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 15 T ELT))) +(((-761) (-113)) (T -761)) +((-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) (-2859 (*1 *1 *1 *1) (-4 *1 (-761))) (-2533 (*1 *1 *1 *1) (-4 *1 (-761)))) +(-13 (-72) (-10 -8 (-15 -2687 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2859 ($ $ $)) (-15 -2533 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1130) . T)) +((-2538 (($ $ $) 49 T ELT)) (-2539 (($ $ $) 48 T ELT)) (-2540 (($ $ $) 46 T ELT)) (-2536 (($ $ $) 55 T ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 50 T ELT)) (-2537 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3504 (($ $) 39 T ELT)) (-2544 (($ $ $) 43 T ELT)) (-2545 (($ $ $) 42 T ELT)) (-2534 (($ $ $) 51 T ELT)) (-2542 (($ $ $) 57 T ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 45 T ELT)) (-2543 (((-3 $ #1#) $ $) 52 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2819 ((|#2| $) 36 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3818 (((-585 |#2|) $) 21 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-762 |#1| |#2|) (-10 -7 (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2411 |#1|)) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3818 ((-585 |#2|) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3947 ((-774) |#1|))) (-763 |#2|) (-963)) (T -762)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 85 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 84 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-390)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-696)) 75 T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3949 (((-696) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 86 (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-585 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-696)) 76 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-763 |#1|) (-113) (-963)) (T -763)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) (-2547 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-496)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-763 *3)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-763 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-390)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-390)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-763 *3)))) (-2545 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2541 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-763 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) (-4 *1 (-763 *3)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(-13 (-963) (-82 |t#1| |t#1|) (-353 |t#1|) (-10 -8 (-15 -3949 ((-696) $)) (-15 -2822 ((-696) $)) (-15 -3176 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-696))) (-15 -2895 ($ |t#1| (-696))) (-15 -3818 ((-585 |t#1|) $)) (-15 -2547 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3467 ((-3 $ "failed") $ |t#1|)) (-15 -2548 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -2549 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ((-3 $ "failed") $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2540 ($ $ $)) (-15 -2551 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $)) (-15 -2534 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-353 |#1|) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2546 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2551 (((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2550 (((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2547 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-764 |#1| |#2|) (-10 -7 (-15 -2546 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2547 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-15 -2548 ((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2551 ((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-963) (-763 |#1|)) (T -764)) +((-2551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-963)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) (-4 *3 (-763 *5)))) (-2547 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) (-4 *3 (-763 *2)))) (-2546 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) (-4 *2 (-763 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3534 (((-774) $ (-774)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) NIL T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2822 (((-696) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 23 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 19 T ELT) (($ $ (-696)) 24 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-765 |#1| |#2| |#3|) (-13 (-763 |#1|) (-10 -8 (-15 -3534 ((-774) $ (-774))))) (-963) (-69 |#1|) (-1 |#1| |#1|)) (T -765)) +((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2551 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-696)) 17 T ELT)) (-2549 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2548 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-696) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3949 (((-696) $) NIL T ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-390)) ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1177 |#1|)) 19 T ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-696)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 13 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-766 |#1| |#2| |#3| |#4|) (-13 (-763 |#2|) (-557 (-1177 |#1|))) (-1091) (-963) (-69 |#2|) (-1 |#2| |#2|)) (T -766)) +NIL +((-2554 ((|#1| (-696) |#1|) 45 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2553 ((|#1| (-696) (-696) |#1|) 36 T ELT) ((|#1| (-696) |#1|) 24 T ELT)) (-2552 ((|#1| (-696) |#1|) 40 T ELT)) (-2802 ((|#1| (-696) |#1|) 38 T ELT)) (-2801 ((|#1| (-696) |#1|) 37 T ELT))) +(((-767 |#1|) (-10 -7 (-15 -2801 (|#1| (-696) |#1|)) (-15 -2802 (|#1| (-696) |#1|)) (-15 -2552 (|#1| (-696) |#1|)) (-15 -2553 (|#1| (-696) |#1|)) (-15 -2553 (|#1| (-696) (-696) |#1|)) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -2554 (|#1| (-696) |#1|)) |%noBranch|)) (-146)) (T -767)) +((-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) +((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-832)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-768) (-113)) (T -768)) +NIL +(-13 (-758) (-1027)) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-758) . T) ((-761) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3403 (((-485) $) 14 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT))) +(((-769) (-13 (-758) (-10 -8 (-15 -3947 ($ (-485))) (-15 -3403 ((-485) $))))) (T -769)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-769)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-769))))) +((-2555 (((-1186) (-585 (-51))) 23 T ELT)) (-3461 (((-1186) (-1074) (-774)) 13 T ELT) (((-1186) (-774)) 8 T ELT) (((-1186) (-1074)) 10 T ELT))) +(((-770) (-10 -7 (-15 -3461 ((-1186) (-1074))) (-15 -3461 ((-1186) (-774))) (-15 -3461 ((-1186) (-1074) (-774))) (-15 -2555 ((-1186) (-585 (-51)))))) (T -770)) +((-2555 (*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-774)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-770))))) +((-2557 (((-634 (-1139)) $ (-1139)) 15 T ELT)) (-2558 (((-634 (-489)) $ (-489)) 12 T ELT)) (-2556 (((-696) $ (-102)) 30 T ELT))) +(((-771 |#1|) (-10 -7 (-15 -2556 ((-696) |#1| (-102))) (-15 -2557 ((-634 (-1139)) |#1| (-1139))) (-15 -2558 ((-634 (-489)) |#1| (-489)))) (-772)) (T -771)) +NIL +((-2557 (((-634 (-1139)) $ (-1139)) 8 T ELT)) (-2558 (((-634 (-489)) $ (-489)) 9 T ELT)) (-2556 (((-696) $ (-102)) 7 T ELT)) (-2559 (((-634 (-101)) $ (-101)) 10 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-772) (-113)) (T -772)) +((-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-489))) (-5 *3 (-489)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1139))) (-5 *3 (-1139)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) +(-13 (-147) (-10 -8 (-15 -2559 ((-634 (-101)) $ (-101))) (-15 -2558 ((-634 (-489)) $ (-489))) (-15 -2557 ((-634 (-1139)) $ (-1139))) (-15 -2556 ((-696) $ (-102))))) (((-147) . T)) -((-2554 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2555 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2553 (((-695) $ (-102)) NIL T ELT)) (-2556 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2558 (($ (-335)) 12 T ELT) (($ (-1072)) 14 T ELT)) (-2557 (((-85) $) 19 T ELT)) (-3943 (((-773) $) 26 T ELT)) (-1698 (($ $) 23 T ELT))) -(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2558 ($ (-335))) (-15 -2558 ($ (-1072))) (-15 -2557 ((-85) $))))) (T -772)) -((-2558 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-772)))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) -((-2567 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2588 (($ $ $) 125 T ELT)) (-2603 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2598 (($ (-484)) 53 T ELT)) (-2595 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2579 (($ $ (-584 $)) 82 T ELT)) (-2600 (((-484) $) 34 T ELT)) (-2582 (($ $ $) 73 T ELT)) (-3529 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2601 (((-484) $) 33 T ELT)) (-2583 (($ $ $) 72 T ELT)) (-3532 (($ $) 114 T ELT)) (-2586 (($ $ $) 129 T ELT)) (-2569 (($ (-584 $)) 61 T ELT)) (-3537 (($ $ (-584 $)) 79 T ELT)) (-2597 (($ (-484) (-484)) 55 T ELT)) (-2610 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3135 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2563 (($ $ $) 97 T ELT)) (-2584 (($ $ $) 132 T ELT)) (-2578 (($ $) 115 T ELT)) (-2562 (($ $ $) 98 T ELT)) (-2574 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2836 (((-1184) $) 10 T ELT)) (-2577 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2580 (($ $ $) 75 T ELT)) (-2581 (($ $ $) 74 T ELT)) (-2594 (($ $ (-584 $)) 110 T ELT)) (-2592 (($ $ $) 113 T ELT)) (-2571 (($ (-584 $)) 59 T ELT)) (-2572 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2575 (($ $ $) 123 T ELT)) (-2576 (($ $) 116 T ELT)) (-2587 (($ $ $) 128 T ELT)) (-3530 (($ (-484)) 21 T ELT) (($ (-1089)) 23 T ELT) (($ (-1072)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2560 (($ $ $) 101 T ELT)) (-2559 (($ $) 102 T ELT)) (-2605 (((-1184) (-1072)) 15 T ELT)) (-2606 (($ (-1072)) 14 T ELT)) (-3122 (($ (-584 (-584 $))) 58 T ELT)) (-3136 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2590 (($ $ $) 131 T ELT)) (-3467 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2591 (((-85) $) 108 T ELT)) (-2593 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2599 (($ (-484)) 39 T ELT)) (-2602 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2596 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (($ $ $) 99 T ELT)) (-3562 (($) 13 T ELT)) (-3797 (($ $ (-584 $)) 109 T ELT)) (-2604 (((-1072) (-1072)) 8 T ELT)) (-3833 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2564 (($ $ $) 96 T ELT)) (-3755 (($ $ (-695)) 139 T ELT)) (-2570 (($ (-584 $)) 60 T ELT)) (-3943 (((-773) $) 19 T ELT)) (-3770 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2573 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3238 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2589 (($ $) 124 T ELT)) (-2568 (($ (-584 $)) 65 T ELT)) (-3100 (($ $ $) 105 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2585 (($ $ $) 130 T ELT)) (-2561 (($ $ $) 100 T ELT)) (-3734 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2565 (($ $ $) 89 T ELT)) (-2566 (($ $ $) 87 T ELT)) (-3055 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2683 (($ $ $) 88 T ELT)) (-2684 (($ $ $) 86 T ELT)) (-3946 (($ $ $) 94 T ELT)) (-3834 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3836 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-773) (-13 (-1013) (-10 -8 (-15 -2836 ((-1184) $)) (-15 -2606 ($ (-1072))) (-15 -2605 ((-1184) (-1072))) (-15 -3530 ($ (-484))) (-15 -3530 ($ (-1089))) (-15 -3530 ($ (-1072))) (-15 -3530 ($ (-179))) (-15 -3562 ($)) (-15 -2604 ((-1072) (-1072))) (-15 -2603 ((-484) $)) (-15 -2602 ((-484) $)) (-15 -2603 ((-484))) (-15 -2602 ((-484))) (-15 -2601 ((-484) $)) (-15 -2600 ((-484) $)) (-15 -2599 ($ (-484))) (-15 -2598 ($ (-484))) (-15 -2597 ($ (-484) (-484))) (-15 -3136 ($ $ (-484))) (-15 -3135 ($ $ (-484))) (-15 -3770 ($ $ (-484))) (-15 -3136 ($ $)) (-15 -3135 ($ $)) (-15 -3770 ($ $)) (-15 -2596 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -2596 ($ (-584 $))) (-15 -2595 ($ (-584 $))) (-15 -2594 ($ $ (-584 $))) (-15 -2593 ($ $ (-584 $))) (-15 -2593 ($ $ $ $)) (-15 -2592 ($ $ $)) (-15 -2591 ((-85) $)) (-15 -3797 ($ $ (-584 $))) (-15 -3532 ($ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $)) (-15 -3122 ($ (-584 (-584 $)))) (-15 -2588 ($ $ $)) (-15 -2610 ($ $)) (-15 -2610 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3755 ($ $ (-695))) (-15 -3100 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -3537 ($ $ (-584 $))) (-15 -2579 ($ $ (-584 $))) (-15 -2578 ($ $)) (-15 -3833 ($ $)) (-15 -3833 ($ $ (-695))) (-15 -2577 ($ $)) (-15 -2577 ($ $ (-695))) (-15 -2576 ($ $)) (-15 -2575 ($ $ $)) (-15 -3529 ($ $)) (-15 -3529 ($ $ $)) (-15 -3529 ($ $ $ $)) (-15 -2574 ($ $)) (-15 -2574 ($ $ $)) (-15 -2574 ($ $ $ $)) (-15 -3467 ($ $)) (-15 -3467 ($ $ $)) (-15 -3467 ($ $ $ $)) (-15 -3238 ($ $)) (-15 -3238 ($ (-584 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-584 $))) (-15 -2572 ($ $)) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ (-584 $))) (-15 -2570 ($ (-584 $))) (-15 -2569 ($ (-584 $))) (-15 -2568 ($ (-584 $))) (-15 -3055 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -3834 ($ $ $)) (-15 -3834 ($ $)) (-15 * ($ $ $)) (-15 -3946 ($ $ $)) (-15 ** ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -3463 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $)) (-15 -3734 ($ $ $)) (-15 -3734 ($ $))))) (T -773)) -((-2836 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-773)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-773)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-773)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3562 (*1 *1) (-5 *1 (-773))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2603 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2602 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2597 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3136 (*1 *1 *1) (-5 *1 (-773))) (-3135 (*1 *1 *1) (-5 *1 (-773))) (-3770 (*1 *1 *1) (-5 *1 (-773))) (-2596 (*1 *1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *1 *1 *1) (-5 *1 (-773))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2593 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2593 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2592 (*1 *1 *1 *1) (-5 *1 (-773))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3532 (*1 *1 *1) (-5 *1 (-773))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1) (-5 *1 (-773))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-2610 (*1 *1 *1) (-5 *1 (-773))) (-2610 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3100 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-2582 (*1 *1 *1 *1) (-5 *1 (-773))) (-2581 (*1 *1 *1 *1) (-5 *1 (-773))) (-2580 (*1 *1 *1 *1) (-5 *1 (-773))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2578 (*1 *1 *1) (-5 *1 (-773))) (-3833 (*1 *1 *1) (-5 *1 (-773))) (-3833 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2577 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2575 (*1 *1 *1 *1) (-5 *1 (-773))) (-3529 (*1 *1 *1) (-5 *1 (-773))) (-3529 (*1 *1 *1 *1) (-5 *1 (-773))) (-3529 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3467 (*1 *1 *1) (-5 *1 (-773))) (-3467 (*1 *1 *1 *1) (-5 *1 (-773))) (-3467 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3238 (*1 *1 *1) (-5 *1 (-773))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *1) (-5 *1 (-773))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *1) (-5 *1 (-773))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3055 (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-2684 (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2683 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-3836 (*1 *1 *1 *1) (-5 *1 (-773))) (-3834 (*1 *1 *1 *1) (-5 *1 (-773))) (-3834 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3946 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1 *1) (-5 *1 (-773))) (-3463 (*1 *1 *1 *1) (-5 *1 (-773))) (-2561 (*1 *1 *1 *1) (-5 *1 (-773))) (-2560 (*1 *1 *1 *1) (-5 *1 (-773))) (-2559 (*1 *1 *1) (-5 *1 (-773))) (-3734 (*1 *1 *1 *1) (-5 *1 (-773))) (-3734 (*1 *1 *1) (-5 *1 (-773)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3828 (((-3 $ "failed") (-1089)) 36 T ELT)) (-3134 (((-695)) 32 T ELT)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) 29 T ELT)) (-3240 (((-1072) $) 43 T ELT)) (-2399 (($ (-831)) 28 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (((-1089) $) 13 T ELT) (((-473) $) 19 T ELT) (((-801 (-327)) $) 26 T ELT) (((-801 (-484)) $) 22 T ELT)) (-3943 (((-773) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 40 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 38 T ELT))) -(((-774 |#1|) (-13 (-753) (-554 (-1089)) (-554 (-473)) (-554 (-801 (-327))) (-554 (-801 (-484))) (-10 -8 (-15 -3828 ((-3 $ "failed") (-1089))))) (-584 (-1089))) (T -774)) -((-3828 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3539 (((-444) $) 12 T ELT)) (-2607 (((-584 (-378)) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-775) (-13 (-1013) (-10 -8 (-15 -3539 ((-444) $)) (-15 -2607 ((-584 (-378)) $))))) (T -775)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-775)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-584 (-378))) (-5 *1 (-775))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3920 (((-1184) (-695)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-427 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3946 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3920 ((-1184) (-695))))) (-962) (-584 (-1089)) (-584 (-695)) (-695)) (T -776)) -((-3946 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 *3)) (-14 *7 *3)))) -((-2608 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2609 (((-3 (-347 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT))) -(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2609 ((-3 (-347 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2608 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-311) (-1171 |#1|) (-1154 |#1|)) (T -777)) -((-2608 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) (-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-347 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))) -((-2609 (((-3 (-347 (-1147 |#2| |#1|)) #1="failed") (-695) (-695) (-1168 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-347 (-1147 |#2| |#1|)) #1#) (-695) (-695) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 28 T ELT))) -(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2609 ((-3 (-347 (-1147 |#2| |#1|)) #1="failed") (-695) (-695) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (-15 -2609 ((-3 (-347 (-1147 |#2| |#1|)) #1#) (-695) (-695) (-1168 |#1| |#2| |#3|)))) (-311) (-1089) |#1|) (T -778)) -((-2609 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) (-5 *1 (-778 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2610 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2611 (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3769 (((-695) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2613 (((-484)) NIL T ELT)) (-2612 (((-484) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3766 (($ $ (-484)) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2614 (((-1068 (-484)) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-484) $ (-484)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-779 |#1|) (-780 |#1|) (-484)) (T -779)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3036 (($ $ (-484)) 76 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-2610 (($ (-1084 (-484)) (-484)) 75 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2611 (($ $) 78 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3769 (((-695) $) 83 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2613 (((-484)) 80 T ELT)) (-2612 (((-484) $) 79 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3766 (($ $ (-484)) 82 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-2614 (((-1068 (-484)) $) 84 T ELT)) (-2890 (($ $) 81 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3767 (((-484) $ (-484)) 77 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-780 |#1|) (-113) (-484)) (T -780)) -((-2614 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1068 (-484))))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2890 (*1 *1 *1) (-4 *1 (-780 *2))) (-2613 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2611 (*1 *1 *1) (-4 *1 (-780 *2))) (-3767 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2610 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-780 *4))))) -(-13 (-257) (-120) (-10 -8 (-15 -2614 ((-1068 (-484)) $)) (-15 -3769 ((-695) $)) (-15 -3766 ($ $ (-484))) (-15 -2890 ($ $)) (-15 -2613 ((-484))) (-15 -2612 ((-484) $)) (-15 -2611 ($ $)) (-15 -3767 ((-484) $ (-484))) (-15 -3036 ($ $ (-484))) (-15 -2610 ($ (-1084 (-484)) (-484))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT)) (-3154 (((-779 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT)) (-3727 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1178 (-779 |#1|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-779 |#1|) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-779 |#1|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-779 |#1|) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-779 |#1|) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| (-779 |#1|) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3955 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1178 (-779 |#1|)))) (-1178 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-779 |#1|) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-3128 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-248 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-248 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-1089)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) ELT) (($ $ (-1089) (-779 |#1|)) NIL (|has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-779 |#1|) $) NIL T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-779 |#1|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2615 (((-148 (-347 (-484))) $) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-347 (-484)) $ (-484)) NIL T ELT)) (-3380 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3946 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT))) -(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3767 ((-347 (-484)) $ (-484))) (-15 -2615 ((-148 (-347 (-484))) $)) (-15 -3727 ($ $)) (-15 -3727 ($ (-484) $)))) (-484)) (T -781)) -((-3767 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-781 *3)) (-14 *3 (-484)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-484)))) (-3727 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-781 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 ((|#2| $) NIL (|has| |#2| (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| |#2| (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#2| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT)) (-3154 ((|#2| $) NIL T ELT) (((-1089) $) NIL (|has| |#2| (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT)) (-3727 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) 64 T ELT)) (-2993 (($) NIL (|has| |#2| (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#2| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#2| (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#2| $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 60 T ELT)) (-3443 (($) NIL (|has| |#2| (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3128 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-248 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-248 |#2|))) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) NIL (|has| |#2| (-453 (-1089) |#2|)) ELT) (($ $ (-1089) |#2|) NIL (|has| |#2| (-453 (-1089) |#2|)) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#2| $) NIL T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| |#2| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#2| (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| |#2| (-554 (-473))) ELT) (((-327) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2615 (((-148 (-347 (-484))) $) 78 T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3943 (((-773) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1089)) NIL (|has| |#2| (-951 (-1089))) ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3129 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-347 (-484)) $ (-484)) 71 T ELT)) (-3380 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2659 (($) 15 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3055 (((-85) $ $) 46 T ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3946 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3834 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3836 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3767 ((-347 (-484)) $ (-484))) (-15 -2615 ((-148 (-347 (-484))) $)) (-15 -3727 ($ $)) (-15 -3727 ($ (-484) $)))) (-484) (-780 |#1|)) (T -782)) -((-3767 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-347 (-484))) (-5 *1 (-782 *4 *5)) (-5 *3 (-484)) (-4 *5 (-780 *4)))) (-2615 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3727 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3727 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))) -((-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3793 ((|#2| $) 12 T ELT)) (-2616 (($ |#1| |#2|) 9 T ELT)) (-3240 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3241 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#1| $) 11 T ELT)) (-3527 (($ |#1| |#2|) 10 T ELT)) (-3943 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1263 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3055 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT))) -(((-783 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2616 ($ |#1| |#2|)) (-15 -3527 ($ |#1| |#2|)) (-15 -3798 (|#1| $)) (-15 -3793 (|#2| $)))) (-1128) (-1128)) (T -783)) -((-2616 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1128)))) (-3793 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1128))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2956 (((-484) $) 16 T ELT)) (-2618 (($ (-130)) 13 T ELT)) (-2617 (($ (-130)) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2955 (((-130) $) 15 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2620 (($ (-130)) 11 T ELT)) (-2621 (($ (-130)) 10 T ELT)) (-3943 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2619 (($ (-130)) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-784) (-13 (-1013) (-556 (-130)) (-10 -8 (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2617 ($ (-130))) (-15 -2955 ((-130) $)) (-15 -2956 ((-484) $))))) (T -784)) -((-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-784))))) -((-3943 (((-264 (-484)) (-347 (-858 (-48)))) 23 T ELT) (((-264 (-484)) (-858 (-48))) 18 T ELT))) -(((-785) (-10 -7 (-15 -3943 ((-264 (-484)) (-858 (-48)))) (-15 -3943 ((-264 (-484)) (-347 (-858 (-48))))))) (T -785)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 (-48)))) (-5 *2 (-264 (-484))) (-5 *1 (-785)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-264 (-484))) (-5 *1 (-785))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3563 (((-85) $ (|[\|\|]| (-444))) 9 T ELT) (((-85) $ (|[\|\|]| (-1072))) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3569 (((-444) $) 10 T ELT) (((-1072) $) 14 T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-786) (-13 (-995) (-1174) (-10 -8 (-15 -3563 ((-85) $ (|[\|\|]| (-444)))) (-15 -3569 ((-444) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3569 ((-1072) $))))) (T -786)) -((-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-786)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-786))))) -((-3955 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT))) -(((-787 |#1| |#2|) (-10 -7 (-15 -3955 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1128) (-1128)) (T -787)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))) -((-3368 (($ |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-695)) 15 T ELT))) -(((-788 |#1|) (-10 -8 (-15 -3368 ($ |#1| |#1|)) (-15 -2624 (|#1| $ (-695)))) (-1128)) (T -788)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1128)))) (-3368 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1128))))) -((-3955 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT))) -(((-789 |#1| |#2|) (-10 -7 (-15 -3955 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1128) (-1128)) (T -789)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))) -((-3368 (($ |#1| |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-695)) 15 T ELT))) -(((-790 |#1|) (-10 -8 (-15 -3368 ($ |#1| |#1| |#1|)) (-15 -2624 (|#1| $ (-695)))) (-1128)) (T -790)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1128)))) (-3368 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1128))))) -((-2622 (((-584 (-1094)) (-1072)) 9 T ELT))) -(((-791) (-10 -7 (-15 -2622 ((-584 (-1094)) (-1072))))) (T -791)) -((-2622 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-791))))) -((-3955 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT))) -(((-792 |#1| |#2|) (-10 -7 (-15 -3955 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1128) (-1128)) (T -792)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) -((-2623 (($ |#1| |#1| |#1|) 8 T ELT)) (-2624 ((|#1| $ (-695)) 15 T ELT))) -(((-793 |#1|) (-10 -8 (-15 -2623 ($ |#1| |#1| |#1|)) (-15 -2624 (|#1| $ (-695)))) (-1128)) (T -793)) -((-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1128)))) (-2623 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1128))))) -((-2627 (((-1068 (-584 (-484))) (-584 (-484)) (-1068 (-584 (-484)))) 41 T ELT)) (-2626 (((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484))) 31 T ELT)) (-2628 (((-1068 (-584 (-484))) (-584 (-484))) 53 T ELT) (((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484))) 50 T ELT)) (-2629 (((-1068 (-584 (-484))) (-484)) 55 T ELT)) (-2625 (((-1068 (-584 (-831))) (-1068 (-584 (-831)))) 22 T ELT)) (-3008 (((-584 (-831)) (-584 (-831))) 18 T ELT))) -(((-794) (-10 -7 (-15 -3008 ((-584 (-831)) (-584 (-831)))) (-15 -2625 ((-1068 (-584 (-831))) (-1068 (-584 (-831))))) (-15 -2626 ((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484)))) (-15 -2627 ((-1068 (-584 (-484))) (-584 (-484)) (-1068 (-584 (-484))))) (-15 -2628 ((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484)))) (-15 -2628 ((-1068 (-584 (-484))) (-584 (-484)))) (-15 -2629 ((-1068 (-584 (-484))) (-484))))) (T -794)) -((-2629 (*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-484)))) (-2628 (*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2627 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *3 (-584 (-484))) (-5 *1 (-794)))) (-2626 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-1068 (-584 (-831)))) (-5 *1 (-794)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))) -((-3969 (((-801 (-327)) $) 9 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-801 (-484)) $) 8 (|has| |#1| (-554 (-801 (-484)))) ELT))) -(((-795 |#1|) (-113) (-1128)) (T -795)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-484)))) (-6 (-554 (-801 (-484)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-327)))) (-6 (-554 (-801 (-327)))) |%noBranch|))) -(((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3611 (($) 14 T ELT)) (-2631 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2630 (((-799 |#1| |#3|) $) 16 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2639 (((-85) $) 22 T ELT)) (-2638 (($) 19 T ELT)) (-3943 (((-773) $) 31 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2849 (((-799 |#1| |#2|) $) 15 T ELT)) (-3055 (((-85) $ $) 26 T ELT))) -(((-796 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2639 ((-85) $)) (-15 -2638 ($)) (-15 -3611 ($)) (-15 -2631 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2849 ((-799 |#1| |#2|) $)) (-15 -2630 ((-799 |#1| |#3|) $)))) (-1013) (-1013) (-609 |#2|)) (T -796)) -((-2639 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4)))) (-2638 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-609 *3)))) (-3611 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-609 *3)))) (-2631 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2849 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4)))) (-2630 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2795 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-797 |#1|) (-113) (-1013)) (T -797)) -((-2795 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1013))))) -(-13 (-1013) (-10 -8 (-15 -2795 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2632 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2633 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2559 (|has| |#2| (-951 (-1089)))) (-2559 (|has| |#2| (-962)))) ELT) (((-584 (-248 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2559 (|has| |#2| (-951 (-1089))))) ELT) (((-584 (-248 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1089))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2632 ((-85) |#2| |#3|)) (-15 -2632 ((-85) (-584 |#2|) |#3|)) (-15 -2633 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1089))) (-15 -2633 ((-584 (-248 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2633 ((-584 (-248 (-858 |#2|))) |#2| |#3|)) (-15 -2633 ((-799 |#1| |#2|) |#2| |#3|))))) (-1013) (-797 |#1|) (-554 (-801 |#1|))) (T -798)) -((-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2559 (-4 *3 (-951 (-1089)))) (-2559 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2559 (-4 *3 (-951 (-1089)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1089))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3232 (($ $ $) 40 T ELT)) (-2660 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3611 (($) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2635 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2637 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2639 (((-85) $) 15 T ELT)) (-2638 (($) 13 T ELT)) (-3255 (((-584 (-2 (|:| -3857 (-1089)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3527 (($ (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| |#2|)))) 23 T ELT)) (-3943 (((-773) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2634 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2636 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3055 (((-85) $ $) 42 T ELT))) -(((-799 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2639 ((-85) $)) (-15 -2638 ($)) (-15 -3611 ($)) (-15 -3232 ($ $ $)) (-15 -2637 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2636 ($ (-801 |#1|) |#2| $)) (-15 -2635 ($ (-801 |#1|) |#2| $)) (-15 -2634 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3255 ((-584 (-2 (|:| -3857 (-1089)) (|:| |entry| |#2|))) $)) (-15 -3527 ($ (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| |#2|))))) (-15 -2660 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1013) (-1013)) (T -799)) -((-2639 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2638 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3611 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3232 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2637 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-799 *4 *2)))) (-2636 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-2635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-2634 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)))) (-2660 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1013))))) -((-3955 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT))) -(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -800)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2647 (($ $ (-584 (-51))) 74 T ELT)) (-3080 (((-584 $) $) 139 T ELT)) (-2644 (((-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51))) $) 30 T ELT)) (-3258 (((-85) $) 35 T ELT)) (-2645 (($ $ (-584 (-1089)) (-51)) 31 T ELT)) (-2648 (($ $ (-584 (-51))) 73 T ELT)) (-3155 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1089) #1#) $) 167 T ELT)) (-3154 ((|#1| $) 68 T ELT) (((-1089) $) NIL T ELT)) (-2642 (($ $) 126 T ELT)) (-2654 (((-85) $) 55 T ELT)) (-2649 (((-584 (-51)) $) 50 T ELT)) (-2646 (($ (-1089) (-85) (-85) (-85)) 75 T ELT)) (-2640 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2651 (((-85) $) 58 T ELT)) (-2652 (((-85) $) 57 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2657 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2400 $)) #1#) $) 97 T ELT)) (-2821 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2658 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2512 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2656 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2400 (-695))) #1#) $) 45 T ELT)) (-2655 (((-85) $) 34 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2643 (((-85) $) 28 T ELT)) (-2650 (((-85) $) 52 T ELT)) (-2641 (((-584 (-51)) $) 130 T ELT)) (-2653 (((-85) $) 56 T ELT)) (-3797 (($ (-86) (-584 $)) 104 T ELT)) (-3320 (((-695) $) 33 T ELT)) (-3397 (($ $) 72 T ELT)) (-3969 (($ (-584 $)) 69 T ELT)) (-3950 (((-85) $) 32 T ELT)) (-3943 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1089)) 76 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2661 (($ $ (-51)) 129 T ELT)) (-2659 (($) 103 T CONST)) (-2665 (($) 83 T CONST)) (-3055 (((-85) $ $) 93 T ELT)) (-3946 (($ $ $) 117 T ELT)) (-3836 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-801 |#1|) (-13 (-1013) (-951 |#1|) (-951 (-1089)) (-10 -8 (-15 -2659 ($) -3949) (-15 -2665 ($) -3949) (-15 -2821 ((-3 (-584 $) #1="failed") $)) (-15 -2822 ((-3 (-584 $) #1#) $)) (-15 -2658 ((-3 (-584 $) #1#) $ (-86))) (-15 -2658 ((-3 (-2 (|:| -2512 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2823 ((-3 (-2 (|:| |val| $) (|:| -2400 (-695))) #1#) $)) (-15 -2657 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2656 ((-3 (-584 $) #1#) $)) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2400 $)) #1#) $)) (-15 -3797 ($ (-86) (-584 $))) (-15 -3836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3946 ($ $ $)) (-15 -3320 ((-695) $)) (-15 -3969 ($ (-584 $))) (-15 -3397 ($ $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3950 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-85) $)) (-15 -2649 ((-584 (-51)) $)) (-15 -2648 ($ $ (-584 (-51)))) (-15 -2647 ($ $ (-584 (-51)))) (-15 -2646 ($ (-1089) (-85) (-85) (-85))) (-15 -2645 ($ $ (-584 (-1089)) (-51))) (-15 -2644 ((-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51))) $)) (-15 -2643 ((-85) $)) (-15 -2642 ($ $)) (-15 -2661 ($ $ (-51))) (-15 -2641 ((-584 (-51)) $)) (-15 -3080 ((-584 $) $)) (-15 -2640 ((-3 (-584 $) #1#) (-584 $))))) (-1013)) (T -801)) -((-2659 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2665 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2658 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2512 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2400 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2656 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2400 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3797 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-3836 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-3946 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2646 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2642 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2640 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -((-3207 (((-801 |#1|) (-801 |#1|) (-584 (-1089)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2660 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3528 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2662 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2661 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3207 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3207 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3207 ((-801 |#1|) (-801 |#1|) (-584 (-1089)) (-1 (-85) (-584 |#2|)))) (-15 -3528 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2660 ((-85) |#2| (-801 |#1|))) (-15 -2660 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2661 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2662 ((-584 |#2|) (-801 |#1|)))) (-1013) (-1128)) (T -802)) -((-2662 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1128)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1128)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1128)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1128)))) (-3207 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1089))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-802 *5 *6)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-802 *4 *5)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-802 *4 *5))))) -((-3955 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT))) -(((-803 |#1| |#2|) (-10 -7 (-15 -3955 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1013) (-1013)) (T -803)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3931 (((-584 |#1|) $) 20 T ELT)) (-2663 (((-85) $) 49 T ELT)) (-3155 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3154 (((-615 |#1|) $) 53 T ELT)) (-3796 (($ $) 24 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3830 (((-695) $) 60 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-615 |#1|) $) 22 T ELT)) (-3943 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 11 T CONST)) (-2664 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 66 T ELT))) -(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2665 ($) -3949) (-15 -3943 ((-740 |#1|) $)) (-15 -3943 ($ |#1|)) (-15 -3798 ((-615 |#1|) $)) (-15 -3830 ((-695) $)) (-15 -2664 ((-584 (-615 |#1|)) $)) (-15 -3796 ($ $)) (-15 -2663 ((-85) $)) (-15 -3931 ((-584 |#1|) $)))) (-757)) (T -804)) -((-2665 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3943 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -((-3471 ((|#1| |#1| |#1|) 19 T ELT))) -(((-805 |#1| |#2|) (-10 -7 (-15 -3471 (|#1| |#1| |#1|))) (-1154 |#2|) (-962)) (T -805)) -((-3471 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1154 *3))))) -((-2668 ((|#2| $ |#3|) 10 T ELT))) -(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2668 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1128) (-1128)) (T -806)) -NIL -((-3755 ((|#1| $ |#2|) 7 T ELT)) (-2668 ((|#1| $ |#2|) 6 T ELT))) -(((-807 |#1| |#2|) (-113) (-1128) (-1128)) (T -807)) -((-3755 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) (-2668 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))) -(-13 (-1128) (-10 -8 (-15 -3755 (|t#1| $ |t#2|)) (-15 -2668 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1128) . T)) -((-2667 ((|#1| |#1| (-695)) 26 T ELT)) (-2666 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3432 (((-3 (-2 (|:| -3136 |#1|) (|:| -3135 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT))) -(((-808 |#1| |#2|) (-10 -7 (-15 -3432 ((-584 |#1|) |#1|)) (-15 -3432 ((-3 (-2 (|:| -3136 |#1|) (|:| -3135 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2666 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2667 (|#1| |#1| (-695)))) (-1154 |#2|) (-311)) (T -808)) -((-2667 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1154 *4)))) (-2666 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1154 *3)))) (-3432 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3136 *3) (|:| -3135 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1154 *5)))) (-3432 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-584 |#2|) (-584 (-695))) 44 T ELT) (($ $ |#2| (-695)) 43 T ELT) (($ $ (-584 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2668 (($ $ (-584 |#2|) (-584 (-695))) 47 T ELT) (($ $ |#2| (-695)) 46 T ELT) (($ $ (-584 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-809 |#1| |#2|) (-113) (-962) (-1013)) (T -809)) -NIL -(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3755 (($ $ (-584 |#1|) (-584 (-695))) 50 T ELT) (($ $ |#1| (-695)) 49 T ELT) (($ $ (-584 |#1|)) 48 T ELT) (($ $ |#1|) 46 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 |#1|) (-584 (-695))) 53 T ELT) (($ $ |#1| (-695)) 52 T ELT) (($ $ (-584 |#1|)) 51 T ELT) (($ $ |#1|) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-810 |#1|) (-113) (-1013)) (T -810)) -NIL -(-13 (-962) (-812 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3755 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2668 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT))) -(((-811 |#1| |#2|) (-10 -7 (-15 -2668 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2668 (|#1| |#1| |#2| (-695))) (-15 -2668 (|#1| |#1| (-584 |#2|))) (-15 -3755 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3755 (|#1| |#1| |#2| (-695))) (-15 -3755 (|#1| |#1| (-584 |#2|))) (-15 -2668 (|#1| |#1| |#2|)) (-15 -3755 (|#1| |#1| |#2|))) (-812 |#2|) (-1013)) (T -811)) -NIL -((-3755 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2668 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT))) -(((-812 |#1|) (-113) (-1013)) (T -812)) -((-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))) (-3755 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) (-3755 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1013)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) (-2668 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1013))))) -(-13 (-807 $ |t#1|) (-10 -8 (-15 -3755 ($ $ (-584 |t#1|))) (-15 -3755 ($ $ |t#1| (-695))) (-15 -3755 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2668 ($ $ (-584 |t#1|))) (-15 -2668 ($ $ |t#1| (-695))) (-15 -2668 ($ $ (-584 |t#1|) (-584 (-695)))))) -(((-13) . T) ((-807 $ |#1|) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 26 T ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3993)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3993)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3135 (($ $) 25 T ELT)) (-2669 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3136 (($ $) 23 T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) 20 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1115 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1115 |#1|)) (-10 -8 (-15 -2669 ($ |#1|)) (-15 -2669 ($ $ $)))) (-1013)) (T -813)) -((-2669 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013)))) (-2669 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2685 (((-1009 |#1|) $) 61 T ELT)) (-2908 (((-584 $) (-584 $)) 104 T ELT)) (-3620 (((-484) $) 84 T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-3769 (((-695) $) 81 T ELT)) (-2689 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2672 (((-85) $) 89 T ELT)) (-2674 (((-695) $) 85 T ELT)) (-2530 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2856 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2678 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 131 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2671 (((-1009 |#1|) $) 136 (|has| |#1| (-317)) ELT)) (-2673 (((-85) $) 82 T ELT)) (-3797 ((|#1| $ |#1|) 69 T ELT)) (-3945 (((-695) $) 63 T ELT)) (-2680 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2675 (((-885) $) 75 T ELT)) (-2681 (($ (-584 |#1|)) 32 T ELT)) (-3008 (($ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-2677 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2676 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2670 (($ (-584 |#1|)) 133 T ELT)) (-3943 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2566 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-3055 (((-85) $ $) 67 T ELT)) (-2683 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2684 (((-85) $ $) 91 T ELT)) (-3946 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2678 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2677 ($ (-584 (-584 |#1|)))) (-15 -3943 ($ (-584 (-584 |#1|)))) (-15 -3943 ($ (-584 |#1|))) (-15 -2676 ($ (-584 (-584 |#1|)))) (-15 -3945 ((-695) $)) (-15 -2675 ((-885) $)) (-15 -3769 ((-695) $)) (-15 -2674 ((-695) $)) (-15 -3620 ((-484) $)) (-15 -2673 ((-85) $)) (-15 -2672 ((-85) $)) (-15 -2908 ((-584 $) (-584 $))) (IF (|has| |#1| (-317)) (-15 -2671 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2670 ($ (-584 |#1|))) (IF (|has| |#1| (-317)) (-15 -2670 ($ (-584 |#1|))) |%noBranch|)))) (-1013)) (T -814)) -((-2678 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-814 *3)) (-4 *3 (-317)) (-4 *3 (-1013)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3))))) -((-2679 ((|#2| (-1055 |#1| |#2|)) 48 T ELT))) -(((-815 |#1| |#2|) (-10 -7 (-15 -2679 (|#2| (-1055 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3994 "*"))))) (T -815)) -((-2679 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3994 "*"))))) (-5 *1 (-815 *4 *2))))) -((-2567 (((-85) $ $) 7 T ELT)) (-2685 (((-1009 |#1|) $) 42 T ELT)) (-3721 (($) 23 T CONST)) (-3464 (((-3 $ "failed") $) 20 T ELT)) (-2689 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2409 (((-85) $) 22 T ELT)) (-2530 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2856 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 30 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3797 ((|#1| $ |#1|) 45 T ELT)) (-2680 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2681 (($ (-584 |#1|)) 44 T ELT)) (-3008 (($ $ $) 27 T ELT)) (-2434 (($ $ $) 26 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2665 (($) 24 T CONST)) (-2565 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2566 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2684 (((-85) $ $) 40 T ELT)) (-3946 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-816 |#1|) (-113) (-1013)) (T -816)) -((-2681 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-816 *3)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-4 *1 (-816 *3)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-410) (-241 |t#1| |t#1|) (-10 -8 (-15 -2681 ($ (-584 |t#1|))) (-15 -2680 ($ (-584 (-584 |t#1|)))) (-15 -2685 ((-1009 |t#1|) $)) (-15 -2689 ((-1009 |t#1|) $ |t#1|)) (-15 -2684 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-757)) |%noBranch|))) -(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-410) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-317))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-317))) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2691 (((-584 (-584 (-695))) $) 163 T ELT)) (-2687 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2686 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2685 (((-1009 |#1|) $) 155 T ELT)) (-2692 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2993 (((-814 |#1|) $ (-484)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2690 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3769 (((-695) $) 159 T ELT)) (-2688 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2689 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3243 (((-85) (-814 |#1|) $) 140 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2682 (((-1184) $) 145 T ELT) (((-1184) $ (-484) (-484)) 205 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2694 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3797 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3945 (((-695) $) 160 T ELT)) (-3943 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (((-584 |#1|) $) 162 T ELT)) (-3055 (((-85) $ $) 198 T ELT)) (-2683 (((-85) $ $) 195 T ELT)) (-2684 (((-85) $ $) 194 T ELT))) -(((-817 |#1|) (-13 (-1013) (-10 -8 (-15 -3943 ((-584 (-814 |#1|)) $)) (-15 -2694 ((-584 (-814 |#1|)) $)) (-15 -3797 ((-814 |#1|) $ (-695))) (-15 -2993 ((-814 |#1|) $ (-484))) (-15 -2993 ((-814 |#1|) $)) (-15 -3769 ((-695) $)) (-15 -3945 ((-695) $)) (-15 -2693 ((-584 |#1|) $)) (-15 -2692 ((-584 (-814 |#1|)) $)) (-15 -2691 ((-584 (-584 (-695))) $)) (-15 -3943 ($ (-584 (-814 |#1|)))) (-15 -2690 ($ (-584 (-814 |#1|)))) (-15 -2689 ((-1009 |#1|) $ |#1|)) (-15 -2688 ((-1009 (-1009 |#1|)) $)) (-15 -2689 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2689 ((-1009 (-584 |#1|)) $ (-584 |#1|))) (-15 -3243 ((-85) (-814 |#1|) $)) (-15 -2687 ((-584 (-695)) (-814 |#1|) $)) (-15 -2686 ((-584 (-695)) (-814 |#1|) $)) (-15 -2685 ((-1009 |#1|) $)) (-15 -2684 ((-85) $ $)) (-15 -2683 ((-85) $ $)) (-15 -2682 ((-1184) $)) (-15 -2682 ((-1184) $ (-484) (-484))))) (-1013)) (T -817)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) (-2993 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))) (-2689 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1009 *4)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3243 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2687 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2686 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2682 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-817 *4)) (-4 *4 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-3926 (((-695)) NIL T ELT)) (-3327 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 $ #1#) $) NIL T ELT)) (-3154 (($ $) NIL T ELT)) (-1790 (($ (-1178 $)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3769 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2012 (($) NIL (|has| $ (-317)) ELT)) (-2010 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3130 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3442 (((-633 $) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2013 (((-1084 $) $ (-831)) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL T ELT)) (-2009 (((-831) $) NIL T ELT)) (-1625 (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1624 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1626 (($ $ (-1084 $)) NIL (|has| $ (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL T CONST)) (-2399 (($ (-831)) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) NIL (|has| $ (-317)) ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-3927 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-1763 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3908 (((-107)) NIL T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3945 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3183 (((-1084 $)) NIL T ELT)) (-1672 (($) NIL T ELT)) (-1627 (($) NIL (|has| $ (-317)) ELT)) (-3222 (((-631 $) (-1178 $)) NIL T ELT) (((-1178 $) $) NIL T ELT)) (-3969 (((-484) $) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT)) (-2701 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $) (-831)) NIL T ELT) (((-1178 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3930 (((-85) $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3925 (($ $ (-695)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-818 |#1|) (-13 (-298) (-279 $) (-554 (-484))) (-831)) (T -818)) -NIL -((-2696 (((-3 (-584 (-1084 |#4|)) #1="failed") (-584 (-1084 |#4|)) (-1084 |#4|)) 164 T ELT)) (-2699 ((|#1|) 101 T ELT)) (-2698 (((-345 (-1084 |#4|)) (-1084 |#4|)) 173 T ELT)) (-2700 (((-345 (-1084 |#4|)) (-584 |#3|) (-1084 |#4|)) 83 T ELT)) (-2697 (((-345 (-1084 |#4|)) (-1084 |#4|)) 183 T ELT)) (-2695 (((-3 (-584 (-1084 |#4|)) #1#) (-584 (-1084 |#4|)) (-1084 |#4|) |#3|) 117 T ELT))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2696 ((-3 (-584 (-1084 |#4|)) #1="failed") (-584 (-1084 |#4|)) (-1084 |#4|))) (-15 -2697 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2698 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2699 (|#1|)) (-15 -2695 ((-3 (-584 (-1084 |#4|)) #1#) (-584 (-1084 |#4|)) (-1084 |#4|) |#3|)) (-15 -2700 ((-345 (-1084 |#4|)) (-584 |#3|) (-1084 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819)) -((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1084 *8)))) (-2695 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2699 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2696 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7))))) -((-2696 (((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)) 39 T ELT)) (-2699 ((|#1|) 71 T ELT)) (-2698 (((-345 (-1084 |#2|)) (-1084 |#2|)) 125 T ELT)) (-2700 (((-345 (-1084 |#2|)) (-1084 |#2|)) 109 T ELT)) (-2697 (((-345 (-1084 |#2|)) (-1084 |#2|)) 136 T ELT))) -(((-820 |#1| |#2|) (-10 -7 (-15 -2696 ((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|))) (-15 -2697 ((-345 (-1084 |#2|)) (-1084 |#2|))) (-15 -2698 ((-345 (-1084 |#2|)) (-1084 |#2|))) (-15 -2699 (|#1|)) (-15 -2700 ((-345 (-1084 |#2|)) (-1084 |#2|)))) (-822) (-1154 |#1|)) (T -820)) -((-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2699 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1154 *2)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2696 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) -((-2703 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 46 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 18 T ELT)) (-2701 (((-633 $) $) 40 T ELT))) -(((-821 |#1|) (-10 -7 (-15 -2701 ((-633 |#1|) |#1|)) (-15 -2703 ((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2707 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-822)) (T -821)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 73 T ELT)) (-3772 (($ $) 64 T ELT)) (-3968 (((-345 $) $) 65 T ELT)) (-2703 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 70 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3720 (((-85) $) 66 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 71 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 72 T ELT)) (-3729 (((-345 $) $) 63 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2702 (((-3 (-1178 $) "failed") (-631 $)) 69 (|has| $ (-118)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-2701 (((-633 $) $) 68 (|has| $ (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-822) (-113)) (T -822)) -((-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-822)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2704 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2703 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-822)))) (-2702 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1178 *1)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) -(-13 (-1133) (-10 -8 (-15 -2706 ((-345 (-1084 $)) (-1084 $))) (-15 -2705 ((-345 (-1084 $)) (-1084 $))) (-15 -2704 ((-345 (-1084 $)) (-1084 $))) (-15 -2707 ((-1084 $) (-1084 $) (-1084 $))) (-15 -2703 ((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $))) (IF (|has| $ (-118)) (PROGN (-15 -2702 ((-3 (-1178 $) "failed") (-631 $))) (-15 -2701 ((-633 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-2709 (((-3 (-2 (|:| -3769 (-695)) (|:| -2382 |#5|)) #1="failed") (-282 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2708 (((-85) (-282 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3769 (((-3 (-695) #1#) (-282 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3769 ((-3 (-695) #1="failed") (-282 |#2| |#3| |#4| |#5|))) (-15 -2708 ((-85) (-282 |#2| |#3| |#4| |#5|))) (-15 -2709 ((-3 (-2 (|:| -3769 (-695)) (|:| -2382 |#5|)) #1#) (-282 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-951 (-484))) (-361 |#1|) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -823)) -((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-2 (|:| -3769 (-695)) (|:| -2382 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3769 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8))))) -((-2709 (((-3 (-2 (|:| -3769 (-695)) (|:| -2382 |#3|)) #1="failed") (-282 (-347 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2708 (((-85) (-282 (-347 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3769 (((-3 (-695) #1#) (-282 (-347 (-484)) |#1| |#2| |#3|)) 14 T ELT))) -(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3769 ((-3 (-695) #1="failed") (-282 (-347 (-484)) |#1| |#2| |#3|))) (-15 -2708 ((-85) (-282 (-347 (-484)) |#1| |#2| |#3|))) (-15 -2709 ((-3 (-2 (|:| -3769 (-695)) (|:| -2382 |#3|)) #1#) (-282 (-347 (-484)) |#1| |#2| |#3|)))) (-1154 (-347 (-484))) (-1154 (-347 |#1|)) (-290 (-347 (-484)) |#1| |#2|)) (T -824)) -((-2709 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3769 (-695)) (|:| -2382 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3769 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))) -((-2714 ((|#2| |#2|) 26 T ELT)) (-2712 (((-484) (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2710 (((-831) (-484)) 38 T ELT)) (-2713 (((-484) |#2|) 45 T ELT)) (-2711 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT))) -(((-825 |#1| |#2|) (-10 -7 (-15 -2710 ((-831) (-484))) (-15 -2711 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2711 ((-484) |#2|)) (-15 -2712 ((-484) (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2713 ((-484) |#2|)) (-15 -2714 (|#2| |#2|))) (-1154 (-347 (-484))) (-1154 (-347 |#1|))) (T -825)) -((-2714 (*1 *2 *2) (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1154 (-347 *3))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4))))) (-2711 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-2711 (*1 *2 *3) (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1154 (-347 *3))))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-347 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) 99 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2563 (($ $ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 93 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2722 (($ |#1| (-345 |#1|)) 91 T ELT)) (-2716 (((-1084 |#1|) |#1| |#1|) 52 T ELT)) (-2715 (($ $) 60 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2717 (((-484) $) 96 T ELT)) (-2718 (($ $ (-484)) 98 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2719 ((|#1| $) 95 T ELT)) (-2720 (((-345 |#1|) $) 94 T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) 92 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2721 (($ $) 49 T ELT)) (-3943 (((-773) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-347 |#1|) $) 77 T ELT) (($ (-347 (-345 |#1|))) 85 T ELT)) (-3124 (((-695)) 70 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) 24 T CONST)) (-2665 (($) 12 T CONST)) (-3055 (((-85) $ $) 86 T ELT)) (-3946 (($ $ $) NIL T ELT)) (-3834 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-826 |#1|) (-13 (-311) (-38 |#1|) (-10 -8 (-15 -3943 ((-347 |#1|) $)) (-15 -3943 ($ (-347 (-345 |#1|)))) (-15 -2721 ($ $)) (-15 -2720 ((-345 |#1|) $)) (-15 -2719 (|#1| $)) (-15 -2718 ($ $ (-484))) (-15 -2717 ((-484) $)) (-15 -2716 ((-1084 |#1|) |#1| |#1|)) (-15 -2715 ($ $)) (-15 -2722 ($ |#1| (-345 |#1|))) (-15 -3127 (|#1| $)))) (-257)) (T -826)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3)))) (-2721 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2719 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2716 (*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2722 (*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2)))) (-3127 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257))))) -((-2722 (((-51) (-858 |#1|) (-345 (-858 |#1|)) (-1089)) 17 T ELT) (((-51) (-347 (-858 |#1|)) (-1089)) 18 T ELT))) -(((-827 |#1|) (-10 -7 (-15 -2722 ((-51) (-347 (-858 |#1|)) (-1089))) (-15 -2722 ((-51) (-858 |#1|) (-345 (-858 |#1|)) (-1089)))) (-13 (-257) (-120))) (T -827)) -((-2722 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-345 (-858 *6))) (-5 *5 (-1089)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5))))) -((-2723 ((|#4| (-584 |#4|)) 148 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3142 (((-1084 |#4|) (-584 (-1084 |#4|))) 141 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 (|#4| |#4| |#4|)) (-15 -3142 (|#4| (-584 |#4|))) (-15 -3142 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -3142 ((-1084 |#4|) (-584 (-1084 |#4|)))) (-15 -2723 (|#4| |#4| |#4|)) (-15 -2723 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2723 (|#4| (-584 |#4|)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -828)) -((-2723 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2723 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-584 (-1084 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-1084 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3142 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-3142 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4))))) -((-2736 (((-817 (-484)) (-885)) 38 T ELT) (((-817 (-484)) (-584 (-484))) 34 T ELT)) (-2724 (((-817 (-484)) (-584 (-484))) 66 T ELT) (((-817 (-484)) (-831)) 67 T ELT)) (-2735 (((-817 (-484))) 39 T ELT)) (-2733 (((-817 (-484))) 53 T ELT) (((-817 (-484)) (-584 (-484))) 52 T ELT)) (-2732 (((-817 (-484))) 51 T ELT) (((-817 (-484)) (-584 (-484))) 50 T ELT)) (-2731 (((-817 (-484))) 49 T ELT) (((-817 (-484)) (-584 (-484))) 48 T ELT)) (-2730 (((-817 (-484))) 47 T ELT) (((-817 (-484)) (-584 (-484))) 46 T ELT)) (-2729 (((-817 (-484))) 45 T ELT) (((-817 (-484)) (-584 (-484))) 44 T ELT)) (-2734 (((-817 (-484))) 55 T ELT) (((-817 (-484)) (-584 (-484))) 54 T ELT)) (-2728 (((-817 (-484)) (-584 (-484))) 71 T ELT) (((-817 (-484)) (-831)) 73 T ELT)) (-2727 (((-817 (-484)) (-584 (-484))) 68 T ELT) (((-817 (-484)) (-831)) 69 T ELT)) (-2725 (((-817 (-484)) (-584 (-484))) 64 T ELT) (((-817 (-484)) (-831)) 65 T ELT)) (-2726 (((-817 (-484)) (-584 (-831))) 57 T ELT))) -(((-829) (-10 -7 (-15 -2724 ((-817 (-484)) (-831))) (-15 -2724 ((-817 (-484)) (-584 (-484)))) (-15 -2725 ((-817 (-484)) (-831))) (-15 -2725 ((-817 (-484)) (-584 (-484)))) (-15 -2726 ((-817 (-484)) (-584 (-831)))) (-15 -2727 ((-817 (-484)) (-831))) (-15 -2727 ((-817 (-484)) (-584 (-484)))) (-15 -2728 ((-817 (-484)) (-831))) (-15 -2728 ((-817 (-484)) (-584 (-484)))) (-15 -2729 ((-817 (-484)) (-584 (-484)))) (-15 -2729 ((-817 (-484)))) (-15 -2730 ((-817 (-484)) (-584 (-484)))) (-15 -2730 ((-817 (-484)))) (-15 -2731 ((-817 (-484)) (-584 (-484)))) (-15 -2731 ((-817 (-484)))) (-15 -2732 ((-817 (-484)) (-584 (-484)))) (-15 -2732 ((-817 (-484)))) (-15 -2733 ((-817 (-484)) (-584 (-484)))) (-15 -2733 ((-817 (-484)))) (-15 -2734 ((-817 (-484)) (-584 (-484)))) (-15 -2734 ((-817 (-484)))) (-15 -2735 ((-817 (-484)))) (-15 -2736 ((-817 (-484)) (-584 (-484)))) (-15 -2736 ((-817 (-484)) (-885))))) (T -829)) -((-2736 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2735 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2731 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2730 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2729 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -((-2738 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))) 14 T ELT)) (-2737 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))) 13 T ELT))) -(((-830 |#1|) (-10 -7 (-15 -2737 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2738 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))))) (-389)) (T -830)) -((-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-830 *4)))) (-2737 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-830 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ "failed") $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3142 (($ $ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2665 (($) NIL T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3142 ($ $ $)) (-6 (-3994 "*"))))) (T -831)) -((-3142 (*1 *1 *1 *1) (-5 *1 (-831)))) -((-695) (|%ilt| 0 |#1|)) -((-3943 (((-264 |#1|) (-414)) 16 T ELT))) -(((-832 |#1|) (-10 -7 (-15 -3943 ((-264 |#1|) (-414)))) (-495)) (T -832)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-495))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-833) (-113)) (T -833)) -((-2740 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3951 (-584 *1)) (|:| -2408 *1))) (-5 *3 (-584 *1)))) (-2739 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) -(-13 (-389) (-10 -8 (-15 -2740 ((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $))) (-15 -2739 ((-633 (-584 $)) (-584 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3104 (((-1084 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -3104 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3104 ((-1084 |#2|) (-584 |#2|) (-584 |#2|)))) (-1089) (-311)) (T -834)) -((-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1084 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1089)))) (-3104 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1089)) (-4 *5 (-311)) (-5 *1 (-834 *4 *5))))) -((-2741 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT))) -(((-835 |#1| |#2|) (-10 -7 (-15 -2741 (|#2| (-584 |#1|) (-584 |#1|)))) (-311) (-1154 |#1|)) (T -835)) -((-2741 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1154 *4)) (-5 *1 (-835 *4 *2))))) -((-2743 (((-484) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072)) 175 T ELT)) (-2762 ((|#4| |#4|) 194 T ELT)) (-2747 (((-584 (-347 (-858 |#1|))) (-584 (-1089))) 146 T ELT)) (-2761 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-484)) 88 T ELT)) (-2751 (((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2760 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2744 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072)) 187 T ELT)) (-2742 (((-484) (-631 |#4|) (-831) (-1072)) 167 T ELT) (((-484) (-631 |#4|) (-584 (-1089)) (-831) (-1072)) 166 T ELT) (((-484) (-631 |#4|) (-584 |#4|) (-831) (-1072)) 165 T ELT) (((-484) (-631 |#4|) (-1072)) 154 T ELT) (((-484) (-631 |#4|) (-584 (-1089)) (-1072)) 153 T ELT) (((-484) (-631 |#4|) (-584 |#4|) (-1072)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2748 ((|#4| (-858 |#1|)) 80 T ELT)) (-2758 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2757 (((-584 (-584 (-484))) (-484) (-484)) 161 T ELT)) (-2756 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2755 (((-695) (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2754 (((-695) (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2763 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2749 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2753 (((-584 |#4|) |#4|) 57 T ELT)) (-2746 (((-584 (-347 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-347 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-347 (-858 |#1|)) |#4|) 139 T ELT)) (-2745 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))))))) (|:| |rgsz| (-484))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-695) (-1072) (-484)) 112 T ELT)) (-2750 (((-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2759 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-631 |#4|) (-695)) 121 T ELT)) (-2752 (((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-347 (-858 |#1|)))) (|:| |vec| (-584 (-347 (-858 |#1|)))) (|:| -3107 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) 56 T ELT))) -(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)))) (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)) (-831))) (-15 -2742 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2742 ((-484) (-631 |#4|) (-584 |#4|) (-1072))) (-15 -2742 ((-484) (-631 |#4|) (-584 (-1089)) (-1072))) (-15 -2742 ((-484) (-631 |#4|) (-1072))) (-15 -2742 ((-484) (-631 |#4|) (-584 |#4|) (-831) (-1072))) (-15 -2742 ((-484) (-631 |#4|) (-584 (-1089)) (-831) (-1072))) (-15 -2742 ((-484) (-631 |#4|) (-831) (-1072))) (-15 -2743 ((-484) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072))) (-15 -2745 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))))))) (|:| |rgsz| (-484))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-695) (-1072) (-484))) (-15 -2746 ((-347 (-858 |#1|)) |#4|)) (-15 -2746 ((-631 (-347 (-858 |#1|))) (-631 |#4|))) (-15 -2746 ((-584 (-347 (-858 |#1|))) (-584 |#4|))) (-15 -2747 ((-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -2748 (|#4| (-858 |#1|))) (-15 -2749 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2750 ((-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2751 ((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-584 |#4|))) (-15 -2752 ((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-347 (-858 |#1|)))) (|:| |vec| (-584 (-347 (-858 |#1|)))) (|:| -3107 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (-15 -2753 ((-584 |#4|) |#4|)) (-15 -2754 ((-695) (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2755 ((-695) (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2756 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2757 ((-584 (-584 (-484))) (-484) (-484))) (-15 -2758 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2759 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-631 |#4|) (-695))) (-15 -2760 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2761 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2011 (-584 (-1178 (-347 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-484))) (-15 -2762 (|#4| |#4|)) (-15 -2763 ((-85) (-584 |#4|))) (-15 -2763 ((-85) (-584 (-858 |#1|))))) (-13 (-257) (-120)) (-13 (-757) (-554 (-1089))) (-718) (-862 |#1| |#3| |#2|)) (T -836)) -((-2763 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2761 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-347 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-484)) (-4 *9 (-13 (-257) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1089)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *9)))) (|:| -2011 (-584 (-1178 (-347 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2760 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-484)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *6 *5)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2753 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-347 (-858 *4)))) (|:| |vec| (-584 (-347 (-858 *4)))) (|:| -3107 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2011 (-584 (-1178 (-347 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2751 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2011 (-584 (-1178 (-347 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3107 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2749 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-631 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-347 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2745 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-347 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1072)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1089)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *8)))) (|:| -2011 (-584 (-1178 (-347 (-858 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2011 (-584 (-1178 (-347 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *4 (-1072)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-5 *6 (-1072)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2742 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1072)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) (|:| -2011 (-584 (-1178 (-347 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) (|:| -2011 (-584 (-1178 (-347 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2011 (-584 (-1178 (-347 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1089))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) -((-3871 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2895 (((-1001 (-179)) $) 73 T ELT)) (-2896 (((-1001 (-179)) $) 72 T ELT)) (-2787 (((-1001 (-179)) $) 74 T ELT)) (-2768 (((-484) (-484)) 66 T ELT)) (-2772 (((-484) (-484)) 61 T ELT)) (-2770 (((-484) (-484)) 64 T ELT)) (-2766 (((-85) (-85)) 68 T ELT)) (-2769 (((-484)) 65 T ELT)) (-3132 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2789 (($ (-1 (-855 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2775 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2788 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2774 (((-85) $) 69 T ELT)) (-2765 (((-484)) 70 T ELT)) (-2773 (((-484)) 59 T ELT)) (-2771 (((-484)) 62 T ELT)) (-2897 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2764 (((-85) (-85)) 71 T ELT)) (-3943 (((-773) $) 174 T ELT)) (-2767 (((-85)) 67 T ELT))) -(((-837) (-13 (-867) (-10 -8 (-15 -2788 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2788 ($ (-584 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2788 ($ (-584 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2775 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2775 ($ (-1 (-179) (-179)))) (-15 -2788 ($ $ (-1001 (-179)))) (-15 -2774 ((-85) $)) (-15 -3871 ($ $ (-1001 (-179)))) (-15 -3871 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3132 ($ $ (-1001 (-179)))) (-15 -3132 ($ $)) (-15 -2787 ((-1001 (-179)) $)) (-15 -2773 ((-484))) (-15 -2772 ((-484) (-484))) (-15 -2771 ((-484))) (-15 -2770 ((-484) (-484))) (-15 -2769 ((-484))) (-15 -2768 ((-484) (-484))) (-15 -2767 ((-85))) (-15 -2766 ((-85) (-85))) (-15 -2765 ((-484))) (-15 -2764 ((-85) (-85)))))) (T -837)) -((-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2789 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2775 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3871 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3132 (*1 *1 *1) (-5 *1 (-837))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-2773 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2771 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2769 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2767 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2765 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -((-2775 (((-837) |#1| (-1089)) 17 T ELT) (((-837) |#1| (-1089) (-1001 (-179))) 21 T ELT)) (-2788 (((-837) |#1| |#1| (-1089) (-1001 (-179))) 19 T ELT) (((-837) |#1| (-1089) (-1001 (-179))) 15 T ELT))) -(((-838 |#1|) (-10 -7 (-15 -2788 ((-837) |#1| (-1089) (-1001 (-179)))) (-15 -2788 ((-837) |#1| |#1| (-1089) (-1001 (-179)))) (-15 -2775 ((-837) |#1| (-1089) (-1001 (-179)))) (-15 -2775 ((-837) |#1| (-1089)))) (-554 (-473))) (T -838)) -((-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2788 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473)))))) -((-3871 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2894 (((-1001 (-179)) $) 64 T ELT)) (-2895 (((-1001 (-179)) $) 63 T ELT)) (-2896 (((-1001 (-179)) $) 62 T ELT)) (-2786 (((-584 (-584 (-179))) $) 69 T ELT)) (-2787 (((-1001 (-179)) $) 65 T ELT)) (-2780 (((-484) (-484)) 57 T ELT)) (-2784 (((-484) (-484)) 52 T ELT)) (-2782 (((-484) (-484)) 55 T ELT)) (-2778 (((-85) (-85)) 59 T ELT)) (-2781 (((-484)) 56 T ELT)) (-3132 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2789 (($ (-1 (-855 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2788 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2777 (((-484)) 60 T ELT)) (-2785 (((-484)) 50 T ELT)) (-2783 (((-484)) 53 T ELT)) (-2897 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2776 (((-85) (-85)) 61 T ELT)) (-3943 (((-773) $) 155 T ELT)) (-2779 (((-85)) 58 T ELT))) -(((-839) (-13 (-888) (-10 -8 (-15 -2789 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2788 ($ $ (-1001 (-179)))) (-15 -3871 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3132 ($ $ (-1001 (-179)))) (-15 -3132 ($ $)) (-15 -2787 ((-1001 (-179)) $)) (-15 -2786 ((-584 (-584 (-179))) $)) (-15 -2785 ((-484))) (-15 -2784 ((-484) (-484))) (-15 -2783 ((-484))) (-15 -2782 ((-484) (-484))) (-15 -2781 ((-484))) (-15 -2780 ((-484) (-484))) (-15 -2779 ((-85))) (-15 -2778 ((-85) (-85))) (-15 -2777 ((-484))) (-15 -2776 ((-85) (-85)))))) (T -839)) -((-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2789 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2788 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2788 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3871 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3132 (*1 *1 *1) (-5 *1 (-839))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2785 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2783 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2781 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2779 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2777 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -((-2790 (((-584 (-1001 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT))) -(((-840) (-10 -7 (-15 -2790 ((-584 (-1001 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840)) -((-2790 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1001 (-179)))) (-5 *1 (-840))))) -((-2792 (((-264 (-484)) (-1089)) 16 T ELT)) (-2793 (((-264 (-484)) (-1089)) 14 T ELT)) (-3949 (((-264 (-484)) (-1089)) 12 T ELT)) (-2791 (((-264 (-484)) (-1089) (-444)) 19 T ELT))) -(((-841) (-10 -7 (-15 -2791 ((-264 (-484)) (-1089) (-444))) (-15 -3949 ((-264 (-484)) (-1089))) (-15 -2792 ((-264 (-484)) (-1089))) (-15 -2793 ((-264 (-484)) (-1089))))) (T -841)) -((-2793 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-444)) (-5 *2 (-264 (-484))) (-5 *1 (-841))))) -((-2792 ((|#2| |#2|) 28 T ELT)) (-2793 ((|#2| |#2|) 29 T ELT)) (-3949 ((|#2| |#2|) 27 T ELT)) (-2791 ((|#2| |#2| (-444)) 26 T ELT))) -(((-842 |#1| |#2|) (-10 -7 (-15 -2791 (|#2| |#2| (-444))) (-15 -3949 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -2793 (|#2| |#2|))) (-1013) (-361 |#1|)) (T -842)) -((-2793 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *3 (-444)) (-4 *4 (-1013)) (-5 *1 (-842 *4 *2)) (-4 *2 (-361 *4))))) -((-2795 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2794 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2795 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-797 |#1|) (-13 (-1013) (-951 |#2|))) (T -843)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) -((-2795 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT))) -(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-13 (-495) (-797 |#1|)) (-13 (-361 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-361 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-495) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))) -((-2795 (((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|)) 13 T ELT))) -(((-845 |#1|) (-10 -7 (-15 -2795 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|)))) (-483)) (T -845)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-484) *3)) (-5 *4 (-801 (-484))) (-4 *3 (-483)) (-5 *1 (-845 *3))))) -((-2795 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT))) -(((-846 |#1| |#2|) (-10 -7 (-15 -2795 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1013) (-13 (-1013) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6))))) -((-2795 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT))) -(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1013) (-797 |#1|) (-609 |#2|)) (T -847)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))) -((-2795 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT))) -(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2795 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2795 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1013) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2795 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))) -((-3207 (((-264 (-484)) (-1089) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-264 (-484)) (-1089) (-1 (-85) |#1|)) 15 T ELT))) -(((-849 |#1|) (-10 -7 (-15 -3207 ((-264 (-484)) (-1089) (-1 (-85) |#1|))) (-15 -3207 ((-264 (-484)) (-1089) (-584 (-1 (-85) |#1|))))) (-1128)) (T -849)) -((-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-5 *2 (-264 (-484))) (-5 *1 (-849 *5)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) (-5 *2 (-264 (-484))) (-5 *1 (-849 *5))))) -((-3207 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3207 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3207 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1013) (-361 |#1|) (-1128)) (T -850)) -((-3207 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4))))) -((-2795 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT))) -(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-13 (-495) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-495) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3))))) -((-2795 (((-799 |#1| (-1089)) (-1089) (-801 |#1|) (-799 |#1| (-1089))) 18 T ELT))) -(((-852 |#1|) (-10 -7 (-15 -2795 ((-799 |#1| (-1089)) (-1089) (-801 |#1|) (-799 |#1| (-1089))))) (-1013)) (T -852)) -((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *1 (-852 *5))))) -((-2796 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2795 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT))) -(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2796 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1013) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853)) -((-2796 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2795 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) -((-2804 (((-1084 (-347 (-484))) (-484)) 80 T ELT)) (-2803 (((-1084 (-484)) (-484)) 83 T ELT)) (-3331 (((-1084 (-484)) (-484)) 77 T ELT)) (-2802 (((-484) (-1084 (-484))) 73 T ELT)) (-2801 (((-1084 (-347 (-484))) (-484)) 66 T ELT)) (-2800 (((-1084 (-484)) (-484)) 49 T ELT)) (-2799 (((-1084 (-484)) (-484)) 85 T ELT)) (-2798 (((-1084 (-484)) (-484)) 84 T ELT)) (-2797 (((-1084 (-347 (-484))) (-484)) 68 T ELT))) -(((-854) (-10 -7 (-15 -2797 ((-1084 (-347 (-484))) (-484))) (-15 -2798 ((-1084 (-484)) (-484))) (-15 -2799 ((-1084 (-484)) (-484))) (-15 -2800 ((-1084 (-484)) (-484))) (-15 -2801 ((-1084 (-347 (-484))) (-484))) (-15 -2802 ((-484) (-1084 (-484)))) (-15 -3331 ((-1084 (-484)) (-484))) (-15 -2803 ((-1084 (-484)) (-484))) (-15 -2804 ((-1084 (-347 (-484))) (-484))))) (T -854)) -((-2804 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-3331 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-854)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-3703 (($ (-584 |#1|)) 9 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3832 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3830 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-584 |#1|)) 25 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3908 (((-831) $) 13 T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3831 (($ $ $) 23 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3527 (($ (-584 |#1|)) NIL T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3834 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3954 (((-695) $) 11 (|has| $ (-6 -3992)) ELT))) -(((-855 |#1|) (-894 |#1|) (-962)) (T -855)) -NIL -((-2807 (((-418 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2810 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2808 (((-858 |#2|) (-418 |#1| |#2|)) 27 T ELT)) (-2806 (((-206 |#1| |#2|) (-418 |#1| |#2|)) 57 T ELT)) (-2809 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2805 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) -(((-856 |#1| |#2|) (-10 -7 (-15 -2805 ((-418 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2806 ((-206 |#1| |#2|) (-418 |#1| |#2|))) (-15 -2807 ((-418 |#1| |#2|) (-858 |#2|))) (-15 -2808 ((-858 |#2|) (-418 |#1| |#2|))) (-15 -2809 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2810 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1089)) (-962)) (T -856)) -((-2810 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5))))) -((-2811 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2814 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2812 (((-584 |#2|) |#2|) 11 T ELT)) (-2815 (((-695) (-584 |#1|) (-484) (-484)) 45 (|has| |#1| (-756)) ELT)) (-2813 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT))) -(((-857 |#1| |#2|) (-10 -7 (-15 -2811 ((-584 |#2|) |#2| |#2|)) (-15 -2812 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2813 (|#1| |#2|)) (-15 -2814 ((-695) (-584 |#1|))) (-15 -2815 ((-695) (-584 |#1|) (-484) (-484)))) |%noBranch|)) (-311) (-1154 |#1|)) (T -857)) -((-2815 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-484)) (-4 *5 (-756)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1154 *5)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1154 *4)))) (-2813 (*1 *2 *3) (-12 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1154 *2)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1154 *4)))) (-2811 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-1089)) $) 16 T ELT)) (-3082 (((-1084 $) $ (-1089)) 21 T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1089))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-1089) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-1089) $) NIL T ELT)) (-3753 (($ $ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-1089)) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1089) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1089) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#1|) (-1089)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-1089)) NIL T ELT)) (-2819 (((-469 (-1089)) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT) (((-584 (-695)) $ (-584 (-1089))) NIL T ELT)) (-1623 (($ (-1 (-469 (-1089)) (-469 (-1089))) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3081 (((-3 (-1089) #1#) $) 19 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-1089)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3809 (($ $ (-1089)) 29 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1089) |#1|) NIL T ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL T ELT) (($ $ (-1089) $) NIL T ELT) (($ $ (-584 (-1089)) (-584 $)) NIL T ELT)) (-3754 (($ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3945 (((-469 (-1089)) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT) (((-584 (-695)) $ (-584 (-1089))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-1089) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1089) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1089) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1089)) 27 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-858 |#1|) (-13 (-862 |#1| (-469 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1089))) |%noBranch|))) (-962)) (T -858)) -((-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962))))) -((-3955 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT))) -(((-859 |#1| |#2|) (-10 -7 (-15 -3955 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))) -((-3082 (((-1147 |#1| (-858 |#2|)) (-858 |#2|) (-1175 |#1|)) 18 T ELT))) -(((-860 |#1| |#2|) (-10 -7 (-15 -3082 ((-1147 |#1| (-858 |#2|)) (-858 |#2|) (-1175 |#1|)))) (-1089) (-962)) (T -860)) -((-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-962)) (-5 *2 (-1147 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))) -((-2818 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3772 (($ $) 214 T ELT)) (-3968 (((-345 $) $) 206 T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 141 T ELT)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3753 (($ $ $ |#4|) 95 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3500 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2817 (((-584 $) $) 77 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 240 T ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 233 T ELT)) (-2820 (((-584 $) $) 34 T ELT)) (-2892 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#4|) 203 T ELT)) (-2822 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2821 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#4|) (|:| -2400 (-695))) #1#) $) 57 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 134 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 147 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 145 T ELT)) (-3729 (((-345 $) $) 165 T ELT)) (-3765 (($ $ (-584 (-248 $))) 24 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3754 (($ $ |#4|) 97 T ELT)) (-3969 (((-801 (-327)) $) 254 T ELT) (((-801 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2816 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 185 T ELT)) (-3674 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2701 (((-633 $) $) 195 T ELT)) (-1263 (((-85) $ $) 227 T ELT))) -(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3968 ((-345 |#1|) |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -2701 ((-633 |#1|) |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -2795 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -2795 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -2705 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-3 (-584 (-1084 |#1|)) #1="failed") (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2702 ((-3 (-1178 |#1|) #1#) (-631 |#1|))) (-15 -3500 (|#1| |#1| |#4|)) (-15 -2816 (|#1| |#1| |#4|)) (-15 -3754 (|#1| |#1| |#4|)) (-15 -3753 (|#1| |#1| |#1| |#4|)) (-15 -2817 ((-584 |#1|) |#1|)) (-15 -2818 ((-695) |#1| (-584 |#4|))) (-15 -2818 ((-695) |#1|)) (-15 -2823 ((-3 (-2 (|:| |var| |#4|) (|:| -2400 (-695))) #1#) |#1|)) (-15 -2822 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2821 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2892 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2892 (|#1| |#1| |#4| (-695))) (-15 -3760 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -2820 ((-584 |#1|) |#1|)) (-15 -3674 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3674 (|#1| |#1| |#4| (-695))) (-15 -2278 ((-631 |#2|) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -3155 ((-3 |#4| #1#) |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -3765 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#4| |#1|)) (-15 -3765 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3765 (|#1| |#1| |#4| |#2|)) (-15 -3765 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#1| |#1|)) (-15 -3765 (|#1| |#1| (-248 |#1|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -2892 (|#1| |#2| |#3|)) (-15 -3674 (|#2| |#1| |#3|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 |#3|) $) 121 T ELT)) (-3082 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3772 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT)) (-3154 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT)) (-3753 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3956 (($ $) 169 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3500 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) 120 T ELT)) (-3720 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| |#2| $) 187 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2419 (((-695) $) 184 T ELT)) (-3083 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2820 (((-584 $) $) 137 T ELT)) (-3934 (((-85) $) 167 T ELT)) (-2892 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 131 T ELT)) (-2819 ((|#2| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3081 (((-3 |#3| "failed") $) 134 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2893 (($ $) 164 T ELT)) (-3172 ((|#1| $) 163 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2822 (((-3 (-584 $) "failed") $) 125 T ELT)) (-2821 (((-3 (-584 $) "failed") $) 126 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-695))) "failed") $) 124 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT)) (-3754 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3945 ((|#2| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT)) (-3969 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2561 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ $) 96 (|has| |#1| (-495)) ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3814 (((-584 |#1|) $) 183 T ELT)) (-3674 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2701 (((-633 $) $) 90 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862)) -((-3500 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3945 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3945 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3674 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3674 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3082 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1084 *3)))) (-3081 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2819 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3760 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3083 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3083 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-695)))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3753 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3754 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2816 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-389)))) (-3500 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-389)))) (-3772 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3968 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-345 *1)) (-4 *1 (-862 *3 *4 *5))))) -(-13 (-810 |t#3|) (-276 |t#1| |t#2|) (-259 $) (-453 |t#3| |t#1|) (-453 |t#3| $) (-951 |t#3|) (-326 |t#1|) (-10 -8 (-15 -3945 ((-695) $ |t#3|)) (-15 -3945 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3674 ($ $ |t#3| (-695))) (-15 -3674 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2820 ((-584 $) $)) (-15 -3082 ((-1084 $) $ |t#3|)) (-15 -3082 ((-1084 |t#1|) $)) (-15 -3081 ((-3 |t#3| "failed") $)) (-15 -2819 ((-695) $ |t#3|)) (-15 -2819 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3760 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |t#3|)) (-15 -2892 ($ $ |t#3| (-695))) (-15 -2892 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3083 ($ (-1084 |t#1|) |t#3|)) (-15 -3083 ($ (-1084 $) |t#3|)) (-15 -2821 ((-3 (-584 $) "failed") $)) (-15 -2822 ((-3 (-584 $) "failed") $)) (-15 -2823 ((-3 (-2 (|:| |var| |t#3|) (|:| -2400 (-695))) "failed") $)) (-15 -2818 ((-695) $)) (-15 -2818 ((-695) $ (-584 |t#3|))) (-15 -3080 ((-584 |t#3|) $)) (-15 -2817 ((-584 $) $)) (IF (|has| |t#1| (-554 (-473))) (IF (|has| |t#3| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-484)))) (IF (|has| |t#3| (-554 (-801 (-484)))) (-6 (-554 (-801 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-327)))) (IF (|has| |t#3| (-554 (-801 (-327)))) (-6 (-554 (-801 (-327)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-484))) (IF (|has| |t#3| (-797 (-484))) (-6 (-797 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-327))) (IF (|has| |t#3| (-797 (-327))) (-6 (-797 (-327))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3753 ($ $ $ |t#3|)) (-15 -3754 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-6 (-389)) (-15 -2816 ($ $ |t#3|)) (-15 -3500 ($ $)) (-15 -3500 ($ $ |t#3|)) (-15 -3968 ((-345 $) $)) (-15 -3772 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822))) -((-3080 (((-584 |#2|) |#5|) 40 T ELT)) (-3082 (((-1084 |#5|) |#5| |#2| (-1084 |#5|)) 23 T ELT) (((-347 (-1084 |#5|)) |#5| |#2|) 16 T ELT)) (-3083 ((|#5| (-347 (-1084 |#5|)) |#2|) 30 T ELT)) (-3081 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2822 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2824 (((-3 (-2 (|:| |val| |#5|) (|:| -2400 (-484))) #1#) |#5|) 53 T ELT)) (-2821 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-484))) #1#) |#5|) 56 T ELT))) -(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3080 ((-584 |#2|) |#5|)) (-15 -3081 ((-3 |#2| #1="failed") |#5|)) (-15 -3082 ((-347 (-1084 |#5|)) |#5| |#2|)) (-15 -3083 (|#5| (-347 (-1084 |#5|)) |#2|)) (-15 -3082 ((-1084 |#5|) |#5| |#2| (-1084 |#5|))) (-15 -2821 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2822 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2823 ((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-484))) #1#) |#5|)) (-15 -2824 ((-3 (-2 (|:| |val| |#5|) (|:| -2400 (-484))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3943 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -863)) -((-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2400 (-484)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-484)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-2821 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-3082 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1084 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3082 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-347 (-1084 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) (-3081 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *6)) (-15 -2997 (*6 $)) (-15 -2996 (*6 $))))))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-3955 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3955 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864)) -((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))) -((-2825 (((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2826 (((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) (-347 (-484)) (-695)) 43 T ELT)) (-2828 (((-2 (|:| -2400 (-695)) (|:| -3951 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2827 (((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-389)) ELT))) -(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2825 ((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2826 ((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) (-347 (-484)) (-695))) (IF (|has| |#3| (-389)) (-15 -2827 ((-2 (|:| -2400 (-695)) (|:| -3951 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2828 ((-2 (|:| -2400 (-695)) (|:| -3951 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3943 ($ |#4|)) (-15 -2997 (|#4| $)) (-15 -2996 (|#4| $))))) (T -865)) -((-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3943 ($ *3)) (-15 -2997 (*3 $)) (-15 -2996 (*3 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *7 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3943 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-484))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-311) (-10 -8 (-15 -3943 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $))))))) (-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-495)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2829 (($ (-1033)) 8 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 11 T ELT))) -(((-866) (-13 (-1013) (-553 (-1033)) (-10 -8 (-15 -2829 ($ (-1033)))))) (T -866)) -((-2829 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-866))))) -((-2895 (((-1001 (-179)) $) 8 T ELT)) (-2896 (((-1001 (-179)) $) 9 T ELT)) (-2897 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3943 (((-773) $) 6 T ELT))) -(((-867) (-113)) (T -867)) -((-2897 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179)))))) -(-13 (-553 (-773)) (-10 -8 (-15 -2897 ((-584 (-584 (-855 (-179)))) $)) (-15 -2896 ((-1001 (-179)) $)) (-15 -2895 ((-1001 (-179)) $)))) -(((-553 (-773)) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) 32 T ELT)) (-3464 (((-3 $ #1#) $) 43 T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| |#2| $) 64 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) 18 T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| |#2|) NIL T ELT)) (-2819 ((|#2| $) 25 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2893 (($ $) 29 T ELT)) (-3172 ((|#1| $) 27 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 52 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3735 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3463 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3945 ((|#2| $) 23 T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ |#2|) 38 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 15 T CONST)) (-1621 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-2659 (($) 28 T CONST)) (-2665 (($) 12 T CONST)) (-3055 (((-85) $ $) 85 T ELT)) (-3946 (($ $ |#1|) 93 (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-868 |#1| |#2|) (-13 (-276 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3735 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|))) (-962) (-717)) (T -868)) -((-3735 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-962)) (-4 *2 (-717))))) -((-2830 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT))) -(((-869 |#1| |#2|) (-10 -7 (-15 -2830 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-495) (-601 |#1|)) (T -869)) -((-2830 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-495)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 20 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 17 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) |#1|) 16 T ELT)) (-2199 (((-484) $) 11 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) 21 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) 13 T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 22 T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 15 T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (((-695) $) 8 (|has| $ (-6 -3992)) ELT))) -(((-870 |#1|) (-19 |#1|) (-1128)) (T -870)) -NIL -((-3838 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3839 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3955 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT))) -(((-871 |#1| |#2|) (-10 -7 (-15 -3838 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3839 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3955 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1128) (-1128)) (T -871)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-871 *5 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))) -((-2831 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT))) -(((-872) (-113)) (T -872)) -((-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-872)))) (-2831 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1089))))) -(-13 (-10 -8 (-15 -2831 ($ $ (-1089))) (-15 -2831 ($ $ (-1004 $))))) -((-2832 (((-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)) (-1089)) 26 T ELT) (((-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-858 |#1|) (-1089) (-858 |#1|) (-1089)) 49 T ELT))) -(((-873 |#1|) (-10 -7 (-15 -2832 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-858 |#1|) (-1089) (-858 |#1|) (-1089))) (-15 -2832 ((-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2832 ((-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)) (-1089)))) (-13 (-311) (-120))) (T -873)) -((-2832 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 *6))) (|:| |prim| (-1084 *6)))) (-5 *1 (-873 *6)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-873 *5)))) (-2832 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) (-5 *1 (-873 *5))))) -((-2835 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3720 (((-85) |#1|) 44 T ELT)) (-2834 ((|#1| |#1|) 80 T ELT)) (-2833 ((|#1| |#1|) 79 T ELT))) -(((-874 |#1|) (-10 -7 (-15 -3720 ((-85) |#1|)) (-15 -2833 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2835 ((-584 |#1|) |#1| |#1|))) (-483)) (T -874)) -((-2835 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-483)))) (-2834 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))) (-2833 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))) (-3720 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-483))))) -((-2836 (((-1184) (-773)) 9 T ELT))) -(((-875) (-10 -7 (-15 -2836 ((-1184) (-773))))) (T -875)) -((-2836 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-875))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2482 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1310 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3134 (((-695)) 36 (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-2837 ((|#2| $) 22 T ELT)) (-2838 ((|#1| $) 21 T ELT)) (-3721 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3464 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2993 (($) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3184 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-2409 (((-85) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2839 (($ |#1| |#2|) 20 T ELT)) (-2009 (((-831) $) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 39 (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2399 (($ (-831)) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3008 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2434 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3943 (((-773) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2665 (($) 25 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3055 (((-85) $ $) 19 T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2684 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3946 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3834 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3836 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT))) -(((-876 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-410)) (IF (|has| |#2| (-410)) (-6 (-410)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2839 ($ |#1| |#2|)) (-15 -2838 (|#1| $)) (-15 -2837 (|#2| $)))) (-1013) (-1013)) (T -876)) -((-2839 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2838 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1013)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1013))))) -((-3399 (((-1015) $) 13 T ELT)) (-2840 (($ (-444) (-1015)) 15 T ELT)) (-3539 (((-444) $) 11 T ELT)) (-3943 (((-773) $) 25 T ELT))) -(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3539 ((-444) $)) (-15 -3399 ((-1015) $)) (-15 -2840 ($ (-444) (-1015)))))) (T -877)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-877)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-877)))) (-2840 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-877))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 29 T ELT)) (-2854 (($) 17 T CONST)) (-2560 (($ $ $) NIL T ELT)) (-2559 (($ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2845 (((-633 (-783 $ $)) $) 62 T ELT)) (-2847 (((-633 $) $) 52 T ELT)) (-2844 (((-633 (-783 $ $)) $) 63 T ELT)) (-2843 (((-633 (-783 $ $)) $) 64 T ELT)) (-2848 (((-633 |#1|) $) 43 T ELT)) (-2846 (((-633 (-783 $ $)) $) 61 T ELT)) (-2852 (($ $ $) 38 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2853 (($) 16 T CONST)) (-2851 (($ $ $) 39 T ELT)) (-2841 (($ $ $) 36 T ELT)) (-2842 (($ $ $) 34 T ELT)) (-3943 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2310 (($ $ $) 37 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 35 T ELT))) -(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2848 ((-633 |#1|) $)) (-15 -2847 ((-633 $) $)) (-15 -2846 ((-633 (-783 $ $)) $)) (-15 -2845 ((-633 (-783 $ $)) $)) (-15 -2844 ((-633 (-783 $ $)) $)) (-15 -2843 ((-633 (-783 $ $)) $)) (-15 -2842 ($ $ $)) (-15 -2841 ($ $ $)))) (-1013)) (T -878)) -((-2848 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2842 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013)))) (-2841 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013))))) -((-3646 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2850 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2849 (((-1009 |#1|) (-878 |#1|)) 41 T ELT))) -(((-879 |#1|) (-13 (-1128) (-10 -7 (-15 -2850 ((-878 |#1|) (-878 |#1|))) (-15 -2849 ((-1009 |#1|) (-878 |#1|))) (-15 -3646 ((-878 |#1|) (-878 |#1|))))) (-1013)) (T -879)) -((-2850 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-879 *4)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3))))) -((-3955 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT))) -(((-880 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3955 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1013) (-1013)) (T -880)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))) -((-2567 (((-85) $ $) 19 T ELT)) (-2312 (($ $) 8 T ELT)) (-2854 (($) 17 T CONST)) (-2560 (($ $ $) 9 T ELT)) (-2559 (($ $) 11 T ELT)) (-3240 (((-1072) $) 23 T ELT)) (-2852 (($ $ $) 15 T ELT)) (-3241 (((-1033) $) 22 T ELT)) (-2853 (($) 16 T CONST)) (-2851 (($ $ $) 14 T ELT)) (-3943 (((-773) $) 21 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-2561 (($ $ $) 10 T ELT)) (-2310 (($ $ $) 6 T ELT)) (-3055 (((-85) $ $) 18 T ELT)) (-2311 (($ $ $) 7 T ELT))) -(((-881) (-113)) (T -881)) -((-2854 (*1 *1) (-4 *1 (-881))) (-2853 (*1 *1) (-4 *1 (-881))) (-2852 (*1 *1 *1 *1) (-4 *1 (-881))) (-2851 (*1 *1 *1 *1) (-4 *1 (-881)))) -(-13 (-84) (-1013) (-10 -8 (-15 -2854 ($) -3949) (-15 -2853 ($) -3949) (-15 -2852 ($ $ $)) (-15 -2851 ($ $ $)))) -(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3721 (($) 7 T CONST)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2855 (($ $ $) 47 T ELT)) (-3515 (($ $ $) 48 T ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2856 ((|#1| $) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-882 |#1|) (-113) (-757)) (T -882)) -((-2856 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3515 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2855 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3992) (-15 -2856 (|t#1| $)) (-15 -3515 ($ $ $)) (-15 -2855 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3142 |#2|)) |#2| |#2|) 105 T ELT)) (-3752 ((|#2| |#2| |#2|) 103 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| -3142 |#2|)) |#2| |#2|) 107 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| -3142 |#2|)) |#2| |#2|) 109 T ELT)) (-2877 (((-2 (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|) 132 (|has| |#1| (-389)) ELT)) (-2884 (((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|) 56 T ELT)) (-2858 (((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|) 80 T ELT)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| -3753 |#1|)) |#2| |#2|) 82 T ELT)) (-2867 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2|) 121 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2874 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2882 ((|#1| |#2| |#2|) 50 T ELT)) (-2876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|) 130 (|has| |#1| (-389)) ELT)) (-2875 ((|#1| |#2| |#2|) 128 (|has| |#1| (-389)) ELT)) (-2883 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|) 54 T ELT)) (-2857 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|) 79 T ELT)) (-3753 ((|#1| |#2| |#2|) 76 T ELT)) (-3749 (((-2 (|:| -3951 |#1|) (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|) 41 T ELT)) (-2881 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3188 ((|#2| |#2| |#2|) 93 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2860 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3142 ((|#2| |#2| |#2|) 136 (|has| |#1| (-389)) ELT)) (-3463 (((-1178 |#2|) (-1178 |#2|) |#1|) 22 T ELT)) (-2878 (((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|) 46 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2|) 119 T ELT)) (-3754 ((|#1| |#2|) 116 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2863 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2873 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2880 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2879 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1178 |#2|) |#1| (-1178 |#2|)) 17 T ELT))) -(((-883 |#1| |#2|) (-10 -7 (-15 -3753 (|#1| |#2| |#2|)) (-15 -2857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| -3753 |#1|)) |#2| |#2|)) (-15 -2860 (|#2| |#2| |#2| (-695))) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2863 (|#2| |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3188 (|#2| |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3142 |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| -3142 |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| -3142 |#2|)) |#2| |#2|)) (-15 -3754 (|#1| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2|)) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| -3754 |#1|)) |#2|)) (-15 -2873 ((-584 |#2|) |#2| |#2|)) (-15 -2874 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-389)) (PROGN (-15 -2875 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef2| |#2|) (|:| -2875 |#1|)) |#2| |#2|)) (-15 -3142 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1178 |#2|) |#1| (-1178 |#2|))) (-15 -3463 ((-1178 |#2|) (-1178 |#2|) |#1|)) (-15 -3749 ((-2 (|:| -3951 |#1|) (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|)) (-15 -2878 ((-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) |#2| |#2|)) (-15 -2879 (|#1| |#1| |#1| (-695))) (-15 -2880 (|#2| |#2| |#1| |#1| (-695))) (-15 -2881 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2882 (|#1| |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2| |#2|))) (-495) (-1154 |#1|)) (T -883)) -((-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2881 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2880 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2879 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-495)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1154 *2)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3749 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3951 *4) (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-883 *3 *4)))) (-3142 (*1 *2 *2 *2) (-12 (-4 *3 (-389)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-389)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3754 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3142 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3142 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3142 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3752 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3188 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2863 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2861 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2860 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2857 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3316 (((-1129) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 11 T ELT)) (-3943 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-884) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $)) (-15 -3316 ((-1129) $))))) (T -884)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-884)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-884))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 40 T ELT)) (-1310 (((-3 $ "failed") $ $) 54 T ELT)) (-3721 (($) NIL T CONST)) (-2886 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3184 (((-85) $) NIL T ELT)) (-2885 (((-831) $) 91 T ELT)) (-2888 (((-584 (-831)) $) 17 T ELT)) (-2887 (((-1068 $) (-695)) 39 T ELT)) (-2889 (($ (-584 (-831))) 16 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3008 (($ $) 67 T ELT)) (-3943 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 10 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 44 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 42 T ELT)) (-3836 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3954 (((-695) $) 22 T ELT))) -(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2889 ($ (-584 (-831)))) (-15 -2888 ((-584 (-831)) $)) (-15 -3954 ((-695) $)) (-15 -2887 ((-1068 $) (-695))) (-15 -2886 ((-584 (-783 (-831) (-831))) $)) (-15 -2885 ((-831) $)) (-15 -3008 ($ $))))) (T -885)) -((-2889 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1068 (-885))) (-5 *1 (-885)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3008 (*1 *1 *1) (-5 *1 (-885)))) -((-3946 (($ $ |#2|) 31 T ELT)) (-3834 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-347 (-484)) $) 27 T ELT) (($ $ (-347 (-484))) 29 T ELT))) -(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3946 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 |#3|) $) 93 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2891 (((-85) $) 92 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| |#2|) 79 T ELT) (($ $ |#3| |#2|) 95 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3945 ((|#2| $) 82 T ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3674 ((|#1| $ |#2|) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887)) -((-3172 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2892 ($ $ |t#3| |t#2|)) (-15 -2892 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2893 ($ $)) (-15 -3172 (|t#1| $)) (-15 -3945 (|t#2| $)) (-15 -3080 ((-584 |t#3|) $)) (-15 -2891 ((-85) $)) (-15 -2890 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2894 (((-1001 (-179)) $) 8 T ELT)) (-2895 (((-1001 (-179)) $) 9 T ELT)) (-2896 (((-1001 (-179)) $) 10 T ELT)) (-2897 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3943 (((-773) $) 6 T ELT))) -(((-888) (-113)) (T -888)) -((-2897 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179)))))) -(-13 (-553 (-773)) (-10 -8 (-15 -2897 ((-584 (-584 (-855 (-179)))) $)) (-15 -2896 ((-1001 (-179)) $)) (-15 -2895 ((-1001 (-179)) $)) (-15 -2894 ((-1001 (-179)) $)))) -(((-553 (-773)) . T)) -((-3080 (((-584 |#4|) $) 23 T ELT)) (-2907 (((-85) $) 55 T ELT)) (-2898 (((-85) $) 54 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2903 (((-85) $) 56 T ELT)) (-2905 (((-85) $ $) 62 T ELT)) (-2904 (((-85) $ $) 65 T ELT)) (-2906 (((-85) $) 60 T ELT)) (-2899 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2900 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2901 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2913 (((-584 |#4|) $) 27 T ELT)) (-2912 (((-85) |#4| $) 34 T ELT)) (-2902 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2909 (($ $ |#4|) 39 T ELT)) (-2911 (($ $ |#4|) 38 T ELT)) (-2910 (($ $ |#4|) 40 T ELT)) (-3055 (((-85) $ $) 46 T ELT))) -(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2898 ((-85) |#1|)) (-15 -2899 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2900 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2901 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2902 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2903 ((-85) |#1|)) (-15 -2904 ((-85) |#1| |#1|)) (-15 -2905 ((-85) |#1| |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-2 (|:| |under| |#1|) (|:| -3128 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2909 (|#1| |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 ((-85) |#4| |#1|)) (-15 -2913 ((-584 |#4|) |#1|)) (-15 -3080 ((-584 |#4|) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -889)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -890)) -((-3155 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-757)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2912 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3128 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2901 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2900 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2899 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) -(-13 (-1013) (-124 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-6 -3992) (-15 -3155 ((-3 $ "failed") (-584 |t#4|))) (-15 -3154 ($ (-584 |t#4|))) (-15 -3178 (|t#3| $)) (-15 -3080 ((-584 |t#3|) $)) (-15 -2913 ((-584 |t#3|) $)) (-15 -2912 ((-85) |t#3| $)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ($ $ |t#3|)) (-15 -2908 ((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |t#3|)) (-15 -2907 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2906 ((-85) $)) (-15 -2905 ((-85) $ $)) (-15 -2904 ((-85) $ $)) (-15 -2903 ((-85) $)) (-15 -2902 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2901 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2900 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2899 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2898 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2915 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-389)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-389)) ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2924 (((-85) |#4|) 43 T ELT)) (-2937 (((-584 |#4|) |#4|) 120 (|has| |#1| (-389)) ELT)) (-2920 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2921 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2922 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2933 (((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3321 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2935 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2936 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2914 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2930 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2931 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2939 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-389)) ELT)) (-2941 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-389)) ELT)) (-2940 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-389)) ELT)) (-2916 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2944 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2923 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2919 (((-85) (-584 |#4|)) 79 T ELT)) (-2918 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2927 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2926 (((-85) |#4|) 36 T ELT)) (-2943 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2942 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2932 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2934 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2917 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2929 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2928 (((-85) |#4|) 45 T ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2916 ((-584 |#4|) (-584 |#4|))) (-15 -2916 ((-584 |#4|) |#4| |#4|)) (-15 -2914 ((-584 |#4|) (-584 |#4|))) (-15 -2915 ((-584 |#4|) |#4| |#4|)) (-15 -2916 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2916 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2916 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2917 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2918 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2919 ((-85) (-584 |#4|))) (-15 -2920 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2924 ((-85) |#4|)) (-15 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2926 ((-85) |#4|)) (-15 -2927 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2930 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2930 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2931 (|#4| |#4| (-584 |#4|))) (-15 -2932 ((-584 |#4|) (-584 |#4|))) (-15 -2933 ((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3321 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2934 ((-584 |#4|) (-584 |#4|))) (-15 -2935 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2936 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-389)) (PROGN (-15 -2937 ((-584 |#4|) |#4|)) (-15 -2938 ((-584 |#4|) (-584 |#4|))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2939 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2940 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2941 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (PROGN (-15 -2942 ((-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|))) (-15 -2944 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -891)) -((-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2936 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2935 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2933 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3321 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2931 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2930 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2917 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2916 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2916 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2915 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) -((-2945 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2947 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)) 45 T ELT)) (-2946 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-892 |#1|) (-10 -7 (-15 -2945 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2946 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2947 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)))) (-311)) (T -892)) -((-2947 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)))) (-2946 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-892 *5)))) (-2945 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) -((-3968 (((-345 |#4|) |#4|) 61 T ELT))) -(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3968 ((-345 |#4|) |#4|))) (-757) (-718) (-389) (-862 |#3| |#2| |#1|)) (T -893)) -((-3968 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-389)) (-5 *2 (-345 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3835 (($ (-695)) 121 (|has| |#1| (-23)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3993)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-3703 (($ (-584 |#1|)) 127 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3832 (((-631 |#1|) $ $) 114 (|has| |#1| (-962)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3829 ((|#1| $) 111 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3830 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-584 |#1|)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3833 ((|#1| $ $) 115 (|has| |#1| (-962)) ELT)) (-3908 (((-831) $) 126 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3831 (($ $ $) 113 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT) (($ (-584 |#1|)) 128 T ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3834 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-664)) ELT) (($ $ |#1|) 116 (|has| |#1| (-664)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-894 |#1|) (-113) (-962)) (T -894)) -((-3703 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))) -(-13 (-1177 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3703 ($ (-584 |t#1|))) (-15 -3908 ((-831) $)) (-15 -3831 ($ $ $)) (-15 -3766 ($ $ (-584 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T) ((-1177 |#1|) . T)) -((-3955 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT))) -(((-895 |#1| |#2|) (-10 -7 (-15 -3955 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))) -((-2950 ((|#1| (-855 |#1|)) 14 T ELT)) (-2949 ((|#1| (-855 |#1|)) 13 T ELT)) (-2948 ((|#1| (-855 |#1|)) 12 T ELT)) (-2952 ((|#1| (-855 |#1|)) 16 T ELT)) (-2956 ((|#1| (-855 |#1|)) 24 T ELT)) (-2951 ((|#1| (-855 |#1|)) 15 T ELT)) (-2953 ((|#1| (-855 |#1|)) 17 T ELT)) (-2955 ((|#1| (-855 |#1|)) 23 T ELT)) (-2954 ((|#1| (-855 |#1|)) 22 T ELT))) -(((-896 |#1|) (-10 -7 (-15 -2948 (|#1| (-855 |#1|))) (-15 -2949 (|#1| (-855 |#1|))) (-15 -2950 (|#1| (-855 |#1|))) (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|))) (-15 -2956 (|#1| (-855 |#1|)))) (-962)) (T -896)) -((-2956 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -((-2974 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2957 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-897 |#1|) (-113) (-1114)) (T -897)) -((-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2957 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(-13 (-10 -7 (-15 -2957 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)))) -((-2985 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2984 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3955 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2984 (|#4| |#4| |#3|)) (-15 -2984 (|#4| |#4| (-584 |#3|))) (-15 -2985 (|#4| |#4| |#3|)) (-15 -2985 (|#4| |#4| (-584 |#3|))) (-15 -3955 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898)) -((-3955 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1="failed") (-1089)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))) -((-2986 ((|#2| |#3|) 35 T ELT)) (-3916 (((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3915 (((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3915 ((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3916 ((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2986 (|#2| |#3|))) (-298) (-1154 |#1|) (-1154 |#2|) (-662 |#2| |#3|)) (T -899)) -((-2986 (*1 *2 *3) (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-298)) (-4 *5 (-662 *2 *3)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3915 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2011 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3398 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3646 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2990 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2991 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2987 (($ $) 69 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3400 (((-85) $) 70 T ELT)) (-3562 (($) 30 T ELT)) (-2988 ((|#4| $) 74 T ELT)) (-2989 (((-584 |#4|) $) 73 T ELT)) (-3943 (((-773) $) 68 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-900 |#1| |#2| |#3| |#4|) (-13 (-1013) (-553 (-773)) (-10 -8 (-15 -3562 ($)) (-15 -2991 ($ (-584 |#4|) |#4|)) (-15 -3398 ((-3 (-85) #1="failed") $)) (-15 -2990 ($ $ (-3 (-85) #1#))) (-15 -3400 ((-85) $)) (-15 -2989 ((-584 |#4|) $)) (-15 -2988 (|#4| $)) (-15 -2987 ($ $)) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (-15 -3646 ($ $)) |%noBranch|) |%noBranch|))) (-389) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900)) -((-3562 (*1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3398 (*1 *2 *1) (|partial| -12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2990 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3400 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2988 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2987 (*1 *1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3646 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))) -((-2992 (((-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484)))) (-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484))))) 82 T ELT))) -(((-901 |#1| |#2|) (-10 -7 (-15 -2992 ((-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484)))) (-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484))))))) (-584 (-1089)) (-695)) (T -901)) -((-2992 (*1 *2 *2) (-12 (-5 *2 (-900 (-347 (-484)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-347 (-484))))) (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) -((-3267 (((-85) |#5| |#5|) 44 T ELT)) (-3270 (((-85) |#5| |#5|) 59 T ELT)) (-3275 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3271 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3277 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3266 (((-1184)) 32 T ELT)) (-3265 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3276 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3278 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) 92 T ELT)) (-3279 (((-584 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3269 (((-85) |#5| |#5|) 53 T ELT)) (-3274 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3272 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3273 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3696 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3280 (((-3 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3268 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) -(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3265 ((-1184) (-1072) (-1072) (-1072))) (-15 -3266 ((-1184))) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-584 |#5|) (-584 |#5|))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3272 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3273 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3696 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3274 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| (-584 |#5|))) (-15 -3276 ((-584 |#5|) (-584 |#5|))) (-15 -3277 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3278 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-15 -3279 ((-584 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3280 ((-3 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -902)) -((-3280 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3266 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3265 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-3828 (((-1089) $) 15 T ELT)) (-3399 (((-1072) $) 16 T ELT)) (-3224 (($ (-1089) (-1072)) 14 T ELT)) (-3943 (((-773) $) 13 T ELT))) -(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3224 ($ (-1089) (-1072))) (-15 -3828 ((-1089) $)) (-15 -3399 ((-1072) $))))) (T -903)) -((-3224 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-903)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-903)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-903))))) -((-3155 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 72 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-1089) $) 67 T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2993 (($) 105 T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 82 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 91 T ELT)) (-2995 (($ $) 10 T ELT)) (-3442 (((-633 $) $) 27 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3443 (($) 16 T CONST)) (-3126 (($ $) 61 T ELT)) (-3755 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2994 (($ $) 12 T ELT)) (-3969 (((-801 (-484)) $) 77 T ELT) (((-801 (-327)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-327) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1089)) 64 T ELT)) (-3124 (((-695)) 38 T CONST)) (-2684 (((-85) $ $) 57 T ELT))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2684 ((-85) |#1| |#1|)) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3443 (|#1|) -3949) (-15 -3442 ((-633 |#1|) |#1|)) (-15 -3155 ((-3 (-484) #1="failed") |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3969 ((-179) |#1|)) (-15 -3969 ((-327) |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3943 (|#1| (-1089))) (-15 -3155 ((-3 (-1089) #1#) |#1|)) (-15 -3154 ((-1089) |#1|)) (-15 -2993 (|#1|)) (-15 -3126 (|#1| |#1|)) (-15 -2994 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -2795 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -2795 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -2278 ((-631 |#2|) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 (|#1| |#1|)) (-15 -3124 ((-695)) -3949) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-905 |#2|) (-495)) (T -904)) -((-3124 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3127 ((|#1| $) 171 (|has| |#1| (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 162 (|has| |#1| (-822)) ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 165 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3620 (((-484) $) 152 (|has| |#1| (-741)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| #2="failed") $) 201 T ELT) (((-3 (-1089) #2#) $) 160 (|has| |#1| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #2#) $) 143 (|has| |#1| (-951 (-484))) ELT) (((-3 (-484) #2#) $) 141 (|has| |#1| (-951 (-484))) ELT)) (-3154 ((|#1| $) 202 T ELT) (((-1089) $) 161 (|has| |#1| (-951 (-1089))) ELT) (((-347 (-484)) $) 144 (|has| |#1| (-951 (-484))) ELT) (((-484) $) 142 (|has| |#1| (-951 (-484))) ELT)) (-2563 (($ $ $) 69 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2993 (($) 169 (|has| |#1| (-483)) ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-3184 (((-85) $) 154 (|has| |#1| (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 178 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 177 (|has| |#1| (-797 (-327))) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2995 (($ $) 173 T ELT)) (-2997 ((|#1| $) 175 T ELT)) (-3442 (((-633 $) $) 140 (|has| |#1| (-1065)) ELT)) (-3185 (((-85) $) 153 (|has| |#1| (-741)) ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 66 T ELT)) (-2530 (($ $ $) 145 (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) 146 (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 193 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 188 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-631 |#1|) (-1178 $)) 181 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3443 (($) 139 (|has| |#1| (-1065)) CONST)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3126 (($ $) 170 (|has| |#1| (-257)) ELT)) (-3128 ((|#1| $) 167 (|has| |#1| (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 164 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 163 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) 199 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 198 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 197 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 196 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 195 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 194 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) 72 T ELT)) (-3797 (($ $ |#1|) 200 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-3755 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 138 (|has| |#1| (-189)) ELT) (($ $ (-695)) 136 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 134 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 132 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 131 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 130 (|has| |#1| (-812 (-1089))) ELT)) (-2994 (($ $) 172 T ELT)) (-2996 ((|#1| $) 174 T ELT)) (-3969 (((-801 (-484)) $) 180 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 179 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) 157 (|has| |#1| (-554 (-473))) ELT) (((-327) $) 156 (|has| |#1| (-934)) ELT) (((-179) $) 155 (|has| |#1| (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 166 (-2561 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 205 T ELT) (($ (-1089)) 159 (|has| |#1| (-951 (-1089))) ELT)) (-2701 (((-633 $) $) 158 (OR (|has| |#1| (-118)) (-2561 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3124 (((-695)) 38 T CONST)) (-3129 ((|#1| $) 168 (|has| |#1| (-483)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3380 (($ $) 151 (|has| |#1| (-741)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 190 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 189 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-695)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 133 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 129 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 128 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 127 (|has| |#1| (-812 (-1089))) ELT)) (-2565 (((-85) $ $) 147 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 148 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-3946 (($ $ $) 81 T ELT) (($ |#1| |#1|) 176 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ |#1| $) 204 T ELT) (($ $ |#1|) 203 T ELT))) -(((-905 |#1|) (-113) (-495)) (T -905)) -((-3946 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) (-2993 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483))))) -(-13 (-311) (-38 |t#1|) (-951 |t#1|) (-287 |t#1|) (-184 |t#1|) (-326 |t#1|) (-795 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3946 ($ |t#1| |t#1|)) (-15 -2997 (|t#1| $)) (-15 -2996 (|t#1| $)) (-15 -2995 ($ $)) (-15 -2994 ($ $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-951 (-484))) (PROGN (-6 (-951 (-484))) (-6 (-951 (-347 (-484))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1089))) (-6 (-951 (-1089))) |%noBranch|) (IF (|has| |t#1| (-257)) (PROGN (-15 -3127 (|t#1| $)) (-15 -3126 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2993 ($)) (-15 -3129 (|t#1| $)) (-15 -3128 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 (-1089)) |has| |#1| (-951 (-1089))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-327)) |has| |#1| (-934)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) . T) ((-257) . T) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-389) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-347 (-484))) |has| |#1| (-951 (-484))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-1089)) |has| |#1| (-951 (-1089))) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) . T)) -((-3955 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-905 |#1|) (-905 |#2|)) (T -906)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2998 (($ (-1055 |#1| |#2|)) 11 T ELT)) (-3122 (((-1055 |#1| |#2|) $) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT))) -(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2998 ($ (-1055 |#1| |#2|))) (-15 -3122 ((-1055 |#1| |#2|) $)))) (-831) (-311)) (T -907)) -((-2998 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311)) (-5 *1 (-907 *3 *4)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 10 T ELT)) (-3943 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-908) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $))))) (T -908)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-908))))) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3721 (($) 7 T CONST)) (-3001 (($ $) 50 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3830 (((-695) $) 49 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3000 ((|#1| $) 48 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3003 ((|#1| |#1| $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3002 ((|#1| $) 51 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-2999 ((|#1| $) 47 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-909 |#1|) (-113) (-1128)) (T -909)) -((-3003 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3001 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3992) (-15 -3003 (|t#1| |t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3001 ($ $)) (-15 -3830 ((-695) $)) (-15 -3000 (|t#1| $)) (-15 -2999 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3640 ((|#1| $) 12 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3004 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3005 ((|#1| $) 15 T ELT)) (-3006 ((|#1| $) 14 T ELT)) (-3007 ((|#1| $) 13 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3797 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3755 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3380 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2659 (($) 8 T CONST)) (-2665 (($) 10 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT))) -(((-910 |#1|) (-912 |#1|) (-146)) (T -910)) -NIL -((-3186 (((-85) $) 43 T ELT)) (-3155 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) 78 T ELT)) (-3022 (((-85) $) 72 T ELT)) (-3021 (((-347 (-484)) $) 76 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3130 ((|#2| $) 22 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2483 (($ $) 58 T ELT)) (-3755 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3969 (((-473) $) 67 T ELT)) (-3008 (($ $) 17 T ELT)) (-3943 (((-773) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3124 (((-695)) 10 T CONST)) (-3380 ((|#2| $) 71 T ELT)) (-3055 (((-85) $ $) 26 T ELT)) (-2684 (((-85) $ $) 69 T ELT)) (-3834 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3836 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT))) -(((-911 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| (-347 (-484)))) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -2684 ((-85) |#1| |#1|)) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 * (|#1| |#1| (-347 (-484)))) (-15 -2483 (|#1| |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3023 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3021 ((-347 (-484)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3380 (|#2| |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3955 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3124 ((-695)) -3949) (-15 -3943 (|#1| (-484))) (-15 -2409 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3186 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911)) -((-3124 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 (-484) #1="failed") $) 141 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 139 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 136 T ELT)) (-3154 (((-484) $) 140 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 138 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 137 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 121 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 120 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 119 T ELT) (((-631 |#1|) (-631 $)) 118 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3640 ((|#1| $) 109 T ELT)) (-3023 (((-3 (-347 (-484)) "failed") $) 105 (|has| |#1| (-483)) ELT)) (-3022 (((-85) $) 107 (|has| |#1| (-483)) ELT)) (-3021 (((-347 (-484)) $) 106 (|has| |#1| (-483)) ELT)) (-3004 (($ |#1| |#1| |#1| |#1|) 110 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3130 ((|#1| $) 111 T ELT)) (-2530 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2856 (($ $ $) 94 (|has| |#1| (-757)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 123 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 122 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 117 T ELT) (((-631 |#1|) (-1178 $)) 116 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 102 (|has| |#1| (-311)) ELT)) (-3005 ((|#1| $) 112 T ELT)) (-3006 ((|#1| $) 113 T ELT)) (-3007 ((|#1| $) 114 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) 130 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 129 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 128 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 127 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 126 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 125 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3797 (($ $ |#1|) 131 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3755 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 92 (|has| |#1| (-189)) ELT) (($ $ (-695)) 90 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 88 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 86 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 85 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 84 (|has| |#1| (-812 (-1089))) ELT)) (-3969 (((-473) $) 103 (|has| |#1| (-554 (-473))) ELT)) (-3008 (($ $) 115 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 80 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (((-633 $) $) 104 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3380 ((|#1| $) 108 (|has| |#1| (-973)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#1| |#1|)) 133 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 132 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-695)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 87 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 83 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 82 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 81 (|has| |#1| (-812 (-1089))) ELT)) (-2565 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 101 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ $ (-347 (-484))) 100 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) 99 (|has| |#1| (-311)) ELT))) -(((-912 |#1|) (-113) (-146)) (T -912)) -((-3008 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3004 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3023 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484)))))) -(-13 (-38 |t#1|) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-326 |t#1|) (-10 -8 (-15 -3008 ($ $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3130 (|t#1| $)) (-15 -3004 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3640 (|t#1| $)) (IF (|has| |t#1| (-245)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3380 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3022 ((-85) $)) (-15 -3021 ((-347 (-484)) $)) (-15 -3023 ((-3 (-347 (-484)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-311)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-311)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-311)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-311)) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-311)) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-311)) ((-583 |#1|) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-311)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-311)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-969 (-347 (-484))) |has| |#1| (-311)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3955 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3721 (($) NIL T CONST)) (-3001 (($ $) 24 T ELT)) (-3009 (($ (-584 |#1|)) 34 T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3830 (((-695) $) 27 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 29 T ELT)) (-3606 (($ |#1| $) 18 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3000 ((|#1| $) 28 T ELT)) (-1273 ((|#1| $) 23 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3003 ((|#1| |#1| $) 17 T ELT)) (-3400 (((-85) $) 19 T ELT)) (-3562 (($) NIL T ELT)) (-3002 ((|#1| $) 22 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-2999 ((|#1| $) 31 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3009 ($ (-584 |#1|))))) (-1013)) (T -914)) -((-3009 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-914 *3))))) -((-3036 (($ $) 12 T ELT)) (-3010 (($ $ (-484)) 13 T ELT))) -(((-915 |#1|) (-10 -7 (-15 -3036 (|#1| |#1|)) (-15 -3010 (|#1| |#1| (-484)))) (-916)) (T -915)) -NIL -((-3036 (($ $) 6 T ELT)) (-3010 (($ $ (-484)) 7 T ELT)) (** (($ $ (-347 (-484))) 8 T ELT))) -(((-916) (-113)) (T -916)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-347 (-484))))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-484)))) (-3036 (*1 *1 *1) (-4 *1 (-916)))) -(-13 (-10 -8 (-15 -3036 ($ $)) (-15 -3010 ($ $ (-484))) (-15 ** ($ $ (-347 (-484)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2062 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2060 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|))) NIL T ELT)) (-3327 (((-347 |#2|) $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3134 (((-695)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#2|))) 79 T ELT) (($ (-1178 |#2|) |#2|) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2563 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-631 $)) NIL T ELT)) (-1650 (((-1178 $) (-1178 $)) NIL T ELT)) (-3839 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-584 (-584 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3107 (((-831)) NIL T ELT)) (-2993 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2562 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3500 (($ $) NIL T ELT)) (-2832 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3720 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3769 (((-831) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-3374 (((-695)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3130 (((-347 |#2|) $) NIL T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) NIL (|has| |#1| (-311)) ELT)) (-3442 (((-633 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2013 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2009 (((-831) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3078 ((|#3| $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1646 (((-631 (-347 |#2|))) 57 T ELT)) (-1648 (((-631 (-347 |#2|))) 56 T ELT)) (-2483 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 80 T ELT)) (-1647 (((-631 (-347 |#2|))) 55 T ELT)) (-1649 (((-631 (-347 |#2|))) 54 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1655 (((-1178 $)) 51 T ELT)) (-3915 (((-1178 $)) 50 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3443 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2399 (($ (-831)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| #1#)) 70 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1664 (((-695)) NIL T ELT)) (-2408 (($) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3729 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3797 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) 68 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3754 (((-347 |#2|) (-1178 $)) NIL T ELT) (((-347 |#2|)) 47 T ELT)) (-1763 (((-695) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3755 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2407 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3183 ((|#3|) 58 T ELT)) (-1672 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3222 (((-1178 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 |#2|)) $) 81 T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-3969 (((-1178 (-347 |#2|)) $) NIL T ELT) (($ (-1178 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2701 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2448 ((|#3| $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1661 (((-85)) 65 T ELT)) (-1660 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| (-347 |#2|) (-311)) ELT))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-290 |#1| |#2| |#3|) (-1133) (-1154 |#1|) (-1154 (-347 |#2|)) (-347 |#2|) (-695)) (T -917)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3016 (((-584 (-484)) $) 73 T ELT)) (-3012 (($ (-584 (-484))) 81 T ELT)) (-3127 (((-484) $) 48 (|has| (-484) (-257)) ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) 57 (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-951 (-484))) ELT)) (-3154 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2993 (($) NIL (|has| (-484) (-483)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3014 (((-584 (-484)) $) 79 T ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) 45 T ELT)) (-3442 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3185 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3955 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL T ELT)) (-3443 (($) NIL (|has| (-484) (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3126 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) 50 T ELT)) (-3015 (((-1068 (-484)) $) 78 T ELT)) (-3011 (($ (-584 (-484)) (-584 (-484))) 82 T ELT)) (-3128 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3765 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3797 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) 47 T ELT)) (-3013 (((-584 (-484)) $) 80 T ELT)) (-3969 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3943 (((-773) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) 25 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3124 (((-695)) 13 T CONST)) (-3129 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3380 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2659 (($) 14 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2684 (((-85) $ $) 40 (|has| (-484) (-757)) ELT)) (-3946 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3834 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3836 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT))) -(((-918 |#1|) (-13 (-905 (-484)) (-553 (-347 (-484))) (-10 -8 (-15 -3126 ((-347 (-484)) $)) (-15 -3016 ((-584 (-484)) $)) (-15 -3015 ((-1068 (-484)) $)) (-15 -3014 ((-584 (-484)) $)) (-15 -3013 ((-584 (-484)) $)) (-15 -3012 ($ (-584 (-484)))) (-15 -3011 ($ (-584 (-484)) (-584 (-484)))))) (-484)) (T -918)) -((-3126 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3011 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -((-3017 (((-51) (-347 (-484)) (-484)) 9 T ELT))) -(((-919) (-10 -7 (-15 -3017 ((-51) (-347 (-484)) (-484))))) (T -919)) -((-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-919))))) -((-3134 (((-484)) 21 T ELT)) (-3020 (((-484)) 26 T ELT)) (-3019 (((-1184) (-484)) 24 T ELT)) (-3018 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT))) -(((-920) (-10 -7 (-15 -3018 ((-484))) (-15 -3134 ((-484))) (-15 -3018 ((-484) (-484))) (-15 -3019 ((-1184) (-484))) (-15 -3020 ((-484))))) (T -920)) -((-3020 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-920)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3134 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3018 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920))))) -((-3730 (((-345 |#1|) |#1|) 43 T ELT)) (-3729 (((-345 |#1|) |#1|) 41 T ELT))) -(((-921 |#1|) (-10 -7 (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3730 ((-345 |#1|) |#1|))) (-1154 (-347 (-484)))) (T -921)) -((-3730 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484)))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484))))))) -((-3023 (((-3 (-347 (-484)) "failed") |#1|) 15 T ELT)) (-3022 (((-85) |#1|) 14 T ELT)) (-3021 (((-347 (-484)) |#1|) 10 T ELT))) -(((-922 |#1|) (-10 -7 (-15 -3021 ((-347 (-484)) |#1|)) (-15 -3022 ((-85) |#1|)) (-15 -3023 ((-3 (-347 (-484)) "failed") |#1|))) (-951 (-347 (-484)))) (T -922)) -((-3023 (*1 *2 *3) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-347 (-484)))))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) -((-3785 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3797 ((|#2| $ #1#) 10 T ELT)) (-3027 (((-85) $ $) 18 T ELT))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3785 (|#2| |#1| #1="value" |#2|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3797 (|#2| |#1| #1#))) (-924 |#2|) (-1128)) (T -923)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3721 (($) 7 T CONST)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ "value") 51 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-924 |#1|) (-113) (-1128)) (T -924)) -((-3519 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3030 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3025 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3993)) (-4 *1 (-924 *3)) (-4 *3 (-1128)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3993)) (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3024 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-924 *2)) (-4 *2 (-1128))))) -(-13 (-426 |t#1|) (-10 -8 (-15 -3519 ((-584 $) $)) (-15 -3030 ((-584 $) $)) (-15 -3524 ((-85) $)) (-15 -3399 (|t#1| $)) (-15 -3797 (|t#1| $ "value")) (-15 -3630 ((-85) $)) (-15 -3029 ((-584 |t#1|) $)) (-15 -3028 ((-484) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3027 ((-85) $ $)) (-15 -3026 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3025 ($ $ (-584 $))) (-15 -3785 (|t#1| $ "value" |t#1|)) (-15 -3024 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-3036 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-347 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3181 (((-3 $ #1="failed") (-1084 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1084 $) (-831)) 32 T ELT)) (-3010 (($ $ (-484)) 58 T ELT)) (-3124 (((-695)) 18 T CONST)) (-3182 (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 (-347 (-484)))) 63 T ELT) (((-584 $) (-1084 (-484))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-347 (-484)))) 76 T ELT) (((-584 $) (-858 (-484))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-347 (-484))) 53 T ELT))) -(((-925 |#1|) (-10 -7 (-15 -3036 (|#1| (-484))) (-15 -3036 (|#1| (-347 (-484)))) (-15 -3036 (|#1| |#1| (-831))) (-15 -3182 ((-584 |#1|) (-858 (-484)))) (-15 -3182 ((-584 |#1|) (-858 (-347 (-484))))) (-15 -3182 ((-584 |#1|) (-858 |#1|))) (-15 -3182 ((-584 |#1|) (-1084 (-484)))) (-15 -3182 ((-584 |#1|) (-1084 (-347 (-484))))) (-15 -3182 ((-584 |#1|) (-1084 |#1|))) (-15 -3181 ((-3 |#1| #1="failed") (-1084 |#1|) (-831))) (-15 -3181 ((-3 |#1| #1#) (-1084 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -3010 (|#1| |#1| (-484))) (-15 -3036 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3124 ((-695)) -3949) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925)) -((-3124 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 109 T ELT)) (-2062 (($ $) 110 T ELT)) (-2060 (((-85) $) 112 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 129 T ELT)) (-3968 (((-345 $) $) 130 T ELT)) (-3036 (($ $) 93 T ELT) (($ $ (-831)) 79 T ELT) (($ (-347 (-484))) 78 T ELT) (($ (-484)) 77 T ELT)) (-1606 (((-85) $ $) 120 T ELT)) (-3620 (((-484) $) 146 T ELT)) (-3721 (($) 22 T CONST)) (-3181 (((-3 $ "failed") (-1084 $) (-831) (-773)) 87 T ELT) (((-3 $ "failed") (-1084 $) (-831)) 86 T ELT)) (-3155 (((-3 (-484) #1="failed") $) 106 (|has| (-347 (-484)) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) 101 T ELT)) (-3154 (((-484) $) 105 (|has| (-347 (-484)) (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-347 (-484)) $) 102 T ELT)) (-3032 (($ $ (-773)) 76 T ELT)) (-3031 (($ $ (-773)) 75 T ELT)) (-2563 (($ $ $) 124 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 123 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 118 T ELT)) (-3720 (((-85) $) 131 T ELT)) (-3184 (((-85) $) 144 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 92 T ELT)) (-3185 (((-85) $) 145 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 127 T ELT)) (-2530 (($ $ $) 138 T ELT)) (-2856 (($ $ $) 139 T ELT)) (-3033 (((-3 (-1084 $) "failed") $) 88 T ELT)) (-3035 (((-3 (-773) "failed") $) 90 T ELT)) (-3034 (((-3 (-1084 $) "failed") $) 89 T ELT)) (-1889 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 132 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 117 T ELT)) (-3142 (($ (-584 $)) 114 T ELT) (($ $ $) 113 T ELT)) (-3729 (((-345 $) $) 128 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 126 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 125 T ELT)) (-3463 (((-3 $ "failed") $ $) 108 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 119 T ELT)) (-1605 (((-695) $) 121 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 122 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 136 T ELT) (($ $) 107 T ELT) (($ (-347 (-484))) 100 T ELT) (($ (-484)) 99 T ELT) (($ (-347 (-484))) 96 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 111 T ELT)) (-3767 (((-347 (-484)) $ $) 74 T ELT)) (-3182 (((-584 $) (-1084 $)) 85 T ELT) (((-584 $) (-1084 (-347 (-484)))) 84 T ELT) (((-584 $) (-1084 (-484))) 83 T ELT) (((-584 $) (-858 $)) 82 T ELT) (((-584 $) (-858 (-347 (-484)))) 81 T ELT) (((-584 $) (-858 (-484))) 80 T ELT)) (-3380 (($ $) 147 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 140 T ELT)) (-2566 (((-85) $ $) 142 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 141 T ELT)) (-2684 (((-85) $ $) 143 T ELT)) (-3946 (($ $ $) 137 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 133 T ELT) (($ $ (-347 (-484))) 91 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-484)) $) 135 T ELT) (($ $ (-347 (-484))) 134 T ELT) (($ (-484) $) 98 T ELT) (($ $ (-484)) 97 T ELT) (($ (-347 (-484)) $) 95 T ELT) (($ $ (-347 (-484))) 94 T ELT))) -(((-926) (-113)) (T -926)) -((-3036 (*1 *1 *1) (-4 *1 (-926))) (-3035 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))) (-3033 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))) (-3181 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3181 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1084 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-926)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-926)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3767 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-347 (-484)))))) -(-13 (-120) (-756) (-146) (-311) (-352 (-347 (-484))) (-38 (-484)) (-38 (-347 (-484))) (-916) (-10 -8 (-15 -3035 ((-3 (-773) "failed") $)) (-15 -3034 ((-3 (-1084 $) "failed") $)) (-15 -3033 ((-3 (-1084 $) "failed") $)) (-15 -3181 ((-3 $ "failed") (-1084 $) (-831) (-773))) (-15 -3181 ((-3 $ "failed") (-1084 $) (-831))) (-15 -3182 ((-584 $) (-1084 $))) (-15 -3182 ((-584 $) (-1084 (-347 (-484))))) (-15 -3182 ((-584 $) (-1084 (-484)))) (-15 -3182 ((-584 $) (-858 $))) (-15 -3182 ((-584 $) (-858 (-347 (-484))))) (-15 -3182 ((-584 $) (-858 (-484)))) (-15 -3036 ($ $ (-831))) (-15 -3036 ($ $)) (-15 -3036 ($ (-347 (-484)))) (-15 -3036 ($ (-484))) (-15 -3032 ($ $ (-773))) (-15 -3031 ($ $ (-773))) (-15 -3767 ((-347 (-484)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-352 (-347 (-484))) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 (-484)) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 (-484)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) |has| (-347 (-484)) (-951 (-484))) ((-964 (-347 (-484))) . T) ((-964 (-484)) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 (-484)) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-3037 (((-2 (|:| |ans| |#2|) (|:| -3135 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3037 ((-2 (|:| |ans| |#2|) (|:| -3135 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-27) (-361 |#1|))) (T -927)) -((-3037 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3135 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4))))) -((-3038 (((-3 (-584 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3038 ((-3 (-584 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2135 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-27) (-361 |#1|))) (T -928)) -((-3038 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) -((-3041 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3264 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3039 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3092 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3040 (((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|)) 76 T ELT))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3092 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3040 ((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|))) (-15 -3041 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3264 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -929)) -((-3041 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3264 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3040 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5)))) (-3039 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3092 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6))))) -((-3042 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3092 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3043 (((-3 (-584 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 34 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3092 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3043 ((-3 (-584 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -930)) -((-3043 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-347 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-347 *5)))) (-3042 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) (|:| |c2| (-347 *6)) (|:| -3092 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-347 *6))))) -((-3044 (((-1 |#1|) (-584 (-2 (|:| -3399 |#1|) (|:| -1520 (-484))))) 34 T ELT)) (-3099 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3045 (((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)) 31 T ELT))) -(((-931 |#1|) (-10 -7 (-15 -3099 ((-1 |#1|) (-1009 |#1|))) (-15 -3044 ((-1 |#1|) (-584 (-2 (|:| -3399 |#1|) (|:| -1520 (-484)))))) (-15 -3045 ((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)))) (-1013)) (T -931)) -((-3045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3399 *4) (|:| -1520 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) -((-3769 (((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3769 ((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-13 (-317) (-311))) (T -932)) -((-3769 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) (-4 *9 (-13 (-317) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3592 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-933) (-13 (-995) (-10 -8 (-15 -3592 ((-1048) $)) (-15 -3231 ((-1048) $))))) (T -933)) -((-3592 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933))))) -((-3969 (((-179) $) 6 T ELT) (((-327) $) 9 T ELT))) -(((-934) (-113)) (T -934)) -NIL -(-13 (-554 (-179)) (-554 (-327))) -(((-554 (-179)) . T) ((-554 (-327)) . T)) -((-3132 (((-3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) "failed") |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) 32 T ELT) (((-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484))) 29 T ELT)) (-3048 (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484))) 34 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-347 (-484))) 30 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) 33 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1|) 28 T ELT)) (-3047 (((-584 (-347 (-484))) (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) 20 T ELT)) (-3046 (((-347 (-484)) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) 17 T ELT))) -(((-935 |#1|) (-10 -7 (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1|)) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-347 (-484)))) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484)))) (-15 -3132 ((-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484)))) (-15 -3132 ((-3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) "failed") |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-15 -3046 ((-347 (-484)) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-15 -3047 ((-584 (-347 (-484))) (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))))) (-1154 (-484))) (T -935)) -((-3047 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *2 (-584 (-347 (-484)))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) (-5 *2 (-347 (-484))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))) (-3132 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) (-3132 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) (-5 *4 (-347 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) (-3048 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *5) (|:| -3135 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3136 *5) (|:| -3135 *5))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-347 (-484))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))))) -((-3132 (((-3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) "failed") |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) 35 T ELT) (((-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484))) 32 T ELT)) (-3048 (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484))) 30 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-347 (-484))) 26 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) 28 T ELT) (((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1|) 24 T ELT))) -(((-936 |#1|) (-10 -7 (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1|)) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-347 (-484)))) (-15 -3048 ((-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484)))) (-15 -3132 ((-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-347 (-484)))) (-15 -3132 ((-3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) "failed") |#1| (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))) (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))))) (-1154 (-347 (-484)))) (T -936)) -((-3132 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))))) (-3132 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) (-5 *4 (-347 (-484))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) (-3048 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *5) (|:| -3135 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *5)) (-5 *4 (-2 (|:| -3136 *5) (|:| -3135 *5))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *4) (|:| -3135 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))) (-5 *4 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484))))))) -((-3570 (((-584 (-327)) (-858 (-484)) (-327)) 28 T ELT) (((-584 (-327)) (-858 (-347 (-484))) (-327)) 27 T ELT)) (-3966 (((-584 (-584 (-327))) (-584 (-858 (-484))) (-584 (-1089)) (-327)) 37 T ELT))) -(((-937) (-10 -7 (-15 -3570 ((-584 (-327)) (-858 (-347 (-484))) (-327))) (-15 -3570 ((-584 (-327)) (-858 (-484)) (-327))) (-15 -3966 ((-584 (-584 (-327))) (-584 (-858 (-484))) (-584 (-1089)) (-327))))) (T -937)) -((-3966 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 (-327)))) (-5 *1 (-937)) (-5 *5 (-327)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) (-5 *4 (-327)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) (-5 *4 (-327))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 75 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-3036 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) 70 T ELT)) (-3721 (($) NIL T CONST)) (-3181 (((-3 $ #1#) (-1084 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1084 $) (-831)) 55 T ELT)) (-3155 (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-347 (-484)) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT)) (-3154 (((-347 (-484)) $) 17 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-347 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-347 (-484)) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT)) (-3032 (($ $ (-773)) 47 T ELT)) (-3031 (($ $ (-773)) 48 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3180 (((-347 (-484)) $ $) 21 T ELT)) (-3464 (((-3 $ #1#) $) 88 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-3184 (((-85) $) 66 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL T ELT)) (-3185 (((-85) $) 69 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3033 (((-3 (-1084 $) #1#) $) 83 T ELT)) (-3035 (((-3 (-773) #1#) $) 82 T ELT)) (-3034 (((-3 (-1084 $) #1#) $) 80 T ELT)) (-3049 (((-3 (-974 $ (-1084 $)) #1#) $) 78 T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 89 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3943 (((-773) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-3767 (((-347 (-484)) $ $) 27 T ELT)) (-3182 (((-584 $) (-1084 $)) 61 T ELT) (((-584 $) (-1084 (-347 (-484)))) NIL T ELT) (((-584 $) (-1084 (-484))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-347 (-484)))) NIL T ELT) (((-584 $) (-858 (-484))) NIL T ELT)) (-3050 (($ (-974 $ (-1084 $)) (-773)) 46 T ELT)) (-3380 (($ $) 22 T ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 39 T CONST)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 76 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 24 T ELT)) (-3946 (($ $ $) 37 T ELT)) (-3834 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3836 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-938 |#1|) (-13 (-926) (-352 |#1|) (-38 |#1|) (-10 -8 (-15 -3050 ($ (-974 $ (-1084 $)) (-773))) (-15 -3049 ((-3 (-974 $ (-1084 $)) "failed") $)) (-15 -3180 ((-347 (-484)) $ $)))) (-13 (-756) (-311) (-934))) (T -938)) -((-3050 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-938 *4) (-1084 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-311) (-934))))) (-3049 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-938 *3) (-1084 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-311) (-934))))) (-3180 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-311) (-934)))))) -((-3051 (((-2 (|:| -3264 |#2|) (|:| -2512 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-939 |#1| |#2|) (-10 -7 (-15 -3051 (|#2| |#2| |#1|)) (-15 -3051 ((-2 (|:| -3264 |#2|) (|:| -2512 (-584 |#1|))) |#2| (-584 |#1|)))) (-311) (-601 |#1|)) (T -939)) -((-3051 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3264 *3) (|:| -2512 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3051 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3052 ((|#1| $ |#1|) 12 T ELT)) (-3054 (($ |#1|) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3053 ((|#1| $) 11 T ELT)) (-3943 (((-773) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 9 T ELT))) -(((-940 |#1|) (-13 (-1013) (-10 -8 (-15 -3054 ($ |#1|)) (-15 -3053 (|#1| $)) (-15 -3052 (|#1| $ |#1|)) (-15 -3055 ((-85) $ $)))) (-1128)) (T -940)) -((-3055 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1128)))) (-3054 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))) (-3053 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))) (-3052 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3679 (((-584 $) (-584 |#4|)) 114 T ELT) (((-584 $) (-584 |#4|) (-85)) 115 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 113 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3080 (((-584 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 108 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3707 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3154 (($ (-584 |#4|)) NIL T ELT)) (-3796 (((-3 $ #1#) $) 45 T ELT)) (-3682 ((|#4| |#4| $) 66 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3403 (($ |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3435 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 129 T ELT)) (-2888 (((-584 |#4|) $) 18 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 19 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-584 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 106 T ELT)) (-3795 (((-3 |#4| #1#) $) 42 T ELT)) (-3190 (((-584 $) |#4| $) 89 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3236 (((-584 $) |#4| $) 111 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 112 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3436 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3437 (($ |#4| $) 78 T ELT) (($ (-584 |#4|) $) 79 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3694 (((-584 |#4|) $) NIL T ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3766 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 91 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 85 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 17 T ELT)) (-3562 (($) 14 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 13 T ELT)) (-3969 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3681 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3943 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3675 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3187 (((-584 $) |#4| $) 88 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3930 (((-85) |#3| $) 62 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-941 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3437 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3679 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3679 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3436 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3435 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -941)) -((-3437 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3679 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3679 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -((-3056 (((-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484))))))) (-631 (-347 (-858 (-484))))) 67 T ELT)) (-3057 (((-584 (-631 (-264 (-484)))) (-264 (-484)) (-631 (-347 (-858 (-484))))) 52 T ELT)) (-3058 (((-584 (-264 (-484))) (-631 (-347 (-858 (-484))))) 45 T ELT)) (-3062 (((-584 (-631 (-264 (-484)))) (-631 (-347 (-858 (-484))))) 85 T ELT)) (-3060 (((-631 (-264 (-484))) (-631 (-264 (-484)))) 38 T ELT)) (-3061 (((-584 (-631 (-264 (-484)))) (-584 (-631 (-264 (-484))))) 74 T ELT)) (-3059 (((-3 (-631 (-264 (-484))) "failed") (-631 (-347 (-858 (-484))))) 82 T ELT))) -(((-942) (-10 -7 (-15 -3056 ((-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484))))))) (-631 (-347 (-858 (-484)))))) (-15 -3057 ((-584 (-631 (-264 (-484)))) (-264 (-484)) (-631 (-347 (-858 (-484)))))) (-15 -3058 ((-584 (-264 (-484))) (-631 (-347 (-858 (-484)))))) (-15 -3059 ((-3 (-631 (-264 (-484))) "failed") (-631 (-347 (-858 (-484)))))) (-15 -3060 ((-631 (-264 (-484))) (-631 (-264 (-484))))) (-15 -3061 ((-584 (-631 (-264 (-484)))) (-584 (-631 (-264 (-484)))))) (-15 -3062 ((-584 (-631 (-264 (-484)))) (-631 (-347 (-858 (-484)))))))) (T -942)) -((-3062 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))) (-3059 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-264 (-484)))) (-5 *1 (-942)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)) (-5 *3 (-264 (-484))))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484)))))))) (-5 *1 (-942))))) -((-3066 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3065 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3067 (((-584 (-631 (-484))) (-584 (-584 (-484)))) 80 T ELT) (((-584 (-631 (-484))) (-584 (-814 (-484))) (-484)) 79 T ELT) (((-631 (-484)) (-584 (-484))) 76 T ELT) (((-631 (-484)) (-814 (-484)) (-484)) 74 T ELT)) (-3064 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3063 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3994 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3994 #1#))) ELT))) -(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3994 #1="*"))) (-15 -3063 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3994 #1#))) (-15 -3063 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3064 ((-631 (-858 |#1|)) (-695))) (-15 -3065 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3065 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3066 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3066 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3066 ((-631 |#1|) (-631 |#1|))) (-15 -3066 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3067 ((-631 (-484)) (-814 (-484)) (-484))) (-15 -3067 ((-631 (-484)) (-584 (-484)))) (-15 -3067 ((-584 (-631 (-484))) (-584 (-814 (-484))) (-484))) (-15 -3067 ((-584 (-631 (-484))) (-584 (-584 (-484)))))) (-962)) (T -943)) -((-3067 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-484)))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-484)))) (-5 *4 (-484)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-484))) (-5 *4 (-484)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3994 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3994 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4))))) -((-3071 (((-631 |#1|) (-584 (-631 |#1|)) (-1178 |#1|)) 69 (|has| |#1| (-257)) ELT)) (-3415 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 (-1178 |#1|))) 107 (|has| |#1| (-311)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 |#1|)) 104 (|has| |#1| (-311)) ELT)) (-3075 (((-1178 |#1|) (-584 (-1178 |#1|)) (-484)) 113 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3074 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3073 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-311)) ELT) (((-85) (-584 (-631 |#1|)) (-484)) 100 (|has| |#1| (-311)) ELT)) (-3070 (((-1178 (-1178 |#1|)) (-584 (-631 |#1|)) (-1178 |#1|)) 66 (|has| |#1| (-257)) ELT)) (-3069 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3068 (((-631 |#1|) (-1178 (-1178 |#1|))) 39 T ELT)) (-3072 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-484)) 93 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-484)) 91 (|has| |#1| (-311)) ELT))) -(((-944 |#1|) (-10 -7 (-15 -3068 ((-631 |#1|) (-1178 (-1178 |#1|)))) (-15 -3069 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-257)) (PROGN (-15 -3070 ((-1178 (-1178 |#1|)) (-584 (-631 |#1|)) (-1178 |#1|))) (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3072 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-484))) (-15 -3072 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3072 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-484))) (-15 -3073 ((-85) (-584 (-631 |#1|)) (-484))) (-15 -3073 ((-85) (-584 (-631 |#1|)))) (-15 -3415 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 |#1|))) (-15 -3415 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 (-1178 |#1|))))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-311)) (PROGN (-15 -3074 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-484) (-484))) (-15 -3074 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3074 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3074 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3075 ((-1178 |#1|) (-584 (-1178 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-962)) (T -944)) -((-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3074 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3074 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3074 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-311)) (-4 *6 (-317)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3415 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3415 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3072 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-311)) (-4 *4 (-962)))) (-3072 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1178 *5)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))))) -((-3076 ((|#1| (-831) |#1|) 18 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3076 (|#1| (-831) |#1|))) (-13 (-1013) (-10 -8 (-15 -3836 ($ $ $))))) (T -945)) -((-3076 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3836 ($ $ $)))))))) -((-3077 ((|#1| |#1| (-831)) 18 T ELT))) -(((-946 |#1|) (-10 -7 (-15 -3077 (|#1| |#1| (-831)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -946)) -((-3077 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) -((-3943 ((|#1| (-261)) 11 T ELT) (((-1184) |#1|) 9 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3943 ((-1184) |#1|)) (-15 -3943 (|#1| (-261)))) (-1128)) (T -947)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1128)))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-947 *3)) (-4 *3 (-1128))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3839 (($ |#4|) 24 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3078 ((|#4| $) 26 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3124 (((-695)) 42 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 22 T CONST)) (-3055 (((-85) $ $) 39 T ELT)) (-3834 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3839 ($ |#4|)) (-15 -3943 ($ |#4|)) (-15 -3078 (|#4| $)))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948)) -((-3839 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3943 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 11 T ELT)) (-3943 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-949) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $))))) (T -949)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-949))))) -((-3154 ((|#2| $) 10 T ELT))) -(((-950 |#1| |#2|) (-10 -7 (-15 -3154 (|#2| |#1|))) (-951 |#2|) (-1128)) (T -950)) -NIL -((-3155 (((-3 |#1| "failed") $) 9 T ELT)) (-3154 ((|#1| $) 8 T ELT)) (-3943 (($ |#1|) 6 T ELT))) -(((-951 |#1|) (-113) (-1128)) (T -951)) -((-3155 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1128)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1128))))) -(-13 (-556 |t#1|) (-10 -8 (-15 -3155 ((-3 |t#1| "failed") $)) (-15 -3154 (|t#1| $)))) -(((-556 |#1|) . T)) -((-3079 (((-584 (-584 (-248 (-347 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1089))) 38 T ELT))) -(((-952 |#1| |#2|) (-10 -7 (-15 -3079 ((-584 (-584 (-248 (-347 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1089))))) (-495) (-13 (-495) (-951 |#1|))) (T -952)) -((-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-13 (-495) (-951 *5))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) -((-3080 (((-584 (-1089)) (-347 (-858 |#1|))) 17 T ELT)) (-3082 (((-347 (-1084 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089)) 24 T ELT)) (-3083 (((-347 (-858 |#1|)) (-347 (-1084 (-347 (-858 |#1|)))) (-1089)) 26 T ELT)) (-3081 (((-3 (-1089) "failed") (-347 (-858 |#1|))) 20 T ELT)) (-3765 (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-248 (-347 (-858 |#1|))))) 32 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 33 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-1089)) (-584 (-347 (-858 |#1|)))) 28 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))) 29 T ELT)) (-3943 (((-347 (-858 |#1|)) |#1|) 11 T ELT))) -(((-953 |#1|) (-10 -7 (-15 -3080 ((-584 (-1089)) (-347 (-858 |#1|)))) (-15 -3081 ((-3 (-1089) "failed") (-347 (-858 |#1|)))) (-15 -3082 ((-347 (-1084 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089))) (-15 -3083 ((-347 (-858 |#1|)) (-347 (-1084 (-347 (-858 |#1|)))) (-1089))) (-15 -3765 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)))) (-15 -3765 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-1089)) (-584 (-347 (-858 |#1|))))) (-15 -3765 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -3765 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3943 ((-347 (-858 |#1|)) |#1|))) (-495)) (T -953)) -((-3943 (*1 *2 *3) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-495)))) (-3765 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3765 (*1 *2 *2 *3) (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3765 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-5 *4 (-584 (-347 (-858 *5)))) (-5 *2 (-347 (-858 *5))) (-4 *5 (-495)) (-5 *1 (-953 *5)))) (-3765 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1084 (-347 (-858 *5))))) (-5 *4 (-1089)) (-5 *2 (-347 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-495)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-347 (-1084 (-347 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-347 (-858 *5))))) (-3081 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) (-5 *1 (-953 *4)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-1089))) (-5 *1 (-953 *4))))) -((-3084 (((-327)) 17 T ELT)) (-3099 (((-1 (-327)) (-327) (-327)) 22 T ELT)) (-3092 (((-1 (-327)) (-695)) 48 T ELT)) (-3085 (((-327)) 37 T ELT)) (-3088 (((-1 (-327)) (-327) (-327)) 38 T ELT)) (-3086 (((-327)) 29 T ELT)) (-3089 (((-1 (-327)) (-327)) 30 T ELT)) (-3087 (((-327) (-695)) 43 T ELT)) (-3090 (((-1 (-327)) (-695)) 44 T ELT)) (-3091 (((-1 (-327)) (-695) (-695)) 47 T ELT)) (-3381 (((-1 (-327)) (-695) (-695)) 45 T ELT))) -(((-954) (-10 -7 (-15 -3084 ((-327))) (-15 -3085 ((-327))) (-15 -3086 ((-327))) (-15 -3087 ((-327) (-695))) (-15 -3099 ((-1 (-327)) (-327) (-327))) (-15 -3088 ((-1 (-327)) (-327) (-327))) (-15 -3089 ((-1 (-327)) (-327))) (-15 -3090 ((-1 (-327)) (-695))) (-15 -3381 ((-1 (-327)) (-695) (-695))) (-15 -3091 ((-1 (-327)) (-695) (-695))) (-15 -3092 ((-1 (-327)) (-695))))) (T -954)) -((-3092 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3381 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3099 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-327)) (-5 *1 (-954)))) (-3086 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))) (-3085 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))) (-3084 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954))))) -((-3729 (((-345 |#1|) |#1|) 33 T ELT))) -(((-955 |#1|) (-10 -7 (-15 -3729 ((-345 |#1|) |#1|))) (-1154 (-347 (-858 (-484))))) (T -955)) -((-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1154 (-347 (-858 (-484)))))))) -((-3093 (((-347 (-345 (-858 |#1|))) (-347 (-858 |#1|))) 14 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -3093 ((-347 (-345 (-858 |#1|))) (-347 (-858 |#1|))))) (-257)) (T -956)) -((-3093 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-858 *4)))) (-5 *1 (-956 *4))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3721 (($) 22 T CONST)) (-3097 ((|#1| $) 28 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-3094 ((|#1|) 25 T CONST)) (-3943 (((-773) $) 13 T ELT)) (-3095 ((|#1| $) 26 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT))) -(((-957 |#1|) (-113) (-23)) (T -957)) -((-3097 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3094 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1| $)) (-15 -3094 (|t#1|) -3949))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3098 (($) 30 T CONST)) (-3721 (($) 22 T CONST)) (-3097 ((|#1| $) 28 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-3094 ((|#1|) 25 T CONST)) (-3943 (((-773) $) 13 T ELT)) (-3095 ((|#1| $) 26 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT))) +((-2557 (((-634 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-634 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-696) $ (-102)) NIL T ELT)) (-2559 (((-634 (-101)) $ (-101)) 22 T ELT)) (-2561 (($ (-336)) 12 T ELT) (($ (-1074)) 14 T ELT)) (-2560 (((-85) $) 19 T ELT)) (-3947 (((-774) $) 26 T ELT)) (-1701 (($ $) 23 T ELT))) +(((-773) (-13 (-772) (-554 (-774)) (-10 -8 (-15 -2561 ($ (-336))) (-15 -2561 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -773)) +((-2561 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-773)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) +((-2570 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2591 (($ $ $) 125 T ELT)) (-2606 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2601 (($ (-485)) 53 T ELT)) (-2598 (($ $ $) 54 T ELT) (($ (-585 $)) 84 T ELT)) (-2582 (($ $ (-585 $)) 82 T ELT)) (-2603 (((-485) $) 34 T ELT)) (-2585 (($ $ $) 73 T ELT)) (-3533 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2604 (((-485) $) 33 T ELT)) (-2586 (($ $ $) 72 T ELT)) (-3536 (($ $) 114 T ELT)) (-2589 (($ $ $) 129 T ELT)) (-2572 (($ (-585 $)) 61 T ELT)) (-3541 (($ $ (-585 $)) 79 T ELT)) (-2600 (($ (-485) (-485)) 55 T ELT)) (-2613 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3139 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2566 (($ $ $) 97 T ELT)) (-2587 (($ $ $) 132 T ELT)) (-2581 (($ $) 115 T ELT)) (-2565 (($ $ $) 98 T ELT)) (-2577 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2839 (((-1186) $) 10 T ELT)) (-2580 (($ $) 118 T ELT) (($ $ (-696)) 122 T ELT)) (-2583 (($ $ $) 75 T ELT)) (-2584 (($ $ $) 74 T ELT)) (-2597 (($ $ (-585 $)) 110 T ELT)) (-2595 (($ $ $) 113 T ELT)) (-2574 (($ (-585 $)) 59 T ELT)) (-2575 (($ $) 70 T ELT) (($ (-585 $)) 71 T ELT)) (-2578 (($ $ $) 123 T ELT)) (-2579 (($ $) 116 T ELT)) (-2590 (($ $ $) 128 T ELT)) (-3534 (($ (-485)) 21 T ELT) (($ (-1091)) 23 T ELT) (($ (-1074)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2563 (($ $ $) 101 T ELT)) (-2562 (($ $) 102 T ELT)) (-2608 (((-1186) (-1074)) 15 T ELT)) (-2609 (($ (-1074)) 14 T ELT)) (-3125 (($ (-585 (-585 $))) 58 T ELT)) (-3140 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2593 (($ $ $) 131 T ELT)) (-3471 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2594 (((-85) $) 108 T ELT)) (-2596 (($ $ (-585 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2602 (($ (-485)) 39 T ELT)) (-2605 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2599 (($ $ $) 40 T ELT) (($ (-585 $)) 83 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (($ $ $) 99 T ELT)) (-3566 (($) 13 T ELT)) (-3801 (($ $ (-585 $)) 109 T ELT)) (-2607 (((-1074) (-1074)) 8 T ELT)) (-3837 (($ $) 117 T ELT) (($ $ (-696)) 121 T ELT)) (-2567 (($ $ $) 96 T ELT)) (-3759 (($ $ (-696)) 139 T ELT)) (-2573 (($ (-585 $)) 60 T ELT)) (-3947 (((-774) $) 19 T ELT)) (-3774 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2576 (($ $) 68 T ELT) (($ (-585 $)) 69 T ELT)) (-3242 (($ $) 66 T ELT) (($ (-585 $)) 67 T ELT)) (-2592 (($ $) 124 T ELT)) (-2571 (($ (-585 $)) 65 T ELT)) (-3103 (($ $ $) 105 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2588 (($ $ $) 130 T ELT)) (-2564 (($ $ $) 100 T ELT)) (-3738 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2568 (($ $ $) 89 T ELT)) (-2569 (($ $ $) 87 T ELT)) (-3058 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2686 (($ $ $) 88 T ELT)) (-2687 (($ $ $) 86 T ELT)) (-3950 (($ $ $) 94 T ELT)) (-3838 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-774) (-13 (-1015) (-10 -8 (-15 -2839 ((-1186) $)) (-15 -2609 ($ (-1074))) (-15 -2608 ((-1186) (-1074))) (-15 -3534 ($ (-485))) (-15 -3534 ($ (-1091))) (-15 -3534 ($ (-1074))) (-15 -3534 ($ (-179))) (-15 -3566 ($)) (-15 -2607 ((-1074) (-1074))) (-15 -2606 ((-485) $)) (-15 -2605 ((-485) $)) (-15 -2606 ((-485))) (-15 -2605 ((-485))) (-15 -2604 ((-485) $)) (-15 -2603 ((-485) $)) (-15 -2602 ($ (-485))) (-15 -2601 ($ (-485))) (-15 -2600 ($ (-485) (-485))) (-15 -3140 ($ $ (-485))) (-15 -3139 ($ $ (-485))) (-15 -3774 ($ $ (-485))) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3774 ($ $)) (-15 -2599 ($ $ $)) (-15 -2598 ($ $ $)) (-15 -2599 ($ (-585 $))) (-15 -2598 ($ (-585 $))) (-15 -2597 ($ $ (-585 $))) (-15 -2596 ($ $ (-585 $))) (-15 -2596 ($ $ $ $)) (-15 -2595 ($ $ $)) (-15 -2594 ((-85) $)) (-15 -3801 ($ $ (-585 $))) (-15 -3536 ($ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $)) (-15 -3125 ($ (-585 (-585 $)))) (-15 -2591 ($ $ $)) (-15 -2613 ($ $)) (-15 -2613 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3759 ($ $ (-696))) (-15 -3103 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3541 ($ $ (-585 $))) (-15 -2582 ($ $ (-585 $))) (-15 -2581 ($ $)) (-15 -3837 ($ $)) (-15 -3837 ($ $ (-696))) (-15 -2580 ($ $)) (-15 -2580 ($ $ (-696))) (-15 -2579 ($ $)) (-15 -2578 ($ $ $)) (-15 -3533 ($ $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ $ $ $)) (-15 -2577 ($ $)) (-15 -2577 ($ $ $)) (-15 -2577 ($ $ $ $)) (-15 -3471 ($ $)) (-15 -3471 ($ $ $)) (-15 -3471 ($ $ $ $)) (-15 -3242 ($ $)) (-15 -3242 ($ (-585 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-585 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-585 $))) (-15 -2574 ($ (-585 $))) (-15 -2573 ($ (-585 $))) (-15 -2572 ($ (-585 $))) (-15 -2571 ($ (-585 $))) (-15 -3058 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3467 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ $))))) (T -774)) +((-2839 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-774)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-774)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-774)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) (-3566 (*1 *1) (-5 *1 (-774))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2606 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2605 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-2600 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) (-3140 (*1 *1 *1) (-5 *1 (-774))) (-3139 (*1 *1 *1) (-5 *1 (-774))) (-3774 (*1 *1 *1) (-5 *1 (-774))) (-2599 (*1 *1 *1 *1) (-5 *1 (-774))) (-2598 (*1 *1 *1 *1) (-5 *1 (-774))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2596 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2595 (*1 *1 *1 *1) (-5 *1 (-774))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3536 (*1 *1 *1) (-5 *1 (-774))) (-2593 (*1 *1 *1 *1) (-5 *1 (-774))) (-2592 (*1 *1 *1) (-5 *1 (-774))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) (-2591 (*1 *1 *1 *1) (-5 *1 (-774))) (-2613 (*1 *1 *1) (-5 *1 (-774))) (-2613 (*1 *1 *1 *1) (-5 *1 (-774))) (-2590 (*1 *1 *1 *1) (-5 *1 (-774))) (-2589 (*1 *1 *1 *1) (-5 *1 (-774))) (-2588 (*1 *1 *1 *1) (-5 *1 (-774))) (-2587 (*1 *1 *1 *1) (-5 *1 (-774))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-3103 (*1 *1 *1 *1) (-5 *1 (-774))) (-2586 (*1 *1 *1 *1) (-5 *1 (-774))) (-2585 (*1 *1 *1 *1) (-5 *1 (-774))) (-2584 (*1 *1 *1 *1) (-5 *1 (-774))) (-2583 (*1 *1 *1 *1) (-5 *1 (-774))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2581 (*1 *1 *1) (-5 *1 (-774))) (-3837 (*1 *1 *1) (-5 *1 (-774))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2580 (*1 *1 *1) (-5 *1 (-774))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) (-2579 (*1 *1 *1) (-5 *1 (-774))) (-2578 (*1 *1 *1 *1) (-5 *1 (-774))) (-3533 (*1 *1 *1) (-5 *1 (-774))) (-3533 (*1 *1 *1 *1) (-5 *1 (-774))) (-3533 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-2577 (*1 *1 *1) (-5 *1 (-774))) (-2577 (*1 *1 *1 *1) (-5 *1 (-774))) (-2577 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3471 (*1 *1 *1) (-5 *1 (-774))) (-3471 (*1 *1 *1 *1) (-5 *1 (-774))) (-3471 (*1 *1 *1 *1 *1) (-5 *1 (-774))) (-3242 (*1 *1 *1) (-5 *1 (-774))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2576 (*1 *1 *1) (-5 *1 (-774))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2575 (*1 *1 *1) (-5 *1 (-774))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) (-3058 (*1 *1 *1 *1) (-5 *1 (-774))) (-2570 (*1 *1 *1 *1) (-5 *1 (-774))) (-2687 (*1 *1 *1 *1) (-5 *1 (-774))) (-2569 (*1 *1 *1 *1) (-5 *1 (-774))) (-2686 (*1 *1 *1 *1) (-5 *1 (-774))) (-2568 (*1 *1 *1 *1) (-5 *1 (-774))) (-3840 (*1 *1 *1 *1) (-5 *1 (-774))) (-3838 (*1 *1 *1 *1) (-5 *1 (-774))) (-3838 (*1 *1 *1) (-5 *1 (-774))) (* (*1 *1 *1 *1) (-5 *1 (-774))) (-3950 (*1 *1 *1 *1) (-5 *1 (-774))) (** (*1 *1 *1 *1) (-5 *1 (-774))) (-2567 (*1 *1 *1 *1) (-5 *1 (-774))) (-2566 (*1 *1 *1 *1) (-5 *1 (-774))) (-2565 (*1 *1 *1 *1) (-5 *1 (-774))) (-3467 (*1 *1 *1 *1) (-5 *1 (-774))) (-2564 (*1 *1 *1 *1) (-5 *1 (-774))) (-2563 (*1 *1 *1 *1) (-5 *1 (-774))) (-2562 (*1 *1 *1) (-5 *1 (-774))) (-3738 (*1 *1 *1 *1) (-5 *1 (-774))) (-3738 (*1 *1 *1) (-5 *1 (-774)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3832 (((-3 $ "failed") (-1091)) 36 T ELT)) (-3138 (((-696)) 32 T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) 29 T ELT)) (-3244 (((-1074) $) 43 T ELT)) (-2402 (($ (-832)) 28 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (((-1091) $) 13 T ELT) (((-474) $) 19 T ELT) (((-802 (-328)) $) 26 T ELT) (((-802 (-485)) $) 22 T ELT)) (-3947 (((-774) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT))) +(((-775 |#1|) (-13 (-754) (-555 (-1091)) (-555 (-474)) (-555 (-802 (-328))) (-555 (-802 (-485))) (-10 -8 (-15 -3832 ((-3 $ "failed") (-1091))))) (-585 (-1091))) (T -775)) +((-3832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3543 (((-445) $) 12 T ELT)) (-2610 (((-585 (-379)) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) +(((-776) (-13 (-1015) (-10 -8 (-15 -3543 ((-445) $)) (-15 -2610 ((-585 (-379)) $))))) (T -776)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-776)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-585 (-379))) (-5 *1 (-776))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT) (((-859 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3924 (((-1186) (-696)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-777 |#1| |#2| |#3| |#4|) (-13 (-963) (-428 (-859 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1186) (-696))))) (-963) (-585 (-1091)) (-585 (-696)) (-696)) (T -777)) +((-3950 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) (-14 *3 (-585 (-1091))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 *3)) (-14 *7 *3)))) +((-2611 (((-3 (-148 |#3|) #1="failed") (-696) (-696) |#2| |#2|) 38 T ELT)) (-2612 (((-3 (-348 |#3|) #1#) (-696) (-696) |#2| |#2|) 29 T ELT))) +(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-348 |#3|) #1="failed") (-696) (-696) |#2| |#2|)) (-15 -2611 ((-3 (-148 |#3|) #1#) (-696) (-696) |#2| |#2|))) (-312) (-1173 |#1|) (-1156 |#1|)) (T -778)) +((-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-348 *6)) (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) +((-2612 (((-3 (-348 (-1149 |#2| |#1|)) #1="failed") (-696) (-696) (-1170 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-348 (-1149 |#2| |#1|)) #1#) (-696) (-696) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) 28 T ELT))) +(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-348 (-1149 |#2| |#1|)) #1="failed") (-696) (-696) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (-15 -2612 ((-3 (-348 (-1149 |#2| |#1|)) #1#) (-696) (-696) (-1170 |#1| |#2| |#3|)))) (-312) (-1091) |#1|) (T -779)) +((-2612 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-348 (-1149 *6 *5))) (-5 *1 (-779 *5 *6 *7)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-348 (-1149 *6 *5))) (-5 *1 (-779 *5 *6 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3773 (((-696) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-780 |#1|) (-781 |#1|) (-485)) (T -780)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $ (-485)) 78 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 77 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2614 (($ $) 80 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3773 (((-696) $) 85 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-2616 (((-485)) 82 T ELT)) (-2615 (((-485) $) 81 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3770 (($ $ (-485)) 84 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-1070 (-485)) $) 86 T ELT)) (-2893 (($ $) 83 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3771 (((-485) $ (-485)) 79 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-781 |#1|) (-113) (-485)) (T -781)) +((-2617 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1070 (-485))))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) (-2893 (*1 *1 *1) (-4 *1 (-781 *2))) (-2616 (*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) (-2614 (*1 *1 *1) (-4 *1 (-781 *2))) (-3771 (*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-781 *4))))) +(-13 (-258) (-120) (-10 -8 (-15 -2617 ((-1070 (-485)) $)) (-15 -3773 ((-696) $)) (-15 -3770 ($ $ (-485))) (-15 -2893 ($ $)) (-15 -2616 ((-485))) (-15 -2615 ((-485) $)) (-15 -2614 ($ $)) (-15 -3771 ((-485) $ (-485))) (-15 -3039 ($ $ (-485))) (-15 -2613 ($ (-1086 (-485)) (-485))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-780 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-780 |#1|) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-780 |#1|) (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-780 |#1|) (-952 (-485))) ELT)) (-3158 (((-780 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-780 |#1|) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-780 |#1|) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-780 |#1|) (-952 (-485))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-780 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-780 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1180 (-780 |#1|)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-780 |#1|)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-780 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-780 |#1|) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-780 |#1|) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-780 |#1|) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| (-780 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3959 (($ (-1 (-780 |#1|) (-780 |#1|)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-780 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-780 |#1|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-780 |#1|))) (|:| |vec| (-1180 (-780 |#1|)))) (-1180 $) $) NIL T ELT) (((-632 (-780 |#1|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-780 |#1|) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-780 |#1|) (-258)) ELT)) (-3132 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-780 |#1|) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-780 |#1|)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-780 |#1|) (-780 |#1|)) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-249 (-780 |#1|))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-249 (-780 |#1|)))) NIL (|has| (-780 |#1|) (-260 (-780 |#1|))) ELT) (($ $ (-585 (-1091)) (-585 (-780 |#1|))) NIL (|has| (-780 |#1|) (-454 (-1091) (-780 |#1|))) ELT) (($ $ (-1091) (-780 |#1|)) NIL (|has| (-780 |#1|) (-454 (-1091) (-780 |#1|))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-780 |#1|)) NIL (|has| (-780 |#1|) (-241 (-780 |#1|) (-780 |#1|))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-780 |#1|) $) NIL T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-780 |#1|) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-780 |#1|) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-780 |#1|) (-935)) ELT) (((-179) $) NIL (|has| (-780 |#1|) (-935)) ELT)) (-2618 (((-148 (-348 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-780 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-780 |#1|) (-952 (-1091))) ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-780 |#1|) (-823))) (|has| (-780 |#1|) (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 (((-780 |#1|) $) NIL (|has| (-780 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-348 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-780 |#1|) (-742)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-780 |#1|) (-780 |#1|))) NIL T ELT) (($ $ (-1 (-780 |#1|) (-780 |#1|)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-780 |#1|) (-813 (-1091))) ELT) (($ $) NIL (|has| (-780 |#1|) (-189)) ELT) (($ $ (-696)) NIL (|has| (-780 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-780 |#1|) (-758)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-780 |#1|) (-780 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-780 |#1|) $) NIL T ELT) (($ $ (-780 |#1|)) NIL T ELT))) +(((-782 |#1|) (-13 (-906 (-780 |#1|)) (-10 -8 (-15 -3771 ((-348 (-485)) $ (-485))) (-15 -2618 ((-148 (-348 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485)) (T -782)) +((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-782 *3)) (-14 *3 (-485)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-485)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-782 *3)) (-14 *3 *2)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#2| (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#2| (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) NIL (|has| |#2| (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT)) (-3731 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2996 (($) NIL (|has| |#2| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| |#2| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| |#2| (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-758)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 60 T ELT)) (-3447 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 |#2|) (-585 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-585 (-1091)) (-585 |#2|)) NIL (|has| |#2| (-454 (-1091) |#2|)) ELT) (($ $ (-1091) |#2|) NIL (|has| |#2| (-454 (-1091) |#2|)) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| |#2| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| |#2| (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| |#2| (-555 (-474))) ELT) (((-328) $) NIL (|has| |#2| (-935)) ELT) (((-179) $) NIL (|has| |#2| (-935)) ELT)) (-2618 (((-148 (-348 (-485))) $) 78 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3947 (((-774) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1091)) NIL (|has| |#2| (-952 (-1091))) ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3133 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-348 (-485)) $ (-485)) 71 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#2| (-742)) ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-758)) ELT)) (-3950 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-783 |#1| |#2|) (-13 (-906 |#2|) (-10 -8 (-15 -3771 ((-348 (-485)) $ (-485))) (-15 -2618 ((-148 (-348 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485) (-781 |#1|)) (T -783)) +((-3771 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-348 (-485))) (-5 *1 (-783 *4 *5)) (-5 *3 (-485)) (-4 *5 (-781 *4)))) (-2618 (*1 *2 *1) (-12 (-14 *3 (-485)) (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) (-3731 (*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3))))) +((-2570 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3797 ((|#2| $) 12 T ELT)) (-2619 (($ |#1| |#2|) 9 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3245 (((-1035) $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#1| $) 11 T ELT)) (-3531 (($ |#1| |#2|) 10 T ELT)) (-3947 (((-774) $) 18 (OR (-12 (|has| |#1| (-554 (-774))) (|has| |#2| (-554 (-774)))) (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015)))) ELT)) (-1266 (((-85) $ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT)) (-3058 (((-85) $ $) 23 (-12 (|has| |#1| (-1015)) (|has| |#2| (-1015))) ELT))) +(((-784 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-554 (-774))) (IF (|has| |#2| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1015)) (IF (|has| |#2| (-1015)) (-6 (-1015)) |%noBranch|) |%noBranch|) (-15 -2619 ($ |#1| |#2|)) (-15 -3531 ($ |#1| |#2|)) (-15 -3802 (|#1| $)) (-15 -3797 (|#2| $)))) (-1130) (-1130)) (T -784)) +((-2619 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1130))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2959 (((-485) $) 16 T ELT)) (-2621 (($ (-130)) 13 T ELT)) (-2620 (($ (-130)) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-130) $) 15 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2623 (($ (-130)) 11 T ELT)) (-2624 (($ (-130)) 10 T ELT)) (-3947 (((-774) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2622 (($ (-130)) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-785) (-13 (-1015) (-557 (-130)) (-10 -8 (-15 -2624 ($ (-130))) (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2958 ((-130) $)) (-15 -2959 ((-485) $))))) (T -785)) +((-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-785))))) +((-3947 (((-265 (-485)) (-348 (-859 (-48)))) 23 T ELT) (((-265 (-485)) (-859 (-48))) 18 T ELT))) +(((-786) (-10 -7 (-15 -3947 ((-265 (-485)) (-859 (-48)))) (-15 -3947 ((-265 (-485)) (-348 (-859 (-48))))))) (T -786)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-786)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-786))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3567 (((-85) $ (|[\|\|]| (-445))) 9 T ELT) (((-85) $ (|[\|\|]| (-1074))) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-445) $) 10 T ELT) (((-1074) $) 14 T ELT)) (-3058 (((-85) $ $) 15 T ELT))) +(((-787) (-13 (-997) (-1176) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-445)))) (-15 -3573 ((-445) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3573 ((-1074) $))))) (T -787)) +((-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-787)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-787)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-787))))) +((-3959 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -3959 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1130) (-1130)) (T -788)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) +((-3372 (($ |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-696)) 15 T ELT))) +(((-789 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1|)) (-15 -2627 (|#1| $ (-696)))) (-1130)) (T -789)) +((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1130)))) (-3372 (*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1130))))) +((-3959 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 15 T ELT))) +(((-790 |#1| |#2|) (-10 -7 (-15 -3959 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1130) (-1130)) (T -790)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) +((-3372 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-696)) 15 T ELT))) +(((-791 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-696)))) (-1130)) (T -791)) +((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1130)))) (-3372 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1130))))) +((-2625 (((-585 (-1096)) (-1074)) 9 T ELT))) +(((-792) (-10 -7 (-15 -2625 ((-585 (-1096)) (-1074))))) (T -792)) +((-2625 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-1096))) (-5 *1 (-792))))) +((-3959 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 15 T ELT))) +(((-793 |#1| |#2|) (-10 -7 (-15 -3959 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1130) (-1130)) (T -793)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) +((-2626 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-696)) 15 T ELT))) +(((-794 |#1|) (-10 -8 (-15 -2626 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-696)))) (-1130)) (T -794)) +((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1130)))) (-2626 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1130))))) +((-2630 (((-1070 (-585 (-485))) (-585 (-485)) (-1070 (-585 (-485)))) 41 T ELT)) (-2629 (((-1070 (-585 (-485))) (-585 (-485)) (-585 (-485))) 31 T ELT)) (-2631 (((-1070 (-585 (-485))) (-585 (-485))) 53 T ELT) (((-1070 (-585 (-485))) (-585 (-485)) (-585 (-485))) 50 T ELT)) (-2632 (((-1070 (-585 (-485))) (-485)) 55 T ELT)) (-2628 (((-1070 (-585 (-832))) (-1070 (-585 (-832)))) 22 T ELT)) (-3011 (((-585 (-832)) (-585 (-832))) 18 T ELT))) +(((-795) (-10 -7 (-15 -3011 ((-585 (-832)) (-585 (-832)))) (-15 -2628 ((-1070 (-585 (-832))) (-1070 (-585 (-832))))) (-15 -2629 ((-1070 (-585 (-485))) (-585 (-485)) (-585 (-485)))) (-15 -2630 ((-1070 (-585 (-485))) (-585 (-485)) (-1070 (-585 (-485))))) (-15 -2631 ((-1070 (-585 (-485))) (-585 (-485)) (-585 (-485)))) (-15 -2631 ((-1070 (-585 (-485))) (-585 (-485)))) (-15 -2632 ((-1070 (-585 (-485))) (-485))))) (T -795)) +((-2632 (*1 *2 *3) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-485)))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485))))) (-2631 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485))))) (-2630 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *3 (-585 (-485))) (-5 *1 (-795)))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485))))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-1070 (-585 (-832)))) (-5 *1 (-795)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795))))) +((-3973 (((-802 (-328)) $) 9 (|has| |#1| (-555 (-802 (-328)))) ELT) (((-802 (-485)) $) 8 (|has| |#1| (-555 (-802 (-485)))) ELT))) +(((-796 |#1|) (-113) (-1130)) (T -796)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-555 (-802 (-485)))) (-6 (-555 (-802 (-485)))) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-328)))) (-6 (-555 (-802 (-328)))) |%noBranch|))) +(((-555 (-802 (-328))) |has| |#1| (-555 (-802 (-328)))) ((-555 (-802 (-485))) |has| |#1| (-555 (-802 (-485))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3615 (($) 14 T ELT)) (-2634 (($ (-800 |#1| |#2|) (-800 |#1| |#3|)) 28 T ELT)) (-2633 (((-800 |#1| |#3|) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2642 (((-85) $) 22 T ELT)) (-2641 (($) 19 T ELT)) (-3947 (((-774) $) 31 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2852 (((-800 |#1| |#2|) $) 15 T ELT)) (-3058 (((-85) $ $) 26 T ELT))) +(((-797 |#1| |#2| |#3|) (-13 (-1015) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3615 ($)) (-15 -2634 ($ (-800 |#1| |#2|) (-800 |#1| |#3|))) (-15 -2852 ((-800 |#1| |#2|) $)) (-15 -2633 ((-800 |#1| |#3|) $)))) (-1015) (-1015) (-610 |#2|)) (T -797)) +((-2642 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2641 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-3615 (*1 *1) (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) (-4 *4 (-610 *3)))) (-2634 (*1 *1 *2 *3) (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6)))) (-2852 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4)))) (-2633 (*1 *2 *1) (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) (-4 *5 (-610 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-2798 (((-800 |#1| $) $ (-802 |#1|) (-800 |#1| $)) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-798 |#1|) (-113) (-1015)) (T -798)) +((-2798 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) (-4 *4 (-1015))))) +(-13 (-1015) (-10 -8 (-15 -2798 ((-800 |t#1| $) $ (-802 |t#1|) (-800 |t#1| $))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2635 (((-85) (-585 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2636 (((-800 |#1| |#2|) |#2| |#3|) 45 (-12 (-2562 (|has| |#2| (-952 (-1091)))) (-2562 (|has| |#2| (-963)))) ELT) (((-585 (-249 (-859 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-963)) (-2562 (|has| |#2| (-952 (-1091))))) ELT) (((-585 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-952 (-1091))) ELT) (((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|) 21 T ELT))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2635 ((-85) |#2| |#3|)) (-15 -2635 ((-85) (-585 |#2|) |#3|)) (-15 -2636 ((-797 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1091))) (-15 -2636 ((-585 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-963)) (-15 -2636 ((-585 (-249 (-859 |#2|))) |#2| |#3|)) (-15 -2636 ((-800 |#1| |#2|) |#2| |#3|))))) (-1015) (-798 |#1|) (-555 (-802 |#1|))) (T -799)) +((-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) (-2562 (-4 *3 (-952 (-1091)))) (-2562 (-4 *3 (-963))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-963)) (-2562 (-4 *3 (-952 (-1091)))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-952 (-1091))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3236 (($ $ $) 40 T ELT)) (-2663 (((-3 (-85) #1="failed") $ (-802 |#1|)) 37 T ELT)) (-3615 (($) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2638 (($ (-802 |#1|) |#2| $) 20 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2640 (((-3 |#2| #1#) (-802 |#1|) $) 51 T ELT)) (-2642 (((-85) $) 15 T ELT)) (-2641 (($) 13 T ELT)) (-3259 (((-585 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3531 (($ (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|)))) 23 T ELT)) (-3947 (((-774) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2637 (($ (-802 |#1|) |#2| $ |#2|) 49 T ELT)) (-2639 (($ (-802 |#1|) |#2| $) 48 T ELT)) (-3058 (((-85) $ $) 42 T ELT))) +(((-800 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3615 ($)) (-15 -3236 ($ $ $)) (-15 -2640 ((-3 |#2| #1="failed") (-802 |#1|) $)) (-15 -2639 ($ (-802 |#1|) |#2| $)) (-15 -2638 ($ (-802 |#1|) |#2| $)) (-15 -2637 ($ (-802 |#1|) |#2| $ |#2|)) (-15 -3259 ((-585 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))) $)) (-15 -3531 ($ (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))))) (-15 -2663 ((-3 (-85) #1#) $ (-802 |#1|))))) (-1015) (-1015)) (T -800)) +((-2642 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-2641 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3615 (*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3236 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2640 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) (-5 *1 (-800 *4 *2)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-2637 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1015)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) (-2663 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-800 *4 *5)) (-4 *5 (-1015))))) +((-3959 (((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)) 22 T ELT))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-800 |#1| |#3|) (-1 |#3| |#2|) (-800 |#1| |#2|)))) (-1015) (-1015) (-1015)) (T -801)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2650 (($ $ (-585 (-51))) 74 T ELT)) (-3083 (((-585 $) $) 139 T ELT)) (-2647 (((-2 (|:| |var| (-585 (-1091))) (|:| |pred| (-51))) $) 30 T ELT)) (-3262 (((-85) $) 35 T ELT)) (-2648 (($ $ (-585 (-1091)) (-51)) 31 T ELT)) (-2651 (($ $ (-585 (-51))) 73 T ELT)) (-3159 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1091) #1#) $) 167 T ELT)) (-3158 ((|#1| $) 68 T ELT) (((-1091) $) NIL T ELT)) (-2645 (($ $) 126 T ELT)) (-2657 (((-85) $) 55 T ELT)) (-2652 (((-585 (-51)) $) 50 T ELT)) (-2649 (($ (-1091) (-85) (-85) (-85)) 75 T ELT)) (-2643 (((-3 (-585 $) #1#) (-585 $)) 82 T ELT)) (-2654 (((-85) $) 58 T ELT)) (-2655 (((-85) $) 57 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) 41 T ELT)) (-2660 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $) 97 T ELT)) (-2824 (((-3 (-585 $) #1#) $) 40 T ELT)) (-2661 (((-3 (-585 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-585 $))) #1#) $) 107 T ELT)) (-2659 (((-3 (-585 $) #1#) $) 42 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $) 45 T ELT)) (-2658 (((-85) $) 34 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2646 (((-85) $) 28 T ELT)) (-2653 (((-85) $) 52 T ELT)) (-2644 (((-585 (-51)) $) 130 T ELT)) (-2656 (((-85) $) 56 T ELT)) (-3801 (($ (-86) (-585 $)) 104 T ELT)) (-3324 (((-696) $) 33 T ELT)) (-3401 (($ $) 72 T ELT)) (-3973 (($ (-585 $)) 69 T ELT)) (-3954 (((-85) $) 32 T ELT)) (-3947 (((-774) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1091)) 76 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2664 (($ $ (-51)) 129 T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 83 T CONST)) (-3058 (((-85) $ $) 93 T ELT)) (-3950 (($ $ $) 117 T ELT)) (-3840 (($ $ $) 121 T ELT)) (** (($ $ (-696)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-802 |#1|) (-13 (-1015) (-952 |#1|) (-952 (-1091)) (-10 -8 (-15 -2662 ($) -3953) (-15 -2668 ($) -3953) (-15 -2824 ((-3 (-585 $) #1="failed") $)) (-15 -2825 ((-3 (-585 $) #1#) $)) (-15 -2661 ((-3 (-585 $) #1#) $ (-86))) (-15 -2661 ((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-585 $))) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2403 (-696))) #1#) $)) (-15 -2660 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2659 ((-3 (-585 $) #1#) $)) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2403 $)) #1#) $)) (-15 -3801 ($ (-86) (-585 $))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696))) (-15 ** ($ $ $)) (-15 -3950 ($ $ $)) (-15 -3324 ((-696) $)) (-15 -3973 ($ (-585 $))) (-15 -3401 ($ $)) (-15 -2658 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3954 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-585 (-51)) $)) (-15 -2651 ($ $ (-585 (-51)))) (-15 -2650 ($ $ (-585 (-51)))) (-15 -2649 ($ (-1091) (-85) (-85) (-85))) (-15 -2648 ($ $ (-585 (-1091)) (-51))) (-15 -2647 ((-2 (|:| |var| (-585 (-1091))) (|:| |pred| (-51))) $)) (-15 -2646 ((-85) $)) (-15 -2645 ($ $)) (-15 -2664 ($ $ (-51))) (-15 -2644 ((-585 (-51)) $)) (-15 -3083 ((-585 $) $)) (-15 -2643 ((-3 (-585 $) #1#) (-585 $))))) (-1015)) (T -802)) +((-2662 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2668 (*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2661 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-585 (-802 *3))))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2827 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2649 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-585 (-1091))) (|:| |pred| (-51)))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) (-2643 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +((-3211 (((-802 |#1|) (-802 |#1|) (-585 (-1091)) (-1 (-85) (-585 |#2|))) 32 T ELT) (((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|))) 46 T ELT) (((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2663 (((-85) (-585 |#2|) (-802 |#1|)) 42 T ELT) (((-85) |#2| (-802 |#1|)) 36 T ELT)) (-3532 (((-1 (-85) |#2|) (-802 |#1|)) 16 T ELT)) (-2665 (((-585 |#2|) (-802 |#1|)) 24 T ELT)) (-2664 (((-802 |#1|) (-802 |#1|) |#2|) 20 T ELT))) +(((-803 |#1| |#2|) (-10 -7 (-15 -3211 ((-802 |#1|) (-802 |#1|) (-1 (-85) |#2|))) (-15 -3211 ((-802 |#1|) (-802 |#1|) (-585 (-1 (-85) |#2|)))) (-15 -3211 ((-802 |#1|) (-802 |#1|) (-585 (-1091)) (-1 (-85) (-585 |#2|)))) (-15 -3532 ((-1 (-85) |#2|) (-802 |#1|))) (-15 -2663 ((-85) |#2| (-802 |#1|))) (-15 -2663 ((-85) (-585 |#2|) (-802 |#1|))) (-15 -2664 ((-802 |#1|) (-802 |#1|) |#2|)) (-15 -2665 ((-585 |#2|) (-802 |#1|)))) (-1015) (-1130)) (T -803)) +((-2665 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1130)))) (-2664 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1130)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1130)) (-5 *2 (-85)) (-5 *1 (-803 *5 *6)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) (-4 *3 (-1130)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-803 *4 *5)) (-4 *5 (-1130)))) (-3211 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1091))) (-5 *4 (-1 (-85) (-585 *6))) (-4 *5 (-1015)) (-4 *6 (-1130)) (-5 *1 (-803 *5 *6)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) (-4 *5 (-1130)) (-5 *1 (-803 *4 *5)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1130)) (-5 *1 (-803 *4 *5))))) +((-3959 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 19 T ELT))) +(((-804 |#1| |#2|) (-10 -7 (-15 -3959 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1015) (-1015)) (T -804)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3935 (((-585 |#1|) $) 20 T ELT)) (-2666 (((-85) $) 49 T ELT)) (-3159 (((-3 (-616 |#1|) "failed") $) 55 T ELT)) (-3158 (((-616 |#1|) $) 53 T ELT)) (-3800 (($ $) 24 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3834 (((-696) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-616 |#1|) $) 22 T ELT)) (-3947 (((-774) $) 47 T ELT) (($ (-616 |#1|)) 27 T ELT) (((-741 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 11 T CONST)) (-2667 (((-585 (-616 |#1|)) $) 28 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 66 T ELT))) +(((-805 |#1|) (-13 (-758) (-952 (-616 |#1|)) (-10 -8 (-15 -2668 ($) -3953) (-15 -3947 ((-741 |#1|) $)) (-15 -3947 ($ |#1|)) (-15 -3802 ((-616 |#1|) $)) (-15 -3834 ((-696) $)) (-15 -2667 ((-585 (-616 |#1|)) $)) (-15 -3800 ($ $)) (-15 -2666 ((-85) $)) (-15 -3935 ((-585 |#1|) $)))) (-758)) (T -805)) +((-2668 (*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3947 (*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +((-3475 ((|#1| |#1| |#1|) 19 T ELT))) +(((-806 |#1| |#2|) (-10 -7 (-15 -3475 (|#1| |#1| |#1|))) (-1156 |#2|) (-963)) (T -806)) +((-3475 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1156 *3))))) +((-2671 ((|#2| $ |#3|) 10 T ELT))) +(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#2| |#1| |#3|))) (-808 |#2| |#3|) (-1130) (-1130)) (T -807)) +NIL +((-3759 ((|#1| $ |#2|) 7 T ELT)) (-2671 ((|#1| $ |#2|) 6 T ELT))) +(((-808 |#1| |#2|) (-113) (-1130) (-1130)) (T -808)) +((-3759 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 (|t#1| $ |t#2|)) (-15 -2671 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1130) . T)) +((-2670 ((|#1| |#1| (-696)) 26 T ELT)) (-2669 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3436 (((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1#) |#1| (-696) (-696)) 29 T ELT) (((-585 |#1|) |#1|) 38 T ELT))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3436 ((-585 |#1|) |#1|)) (-15 -3436 ((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1="failed") |#1| (-696) (-696))) (-15 -2669 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2670 (|#1| |#1| (-696)))) (-1156 |#2|) (-312)) (T -809)) +((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1156 *4)))) (-2669 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1156 *3)))) (-3436 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-809 *3 *5)) (-4 *3 (-1156 *5)))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-585 |#2|) (-585 (-696))) 45 T ELT) (($ $ |#2| (-696)) 44 T ELT) (($ $ (-585 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-585 |#2|) (-585 (-696))) 48 T ELT) (($ $ |#2| (-696)) 47 T ELT) (($ $ (-585 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-810 |#1| |#2|) (-113) (-963) (-1015)) (T -810)) +NIL +(-13 (-82 |t#1| |t#1|) (-813 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-656 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-808 $ |#2|) . T) ((-813 |#2|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3759 (($ $ (-585 |#1|) (-585 (-696))) 52 T ELT) (($ $ |#1| (-696)) 51 T ELT) (($ $ (-585 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 |#1|) (-585 (-696))) 55 T ELT) (($ $ |#1| (-696)) 54 T ELT) (($ $ (-585 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-811 |#1|) (-113) (-1015)) (T -811)) +NIL +(-13 (-963) (-813 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-808 $ |#1|) . T) ((-813 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3759 (($ $ |#2|) NIL T ELT) (($ $ (-585 |#2|)) 10 T ELT) (($ $ |#2| (-696)) 12 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 15 T ELT)) (-2671 (($ $ |#2|) 16 T ELT) (($ $ (-585 |#2|)) 18 T ELT) (($ $ |#2| (-696)) 19 T ELT) (($ $ (-585 |#2|) (-585 (-696))) 21 T ELT))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2671 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -2671 (|#1| |#1| |#2| (-696))) (-15 -2671 (|#1| |#1| (-585 |#2|))) (-15 -3759 (|#1| |#1| (-585 |#2|) (-585 (-696)))) (-15 -3759 (|#1| |#1| |#2| (-696))) (-15 -3759 (|#1| |#1| (-585 |#2|))) (-15 -2671 (|#1| |#1| |#2|)) (-15 -3759 (|#1| |#1| |#2|))) (-813 |#2|) (-1015)) (T -812)) +NIL +((-3759 (($ $ |#1|) 7 T ELT) (($ $ (-585 |#1|)) 15 T ELT) (($ $ |#1| (-696)) 14 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 13 T ELT)) (-2671 (($ $ |#1|) 6 T ELT) (($ $ (-585 |#1|)) 12 T ELT) (($ $ |#1| (-696)) 11 T ELT) (($ $ (-585 |#1|) (-585 (-696))) 10 T ELT))) +(((-813 |#1|) (-113) (-1015)) (T -813)) +((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-1015)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) (-4 *4 (-1015))))) +(-13 (-808 $ |t#1|) (-10 -8 (-15 -3759 ($ $ (-585 |t#1|))) (-15 -3759 ($ $ |t#1| (-696))) (-15 -3759 ($ $ (-585 |t#1|) (-585 (-696)))) (-15 -2671 ($ $ (-585 |t#1|))) (-15 -2671 ($ $ |t#1| (-696))) (-15 -2671 ($ $ (-585 |t#1|) (-585 (-696)))))) +(((-13) . T) ((-808 $ |#1|) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3139 (($ $) 25 T ELT)) (-2672 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 20 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1117 |#1|) $) 9 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-814 |#1|) (-13 (-92 |#1|) (-554 (-1117 |#1|)) (-10 -8 (-15 -2672 ($ |#1|)) (-15 -2672 ($ $ $)))) (-1015)) (T -814)) +((-2672 (*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) (-2672 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2688 (((-1011 |#1|) $) 61 T ELT)) (-2911 (((-585 $) (-585 $)) 104 T ELT)) (-3624 (((-485) $) 84 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-3773 (((-696) $) 81 T ELT)) (-2692 (((-1011 |#1|) $ |#1|) 71 T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2675 (((-85) $) 89 T ELT)) (-2677 (((-696) $) 85 T ELT)) (-2533 (($ $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-758))) ELT)) (-2859 (($ $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-758))) ELT)) (-2681 (((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $) 56 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 131 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2674 (((-1011 |#1|) $) 136 (|has| |#1| (-318)) ELT)) (-2676 (((-85) $) 82 T ELT)) (-3801 ((|#1| $ |#1|) 69 T ELT)) (-3949 (((-696) $) 63 T ELT)) (-2683 (($ (-585 (-585 |#1|))) 119 T ELT)) (-2678 (((-886) $) 75 T ELT)) (-2684 (($ (-585 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2680 (($ (-585 (-585 |#1|))) 58 T ELT)) (-2679 (($ (-585 (-585 |#1|))) 124 T ELT)) (-2673 (($ (-585 |#1|)) 133 T ELT)) (-3947 (((-774) $) 118 T ELT) (($ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 |#1|)) 93 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-758))) ELT)) (-2569 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-758))) ELT)) (-3058 (((-85) $ $) 67 T ELT)) (-2686 (((-85) $ $) NIL (OR (|has| |#1| (-318)) (|has| |#1| (-758))) ELT)) (-2687 (((-85) $ $) 91 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-815 |#1|) (-13 (-817 |#1|) (-10 -8 (-15 -2681 ((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $)) (-15 -2680 ($ (-585 (-585 |#1|)))) (-15 -3947 ($ (-585 (-585 |#1|)))) (-15 -3947 ($ (-585 |#1|))) (-15 -2679 ($ (-585 (-585 |#1|)))) (-15 -3949 ((-696) $)) (-15 -2678 ((-886) $)) (-15 -3773 ((-696) $)) (-15 -2677 ((-696) $)) (-15 -3624 ((-485) $)) (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $)) (-15 -2911 ((-585 $) (-585 $))) (IF (|has| |#1| (-318)) (-15 -2674 ((-1011 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-15 -2673 ($ (-585 |#1|))) (IF (|has| |#1| (-318)) (-15 -2673 ($ (-585 |#1|))) |%noBranch|)))) (-1015)) (T -815)) +((-2681 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-318)) (-4 *3 (-1015)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +((-2682 ((|#2| (-1057 |#1| |#2|)) 48 T ELT))) +(((-816 |#1| |#2|) (-10 -7 (-15 -2682 (|#2| (-1057 |#1| |#2|)))) (-832) (-13 (-963) (-10 -7 (-6 (-3998 "*"))))) (T -816)) +((-2682 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-832)) (-4 *2 (-13 (-963) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-816 *4 *2))))) +((-2570 (((-85) $ $) 7 T ELT)) (-2688 (((-1011 |#1|) $) 42 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2692 (((-1011 |#1|) $ |#1|) 41 T ELT)) (-2412 (((-85) $) 22 T ELT)) (-2533 (($ $ $) 35 (OR (|has| |#1| (-758)) (|has| |#1| (-318))) ELT)) (-2859 (($ $ $) 36 (OR (|has| |#1| (-758)) (|has| |#1| (-318))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3801 ((|#1| $ |#1|) 45 T ELT)) (-2683 (($ (-585 (-585 |#1|))) 43 T ELT)) (-2684 (($ (-585 |#1|)) 44 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 37 (OR (|has| |#1| (-758)) (|has| |#1| (-318))) ELT)) (-2569 (((-85) $ $) 39 (OR (|has| |#1| (-758)) (|has| |#1| (-318))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 38 (OR (|has| |#1| (-758)) (|has| |#1| (-318))) ELT)) (-2687 (((-85) $ $) 40 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-832)) 17 T ELT) (($ $ (-696)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-817 |#1|) (-113) (-1015)) (T -817)) +((-2684 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(-13 (-411) (-241 |t#1| |t#1|) (-10 -8 (-15 -2684 ($ (-585 |t#1|))) (-15 -2683 ($ (-585 (-585 |t#1|)))) (-15 -2688 ((-1011 |t#1|) $)) (-15 -2692 ((-1011 |t#1|) $ |t#1|)) (-15 -2687 ((-85) $ $)) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-758)) |%noBranch|))) +(((-72) . T) ((-554 (-774)) . T) ((-241 |#1| |#1|) . T) ((-411) . T) ((-13) . T) ((-665) . T) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-318))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-318))) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2694 (((-585 (-585 (-696))) $) 163 T ELT)) (-2690 (((-585 (-696)) (-815 |#1|) $) 191 T ELT)) (-2689 (((-585 (-696)) (-815 |#1|) $) 192 T ELT)) (-2688 (((-1011 |#1|) $) 155 T ELT)) (-2695 (((-585 (-815 |#1|)) $) 152 T ELT)) (-2996 (((-815 |#1|) $ (-485)) 157 T ELT) (((-815 |#1|) $) 158 T ELT)) (-2693 (($ (-585 (-815 |#1|))) 165 T ELT)) (-3773 (((-696) $) 159 T ELT)) (-2691 (((-1011 (-1011 |#1|)) $) 189 T ELT)) (-2692 (((-1011 |#1|) $ |#1|) 180 T ELT) (((-1011 (-1011 |#1|)) $ (-1011 |#1|)) 201 T ELT) (((-1011 (-585 |#1|)) $ (-585 |#1|)) 204 T ELT)) (-3247 (((-85) (-815 |#1|) $) 140 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2685 (((-1186) $) 145 T ELT) (((-1186) $ (-485) (-485)) 205 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2697 (((-585 (-815 |#1|)) $) 146 T ELT)) (-3801 (((-815 |#1|) $ (-696)) 153 T ELT)) (-3949 (((-696) $) 160 T ELT)) (-3947 (((-774) $) 177 T ELT) (((-585 (-815 |#1|)) $) 28 T ELT) (($ (-585 (-815 |#1|))) 164 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-585 |#1|) $) 162 T ELT)) (-3058 (((-85) $ $) 198 T ELT)) (-2686 (((-85) $ $) 195 T ELT)) (-2687 (((-85) $ $) 194 T ELT))) +(((-818 |#1|) (-13 (-1015) (-10 -8 (-15 -3947 ((-585 (-815 |#1|)) $)) (-15 -2697 ((-585 (-815 |#1|)) $)) (-15 -3801 ((-815 |#1|) $ (-696))) (-15 -2996 ((-815 |#1|) $ (-485))) (-15 -2996 ((-815 |#1|) $)) (-15 -3773 ((-696) $)) (-15 -3949 ((-696) $)) (-15 -2696 ((-585 |#1|) $)) (-15 -2695 ((-585 (-815 |#1|)) $)) (-15 -2694 ((-585 (-585 (-696))) $)) (-15 -3947 ($ (-585 (-815 |#1|)))) (-15 -2693 ($ (-585 (-815 |#1|)))) (-15 -2692 ((-1011 |#1|) $ |#1|)) (-15 -2691 ((-1011 (-1011 |#1|)) $)) (-15 -2692 ((-1011 (-1011 |#1|)) $ (-1011 |#1|))) (-15 -2692 ((-1011 (-585 |#1|)) $ (-585 |#1|))) (-15 -3247 ((-85) (-815 |#1|) $)) (-15 -2690 ((-585 (-696)) (-815 |#1|) $)) (-15 -2689 ((-585 (-696)) (-815 |#1|) $)) (-15 -2688 ((-1011 |#1|) $)) (-15 -2687 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-1186) $)) (-15 -2685 ((-1186) $ (-485) (-485))))) (-1015)) (T -818)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2996 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) (-5 *3 (-1011 *4)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) (-5 *3 (-585 *4)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) (-5 *1 (-818 *4)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) (-2685 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-818 *4)) (-4 *4 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-696)) NIL T ELT)) (-3331 (($ $ (-832)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1793 (($ (-1180 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-2835 (($) NIL T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1765 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-745 (-832)) $) NIL T ELT) (((-832) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2015 (($) NIL (|has| $ (-318)) ELT)) (-2013 (((-85) $) NIL (|has| $ (-318)) ELT)) (-3134 (($ $ (-832)) NIL (|has| $ (-318)) ELT) (($ $) NIL T ELT)) (-3446 (((-634 $) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2016 (((-1086 $) $ (-832)) NIL (|has| $ (-318)) ELT) (((-1086 $) $) NIL T ELT)) (-2012 (((-832) $) NIL T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-318)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-318)) ELT) (((-1086 $) $) NIL (|has| $ (-318)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-318)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2402 (($ (-832)) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) NIL (|has| $ (-318)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-3931 (((-832)) NIL T ELT) (((-745 (-832))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1766 (((-3 (-696) #1#) $ $) NIL T ELT) (((-696) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3949 (((-832) $) NIL T ELT) (((-745 (-832)) $) NIL T ELT)) (-3187 (((-1086 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-318)) ELT)) (-3226 (((-632 $) (-1180 $)) NIL T ELT) (((-1180 $) $) NIL T ELT)) (-3973 (((-485) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT)) (-2704 (((-634 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $) (-832)) NIL T ELT) (((-1180 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3929 (($ $ (-696)) NIL (|has| $ (-318)) ELT) (($ $) NIL (|has| $ (-318)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-819 |#1|) (-13 (-299) (-280 $) (-555 (-485))) (-832)) (T -819)) +NIL +((-2699 (((-3 (-585 (-1086 |#4|)) #1="failed") (-585 (-1086 |#4|)) (-1086 |#4|)) 164 T ELT)) (-2702 ((|#1|) 101 T ELT)) (-2701 (((-346 (-1086 |#4|)) (-1086 |#4|)) 173 T ELT)) (-2703 (((-346 (-1086 |#4|)) (-585 |#3|) (-1086 |#4|)) 83 T ELT)) (-2700 (((-346 (-1086 |#4|)) (-1086 |#4|)) 183 T ELT)) (-2698 (((-3 (-585 (-1086 |#4|)) #1#) (-585 (-1086 |#4|)) (-1086 |#4|) |#3|) 117 T ELT))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 ((-3 (-585 (-1086 |#4|)) #1="failed") (-585 (-1086 |#4|)) (-1086 |#4|))) (-15 -2700 ((-346 (-1086 |#4|)) (-1086 |#4|))) (-15 -2701 ((-346 (-1086 |#4|)) (-1086 |#4|))) (-15 -2702 (|#1|)) (-15 -2698 ((-3 (-585 (-1086 |#4|)) #1#) (-585 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -2703 ((-346 (-1086 |#4|)) (-585 |#3|) (-1086 |#4|)))) (-823) (-719) (-758) (-863 |#1| |#2| |#3|)) (T -820)) +((-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-346 (-1086 *8))) (-5 *1 (-820 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2698 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-585 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) (-5 *1 (-820 *5 *6 *4 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) (-4 *5 (-863 *2 *3 *4)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-820 *4 *5 *6 *7))))) +((-2699 (((-3 (-585 (-1086 |#2|)) "failed") (-585 (-1086 |#2|)) (-1086 |#2|)) 39 T ELT)) (-2702 ((|#1|) 71 T ELT)) (-2701 (((-346 (-1086 |#2|)) (-1086 |#2|)) 125 T ELT)) (-2703 (((-346 (-1086 |#2|)) (-1086 |#2|)) 109 T ELT)) (-2700 (((-346 (-1086 |#2|)) (-1086 |#2|)) 136 T ELT))) +(((-821 |#1| |#2|) (-10 -7 (-15 -2699 ((-3 (-585 (-1086 |#2|)) "failed") (-585 (-1086 |#2|)) (-1086 |#2|))) (-15 -2700 ((-346 (-1086 |#2|)) (-1086 |#2|))) (-15 -2701 ((-346 (-1086 |#2|)) (-1086 |#2|))) (-15 -2702 (|#1|)) (-15 -2703 ((-346 (-1086 |#2|)) (-1086 |#2|)))) (-823) (-1156 |#1|)) (T -821)) +((-2703 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5)))) (-2702 (*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1156 *2)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) +((-2706 (((-3 (-585 (-1086 $)) "failed") (-585 (-1086 $)) (-1086 $)) 46 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 18 T ELT)) (-2704 (((-634 $) $) 40 T ELT))) +(((-822 |#1|) (-10 -7 (-15 -2704 ((-634 |#1|) |#1|)) (-15 -2706 ((-3 (-585 (-1086 |#1|)) "failed") (-585 (-1086 |#1|)) (-1086 |#1|))) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-823)) (T -822)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 75 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-346 $) $) 67 T ELT)) (-2706 (((-3 (-585 (-1086 $)) "failed") (-585 (-1086 $)) (-1086 $)) 72 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 73 T ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 74 T ELT)) (-3733 (((-346 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-632 $)) 71 (|has| $ (-118)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2704 (((-634 $) $) 70 (|has| $ (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-823) (-113)) (T -823)) +((-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-823)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-823)))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) (-5 *2 (-1180 *1)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) +(-13 (-1135) (-10 -8 (-15 -2709 ((-346 (-1086 $)) (-1086 $))) (-15 -2708 ((-346 (-1086 $)) (-1086 $))) (-15 -2707 ((-346 (-1086 $)) (-1086 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2706 ((-3 (-585 (-1086 $)) "failed") (-585 (-1086 $)) (-1086 $))) (IF (|has| $ (-118)) (PROGN (-15 -2705 ((-3 (-1180 $) "failed") (-632 $))) (-15 -2704 ((-634 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-2712 (((-3 (-2 (|:| -3773 (-696)) (|:| -2385 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2711 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3773 (((-3 (-696) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-824 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-3 (-696) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2712 ((-3 (-2 (|:| -3773 (-696)) (|:| -2385 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-496) (-952 (-485))) (-362 |#1|) (-1156 |#2|) (-1156 (-348 |#3|)) (-291 |#2| |#3| |#4|)) (T -824)) +((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-2 (|:| -3773 (-696)) (|:| -2385 *8))) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6 *7 *8)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-696)) (-5 *1 (-824 *4 *5 *6 *7 *8))))) +((-2712 (((-3 (-2 (|:| -3773 (-696)) (|:| -2385 |#3|)) #1="failed") (-283 (-348 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2711 (((-85) (-283 (-348 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3773 (((-3 (-696) #1#) (-283 (-348 (-485)) |#1| |#2| |#3|)) 14 T ELT))) +(((-825 |#1| |#2| |#3|) (-10 -7 (-15 -3773 ((-3 (-696) #1="failed") (-283 (-348 (-485)) |#1| |#2| |#3|))) (-15 -2711 ((-85) (-283 (-348 (-485)) |#1| |#2| |#3|))) (-15 -2712 ((-3 (-2 (|:| -3773 (-696)) (|:| -2385 |#3|)) #1#) (-283 (-348 (-485)) |#1| |#2| |#3|)))) (-1156 (-348 (-485))) (-1156 (-348 |#1|)) (-291 (-348 (-485)) |#1| |#2|)) (T -825)) +((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 (-348 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3773 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 (-348 (-485)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-825 *4 *5 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 (-348 (-485)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6))))) +((-2717 ((|#2| |#2|) 26 T ELT)) (-2715 (((-485) (-585 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2713 (((-832) (-485)) 38 T ELT)) (-2716 (((-485) |#2|) 45 T ELT)) (-2714 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -2713 ((-832) (-485))) (-15 -2714 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-15 -2714 ((-485) |#2|)) (-15 -2715 ((-485) (-585 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-15 -2716 ((-485) |#2|)) (-15 -2717 (|#2| |#2|))) (-1156 (-348 (-485))) (-1156 (-348 |#1|))) (T -826)) +((-2717 (*1 *2 *2) (-12 (-4 *3 (-1156 (-348 (-485)))) (-5 *1 (-826 *3 *2)) (-4 *2 (-1156 (-348 *3))))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1156 (-348 *4))))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1156 (-348 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *3)) (-4 *3 (-1156 (-348 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *3 (-1156 (-348 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-826 *3 *4)) (-4 *4 (-1156 (-348 *3))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-348 *3))) (-5 *2 (-832)) (-5 *1 (-826 *4 *5)) (-4 *5 (-1156 (-348 *4)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 99 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2725 (($ |#1| (-346 |#1|)) 91 T ELT)) (-2719 (((-1086 |#1|) |#1| |#1|) 52 T ELT)) (-2718 (($ $) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2720 (((-485) $) 96 T ELT)) (-2721 (($ $ (-485)) 98 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-2722 ((|#1| $) 95 T ELT)) (-2723 (((-346 |#1|) $) 94 T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 92 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2724 (($ $) 49 T ELT)) (-3947 (((-774) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-348 |#1|) $) 77 T ELT) (($ (-348 (-346 |#1|))) 85 T ELT)) (-3128 (((-696)) 70 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 86 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-827 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3947 ((-348 |#1|) $)) (-15 -3947 ($ (-348 (-346 |#1|)))) (-15 -2724 ($ $)) (-15 -2723 ((-346 |#1|) $)) (-15 -2722 (|#1| $)) (-15 -2721 ($ $ (-485))) (-15 -2720 ((-485) $)) (-15 -2719 ((-1086 |#1|) |#1| |#1|)) (-15 -2718 ($ $)) (-15 -2725 ($ |#1| (-346 |#1|))) (-15 -3131 (|#1| $)))) (-258)) (T -827)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-348 (-346 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-346 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-346 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +((-2725 (((-51) (-859 |#1|) (-346 (-859 |#1|)) (-1091)) 17 T ELT) (((-51) (-348 (-859 |#1|)) (-1091)) 18 T ELT))) +(((-828 |#1|) (-10 -7 (-15 -2725 ((-51) (-348 (-859 |#1|)) (-1091))) (-15 -2725 ((-51) (-859 |#1|) (-346 (-859 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -828)) +((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-346 (-859 *6))) (-5 *5 (-1091)) (-5 *3 (-859 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *5))))) +((-2726 ((|#4| (-585 |#4|)) 148 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3146 (((-1086 |#4|) (-585 (-1086 |#4|))) 141 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 61 T ELT) ((|#4| (-585 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 (|#4| |#4| |#4|)) (-15 -3146 (|#4| (-585 |#4|))) (-15 -3146 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3146 ((-1086 |#4|) (-585 (-1086 |#4|)))) (-15 -2726 (|#4| |#4| |#4|)) (-15 -2726 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2726 (|#4| (-585 |#4|)))) (-719) (-758) (-258) (-863 |#3| |#1| |#2|)) (T -829)) +((-2726 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-2726 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-2726 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-585 (-1086 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-1086 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-863 *5 *3 *4))))) +((-2739 (((-818 (-485)) (-886)) 38 T ELT) (((-818 (-485)) (-585 (-485))) 34 T ELT)) (-2727 (((-818 (-485)) (-585 (-485))) 66 T ELT) (((-818 (-485)) (-832)) 67 T ELT)) (-2738 (((-818 (-485))) 39 T ELT)) (-2736 (((-818 (-485))) 53 T ELT) (((-818 (-485)) (-585 (-485))) 52 T ELT)) (-2735 (((-818 (-485))) 51 T ELT) (((-818 (-485)) (-585 (-485))) 50 T ELT)) (-2734 (((-818 (-485))) 49 T ELT) (((-818 (-485)) (-585 (-485))) 48 T ELT)) (-2733 (((-818 (-485))) 47 T ELT) (((-818 (-485)) (-585 (-485))) 46 T ELT)) (-2732 (((-818 (-485))) 45 T ELT) (((-818 (-485)) (-585 (-485))) 44 T ELT)) (-2737 (((-818 (-485))) 55 T ELT) (((-818 (-485)) (-585 (-485))) 54 T ELT)) (-2731 (((-818 (-485)) (-585 (-485))) 71 T ELT) (((-818 (-485)) (-832)) 73 T ELT)) (-2730 (((-818 (-485)) (-585 (-485))) 68 T ELT) (((-818 (-485)) (-832)) 69 T ELT)) (-2728 (((-818 (-485)) (-585 (-485))) 64 T ELT) (((-818 (-485)) (-832)) 65 T ELT)) (-2729 (((-818 (-485)) (-585 (-832))) 57 T ELT))) +(((-830) (-10 -7 (-15 -2727 ((-818 (-485)) (-832))) (-15 -2727 ((-818 (-485)) (-585 (-485)))) (-15 -2728 ((-818 (-485)) (-832))) (-15 -2728 ((-818 (-485)) (-585 (-485)))) (-15 -2729 ((-818 (-485)) (-585 (-832)))) (-15 -2730 ((-818 (-485)) (-832))) (-15 -2730 ((-818 (-485)) (-585 (-485)))) (-15 -2731 ((-818 (-485)) (-832))) (-15 -2731 ((-818 (-485)) (-585 (-485)))) (-15 -2732 ((-818 (-485)) (-585 (-485)))) (-15 -2732 ((-818 (-485)))) (-15 -2733 ((-818 (-485)) (-585 (-485)))) (-15 -2733 ((-818 (-485)))) (-15 -2734 ((-818 (-485)) (-585 (-485)))) (-15 -2734 ((-818 (-485)))) (-15 -2735 ((-818 (-485)) (-585 (-485)))) (-15 -2735 ((-818 (-485)))) (-15 -2736 ((-818 (-485)) (-585 (-485)))) (-15 -2736 ((-818 (-485)))) (-15 -2737 ((-818 (-485)) (-585 (-485)))) (-15 -2737 ((-818 (-485)))) (-15 -2738 ((-818 (-485)))) (-15 -2739 ((-818 (-485)) (-585 (-485)))) (-15 -2739 ((-818 (-485)) (-886))))) (T -830)) +((-2739 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2738 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2737 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2736 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2735 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2734 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2733 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2732 (*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +((-2741 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091))) 14 T ELT)) (-2740 (((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091))) 13 T ELT))) +(((-831 |#1|) (-10 -7 (-15 -2740 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091)))) (-15 -2741 ((-585 (-859 |#1|)) (-585 (-859 |#1|)) (-585 (-1091))))) (-390)) (T -831)) +((-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1091))) (-4 *4 (-390)) (-5 *1 (-831 *4)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1091))) (-4 *4 (-390)) (-5 *1 (-831 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-832) (-13 (-720) (-665) (-10 -8 (-15 -3146 ($ $ $)) (-6 (-3998 "*"))))) (T -832)) +((-3146 (*1 *1 *1 *1) (-5 *1 (-832)))) +((-696) (|%ilt| 0 |#1|)) +((-3947 (((-265 |#1|) (-415)) 16 T ELT))) +(((-833 |#1|) (-10 -7 (-15 -3947 ((-265 |#1|) (-415)))) (-496)) (T -833)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-415)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-496))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-834) (-113)) (T -834)) +((-2743 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3955 (-585 *1)) (|:| -2411 *1))) (-5 *3 (-585 *1)))) (-2742 (*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) +(-13 (-390) (-10 -8 (-15 -2743 ((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $))) (-15 -2742 ((-634 (-585 $)) (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3107 (((-1086 |#2|) (-585 |#2|) (-585 |#2|)) 17 T ELT) (((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-585 |#2|) (-585 |#2|)) 13 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -3107 ((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-585 |#2|) (-585 |#2|))) (-15 -3107 ((-1086 |#2|) (-585 |#2|) (-585 |#2|)))) (-1091) (-312)) (T -835)) +((-3107 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-835 *4 *5)) (-14 *4 (-1091)))) (-3107 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) (-5 *1 (-835 *4 *5))))) +((-2744 ((|#2| (-585 |#1|) (-585 |#1|)) 28 T ELT))) +(((-836 |#1| |#2|) (-10 -7 (-15 -2744 (|#2| (-585 |#1|) (-585 |#1|)))) (-312) (-1156 |#1|)) (T -836)) +((-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) (-5 *1 (-836 *4 *2))))) +((-2746 (((-485) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-1074)) 175 T ELT)) (-2765 ((|#4| |#4|) 194 T ELT)) (-2750 (((-585 (-348 (-859 |#1|))) (-585 (-1091))) 146 T ELT)) (-2764 (((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))) (-632 |#4|) (-585 (-348 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-485)) 88 T ELT)) (-2754 (((-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-585 |#4|)) 69 T ELT)) (-2763 (((-632 |#4|) (-632 |#4|) (-585 |#4|)) 65 T ELT)) (-2747 (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-1074)) 187 T ELT)) (-2745 (((-485) (-632 |#4|) (-832) (-1074)) 167 T ELT) (((-485) (-632 |#4|) (-585 (-1091)) (-832) (-1074)) 166 T ELT) (((-485) (-632 |#4|) (-585 |#4|) (-832) (-1074)) 165 T ELT) (((-485) (-632 |#4|) (-1074)) 154 T ELT) (((-485) (-632 |#4|) (-585 (-1091)) (-1074)) 153 T ELT) (((-485) (-632 |#4|) (-585 |#4|) (-1074)) 152 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-832)) 151 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1091)) (-832)) 150 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832)) 149 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|)) 148 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1091))) 147 T ELT) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|)) 143 T ELT)) (-2751 ((|#4| (-859 |#1|)) 80 T ELT)) (-2761 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 191 T ELT)) (-2760 (((-585 (-585 (-485))) (-485) (-485)) 161 T ELT)) (-2759 (((-585 (-585 |#4|)) (-585 (-585 |#4|))) 106 T ELT)) (-2758 (((-696) (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|))))) 100 T ELT)) (-2757 (((-696) (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|))))) 99 T ELT)) (-2766 (((-85) (-585 (-859 |#1|))) 19 T ELT) (((-85) (-585 |#4|)) 15 T ELT)) (-2752 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|)) 84 T ELT)) (-2756 (((-585 |#4|) |#4|) 57 T ELT)) (-2749 (((-585 (-348 (-859 |#1|))) (-585 |#4|)) 142 T ELT) (((-632 (-348 (-859 |#1|))) (-632 |#4|)) 66 T ELT) (((-348 (-859 |#1|)) |#4|) 139 T ELT)) (-2748 (((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))))))) (|:| |rgsz| (-485))) (-632 |#4|) (-585 (-348 (-859 |#1|))) (-696) (-1074) (-485)) 112 T ELT)) (-2753 (((-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696)) 98 T ELT)) (-2762 (((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) (-632 |#4|) (-696)) 121 T ELT)) (-2755 (((-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-348 (-859 |#1|)))) (|:| |vec| (-585 (-348 (-859 |#1|)))) (|:| -3110 (-696)) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) 56 T ELT))) +(((-837 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|))) (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1091)))) (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|))) (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 |#4|) (-832))) (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-585 (-1091)) (-832))) (-15 -2745 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-632 |#4|) (-832))) (-15 -2745 ((-485) (-632 |#4|) (-585 |#4|) (-1074))) (-15 -2745 ((-485) (-632 |#4|) (-585 (-1091)) (-1074))) (-15 -2745 ((-485) (-632 |#4|) (-1074))) (-15 -2745 ((-485) (-632 |#4|) (-585 |#4|) (-832) (-1074))) (-15 -2745 ((-485) (-632 |#4|) (-585 (-1091)) (-832) (-1074))) (-15 -2745 ((-485) (-632 |#4|) (-832) (-1074))) (-15 -2746 ((-485) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-1074))) (-15 -2747 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|))))))))) (-1074))) (-15 -2748 ((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))))))) (|:| |rgsz| (-485))) (-632 |#4|) (-585 (-348 (-859 |#1|))) (-696) (-1074) (-485))) (-15 -2749 ((-348 (-859 |#1|)) |#4|)) (-15 -2749 ((-632 (-348 (-859 |#1|))) (-632 |#4|))) (-15 -2749 ((-585 (-348 (-859 |#1|))) (-585 |#4|))) (-15 -2750 ((-585 (-348 (-859 |#1|))) (-585 (-1091)))) (-15 -2751 (|#4| (-859 |#1|))) (-15 -2752 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|))) (-15 -2753 ((-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|)))) (-632 |#4|) (-696))) (-15 -2754 ((-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-585 |#4|))) (-15 -2755 ((-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))) (-2 (|:| |mat| (-632 (-348 (-859 |#1|)))) (|:| |vec| (-585 (-348 (-859 |#1|)))) (|:| -3110 (-696)) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (-15 -2756 ((-585 |#4|) |#4|)) (-15 -2757 ((-696) (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2758 ((-696) (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2759 ((-585 (-585 |#4|)) (-585 (-585 |#4|)))) (-15 -2760 ((-585 (-585 (-485))) (-485) (-485))) (-15 -2761 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2762 ((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) (-632 |#4|) (-696))) (-15 -2763 ((-632 |#4|) (-632 |#4|) (-585 |#4|))) (-15 -2764 ((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-859 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 |#1|)))) (|:| -2014 (-585 (-1180 (-348 (-859 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))) (-632 |#4|) (-585 (-348 (-859 |#1|))) (-585 (-585 |#4|)) (-696) (-696) (-485))) (-15 -2765 (|#4| |#4|)) (-15 -2766 ((-85) (-585 |#4|))) (-15 -2766 ((-85) (-585 (-859 |#1|))))) (-13 (-258) (-120)) (-13 (-758) (-555 (-1091))) (-719) (-863 |#1| |#3| |#2|)) (T -837)) +((-2766 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1091)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4)))) (-2764 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) (-5 *4 (-632 *12)) (-5 *5 (-585 (-348 (-859 *9)))) (-5 *6 (-585 (-585 *12))) (-5 *7 (-696)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1091)))) (-4 *11 (-719)) (-5 *2 (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) (|:| |wcond| (-585 (-859 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *9)))) (|:| -2014 (-585 (-1180 (-348 (-859 *9))))))))) (-5 *1 (-837 *9 *10 *11 *12)))) (-2763 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 (-585 (-485)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-863 *4 *6 *5)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1091)))) (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-696)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-632 (-348 (-859 *4)))) (|:| |vec| (-585 (-348 (-859 *4)))) (|:| -3110 (-696)) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) (|:| -2014 (-585 (-1180 (-348 (-859 *4))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) (|:| -2014 (-585 (-1180 (-348 (-859 *4))))))) (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| -3110 (-696)) (|:| |eqns| (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485)))))) (|:| |fgb| (-585 *8))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-632 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-348 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) (-4 *3 (-863 *4 *6 *5)))) (-2748 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-348 (-859 *8)))) (-5 *5 (-696)) (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) (-4 *9 (-13 (-758) (-555 (-1091)))) (-4 *10 (-719)) (-5 *2 (-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) (|:| |wcond| (-585 (-859 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *8)))) (|:| -2014 (-585 (-1180 (-348 (-859 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) (|:| -2014 (-585 (-1180 (-348 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1074)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1091))) (-5 *5 (-832)) (-5 *6 (-1074)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1091)))) (-4 *9 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1074)) (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-758) (-555 (-1091)))) (-4 *9 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1074)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1091))) (-5 *5 (-1074)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1074)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1091))) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *6)))) (|:| -2014 (-585 (-1180 (-348 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *6)))) (|:| -2014 (-585 (-1180 (-348 (-859 *6)))))))))) (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) (|:| -2014 (-585 (-1180 (-348 (-859 *4)))))))))) (-5 *1 (-837 *4 *5 *6 *7)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1091))) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) +((-3875 (($ $ (-1003 (-179))) 125 T ELT) (($ $ (-1003 (-179)) (-1003 (-179))) 126 T ELT)) (-2898 (((-1003 (-179)) $) 73 T ELT)) (-2899 (((-1003 (-179)) $) 72 T ELT)) (-2790 (((-1003 (-179)) $) 74 T ELT)) (-2771 (((-485) (-485)) 66 T ELT)) (-2775 (((-485) (-485)) 61 T ELT)) (-2773 (((-485) (-485)) 64 T ELT)) (-2769 (((-85) (-85)) 68 T ELT)) (-2772 (((-485)) 65 T ELT)) (-3136 (($ $ (-1003 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2792 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 148 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 149 T ELT)) (-2778 (($ (-1 (-179) (-179)) (-1003 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1003 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179))) 145 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179))) 153 T ELT) (($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 147 T ELT) (($ $ (-1003 (-179))) 131 T ELT)) (-2777 (((-85) $) 69 T ELT)) (-2768 (((-485)) 70 T ELT)) (-2776 (((-485)) 59 T ELT)) (-2774 (((-485)) 62 T ELT)) (-2900 (((-585 (-585 (-856 (-179)))) $) 35 T ELT)) (-2767 (((-85) (-85)) 71 T ELT)) (-3947 (((-774) $) 174 T ELT)) (-2770 (((-85)) 67 T ELT))) +(((-838) (-13 (-868) (-10 -8 (-15 -2791 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2791 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)))) (-15 -2791 ($ (-585 (-1 (-179) (-179))) (-1003 (-179)) (-1003 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)))) (-15 -2791 ($ $ (-1003 (-179)))) (-15 -2777 ((-85) $)) (-15 -3875 ($ $ (-1003 (-179)))) (-15 -3875 ($ $ (-1003 (-179)) (-1003 (-179)))) (-15 -3136 ($ $ (-1003 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1003 (-179)) $)) (-15 -2776 ((-485))) (-15 -2775 ((-485) (-485))) (-15 -2774 ((-485))) (-15 -2773 ((-485) (-485))) (-15 -2772 ((-485))) (-15 -2771 ((-485) (-485))) (-15 -2770 ((-85))) (-15 -2769 ((-85) (-85))) (-15 -2768 ((-485))) (-15 -2767 ((-85) (-85)))))) (T -838)) +((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2792 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3875 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-3136 (*1 *1 *1) (-5 *1 (-838))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2770 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2768 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +((-2778 (((-838) |#1| (-1091)) 17 T ELT) (((-838) |#1| (-1091) (-1003 (-179))) 21 T ELT)) (-2791 (((-838) |#1| |#1| (-1091) (-1003 (-179))) 19 T ELT) (((-838) |#1| (-1091) (-1003 (-179))) 15 T ELT))) +(((-839 |#1|) (-10 -7 (-15 -2791 ((-838) |#1| (-1091) (-1003 (-179)))) (-15 -2791 ((-838) |#1| |#1| (-1091) (-1003 (-179)))) (-15 -2778 ((-838) |#1| (-1091) (-1003 (-179)))) (-15 -2778 ((-838) |#1| (-1091)))) (-555 (-474))) (T -839)) +((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-474))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-474))))) (-2791 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-474))))) (-2791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-474)))))) +((-3875 (($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 123 T ELT)) (-2897 (((-1003 (-179)) $) 64 T ELT)) (-2898 (((-1003 (-179)) $) 63 T ELT)) (-2899 (((-1003 (-179)) $) 62 T ELT)) (-2789 (((-585 (-585 (-179))) $) 69 T ELT)) (-2790 (((-1003 (-179)) $) 65 T ELT)) (-2783 (((-485) (-485)) 57 T ELT)) (-2787 (((-485) (-485)) 52 T ELT)) (-2785 (((-485) (-485)) 55 T ELT)) (-2781 (((-85) (-85)) 59 T ELT)) (-2784 (((-485)) 56 T ELT)) (-3136 (($ $ (-1003 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2792 (($ (-1 (-856 (-179)) (-179)) (-1003 (-179))) 133 T ELT) (($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 134 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179))) 141 T ELT) (($ $ (-1003 (-179))) 129 T ELT)) (-2780 (((-485)) 60 T ELT)) (-2788 (((-485)) 50 T ELT)) (-2786 (((-485)) 53 T ELT)) (-2900 (((-585 (-585 (-856 (-179)))) $) 157 T ELT)) (-2779 (((-85) (-85)) 61 T ELT)) (-3947 (((-774) $) 155 T ELT)) (-2782 (((-85)) 58 T ELT))) +(((-840) (-13 (-889) (-10 -8 (-15 -2792 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)))) (-15 -2792 ($ (-1 (-856 (-179)) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -2791 ($ $ (-1003 (-179)))) (-15 -3875 ($ $ (-1003 (-179)) (-1003 (-179)) (-1003 (-179)))) (-15 -3136 ($ $ (-1003 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1003 (-179)) $)) (-15 -2789 ((-585 (-585 (-179))) $)) (-15 -2788 ((-485))) (-15 -2787 ((-485) (-485))) (-15 -2786 ((-485))) (-15 -2785 ((-485) (-485))) (-15 -2784 ((-485))) (-15 -2783 ((-485) (-485))) (-15 -2782 ((-85))) (-15 -2781 ((-85) (-85))) (-15 -2780 ((-485))) (-15 -2779 ((-85) (-85)))))) (T -840)) +((-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2792 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2791 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2791 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3875 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-3136 (*1 *1 *1) (-5 *1 (-840))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840)))) (-2788 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2786 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2784 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2782 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840)))) (-2780 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +((-2793 (((-585 (-1003 (-179))) (-585 (-585 (-856 (-179))))) 34 T ELT))) +(((-841) (-10 -7 (-15 -2793 ((-585 (-1003 (-179))) (-585 (-585 (-856 (-179)))))))) (T -841)) +((-2793 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) (-5 *1 (-841))))) +((-2795 (((-265 (-485)) (-1091)) 16 T ELT)) (-2796 (((-265 (-485)) (-1091)) 14 T ELT)) (-3953 (((-265 (-485)) (-1091)) 12 T ELT)) (-2794 (((-265 (-485)) (-1091) (-445)) 19 T ELT))) +(((-842) (-10 -7 (-15 -2794 ((-265 (-485)) (-1091) (-445))) (-15 -3953 ((-265 (-485)) (-1091))) (-15 -2795 ((-265 (-485)) (-1091))) (-15 -2796 ((-265 (-485)) (-1091))))) (T -842)) +((-2796 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-445)) (-5 *2 (-265 (-485))) (-5 *1 (-842))))) +((-2795 ((|#2| |#2|) 28 T ELT)) (-2796 ((|#2| |#2|) 29 T ELT)) (-3953 ((|#2| |#2|) 27 T ELT)) (-2794 ((|#2| |#2| (-445)) 26 T ELT))) +(((-843 |#1| |#2|) (-10 -7 (-15 -2794 (|#2| |#2| (-445))) (-15 -3953 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2796 (|#2| |#2|))) (-1015) (-362 |#1|)) (T -843)) +((-2796 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3)))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *3 (-445)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-362 *4))))) +((-2798 (((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT)) (-2797 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2798 ((-800 |#1| |#3|) |#2| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-798 |#1|) (-13 (-1015) (-952 |#2|))) (T -844)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) +((-2798 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 30 T ELT))) +(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-496) (-798 |#1|)) (-13 (-362 |#2|) (-555 (-802 |#1|)) (-798 |#1|) (-952 (-552 $)))) (T -845)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-362 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) (-5 *4 (-802 *5)) (-4 *6 (-13 (-496) (-798 *5))) (-5 *1 (-845 *5 *6 *3))))) +((-2798 (((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|)) 13 T ELT))) +(((-846 |#1|) (-10 -7 (-15 -2798 ((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|)))) (-484)) (T -846)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 (-485) *3)) (-5 *4 (-802 (-485))) (-4 *3 (-484)) (-5 *1 (-846 *3))))) +((-2798 (((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)) 57 T ELT))) +(((-847 |#1| |#2|) (-10 -7 (-15 -2798 ((-800 |#1| |#2|) (-552 |#2|) (-802 |#1|) (-800 |#1| |#2|)))) (-1015) (-13 (-1015) (-952 (-552 $)) (-555 (-802 |#1|)) (-798 |#1|))) (T -847)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) (-5 *1 (-847 *5 *6))))) +((-2798 (((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)) 17 T ELT))) +(((-848 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-797 |#1| |#2| |#3|) |#3| (-802 |#1|) (-797 |#1| |#2| |#3|)))) (-1015) (-798 |#1|) (-610 |#2|)) (T -848)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3))))) +((-2798 (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|)) 17 (|has| |#3| (-798 |#1|)) ELT) (((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|))) 16 T ELT))) +(((-849 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2798 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|) (-1 (-800 |#1| |#5|) |#3| (-802 |#1|) (-800 |#1| |#5|)))) (IF (|has| |#3| (-798 |#1|)) (-15 -2798 ((-800 |#1| |#5|) |#5| (-802 |#1|) (-800 |#1| |#5|))) |%noBranch|)) (-1015) (-719) (-758) (-13 (-963) (-798 |#1|)) (-13 (-863 |#4| |#2| |#3|) (-555 (-802 |#1|)))) (T -849)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) (-5 *1 (-849 *5 *6 *7 *8 *3)))) (-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3))))) +((-3211 (((-265 (-485)) (-1091) (-585 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-485)) (-1091) (-1 (-85) |#1|)) 15 T ELT))) +(((-850 |#1|) (-10 -7 (-15 -3211 ((-265 (-485)) (-1091) (-1 (-85) |#1|))) (-15 -3211 ((-265 (-485)) (-1091) (-585 (-1 (-85) |#1|))))) (-1130)) (T -850)) +((-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-850 *5)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-850 *5))))) +((-3211 ((|#2| |#2| (-585 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -3211 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3211 (|#2| |#2| (-585 (-1 (-85) |#3|))))) (-1015) (-362 |#1|) (-1130)) (T -851)) +((-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-362 *4)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1015)) (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-362 *4))))) +((-2798 (((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)) 25 T ELT))) +(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-1015) (-13 (-496) (-798 |#1|) (-555 (-802 |#1|))) (-906 |#2|)) (T -852)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-496) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) (-5 *1 (-852 *5 *6 *3))))) +((-2798 (((-800 |#1| (-1091)) (-1091) (-802 |#1|) (-800 |#1| (-1091))) 18 T ELT))) +(((-853 |#1|) (-10 -7 (-15 -2798 ((-800 |#1| (-1091)) (-1091) (-802 |#1|) (-800 |#1| (-1091))))) (-1015)) (T -853)) +((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-800 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *1 (-853 *5))))) +((-2799 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 34 T ELT)) (-2798 (((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))) 33 T ELT))) +(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-1 |#3| (-585 |#3|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|)))) (-15 -2799 ((-800 |#1| |#3|) (-585 |#3|) (-585 (-802 |#1|)) (-800 |#1| |#3|) (-1 (-800 |#1| |#3|) |#3| (-802 |#1|) (-800 |#1| |#3|))))) (-1015) (-963) (-13 (-963) (-555 (-802 |#1|)) (-952 |#2|))) (T -854)) +((-2799 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8)))) (-2798 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) +((-2807 (((-1086 (-348 (-485))) (-485)) 80 T ELT)) (-2806 (((-1086 (-485)) (-485)) 83 T ELT)) (-3335 (((-1086 (-485)) (-485)) 77 T ELT)) (-2805 (((-485) (-1086 (-485))) 73 T ELT)) (-2804 (((-1086 (-348 (-485))) (-485)) 66 T ELT)) (-2803 (((-1086 (-485)) (-485)) 49 T ELT)) (-2802 (((-1086 (-485)) (-485)) 85 T ELT)) (-2801 (((-1086 (-485)) (-485)) 84 T ELT)) (-2800 (((-1086 (-348 (-485))) (-485)) 68 T ELT))) +(((-855) (-10 -7 (-15 -2800 ((-1086 (-348 (-485))) (-485))) (-15 -2801 ((-1086 (-485)) (-485))) (-15 -2802 ((-1086 (-485)) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -2804 ((-1086 (-348 (-485))) (-485))) (-15 -2805 ((-485) (-1086 (-485)))) (-15 -3335 ((-1086 (-485)) (-485))) (-15 -2806 ((-1086 (-485)) (-485))) (-15 -2807 ((-1086 (-348 (-485))) (-485))))) (T -855)) +((-2807 (*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-855)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-3707 (($ (-585 |#1|)) 9 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3836 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-585 |#1|)) 25 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-3912 (((-832) $) 13 T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3835 (($ $ $) 23 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT) (($ (-585 |#1|)) 14 T ELT)) (-3531 (($ (-585 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3958 (((-696) $) 11 (|has| $ (-6 -3996)) ELT))) +(((-856 |#1|) (-895 |#1|) (-963)) (T -856)) +NIL +((-2810 (((-419 |#1| |#2|) (-859 |#2|)) 22 T ELT)) (-2813 (((-206 |#1| |#2|) (-859 |#2|)) 35 T ELT)) (-2811 (((-859 |#2|) (-419 |#1| |#2|)) 27 T ELT)) (-2809 (((-206 |#1| |#2|) (-419 |#1| |#2|)) 57 T ELT)) (-2812 (((-859 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2808 (((-419 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) +(((-857 |#1| |#2|) (-10 -7 (-15 -2808 ((-419 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2809 ((-206 |#1| |#2|) (-419 |#1| |#2|))) (-15 -2810 ((-419 |#1| |#2|) (-859 |#2|))) (-15 -2811 ((-859 |#2|) (-419 |#1| |#2|))) (-15 -2812 ((-859 |#2|) (-206 |#1| |#2|))) (-15 -2813 ((-206 |#1| |#2|) (-859 |#2|)))) (-585 (-1091)) (-963)) (T -857)) +((-2813 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1091))))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-419 *4 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1091))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) (-5 *2 (-419 *4 *5)) (-5 *1 (-857 *4 *5))))) +((-2814 (((-585 |#2|) |#2| |#2|) 10 T ELT)) (-2817 (((-696) (-585 |#1|)) 47 (|has| |#1| (-757)) ELT)) (-2815 (((-585 |#2|) |#2|) 11 T ELT)) (-2818 (((-696) (-585 |#1|) (-485) (-485)) 45 (|has| |#1| (-757)) ELT)) (-2816 ((|#1| |#2|) 37 (|has| |#1| (-757)) ELT))) +(((-858 |#1| |#2|) (-10 -7 (-15 -2814 ((-585 |#2|) |#2| |#2|)) (-15 -2815 ((-585 |#2|) |#2|)) (IF (|has| |#1| (-757)) (PROGN (-15 -2816 (|#1| |#2|)) (-15 -2817 ((-696) (-585 |#1|))) (-15 -2818 ((-696) (-585 |#1|) (-485) (-485)))) |%noBranch|)) (-312) (-1156 |#1|)) (T -858)) +((-2818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-485)) (-4 *5 (-757)) (-4 *5 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1156 *5)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1156 *4)))) (-2816 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1156 *2)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1156 *4)))) (-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-1091)) $) 16 T ELT)) (-3085 (((-1086 $) $ (-1091)) 21 T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1091))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-1091) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-1091) $) NIL T ELT)) (-3757 (($ $ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-470 (-1091)) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-1091) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-1091) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1091)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-1091)) NIL T ELT)) (-2822 (((-470 (-1091)) $) NIL T ELT) (((-696) $ (-1091)) NIL T ELT) (((-585 (-696)) $ (-585 (-1091))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1091)) (-470 (-1091))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 (-1091) #1#) $) 19 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1091)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3813 (($ $ (-1091)) 29 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1091) |#1|) NIL T ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL T ELT) (($ $ (-1091) $) NIL T ELT) (($ $ (-585 (-1091)) (-585 $)) NIL T ELT)) (-3758 (($ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3949 (((-470 (-1091)) $) NIL T ELT) (((-696) $ (-1091)) NIL T ELT) (((-585 (-696)) $ (-585 (-1091))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-1091) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-1091) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1091) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1091)) 27 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-859 |#1|) (-13 (-863 |#1| (-470 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1091))) |%noBranch|))) (-963)) (T -859)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963))))) +((-3959 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 19 T ELT))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3959 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)))) (-963) (-963)) (T -860)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6))))) +((-3085 (((-1149 |#1| (-859 |#2|)) (-859 |#2|) (-1177 |#1|)) 18 T ELT))) +(((-861 |#1| |#2|) (-10 -7 (-15 -3085 ((-1149 |#1| (-859 |#2|)) (-859 |#2|) (-1177 |#1|)))) (-1091) (-963)) (T -861)) +((-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-963)) (-5 *2 (-1149 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6))))) +((-2821 (((-696) $) 88 T ELT) (((-696) $ (-585 |#4|)) 93 T ELT)) (-3776 (($ $) 214 T ELT)) (-3972 (((-346 $) $) 206 T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 141 T ELT)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3757 (($ $ $ |#4|) 95 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 131 T ELT) (((-632 |#2|) (-632 $)) 121 T ELT)) (-3504 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2820 (((-585 $) $) 77 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 240 T ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 233 T ELT)) (-2823 (((-585 $) $) 34 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-696)) NIL T ELT) (($ $ (-585 |#4|) (-585 (-696))) 71 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#4|) 203 T ELT)) (-2825 (((-3 (-585 $) #1#) $) 52 T ELT)) (-2824 (((-3 (-585 $) #1#) $) 39 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) $) 57 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 134 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 147 T ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 145 T ELT)) (-3733 (((-346 $) $) 165 T ELT)) (-3769 (($ $ (-585 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-585 |#4|) (-585 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-585 |#4|) (-585 $)) NIL T ELT)) (-3758 (($ $ |#4|) 97 T ELT)) (-3973 (((-802 (-328)) $) 254 T ELT) (((-802 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 185 T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-696)) 62 T ELT) (($ $ (-585 |#4|) (-585 (-696))) 69 T ELT)) (-2704 (((-634 $) $) 195 T ELT)) (-1266 (((-85) $ $) 227 T ELT))) +(((-862 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3972 ((-346 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -2704 ((-634 |#1|) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -2798 ((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|))) (-15 -2798 ((-800 (-328) |#1|) |#1| (-802 (-328)) (-800 (-328) |#1|))) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -2708 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-585 (-1086 |#1|)) #1="failed") (-585 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-1180 |#1|) #1#) (-632 |#1|))) (-15 -3504 (|#1| |#1| |#4|)) (-15 -2819 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| |#1| |#4|)) (-15 -2820 ((-585 |#1|) |#1|)) (-15 -2821 ((-696) |#1| (-585 |#4|))) (-15 -2821 ((-696) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| |#4|) (|:| -2403 (-696))) #1#) |#1|)) (-15 -2825 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-585 |#1|) #1#) |#1|)) (-15 -2895 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -2895 (|#1| |#1| |#4| (-696))) (-15 -3764 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -2823 ((-585 |#1|) |#1|)) (-15 -3678 (|#1| |#1| (-585 |#4|) (-585 (-696)))) (-15 -3678 (|#1| |#1| |#4| (-696))) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3769 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3678 (|#2| |#1| |#3|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|))) (-863 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -862)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-823)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-823)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-485)) #2#) $) 178 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-952 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-348 (-485)) $) 179 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-952 (-485))) ELT) ((|#3| $) 154 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 149 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 148 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 97 (-12 (|has| |#3| (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 96 (-12 (|has| |#3| (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-585 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| "failed") $) 136 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 151 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-632 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1892 (($ (-585 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2825 (((-3 (-585 $) "failed") $) 127 T ELT)) (-2824 (((-3 (-585 $) "failed") $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) "failed") $) 126 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 112 (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT)) (-3973 (((-802 (-328)) $) 95 (-12 (|has| |#3| (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) 94 (-12 (|has| |#3| (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-496)) ELT) (($ (-348 (-485))) 91 (OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ELT)) (-3818 (((-585 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2704 (((-634 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 175 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 174 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-863 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -863)) +((-3504 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3085 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1086 *1)) (-4 *1 (-863 *4 *5 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-1086 *3)))) (-3084 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-2822 (*1 *2 *1 *3) (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-696)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-696))))) (-3764 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-863 *4 *5 *3)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *2 (-758)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) (-4 *3 (-758)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-863 *3 *4 *5)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) (-2819 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-390)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-390)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-346 *1)) (-4 *1 (-863 *3 *4 *5))))) +(-13 (-811 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-454 |t#3| |t#1|) (-454 |t#3| $) (-952 |t#3|) (-327 |t#1|) (-10 -8 (-15 -3949 ((-696) $ |t#3|)) (-15 -3949 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3678 ($ $ |t#3| (-696))) (-15 -3678 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -2823 ((-585 $) $)) (-15 -3085 ((-1086 $) $ |t#3|)) (-15 -3085 ((-1086 |t#1|) $)) (-15 -3084 ((-3 |t#3| "failed") $)) (-15 -2822 ((-696) $ |t#3|)) (-15 -2822 ((-585 (-696)) $ (-585 |t#3|))) (-15 -3764 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -2895 ($ $ |t#3| (-696))) (-15 -2895 ($ $ (-585 |t#3|) (-585 (-696)))) (-15 -3086 ($ (-1086 |t#1|) |t#3|)) (-15 -3086 ($ (-1086 $) |t#3|)) (-15 -2824 ((-3 (-585 $) "failed") $)) (-15 -2825 ((-3 (-585 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| |t#3|) (|:| -2403 (-696))) "failed") $)) (-15 -2821 ((-696) $)) (-15 -2821 ((-696) $ (-585 |t#3|))) (-15 -3083 ((-585 |t#3|) $)) (-15 -2820 ((-585 $) $)) (IF (|has| |t#1| (-555 (-474))) (IF (|has| |t#3| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-485)))) (IF (|has| |t#3| (-555 (-802 (-485)))) (-6 (-555 (-802 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-555 (-802 (-328)))) (IF (|has| |t#3| (-555 (-802 (-328)))) (-6 (-555 (-802 (-328)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-485))) (IF (|has| |t#3| (-798 (-485))) (-6 (-798 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-798 (-328))) (IF (|has| |t#3| (-798 (-328))) (-6 (-798 (-328))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3757 ($ $ $ |t#3|)) (-15 -3758 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-6 (-390)) (-15 -2819 ($ $ |t#3|)) (-15 -3504 ($ $)) (-15 -3504 ($ $ |t#3|)) (-15 -3972 ((-346 $) $)) (-15 -3776 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-555 (-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#3| (-555 (-474)))) ((-555 (-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#3| (-555 (-802 (-328))))) ((-555 (-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#3| (-555 (-802 (-485))))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-823)) (|has| |#1| (-390))) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-496) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#3| (-798 (-328)))) ((-798 (-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#3| (-798 (-485)))) ((-823) |has| |#1| (-823)) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) |has| |#1| (-823))) +((-3083 (((-585 |#2|) |#5|) 40 T ELT)) (-3085 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23 T ELT) (((-348 (-1086 |#5|)) |#5| |#2|) 16 T ELT)) (-3086 ((|#5| (-348 (-1086 |#5|)) |#2|) 30 T ELT)) (-3084 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2825 (((-3 (-585 |#5|) #1#) |#5|) 64 T ELT)) (-2827 (((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-485))) #1#) |#5|) 53 T ELT)) (-2824 (((-3 (-585 |#5|) #1#) |#5|) 66 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-485))) #1#) |#5|) 56 T ELT))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3083 ((-585 |#2|) |#5|)) (-15 -3084 ((-3 |#2| #1="failed") |#5|)) (-15 -3085 ((-348 (-1086 |#5|)) |#5| |#2|)) (-15 -3086 (|#5| (-348 (-1086 |#5|)) |#2|)) (-15 -3085 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -2824 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-585 |#5|) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-485))) #1#) |#5|)) (-15 -2827 ((-3 (-2 (|:| |val| |#5|) (|:| -2403 (-485))) #1#) |#5|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -864)) +((-2827 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-485)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-485)))) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-5 *1 (-864 *5 *4 *6 *7 *3)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-1086 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-348 (-1086 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3084 (*1 *2 *3) (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $))))))) (-3083 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) +((-3959 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3959 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-719) (-758) (-963) (-863 |#3| |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (T -865)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) (-4 *6 (-719)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7))))) +((-2828 (((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-696)) 48 T ELT)) (-2829 (((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-348 (-485)) (-696)) 43 T ELT)) (-2831 (((-2 (|:| -2403 (-696)) (|:| -3955 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)) 64 T ELT)) (-2830 (((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-696)) 73 (|has| |#3| (-390)) ELT))) +(((-866 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2828 ((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-696))) (-15 -2829 ((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-348 (-485)) (-696))) (IF (|has| |#3| (-390)) (-15 -2830 ((-2 (|:| -2403 (-696)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-696))) |%noBranch|) (-15 -2831 ((-2 (|:| -2403 (-696)) (|:| -3955 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-696)))) (-719) (-758) (-496) (-863 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -866)) +((-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) (-4 *3 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| (-585 *3)))) (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $))))))) (-2830 (*1 *2 *3 *4) (-12 (-4 *7 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| *3))) (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-485))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) (-4 *8 (-863 *7 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *9) (|:| |radicand| *9))) (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-496)) (-4 *7 (-863 *3 *5 *6)) (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *8) (|:| |radicand| *8))) (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2832 (($ (-1035)) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 15 T ELT) (((-1035) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT))) +(((-867) (-13 (-1015) (-554 (-1035)) (-10 -8 (-15 -2832 ($ (-1035)))))) (T -867)) +((-2832 (*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) +((-2898 (((-1003 (-179)) $) 8 T ELT)) (-2899 (((-1003 (-179)) $) 9 T ELT)) (-2900 (((-585 (-585 (-856 (-179)))) $) 10 T ELT)) (-3947 (((-774) $) 6 T ELT))) +(((-868) (-113)) (T -868)) +((-2900 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179)))))) +(-13 (-554 (-774)) (-10 -8 (-15 -2900 ((-585 (-585 (-856 (-179)))) $)) (-15 -2899 ((-1003 (-179)) $)) (-15 -2898 ((-1003 (-179)) $)))) +(((-554 (-774)) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 18 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2822 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) 29 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) 52 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-3739 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-496))) ELT)) (-3467 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 23 T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) 38 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 15 T CONST)) (-1624 (($ $ $ (-696)) 76 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 86 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 85 T ELT)) (-3950 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) 71 T ELT) (($ $ (-696)) 69 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-869 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-104)) (-15 -3739 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-963) (-718)) (T -869)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-963)) (-4 *2 (-718))))) +((-2833 (((-3 (-632 |#1|) "failed") |#2| (-832)) 18 T ELT))) +(((-870 |#1| |#2|) (-10 -7 (-15 -2833 ((-3 (-632 |#1|) "failed") |#2| (-832)))) (-496) (-602 |#1|)) (T -870)) +((-2833 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-832)) (-4 *5 (-496)) (-5 *2 (-632 *5)) (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 20 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 19 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 17 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) |#1|) 16 T ELT)) (-2202 (((-485) $) 11 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) 21 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 13 T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 22 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 15 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3958 (((-696) $) 8 (|has| $ (-6 -3996)) ELT))) +(((-871 |#1|) (-19 |#1|) (-1130)) (T -871)) +NIL +((-3842 (((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|) 18 T ELT)) (-3959 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 13 T ELT))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3842 ((-871 |#2|) (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-871 |#1|) |#2|)) (-15 -3959 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-1130) (-1130)) (T -872)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-872 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5))))) +((-2834 (($ $ (-1006 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT))) +(((-873) (-113)) (T -873)) +((-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1091))))) +(-13 (-10 -8 (-15 -2834 ($ $ (-1091))) (-15 -2834 ($ $ (-1006 $))))) +((-2835 (((-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-585 (-859 |#1|)) (-585 (-1091)) (-1091)) 26 T ELT) (((-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-585 (-859 |#1|)) (-585 (-1091))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-859 |#1|) (-1091) (-859 |#1|) (-1091)) 49 T ELT))) +(((-874 |#1|) (-10 -7 (-15 -2835 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-859 |#1|) (-1091) (-859 |#1|) (-1091))) (-15 -2835 ((-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-585 (-859 |#1|)) (-585 (-1091)))) (-15 -2835 ((-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-585 (-859 |#1|)) (-585 (-1091)) (-1091)))) (-13 (-312) (-120))) (T -874)) +((-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-874 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-874 *5)))) (-2835 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) (-5 *1 (-874 *5))))) +((-2838 (((-585 |#1|) |#1| |#1|) 47 T ELT)) (-3724 (((-85) |#1|) 44 T ELT)) (-2837 ((|#1| |#1|) 80 T ELT)) (-2836 ((|#1| |#1|) 79 T ELT))) +(((-875 |#1|) (-10 -7 (-15 -3724 ((-85) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 (|#1| |#1|)) (-15 -2838 ((-585 |#1|) |#1| |#1|))) (-484)) (T -875)) +((-2838 (*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-484)))) (-2837 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-484)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-484)))) (-3724 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-484))))) +((-2839 (((-1186) (-774)) 9 T ELT))) +(((-876) (-10 -7 (-15 -2839 ((-1186) (-774))))) (T -876)) +((-2839 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-876))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2485 (($ $ $) 65 (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1313 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-3138 (((-696)) 36 (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-2840 ((|#2| $) 22 T ELT)) (-2841 ((|#1| $) 21 T ELT)) (-3725 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) ELT)) (-1215 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (-2412 (((-85) $) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2842 (($ |#1| |#2|) 20 T ELT)) (-2012 (((-832) $) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 39 (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-2402 (($ (-832)) NIL (-12 (|has| |#1| (-318)) (|has| |#2| (-318))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3011 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-2437 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-3947 (((-774) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) CONST)) (-2668 (($) 25 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) CONST)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3058 (((-85) $ $) 19 T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-2687 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-719)) (|has| |#2| (-719))) (-12 (|has| |#1| (-758)) (|has| |#2| (-758)))) ELT)) (-3950 (($ $ $) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT)) (-3838 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3840 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT)) (** (($ $ (-485)) NIL (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) ELT) (($ $ (-696)) 32 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT) (($ $ (-832)) NIL (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT)) (* (($ (-485) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-696) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ (-832) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-719)) (|has| |#2| (-719)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-411)) (|has| |#2| (-411))) (-12 (|has| |#1| (-665)) (|has| |#2| (-665)))) ELT))) +(((-877 |#1| |#2|) (-13 (-1015) (-10 -8 (IF (|has| |#1| (-318)) (IF (|has| |#2| (-318)) (-6 (-318)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-665)) (IF (|has| |#2| (-665)) (-6 (-665)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-411)) (IF (|has| |#2| (-411)) (-6 (-411)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-719)) (IF (|has| |#2| (-719)) (-6 (-719)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-758)) (IF (|has| |#2| (-758)) (-6 (-758)) |%noBranch|) |%noBranch|) (-15 -2842 ($ |#1| |#2|)) (-15 -2841 (|#1| $)) (-15 -2840 (|#2| $)))) (-1015) (-1015)) (T -877)) +((-2842 (*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-2841 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) +((-3403 (((-1017) $) 13 T ELT)) (-2843 (($ (-445) (-1017)) 15 T ELT)) (-3543 (((-445) $) 11 T ELT)) (-3947 (((-774) $) 25 T ELT))) +(((-878) (-13 (-554 (-774)) (-10 -8 (-15 -3543 ((-445) $)) (-15 -3403 ((-1017) $)) (-15 -2843 ($ (-445) (-1017)))))) (T -878)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-878)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) (-2843 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1017)) (-5 *1 (-878))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 29 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2848 (((-634 (-784 $ $)) $) 62 T ELT)) (-2850 (((-634 $) $) 52 T ELT)) (-2847 (((-634 (-784 $ $)) $) 63 T ELT)) (-2846 (((-634 (-784 $ $)) $) 64 T ELT)) (-2851 (((-634 |#1|) $) 43 T ELT)) (-2849 (((-634 (-784 $ $)) $) 61 T ELT)) (-2855 (($ $ $) 38 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 39 T ELT)) (-2844 (($ $ $) 36 T ELT)) (-2845 (($ $ $) 34 T ELT)) (-3947 (((-774) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2313 (($ $ $) 37 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 35 T ELT))) +(((-879 |#1|) (-13 (-882) (-557 |#1|) (-10 -8 (-15 -2851 ((-634 |#1|) $)) (-15 -2850 ((-634 $) $)) (-15 -2849 ((-634 (-784 $ $)) $)) (-15 -2848 ((-634 (-784 $ $)) $)) (-15 -2847 ((-634 (-784 $ $)) $)) (-15 -2846 ((-634 (-784 $ $)) $)) (-15 -2845 ($ $ $)) (-15 -2844 ($ $ $)))) (-1015)) (T -879)) +((-2851 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1015)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +((-3650 (((-879 |#1|) (-879 |#1|)) 46 T ELT)) (-2853 (((-879 |#1|) (-879 |#1|)) 22 T ELT)) (-2852 (((-1011 |#1|) (-879 |#1|)) 41 T ELT))) +(((-880 |#1|) (-13 (-1130) (-10 -7 (-15 -2853 ((-879 |#1|) (-879 |#1|))) (-15 -2852 ((-1011 |#1|) (-879 |#1|))) (-15 -3650 ((-879 |#1|) (-879 |#1|))))) (-1015)) (T -880)) +((-2853 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) +((-3959 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 29 T ELT))) +(((-881 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3959 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))) (-1015) (-1015)) (T -881)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6))))) +((-2570 (((-85) $ $) 19 T ELT)) (-2315 (($ $) 8 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-3244 (((-1074) $) 23 T ELT)) (-2855 (($ $ $) 15 T ELT)) (-3245 (((-1035) $) 22 T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 14 T ELT)) (-3947 (((-774) $) 21 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2313 (($ $ $) 6 T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2314 (($ $ $) 7 T ELT))) +(((-882) (-113)) (T -882)) +((-2857 (*1 *1) (-4 *1 (-882))) (-2856 (*1 *1) (-4 *1 (-882))) (-2855 (*1 *1 *1 *1) (-4 *1 (-882))) (-2854 (*1 *1 *1 *1) (-4 *1 (-882)))) +(-13 (-84) (-1015) (-10 -8 (-15 -2857 ($) -3953) (-15 -2856 ($) -3953) (-15 -2855 ($ $ $)) (-15 -2854 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-554 (-774)) . T) ((-13) . T) ((-606) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2858 (($ $ $) 47 T ELT)) (-3519 (($ $ $) 48 T ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2859 ((|#1| $) 49 T ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-883 |#1|) (-113) (-758)) (T -883)) +((-2859 (*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3996) (-15 -2859 (|t#1| $)) (-15 -3519 ($ $ $)) (-15 -2858 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 105 T ELT)) (-3756 ((|#2| |#2| |#2|) 103 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 107 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 109 T ELT)) (-2880 (((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 132 (|has| |#1| (-390)) ELT)) (-2887 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 56 T ELT)) (-2861 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 80 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 82 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 89 T ELT)) (-2875 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 121 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 92 T ELT)) (-2877 (((-585 (-696)) |#2| |#2|) 102 T ELT)) (-2885 ((|#1| |#2| |#2|) 50 T ELT)) (-2879 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 130 (|has| |#1| (-390)) ELT)) (-2878 ((|#1| |#2| |#2|) 128 (|has| |#1| (-390)) ELT)) (-2886 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 54 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 79 T ELT)) (-3757 ((|#1| |#2| |#2|) 76 T ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 41 T ELT)) (-2884 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3192 ((|#2| |#2| |#2|) 93 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 87 T ELT)) (-2863 ((|#2| |#2| |#2| (-696)) 85 T ELT)) (-3146 ((|#2| |#2| |#2|) 136 (|has| |#1| (-390)) ELT)) (-3467 (((-1180 |#2|) (-1180 |#2|) |#1|) 22 T ELT)) (-2881 (((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 46 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 119 T ELT)) (-3758 ((|#1| |#2|) 116 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696)) 91 T ELT)) (-2866 ((|#2| |#2| |#2| (-696)) 90 T ELT)) (-2876 (((-585 |#2|) |#2| |#2|) 99 T ELT)) (-2883 ((|#2| |#2| |#1| |#1| (-696)) 62 T ELT)) (-2882 ((|#1| |#1| |#1| (-696)) 61 T ELT)) (* (((-1180 |#2|) |#1| (-1180 |#2|)) 17 T ELT))) +(((-884 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2863 (|#2| |#2| |#2| (-696))) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2866 (|#2| |#2| |#2| (-696))) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-696))) (-15 -3192 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3756 (|#2| |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -3758 (|#1| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2875 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2876 ((-585 |#2|) |#2| |#2|)) (-15 -2877 ((-585 (-696)) |#2| |#2|)) (IF (|has| |#1| (-390)) (PROGN (-15 -2878 (|#1| |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1180 |#2|) |#1| (-1180 |#2|))) (-15 -3467 ((-1180 |#2|) (-1180 |#2|) |#1|)) (-15 -3753 ((-2 (|:| -3955 |#1|) (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2882 (|#1| |#1| |#1| (-696))) (-15 -2883 (|#2| |#2| |#1| |#1| (-696))) (-15 -2884 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2885 (|#1| |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2887 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|))) (-496) (-1156 |#1|)) (T -884)) +((-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2)))) (-2884 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) (-2883 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) (-2882 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *2 (-496)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1156 *2)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-884 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-884 *3 *4)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-390)) (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-4 *2 (-390)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3756 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3192 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5)))) (-2866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-496)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1156 *4)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5)))) (-2863 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-496)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1156 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) (-3757 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3947 (((-774) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-885) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -885)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-885)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-885))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 54 T ELT)) (-3725 (($) NIL T CONST)) (-2889 (((-585 (-784 (-832) (-832))) $) 64 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2888 (((-832) $) 91 T ELT)) (-2891 (((-585 (-832)) $) 17 T ELT)) (-2890 (((-1070 $) (-696)) 39 T ELT)) (-2892 (($ (-585 (-832))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3011 (($ $) 67 T ELT)) (-3947 (((-774) $) 87 T ELT) (((-585 (-832)) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 44 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 42 T ELT)) (-3840 (($ $ $) 46 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 49 T ELT)) (-3958 (((-696) $) 22 T ELT))) +(((-886) (-13 (-723) (-554 (-585 (-832))) (-10 -8 (-15 -2892 ($ (-585 (-832)))) (-15 -2891 ((-585 (-832)) $)) (-15 -3958 ((-696) $)) (-15 -2890 ((-1070 $) (-696))) (-15 -2889 ((-585 (-784 (-832) (-832))) $)) (-15 -2888 ((-832) $)) (-15 -3011 ($ $))))) (T -886)) +((-2892 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1070 (-886))) (-5 *1 (-886)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886)))) (-3011 (*1 *1 *1) (-5 *1 (-886)))) +((-3950 (($ $ |#2|) 31 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-348 (-485)) $) 27 T ELT) (($ $ (-348 (-485))) 29 T ELT))) +(((-887 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-348 (-485)))) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 -3950 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 * (|#1| (-832) |#1|))) (-888 |#2| |#3| |#4|) (-963) (-718) (-758)) (T -887)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 |#3|) $) 95 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-585 |#3|) (-585 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-888 |#1| |#2| |#3|) (-113) (-963) (-718) (-758)) (T -888)) +((-3176 (*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-585 *5)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-85)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2895 ($ $ |t#3| |t#2|)) (-15 -2895 ($ $ (-585 |t#3|) (-585 |t#2|))) (-15 -2896 ($ $)) (-15 -3176 (|t#1| $)) (-15 -3949 (|t#2| $)) (-15 -3083 ((-585 |t#3|) $)) (-15 -2894 ((-85) $)) (-15 -2893 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2897 (((-1003 (-179)) $) 8 T ELT)) (-2898 (((-1003 (-179)) $) 9 T ELT)) (-2899 (((-1003 (-179)) $) 10 T ELT)) (-2900 (((-585 (-585 (-856 (-179)))) $) 11 T ELT)) (-3947 (((-774) $) 6 T ELT))) +(((-889) (-113)) (T -889)) +((-2900 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(-13 (-554 (-774)) (-10 -8 (-15 -2900 ((-585 (-585 (-856 (-179)))) $)) (-15 -2899 ((-1003 (-179)) $)) (-15 -2898 ((-1003 (-179)) $)) (-15 -2897 ((-1003 (-179)) $)))) +(((-554 (-774)) . T)) +((-3083 (((-585 |#4|) $) 23 T ELT)) (-2910 (((-85) $) 55 T ELT)) (-2901 (((-85) $) 54 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2906 (((-85) $) 56 T ELT)) (-2908 (((-85) $ $) 62 T ELT)) (-2907 (((-85) $ $) 65 T ELT)) (-2909 (((-85) $) 60 T ELT)) (-2902 (((-585 |#5|) (-585 |#5|) $) 98 T ELT)) (-2903 (((-585 |#5|) (-585 |#5|) $) 95 T ELT)) (-2904 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2916 (((-585 |#4|) $) 27 T ELT)) (-2915 (((-85) |#4| $) 34 T ELT)) (-2905 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2912 (($ $ |#4|) 39 T ELT)) (-2914 (($ $ |#4|) 38 T ELT)) (-2913 (($ $ |#4|) 40 T ELT)) (-3058 (((-85) $ $) 46 T ELT))) +(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-85) |#1|)) (-15 -2902 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2903 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -2904 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1| |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-2 (|:| |under| |#1|) (|:| -3132 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -2915 ((-85) |#4| |#1|)) (-15 -2916 ((-585 |#4|) |#1|)) (-15 -3083 ((-585 |#4|) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-891 |#2| |#3| |#4| |#5|) (-963) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -890)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-891 |#1| |#2| |#3| |#4|) (-113) (-963) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -891)) +((-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-2915 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-2914 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *5 (-979 *3 *4 *2)))) (-2911 (*1 *2 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2905 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2903 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) +(-13 (-1015) (-124 |t#4|) (-554 (-585 |t#4|)) (-10 -8 (-6 -3996) (-15 -3159 ((-3 $ "failed") (-585 |t#4|))) (-15 -3158 ($ (-585 |t#4|))) (-15 -3182 (|t#3| $)) (-15 -3083 ((-585 |t#3|) $)) (-15 -2916 ((-585 |t#3|) $)) (-15 -2915 ((-85) |t#3| $)) (-15 -2914 ($ $ |t#3|)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |t#3|)) (-15 -2910 ((-85) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -2909 ((-85) $)) (-15 -2908 ((-85) $ $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $)) (-15 -2905 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2904 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2902 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -2901 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2918 (((-585 |#4|) |#4| |#4|) 135 T ELT)) (-2941 (((-585 |#4|) (-585 |#4|) (-85)) 123 (|has| |#1| (-390)) ELT) (((-585 |#4|) (-585 |#4|)) 124 (|has| |#1| (-390)) ELT)) (-2928 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 44 T ELT)) (-2927 (((-85) |#4|) 43 T ELT)) (-2940 (((-585 |#4|) |#4|) 120 (|has| |#1| (-390)) ELT)) (-2923 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|)) 24 T ELT)) (-2924 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 30 T ELT)) (-2925 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|)) 31 T ELT)) (-2936 (((-3 (-2 (|:| |bas| (-414 |#1| |#2| |#3| |#4|)) (|:| -3325 (-585 |#4|))) "failed") (-585 |#4|)) 90 T ELT)) (-2938 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2939 (((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2917 (((-585 |#4|) (-585 |#4|)) 126 T ELT)) (-2933 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85)) 59 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 61 T ELT)) (-2934 ((|#4| |#4| (-585 |#4|)) 60 T ELT)) (-2942 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 131 (|has| |#1| (-390)) ELT)) (-2944 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 134 (|has| |#1| (-390)) ELT)) (-2943 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 133 (|has| |#1| (-390)) ELT)) (-2919 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|))) 105 T ELT) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 107 T ELT) (((-585 |#4|) (-585 |#4|) |#4|) 139 T ELT) (((-585 |#4|) |#4| |#4|) 136 T ELT) (((-585 |#4|) (-585 |#4|)) 106 T ELT)) (-2947 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2926 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 52 T ELT)) (-2922 (((-85) (-585 |#4|)) 79 T ELT)) (-2921 (((-85) (-585 |#4|) (-585 (-585 |#4|))) 67 T ELT)) (-2930 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 37 T ELT)) (-2929 (((-85) |#4|) 36 T ELT)) (-2946 (((-585 |#4|) (-585 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2945 (((-585 |#4|) (-585 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2935 (((-585 |#4|) (-585 |#4|)) 83 T ELT)) (-2937 (((-585 |#4|) (-585 |#4|)) 97 T ELT)) (-2920 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-2932 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 50 T ELT)) (-2931 (((-85) |#4|) 45 T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2919 ((-585 |#4|) (-585 |#4|))) (-15 -2919 ((-585 |#4|) |#4| |#4|)) (-15 -2917 ((-585 |#4|) (-585 |#4|))) (-15 -2918 ((-585 |#4|) |#4| |#4|)) (-15 -2919 ((-585 |#4|) (-585 |#4|) |#4|)) (-15 -2919 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2919 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|)))) (-15 -2920 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -2921 ((-85) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2922 ((-85) (-585 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-85) |#4|) (-585 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-85) |#4|)) (-585 |#4|))) (-15 -2926 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2931 ((-85) |#4|)) (-15 -2932 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2933 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2933 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-85))) (-15 -2934 (|#4| |#4| (-585 |#4|))) (-15 -2935 ((-585 |#4|) (-585 |#4|))) (-15 -2936 ((-3 (-2 (|:| |bas| (-414 |#1| |#2| |#3| |#4|)) (|:| -3325 (-585 |#4|))) "failed") (-585 |#4|))) (-15 -2937 ((-585 |#4|) (-585 |#4|))) (-15 -2938 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-585 |#4|) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-390)) (PROGN (-15 -2940 ((-585 |#4|) |#4|)) (-15 -2941 ((-585 |#4|) (-585 |#4|))) (-15 -2941 ((-585 |#4|) (-585 |#4|) (-85))) (-15 -2942 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2943 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2944 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2945 ((-585 |#4|) (-585 |#4|))) (-15 -2946 ((-585 |#4|) (-585 |#4|))) (-15 -2947 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -892)) +((-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-390)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2939 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2938 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2936 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-414 *4 *5 *6 *7)) (|:| -3325 (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2934 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2)))) (-2933 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2933 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2920 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2919 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) +((-2948 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2950 (((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1180 |#1|)))) (-632 |#1|) (-1180 |#1|)) 45 T ELT)) (-2949 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-893 |#1|) (-10 -7 (-15 -2948 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2950 ((-585 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1180 |#1|)))) (-632 |#1|) (-1180 |#1|)))) (-312)) (T -893)) +((-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)))) (-2949 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-893 *5)))) (-2948 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) +((-3972 (((-346 |#4|) |#4|) 61 T ELT))) +(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-346 |#4|) |#4|))) (-758) (-719) (-390) (-863 |#3| |#2| |#1|)) (T -894)) +((-3972 (*1 *2 *3) (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-390)) (-5 *2 (-346 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-696)) 121 (|has| |#1| (-23)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3997)) ELT) (($ $) 97 (-12 (|has| |#1| (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 109 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 106 T ELT) (((-485) |#1| $) 105 (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) 104 (|has| |#1| (-1015)) ELT)) (-3707 (($ (-585 |#1|)) 127 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3836 (((-632 |#1|) $ $) 114 (|has| |#1| (-963)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 91 (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3833 ((|#1| $) 111 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-585 |#1|)) 125 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-3837 ((|#1| $ $) 115 (|has| |#1| (-963)) ELT)) (-3912 (((-832) $) 126 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-3835 (($ $ $) 113 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 100 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT) (($ (-585 |#1|)) 128 T ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 93 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 95 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 94 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 96 (|has| |#1| (-758)) ELT)) (-3838 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-665)) ELT) (($ $ |#1|) 116 (|has| |#1| (-665)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-895 |#1|) (-113) (-963)) (T -895)) +((-3707 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963))))) +(-13 (-1179 |t#1|) (-559 (-585 |t#1|)) (-10 -8 (-15 -3707 ($ (-585 |t#1|))) (-15 -3912 ((-832) $)) (-15 -3835 ($ $ $)) (-15 -3770 ($ $ (-585 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-559 (-585 |#1|)) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1130) . T) ((-1179 |#1|) . T)) +((-3959 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 17 T ELT))) +(((-896 |#1| |#2|) (-10 -7 (-15 -3959 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-963) (-963)) (T -896)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6))))) +((-2953 ((|#1| (-856 |#1|)) 14 T ELT)) (-2952 ((|#1| (-856 |#1|)) 13 T ELT)) (-2951 ((|#1| (-856 |#1|)) 12 T ELT)) (-2955 ((|#1| (-856 |#1|)) 16 T ELT)) (-2959 ((|#1| (-856 |#1|)) 24 T ELT)) (-2954 ((|#1| (-856 |#1|)) 15 T ELT)) (-2956 ((|#1| (-856 |#1|)) 17 T ELT)) (-2958 ((|#1| (-856 |#1|)) 23 T ELT)) (-2957 ((|#1| (-856 |#1|)) 22 T ELT))) +(((-897 |#1|) (-10 -7 (-15 -2951 (|#1| (-856 |#1|))) (-15 -2952 (|#1| (-856 |#1|))) (-15 -2953 (|#1| (-856 |#1|))) (-15 -2954 (|#1| (-856 |#1|))) (-15 -2955 (|#1| (-856 |#1|))) (-15 -2956 (|#1| (-856 |#1|))) (-15 -2957 (|#1| (-856 |#1|))) (-15 -2958 (|#1| (-856 |#1|))) (-15 -2959 (|#1| (-856 |#1|)))) (-963)) (T -897)) +((-2959 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +((-2977 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2960 (((-3 |#1| "failed") |#1| (-696)) 1 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-898 |#1|) (-113) (-1116)) (T -898)) +((-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(-13 (-10 -7 (-15 -2960 ((-3 |t#1| "failed") |t#1| (-696))) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)))) +((-2988 ((|#4| |#4| (-585 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2987 ((|#4| |#4| (-585 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#4| (-859 |#1|)) |#4|) 33 T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-585 |#3|))) (-15 -2988 (|#4| |#4| |#3|)) (-15 -2988 (|#4| |#4| (-585 |#3|))) (-15 -3959 (|#4| (-1 |#4| (-859 |#1|)) |#4|))) (-963) (-719) (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-863 (-859 |#1|) |#2| |#3|)) (T -899)) +((-3959 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) (-4 *5 (-719)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1="failed") (-1091)))))) (-5 *1 (-899 *4 *5 *6 *2)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-863 (-859 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3))))) +((-2989 ((|#2| |#3|) 35 T ELT)) (-3920 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 79 T ELT)) (-3919 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 100 T ELT))) +(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3920 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2989 (|#2| |#3|))) (-299) (-1156 |#1|) (-1156 |#2|) (-663 |#2| |#3|)) (T -900)) +((-2989 (*1 *2 *3) (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-663 *2 *3)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3402 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3650 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2993 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2994 (($ (-585 |#4|) |#4|) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2990 (($ $) 69 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3404 (((-85) $) 70 T ELT)) (-3566 (($) 30 T ELT)) (-2991 ((|#4| $) 74 T ELT)) (-2992 (((-585 |#4|) $) 73 T ELT)) (-3947 (((-774) $) 68 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-901 |#1| |#2| |#3| |#4|) (-13 (-1015) (-554 (-774)) (-10 -8 (-15 -3566 ($)) (-15 -2994 ($ (-585 |#4|) |#4|)) (-15 -3402 ((-3 (-85) #1="failed") $)) (-15 -2993 ($ $ (-3 (-85) #1#))) (-15 -3404 ((-85) $)) (-15 -2992 ((-585 |#4|) $)) (-15 -2991 (|#4| $)) (-15 -2990 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3650 ($ $)) |%noBranch|) |%noBranch|))) (-390) (-758) (-719) (-863 |#1| |#3| |#2|)) (T -901)) +((-3566 (*1 *1) (-12 (-4 *2 (-390)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-2994 (*1 *1 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-390)) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3)))) (-3402 (*1 *2 *1) (|partial| -12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-3404 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)))) (-2990 (*1 *1 *1) (-12 (-4 *2 (-390)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) (-3650 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-390)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3))))) +((-2995 (((-901 (-348 (-485)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-348 (-485)))) (-901 (-348 (-485)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-348 (-485))))) 82 T ELT))) +(((-902 |#1| |#2|) (-10 -7 (-15 -2995 ((-901 (-348 (-485)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-348 (-485)))) (-901 (-348 (-485)) (-775 |#1|) (-197 |#2| (-696)) (-206 |#1| (-348 (-485))))))) (-585 (-1091)) (-696)) (T -902)) +((-2995 (*1 *2 *2) (-12 (-5 *2 (-901 (-348 (-485)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-348 (-485))))) (-14 *3 (-585 (-1091))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) +((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-585 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-585 |#5|) (-585 |#5|)) 100 T ELT)) (-3282 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3283 (((-585 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 122 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3700 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3272 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) +(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-585 |#5|) (-585 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3700 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-585 |#5|))) (-15 -3280 ((-585 |#5|) (-585 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-585 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -903)) +((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-3832 (((-1091) $) 15 T ELT)) (-3403 (((-1074) $) 16 T ELT)) (-3228 (($ (-1091) (-1074)) 14 T ELT)) (-3947 (((-774) $) 13 T ELT))) +(((-904) (-13 (-554 (-774)) (-10 -8 (-15 -3228 ($ (-1091) (-1074))) (-15 -3832 ((-1091) $)) (-15 -3403 ((-1074) $))))) (T -904)) +((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-904)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-904)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-904))))) +((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 72 T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) 67 T ELT) (((-348 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 121 T ELT) (((-632 |#2|) (-632 $)) 35 T ELT)) (-2996 (($) 105 T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 82 T ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 91 T ELT)) (-2998 (($ $) 10 T ELT)) (-3446 (((-634 $) $) 27 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3447 (($) 16 T CONST)) (-3130 (($ $) 61 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2997 (($ $) 12 T ELT)) (-3973 (((-802 (-485)) $) 77 T ELT) (((-802 (-328)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-328) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1091)) 64 T ELT)) (-3128 (((-696)) 38 T CONST)) (-2687 (((-85) $ $) 57 T ELT))) +(((-905 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-634 |#1|) |#1|)) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-328) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3947 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -2996 (|#1|)) (-15 -3130 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -2798 ((-800 (-328) |#1|) |#1| (-802 (-328)) (-800 (-328) |#1|))) (-15 -2798 ((-800 (-485) |#1|) |#1| (-802 (-485)) (-800 (-485) |#1|))) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -2281 ((-632 |#2|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 (|#1| |#1|)) (-15 -3128 ((-696)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-906 |#2|) (-496)) (T -905)) +((-3128 (*1 *2) (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 164 (|has| |#1| (-823)) ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 167 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 154 (|has| |#1| (-742)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1091) #2#) $) 162 (|has| |#1| (-952 (-1091))) ELT) (((-3 (-348 (-485)) #2#) $) 145 (|has| |#1| (-952 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-952 (-485))) ELT)) (-3158 ((|#1| $) 204 T ELT) (((-1091) $) 163 (|has| |#1| (-952 (-1091))) ELT) (((-348 (-485)) $) 146 (|has| |#1| (-952 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-952 (-485))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 188 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 187 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 186 T ELT) (((-632 |#1|) (-632 $)) 185 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 171 (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 156 (|has| |#1| (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 180 (|has| |#1| (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 179 (|has| |#1| (-798 (-328))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2998 (($ $) 175 T ELT)) (-3000 ((|#1| $) 177 T ELT)) (-3446 (((-634 $) $) 142 (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 155 (|has| |#1| (-742)) ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 68 T ELT)) (-2533 (($ $ $) 147 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 148 (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 190 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 189 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 184 T ELT) (((-632 |#1|) (-1180 $)) 183 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3447 (($) 141 (|has| |#1| (-1067)) CONST)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3130 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 166 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 165 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 197 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 196 (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-1608 (((-696) $) 74 T ELT)) (-3801 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-696)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 136 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 134 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 133 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 132 (|has| |#1| (-813 (-1091))) ELT)) (-2997 (($ $) 174 T ELT)) (-2999 ((|#1| $) 176 T ELT)) (-3973 (((-802 (-485)) $) 182 (|has| |#1| (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) 181 (|has| |#1| (-555 (-802 (-328)))) ELT) (((-474) $) 159 (|has| |#1| (-555 (-474))) ELT) (((-328) $) 158 (|has| |#1| (-935)) ELT) (((-179) $) 157 (|has| |#1| (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 168 (-2564 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1091)) 161 (|has| |#1| (-952 (-1091))) ELT)) (-2704 (((-634 $) $) 160 (OR (|has| |#1| (-118)) (-2564 (|has| $ (-118)) (|has| |#1| (-823)))) ELT)) (-3128 (((-696)) 40 T CONST)) (-3133 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 153 (|has| |#1| (-742)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-696)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 135 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 131 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 130 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 129 (|has| |#1| (-813 (-1091))) ELT)) (-2568 (((-85) $ $) 149 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 151 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 150 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 152 (|has| |#1| (-758)) ELT)) (-3950 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) +(((-906 |#1|) (-113) (-496)) (T -906)) +((-3950 (*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-2996 (*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-484))))) +(-13 (-312) (-38 |t#1|) (-952 |t#1|) (-288 |t#1|) (-184 |t#1|) (-327 |t#1|) (-796 |t#1|) (-341 |t#1|) (-10 -8 (-15 -3950 ($ |t#1| |t#1|)) (-15 -3000 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2998 ($ $)) (-15 -2997 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-952 (-485))) (PROGN (-6 (-952 (-485))) (-6 (-952 (-348 (-485))))) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-742)) (-6 (-742)) |%noBranch|) (IF (|has| |t#1| (-935)) (-6 (-935)) |%noBranch|) (IF (|has| |t#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-952 (-1091))) (-6 (-952 (-1091))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3131 (|t#1| $)) (-15 -3130 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -2996 ($)) (-15 -3133 (|t#1| $)) (-15 -3132 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-823)) (-6 (-823)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 (-1091)) |has| |#1| (-952 (-1091))) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) |has| |#1| (-935)) ((-555 (-328)) |has| |#1| (-935)) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-555 (-802 (-328))) |has| |#1| (-555 (-802 (-328)))) ((-555 (-802 (-485))) |has| |#1| (-555 (-802 (-485)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-341 |#1|) . T) ((-390) . T) ((-454 (-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-716) |has| |#1| (-742)) ((-718) |has| |#1| (-742)) ((-720) |has| |#1| (-742)) ((-723) |has| |#1| (-742)) ((-742) |has| |#1| (-742)) ((-757) |has| |#1| (-742)) ((-758) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-761) OR (|has| |#1| (-758)) (|has| |#1| (-742))) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-798 (-328)) |has| |#1| (-798 (-328))) ((-798 (-485)) |has| |#1| (-798 (-485))) ((-796 |#1|) . T) ((-823) |has| |#1| (-823)) ((-834) . T) ((-935) |has| |#1| (-935)) ((-952 (-348 (-485))) |has| |#1| (-952 (-485))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 (-1091)) |has| |#1| (-952 (-1091))) ((-952 |#1|) . T) ((-965 (-348 (-485))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) . T)) +((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-906 |#1|) (-906 |#2|)) (T -907)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3001 (($ (-1057 |#1| |#2|)) 11 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3125 (((-1057 |#1| |#2|) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT))) +(((-908 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3001 ($ (-1057 |#1| |#2|))) (-15 -3125 ((-1057 |#1| |#2|) $)))) (-832) (-312)) (T -908)) +((-3001 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) (-5 *1 (-908 *3 *4)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3947 (((-774) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-909) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $))))) (T -909)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-909))))) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-3004 (($ $) 50 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3834 (((-696) $) 49 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3003 ((|#1| $) 48 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3006 ((|#1| |#1| $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3005 ((|#1| $) 51 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-3002 ((|#1| $) 47 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-910 |#1|) (-113) (-1130)) (T -910)) +((-3006 (*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130)))) (-3004 (*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3996) (-15 -3006 (|t#1| |t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3004 ($ $)) (-15 -3834 ((-696) $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 12 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 15 T ELT)) (-3009 ((|#1| $) 14 T ELT)) (-3010 ((|#1| $) 13 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-975)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-312)) ELT))) +(((-911 |#1|) (-913 |#1|) (-146)) (T -911)) +NIL +((-3190 (((-85) $) 43 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-348 (-485)) $) 76 T ELT)) (-2412 (((-85) $) 42 T ELT)) (-3134 ((|#2| $) 22 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2486 (($ $) 58 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-3973 (((-474) $) 67 T ELT)) (-3011 (($ $) 17 T ELT)) (-3947 (((-774) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-348 (-485))) NIL T ELT)) (-3128 (((-696)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 27 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT))) +(((-912 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-348 (-485)))) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -2687 ((-85) |#1| |#1|)) (-15 * (|#1| (-348 (-485)) |#1|)) (-15 * (|#1| |#1| (-348 (-485)))) (-15 -2486 (|#1| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3026 ((-3 (-348 (-485)) #1="failed") |#1|)) (-15 -3024 ((-348 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-696)) -3953) (-15 -3947 (|#1| (-485))) (-15 -2412 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-696) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-832) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-913 |#2|) (-146)) (T -912)) +((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 141 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3158 (((-485) $) 142 (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) 140 (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 123 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 122 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 121 T ELT) (((-632 |#1|) (-632 $)) 120 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 111 T ELT)) (-3026 (((-3 (-348 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 109 (|has| |#1| (-484)) ELT)) (-3024 (((-348 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 113 T ELT)) (-2533 (($ $ $) 95 (|has| |#1| (-758)) ELT)) (-2859 (($ $ $) 96 (|has| |#1| (-758)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 125 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 124 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 119 T ELT) (((-632 |#1|) (-1180 $)) 118 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 114 T ELT)) (-3009 ((|#1| $) 115 T ELT)) (-3010 ((|#1| $) 116 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) 128 (|has| |#1| (-454 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 127 (|has| |#1| (-454 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-696)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 90 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 88 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 87 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 86 (|has| |#1| (-813 (-1091))) ELT)) (-3973 (((-474) $) 105 (|has| |#1| (-555 (-474))) ELT)) (-3011 (($ $) 117 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-348 (-485))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (((-634 $) $) 106 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 110 (|has| |#1| (-975)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-696)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 89 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 85 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 84 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 83 (|has| |#1| (-813 (-1091))) ELT)) (-2568 (((-85) $ $) 97 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 99 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 98 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 100 (|has| |#1| (-758)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-348 (-485))) 102 (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) 101 (|has| |#1| (-312)) ELT))) +(((-913 |#1|) (-113) (-146)) (T -913)) +((-3011 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3007 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485)))))) +(-13 (-38 |t#1|) (-353 |t#1|) (-184 |t#1|) (-288 |t#1|) (-327 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3007 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3644 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-758)) (-6 (-758)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-975)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-348 (-485)) $)) (-15 -3026 ((-3 (-348 (-485)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-312))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-454 (-1091) |#1|) |has| |#1| (-454 (-1091) |#1|)) ((-454 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-312)) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-312)) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-312)) ((-584 |#1|) . T) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) |has| |#1| (-312)) ((-656 |#1|) . T) ((-665) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-965 (-348 (-485))) |has| |#1| (-312)) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-970 (-348 (-485))) |has| |#1| (-312)) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-146) (-913 |#4|) (-146)) (T -914)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-3004 (($ $) 24 T ELT)) (-3012 (($ (-585 |#1|)) 34 T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-696) $) 27 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 29 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3003 ((|#1| $) 28 T ELT)) (-1276 ((|#1| $) 23 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) 17 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) NIL T ELT)) (-3005 ((|#1| $) 22 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) NIL T ELT)) (-3002 ((|#1| $) 31 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-915 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -3012 ($ (-585 |#1|))))) (-1015)) (T -915)) +((-3012 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) +((-3039 (($ $) 12 T ELT)) (-3013 (($ $ (-485)) 13 T ELT))) +(((-916 |#1|) (-10 -7 (-15 -3039 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-485)))) (-917)) (T -916)) +NIL +((-3039 (($ $) 6 T ELT)) (-3013 (($ $ (-485)) 7 T ELT)) (** (($ $ (-348 (-485))) 8 T ELT))) +(((-917) (-113)) (T -917)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-348 (-485))))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-485)))) (-3039 (*1 *1 *1) (-4 *1 (-917)))) +(-13 (-10 -8 (-15 -3039 ($ $)) (-15 -3013 ($ $ (-485))) (-15 ** ($ $ (-348 (-485)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2065 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2063 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1783 (((-632 (-348 |#2|)) (-1180 $)) NIL T ELT) (((-632 (-348 |#2|))) NIL T ELT)) (-3331 (((-348 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3138 (((-696)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-348 |#2|) (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-3 (-348 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-348 |#2|) (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| (-348 |#2|) (-952 (-348 (-485)))) ELT) (((-348 |#2|) $) NIL T ELT)) (-1793 (($ (-1180 (-348 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-348 |#2|))) 79 T ELT) (($ (-1180 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-348 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1782 (((-632 (-348 |#2|)) $ (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) (-632 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3843 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-348 |#3|)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-585 (-585 |#1|))) NIL (|has| |#1| (-318)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-832)) NIL T ELT)) (-2996 (($) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2565 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1765 (($ $ (-696)) NIL (|has| (-348 |#2|) (-299)) ELT) (($ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3773 (((-832) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-745 (-832)) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3378 (((-696)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) NIL T ELT)) (-3134 (((-348 |#2|) $) NIL T ELT)) (-1641 (((-585 (-859 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-634 $) $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2016 ((|#3| $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2012 (((-832) $) NIL (|has| (-348 |#2|) (-318)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-348 |#2|) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-348 |#2|))) (|:| |vec| (-1180 (-348 |#2|)))) (-1180 $) $) NIL T ELT) (((-632 (-348 |#2|)) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1649 (((-632 (-348 |#2|))) 57 T ELT)) (-1651 (((-632 (-348 |#2|))) 56 T ELT)) (-2486 (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 80 T ELT)) (-1650 (((-632 (-348 |#2|))) 55 T ELT)) (-1652 (((-632 (-348 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1180 $)) 51 T ELT)) (-3919 (((-1180 $)) 50 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-348 |#2|) (-299)) CONST)) (-2402 (($ (-832)) NIL (|has| (-348 |#2|) (-318)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1667 (((-696)) NIL T ELT)) (-2411 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3733 (((-346 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-348 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-1608 (((-696) $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3758 (((-348 |#2|) (-1180 $)) NIL T ELT) (((-348 |#2|)) 47 T ELT)) (-1766 (((-696) $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-2410 (((-632 (-348 |#2|)) (-1180 $) (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3187 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-348 |#2|) (-299)) ELT)) (-3226 (((-1180 (-348 |#2|)) $ (-1180 $)) NIL T ELT) (((-632 (-348 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-348 |#2|)) $) 81 T ELT) (((-632 (-348 |#2|)) (-1180 $)) NIL T ELT)) (-3973 (((-1180 (-348 |#2|)) $) NIL T ELT) (($ (-1180 (-348 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| (-348 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 |#2|)) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-348 |#2|) (-299)) ELT) (((-634 $) $) NIL (|has| (-348 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1664 (((-85)) 65 T ELT)) (-1663 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-348 |#2|) (-348 |#2|))) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-1 (-348 |#2|) (-348 |#2|)) (-696)) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-811 (-1091)))) (-12 (|has| (-348 |#2|) (-312)) (|has| (-348 |#2|) (-813 (-1091))))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-348 |#2|) (-190)) (|has| (-348 |#2|) (-312))) (-12 (|has| (-348 |#2|) (-189)) (|has| (-348 |#2|) (-312))) (|has| (-348 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-348 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| (-348 |#2|) (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 |#2|)) NIL T ELT) (($ (-348 |#2|) $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| (-348 |#2|) (-312)) ELT) (($ $ (-348 (-485))) NIL (|has| (-348 |#2|) (-312)) ELT))) +(((-918 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#1|) (-1156 (-348 |#2|)) (-348 |#2|) (-696)) (T -918)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3019 (((-585 (-485)) $) 73 T ELT)) (-3015 (($ (-585 (-485))) 81 T ELT)) (-3131 (((-485) $) 48 (|has| (-485) (-258)) ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-742)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-3 (-348 (-485)) #1#) $) 57 (|has| (-485) (-952 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-952 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) NIL (|has| (-485) (-952 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-952 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3017 (((-585 (-485)) $) 79 T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (|has| (-485) (-798 (-485))) ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (|has| (-485) (-798 (-328))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) 45 T ELT)) (-3446 (((-634 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-742)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-758)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-348 (-485)) $) 50 T ELT)) (-3018 (((-1070 (-485)) $) 78 T ELT)) (-3014 (($ (-585 (-485)) (-585 (-485))) 82 T ELT)) (-3132 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-823)) ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-3769 (($ $ (-585 (-485)) (-585 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-585 (-1091)) (-585 (-485))) NIL (|has| (-485) (-454 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-454 (-1091) (-485))) ELT)) (-1608 (((-696) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) 15 (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) 47 T ELT)) (-3016 (((-585 (-485)) $) 80 T ELT)) (-3973 (((-802 (-485)) $) NIL (|has| (-485) (-555 (-802 (-485)))) ELT) (((-802 (-328)) $) NIL (|has| (-485) (-555 (-802 (-328)))) ELT) (((-474) $) NIL (|has| (-485) (-555 (-474))) ELT) (((-328) $) NIL (|has| (-485) (-935)) ELT) (((-179) $) NIL (|has| (-485) (-935)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-823))) ELT)) (-3947 (((-774) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1091)) NIL (|has| (-485) (-952 (-1091))) ELT) (((-348 (-485)) $) 25 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-823))) (|has| (-485) (-118))) ELT)) (-3128 (((-696)) 13 T CONST)) (-3133 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-742)) ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| (-485) (-813 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-696)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-758)) ELT)) (-2687 (((-85) $ $) 40 (|has| (-485) (-758)) ELT)) (-3950 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT))) +(((-919 |#1|) (-13 (-906 (-485)) (-554 (-348 (-485))) (-10 -8 (-15 -3130 ((-348 (-485)) $)) (-15 -3019 ((-585 (-485)) $)) (-15 -3018 ((-1070 (-485)) $)) (-15 -3017 ((-585 (-485)) $)) (-15 -3016 ((-585 (-485)) $)) (-15 -3015 ($ (-585 (-485)))) (-15 -3014 ($ (-585 (-485)) (-585 (-485)))))) (-485)) (T -919)) +((-3130 (*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) (-3014 (*1 *1 *2 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +((-3020 (((-51) (-348 (-485)) (-485)) 9 T ELT))) +(((-920) (-10 -7 (-15 -3020 ((-51) (-348 (-485)) (-485))))) (T -920)) +((-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-920))))) +((-3138 (((-485)) 21 T ELT)) (-3023 (((-485)) 26 T ELT)) (-3022 (((-1186) (-485)) 24 T ELT)) (-3021 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT))) +(((-921) (-10 -7 (-15 -3021 ((-485))) (-15 -3138 ((-485))) (-15 -3021 ((-485) (-485))) (-15 -3022 ((-1186) (-485))) (-15 -3023 ((-485))))) (T -921)) +((-3023 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-921)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921)))) (-3138 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921)))) (-3021 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921))))) +((-3734 (((-346 |#1|) |#1|) 43 T ELT)) (-3733 (((-346 |#1|) |#1|) 41 T ELT))) +(((-922 |#1|) (-10 -7 (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3734 ((-346 |#1|) |#1|))) (-1156 (-348 (-485)))) (T -922)) +((-3734 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1156 (-348 (-485)))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1156 (-348 (-485))))))) +((-3026 (((-3 (-348 (-485)) "failed") |#1|) 15 T ELT)) (-3025 (((-85) |#1|) 14 T ELT)) (-3024 (((-348 (-485)) |#1|) 10 T ELT))) +(((-923 |#1|) (-10 -7 (-15 -3024 ((-348 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3026 ((-3 (-348 (-485)) "failed") |#1|))) (-952 (-348 (-485)))) (T -923)) +((-3026 (*1 *2 *3) (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2)))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-348 (-485)))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) +((-3789 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3801 ((|#2| $ #1#) 10 T ELT)) (-3030 (((-85) $ $) 18 T ELT))) +(((-924 |#1| |#2|) (-10 -7 (-15 -3789 (|#2| |#1| #1="value" |#2|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#))) (-925 |#2|) (-1130)) (T -924)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ "value") 51 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-925 |#1|) (-113) (-1130)) (T -925)) +((-3523 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3033 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1130)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-585 *3)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *1)) (|has| *1 (-6 -3997)) (-4 *1 (-925 *3)) (-4 *3 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3997)) (-4 *1 (-925 *2)) (-4 *2 (-1130)))) (-3027 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-925 *2)) (-4 *2 (-1130))))) +(-13 (-427 |t#1|) (-10 -8 (-15 -3523 ((-585 $) $)) (-15 -3033 ((-585 $) $)) (-15 -3528 ((-85) $)) (-15 -3403 (|t#1| $)) (-15 -3801 (|t#1| $ "value")) (-15 -3634 ((-85) $)) (-15 -3032 ((-585 |t#1|) $)) (-15 -3031 ((-485) $ $)) (IF (|has| |t#1| (-1015)) (PROGN (-15 -3030 ((-85) $ $)) (-15 -3029 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3028 ($ $ (-585 $))) (-15 -3789 (|t#1| $ "value" |t#1|)) (-15 -3027 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-3039 (($ $) 9 T ELT) (($ $ (-832)) 49 T ELT) (($ (-348 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3185 (((-3 $ #1="failed") (-1086 $) (-832) (-774)) 24 T ELT) (((-3 $ #1#) (-1086 $) (-832)) 32 T ELT)) (-3013 (($ $ (-485)) 58 T ELT)) (-3128 (((-696)) 18 T CONST)) (-3186 (((-585 $) (-1086 $)) NIL T ELT) (((-585 $) (-1086 (-348 (-485)))) 63 T ELT) (((-585 $) (-1086 (-485))) 68 T ELT) (((-585 $) (-859 $)) 72 T ELT) (((-585 $) (-859 (-348 (-485)))) 76 T ELT) (((-585 $) (-859 (-485))) 80 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-348 (-485))) 53 T ELT))) +(((-926 |#1|) (-10 -7 (-15 -3039 (|#1| (-485))) (-15 -3039 (|#1| (-348 (-485)))) (-15 -3039 (|#1| |#1| (-832))) (-15 -3186 ((-585 |#1|) (-859 (-485)))) (-15 -3186 ((-585 |#1|) (-859 (-348 (-485))))) (-15 -3186 ((-585 |#1|) (-859 |#1|))) (-15 -3186 ((-585 |#1|) (-1086 (-485)))) (-15 -3186 ((-585 |#1|) (-1086 (-348 (-485))))) (-15 -3186 ((-585 |#1|) (-1086 |#1|))) (-15 -3185 ((-3 |#1| #1="failed") (-1086 |#1|) (-832))) (-15 -3185 ((-3 |#1| #1#) (-1086 |#1|) (-832) (-774))) (-15 ** (|#1| |#1| (-348 (-485)))) (-15 -3013 (|#1| |#1| (-485))) (-15 -3039 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3128 ((-696)) -3953) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832)))) (-927)) (T -926)) +((-3128 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 111 T ELT)) (-2065 (($ $) 112 T ELT)) (-2063 (((-85) $) 114 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 131 T ELT)) (-3972 (((-346 $) $) 132 T ELT)) (-3039 (($ $) 95 T ELT) (($ $ (-832)) 81 T ELT) (($ (-348 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1609 (((-85) $ $) 122 T ELT)) (-3624 (((-485) $) 148 T ELT)) (-3725 (($) 23 T CONST)) (-3185 (((-3 $ "failed") (-1086 $) (-832) (-774)) 89 T ELT) (((-3 $ "failed") (-1086 $) (-832)) 88 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 108 (|has| (-348 (-485)) (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 106 (|has| (-348 (-485)) (-952 (-348 (-485)))) ELT) (((-3 (-348 (-485)) #1#) $) 103 T ELT)) (-3158 (((-485) $) 107 (|has| (-348 (-485)) (-952 (-485))) ELT) (((-348 (-485)) $) 105 (|has| (-348 (-485)) (-952 (-348 (-485)))) ELT) (((-348 (-485)) $) 104 T ELT)) (-3035 (($ $ (-774)) 78 T ELT)) (-3034 (($ $ (-774)) 77 T ELT)) (-2566 (($ $ $) 126 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 125 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 120 T ELT)) (-3724 (((-85) $) 133 T ELT)) (-3188 (((-85) $) 146 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 94 T ELT)) (-3189 (((-85) $) 147 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 129 T ELT)) (-2533 (($ $ $) 140 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-3036 (((-3 (-1086 $) "failed") $) 90 T ELT)) (-3038 (((-3 (-774) "failed") $) 92 T ELT)) (-3037 (((-3 (-1086 $) "failed") $) 91 T ELT)) (-1892 (($ (-585 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 134 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 119 T ELT)) (-3146 (($ (-585 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3733 (((-346 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 127 T ELT)) (-3467 (((-3 $ "failed") $ $) 110 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 121 T ELT)) (-1608 (((-696) $) 123 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 124 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-348 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-348 (-485))) 98 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 113 T ELT)) (-3771 (((-348 (-485)) $ $) 76 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3186 (((-585 $) (-1086 $)) 87 T ELT) (((-585 $) (-1086 (-348 (-485)))) 86 T ELT) (((-585 $) (-1086 (-485))) 85 T ELT) (((-585 $) (-859 $)) 84 T ELT) (((-585 $) (-859 (-348 (-485)))) 83 T ELT) (((-585 $) (-859 (-485))) 82 T ELT)) (-3384 (($ $) 149 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 142 T ELT)) (-2569 (((-85) $ $) 144 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 143 T ELT)) (-2687 (((-85) $ $) 145 T ELT)) (-3950 (($ $ $) 139 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-348 (-485))) 93 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-348 (-485)) $) 137 T ELT) (($ $ (-348 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-348 (-485)) $) 97 T ELT) (($ $ (-348 (-485))) 96 T ELT))) +(((-927) (-113)) (T -927)) +((-3039 (*1 *1 *1) (-4 *1 (-927))) (-3038 (*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-927)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-927)))) (-3185 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-832)) (-5 *4 (-774)) (-4 *1 (-927)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-348 (-485)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-859 (-348 (-485)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-859 (-485))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-4 *1 (-927)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-927)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-348 (-485)))))) +(-13 (-120) (-757) (-146) (-312) (-353 (-348 (-485))) (-38 (-485)) (-38 (-348 (-485))) (-917) (-10 -8 (-15 -3038 ((-3 (-774) "failed") $)) (-15 -3037 ((-3 (-1086 $) "failed") $)) (-15 -3036 ((-3 (-1086 $) "failed") $)) (-15 -3185 ((-3 $ "failed") (-1086 $) (-832) (-774))) (-15 -3185 ((-3 $ "failed") (-1086 $) (-832))) (-15 -3186 ((-585 $) (-1086 $))) (-15 -3186 ((-585 $) (-1086 (-348 (-485))))) (-15 -3186 ((-585 $) (-1086 (-485)))) (-15 -3186 ((-585 $) (-859 $))) (-15 -3186 ((-585 $) (-859 (-348 (-485))))) (-15 -3186 ((-585 $) (-859 (-485)))) (-15 -3039 ($ $ (-832))) (-15 -3039 ($ $)) (-15 -3039 ($ (-348 (-485)))) (-15 -3039 ($ (-485))) (-15 -3035 ($ $ (-774))) (-15 -3034 ($ $ (-774))) (-15 -3771 ((-348 (-485)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 (-485)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 (-485) (-485)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-353 (-348 (-485))) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 (-485)) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 (-485)) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 (-485)) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-834) . T) ((-917) . T) ((-952 (-348 (-485))) . T) ((-952 (-485)) |has| (-348 (-485)) (-952 (-485))) ((-965 (-348 (-485))) . T) ((-965 (-485)) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 (-485)) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-3040 (((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-390) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-27) (-362 |#1|))) (T -928)) +((-3040 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-362 *8))) (-4 *8 (-13 (-390) (-120) (-952 *3) (-582 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85)))) (-5 *1 (-928 *8 *4))))) +((-3041 (((-3 (-585 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-585 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -2138 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-390) (-120) (-952 (-485)) (-582 (-485))) (-13 (-1116) (-27) (-362 |#1|))) (T -929)) +((-3041 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-362 *8))) (-4 *8 (-13 (-390) (-120) (-952 *3) (-582 *3))) (-5 *3 (-485)) (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) +((-3044 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3042 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |c| (-348 |#2|)) (|:| -3095 |#2|)) "failed") (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3043 (((-2 (|:| |ans| (-348 |#2|)) (|:| |nosol| (-85))) (-348 |#2|) (-348 |#2|)) 76 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |c| (-348 |#2|)) (|:| -3095 |#2|)) "failed") (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|))) (-15 -3043 ((-2 (|:| |ans| (-348 |#2|)) (|:| |nosol| (-85))) (-348 |#2|) (-348 |#2|))) (-15 -3044 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-952 (-485))) (-1156 |#1|)) (T -930)) +((-3044 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-930 *6 *3)))) (-3043 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |ans| (-348 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) (-5 *3 (-348 *5)))) (-3042 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |c| (-348 *6)) (|:| -3095 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-348 *6))))) +((-3045 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |h| |#2|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| -3095 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3046 (((-3 (-585 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)) 34 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3045 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-348 |#2|)) (|:| |h| |#2|) (|:| |c1| (-348 |#2|)) (|:| |c2| (-348 |#2|)) (|:| -3095 |#2|)) #1="failed") (-348 |#2|) (-348 |#2|) (-348 |#2|) (-1 |#2| |#2|))) (-15 -3046 ((-3 (-585 (-348 |#2|)) #1#) (-348 |#2|) (-348 |#2|) (-348 |#2|)))) (-13 (-312) (-120) (-952 (-485))) (-1156 |#1|)) (T -931)) +((-3046 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-585 (-348 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-348 *5)))) (-3045 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |h| *6) (|:| |c1| (-348 *6)) (|:| |c2| (-348 *6)) (|:| -3095 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-348 *6))))) +((-3047 (((-1 |#1|) (-585 (-2 (|:| -3403 |#1|) (|:| -1523 (-485))))) 34 T ELT)) (-3102 (((-1 |#1|) (-1011 |#1|)) 42 T ELT)) (-3048 (((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)) 31 T ELT))) +(((-932 |#1|) (-10 -7 (-15 -3102 ((-1 |#1|) (-1011 |#1|))) (-15 -3047 ((-1 |#1|) (-585 (-2 (|:| -3403 |#1|) (|:| -1523 (-485)))))) (-15 -3048 ((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)))) (-1015)) (T -932)) +((-3048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1015)) (-5 *2 (-1 *6)) (-5 *1 (-932 *6)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3403 *4) (|:| -1523 (-485))))) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) +((-3773 (((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-696) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1156 |#1|) (-1156 (-348 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-318) (-312))) (T -933)) +((-3773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-348 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-318) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3596 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-934) (-13 (-997) (-10 -8 (-15 -3596 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -934)) +((-3596 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-934)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-934))))) +((-3973 (((-179) $) 6 T ELT) (((-328) $) 9 T ELT))) +(((-935) (-113)) (T -935)) +NIL +(-13 (-555 (-179)) (-555 (-328))) +(((-555 (-179)) . T) ((-555 (-328)) . T)) +((-3136 (((-3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) "failed") |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) 32 T ELT) (((-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485))) 29 T ELT)) (-3051 (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485))) 34 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-348 (-485))) 30 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) 33 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1|) 28 T ELT)) (-3050 (((-585 (-348 (-485))) (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) 20 T ELT)) (-3049 (((-348 (-485)) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) 17 T ELT))) +(((-936 |#1|) (-10 -7 (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1|)) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-348 (-485)))) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) "failed") |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-15 -3049 ((-348 (-485)) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-15 -3050 ((-585 (-348 (-485))) (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))))) (-1156 (-485))) (T -936)) +((-3050 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *2 (-585 (-348 (-485)))) (-5 *1 (-936 *4)) (-4 *4 (-1156 (-485))))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) (-5 *2 (-348 (-485))) (-5 *1 (-936 *4)) (-4 *4 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) (-5 *4 (-348 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-348 (-485))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485)))))) +((-3136 (((-3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) "failed") |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) 35 T ELT) (((-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485))) 32 T ELT)) (-3051 (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485))) 30 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-348 (-485))) 26 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) 28 T ELT) (((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1|) 24 T ELT))) +(((-937 |#1|) (-10 -7 (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1|)) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-348 (-485)))) (-15 -3051 ((-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-348 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) "failed") |#1| (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))) (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))))) (-1156 (-348 (-485)))) (T -937)) +((-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485)))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) (-5 *4 (-348 (-485))) (-5 *1 (-937 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-937 *3)) (-4 *3 (-1156 *5)) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *4) (|:| -3139 *4)))) (-5 *1 (-937 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485)))) (-5 *4 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485))))))) +((-3574 (((-585 (-328)) (-859 (-485)) (-328)) 28 T ELT) (((-585 (-328)) (-859 (-348 (-485))) (-328)) 27 T ELT)) (-3970 (((-585 (-585 (-328))) (-585 (-859 (-485))) (-585 (-1091)) (-328)) 37 T ELT))) +(((-938) (-10 -7 (-15 -3574 ((-585 (-328)) (-859 (-348 (-485))) (-328))) (-15 -3574 ((-585 (-328)) (-859 (-485)) (-328))) (-15 -3970 ((-585 (-585 (-328))) (-585 (-859 (-485))) (-585 (-1091)) (-328))))) (T -938)) +((-3970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-859 (-485)))) (-5 *4 (-585 (-1091))) (-5 *2 (-585 (-585 (-328)))) (-5 *1 (-938)) (-5 *5 (-328)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-485))) (-5 *2 (-585 (-328))) (-5 *1 (-938)) (-5 *4 (-328)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-348 (-485)))) (-5 *2 (-585 (-328))) (-5 *1 (-938)) (-5 *4 (-328))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 75 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT) (($ $ (-832)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) 70 T ELT)) (-3725 (($) NIL T CONST)) (-3185 (((-3 $ #1#) (-1086 $) (-832) (-774)) NIL T ELT) (((-3 $ #1#) (-1086 $) (-832)) 55 T ELT)) (-3159 (((-3 (-348 (-485)) #1#) $) NIL (|has| (-348 (-485)) (-952 (-348 (-485)))) ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-348 (-485)) (-952 (-485))) (|has| |#1| (-952 (-485)))) ELT)) (-3158 (((-348 (-485)) $) 17 (|has| (-348 (-485)) (-952 (-348 (-485)))) ELT) (((-348 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-348 (-485)) (-952 (-485))) (|has| |#1| (-952 (-485)))) ELT)) (-3035 (($ $ (-774)) 47 T ELT)) (-3034 (($ $ (-774)) 48 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3184 (((-348 (-485)) $ $) 21 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 69 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3036 (((-3 (-1086 $) #1#) $) 83 T ELT)) (-3038 (((-3 (-774) #1#) $) 82 T ELT)) (-3037 (((-3 (-1086 $) #1#) $) 80 T ELT)) (-3052 (((-3 (-976 $ (-1086 $)) #1#) $) 78 T ELT)) (-1892 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 89 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3947 (((-774) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-348 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3771 (((-348 (-485)) $ $) 27 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3186 (((-585 $) (-1086 $)) 61 T ELT) (((-585 $) (-1086 (-348 (-485)))) NIL T ELT) (((-585 $) (-1086 (-485))) NIL T ELT) (((-585 $) (-859 $)) NIL T ELT) (((-585 $) (-859 (-348 (-485)))) NIL T ELT) (((-585 $) (-859 (-485))) NIL T ELT)) (-3053 (($ (-976 $ (-1086 $)) (-774)) 46 T ELT)) (-3384 (($ $) 22 T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 76 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 37 T ELT)) (-3838 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-348 (-485)) $) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-939 |#1|) (-13 (-927) (-353 |#1|) (-38 |#1|) (-10 -8 (-15 -3053 ($ (-976 $ (-1086 $)) (-774))) (-15 -3052 ((-3 (-976 $ (-1086 $)) "failed") $)) (-15 -3184 ((-348 (-485)) $ $)))) (-13 (-757) (-312) (-935))) (T -939)) +((-3053 (*1 *1 *2 *3) (-12 (-5 *2 (-976 (-939 *4) (-1086 (-939 *4)))) (-5 *3 (-774)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935))))) (-3052 (*1 *2 *1) (|partial| -12 (-5 *2 (-976 (-939 *3) (-1086 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935))))) (-3184 (*1 *2 *1 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-757) (-312) (-935)))))) +((-3054 (((-2 (|:| -3268 |#2|) (|:| -2515 (-585 |#1|))) |#2| (-585 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-940 |#1| |#2|) (-10 -7 (-15 -3054 (|#2| |#2| |#1|)) (-15 -3054 ((-2 (|:| -3268 |#2|) (|:| -2515 (-585 |#1|))) |#2| (-585 |#1|)))) (-312) (-602 |#1|)) (T -940)) +((-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-585 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5)))) (-3054 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3055 ((|#1| $ |#1|) 12 T ELT)) (-3057 (($ |#1|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3056 ((|#1| $) 11 T ELT)) (-3947 (((-774) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT))) +(((-941 |#1|) (-13 (-1015) (-10 -8 (-15 -3057 ($ |#1|)) (-15 -3056 (|#1| $)) (-15 -3055 (|#1| $ |#1|)) (-15 -3058 ((-85) $ $)))) (-1130)) (T -941)) +((-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1130)))) (-3057 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130)))) (-3056 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130)))) (-3055 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3683 (((-585 $) (-585 |#4|)) 114 T ELT) (((-585 $) (-585 |#4|) (-85)) 115 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 113 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3083 (((-585 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 108 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3158 (($ (-585 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) 66 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 129 T ELT)) (-2891 (((-585 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 19 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2916 (((-585 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 106 T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3194 (((-585 $) |#4| $) 89 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3240 (((-585 $) |#4| $) 111 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 112 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3440 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3441 (($ |#4| $) 78 T ELT) (($ (-585 |#4|) $) 79 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3698 (((-585 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 91 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 85 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-1947 (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 22 T ELT)) (-2912 (($ $ |#3|) 49 T ELT)) (-2914 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3947 (((-774) $) 35 T ELT) (((-585 |#4|) $) 46 T ELT)) (-3679 (((-696) $) NIL (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3191 (((-585 $) |#4| $) 88 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 62 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-942 |#1| |#2| |#3| |#4|) (-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3683 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -942)) +((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +((-3059 (((-585 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-585 (-632 (-265 (-485))))))) (-632 (-348 (-859 (-485))))) 67 T ELT)) (-3060 (((-585 (-632 (-265 (-485)))) (-265 (-485)) (-632 (-348 (-859 (-485))))) 52 T ELT)) (-3061 (((-585 (-265 (-485))) (-632 (-348 (-859 (-485))))) 45 T ELT)) (-3065 (((-585 (-632 (-265 (-485)))) (-632 (-348 (-859 (-485))))) 85 T ELT)) (-3063 (((-632 (-265 (-485))) (-632 (-265 (-485)))) 38 T ELT)) (-3064 (((-585 (-632 (-265 (-485)))) (-585 (-632 (-265 (-485))))) 74 T ELT)) (-3062 (((-3 (-632 (-265 (-485))) "failed") (-632 (-348 (-859 (-485))))) 82 T ELT))) +(((-943) (-10 -7 (-15 -3059 ((-585 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-585 (-632 (-265 (-485))))))) (-632 (-348 (-859 (-485)))))) (-15 -3060 ((-585 (-632 (-265 (-485)))) (-265 (-485)) (-632 (-348 (-859 (-485)))))) (-15 -3061 ((-585 (-265 (-485))) (-632 (-348 (-859 (-485)))))) (-15 -3062 ((-3 (-632 (-265 (-485))) "failed") (-632 (-348 (-859 (-485)))))) (-15 -3063 ((-632 (-265 (-485))) (-632 (-265 (-485))))) (-15 -3064 ((-585 (-632 (-265 (-485)))) (-585 (-632 (-265 (-485)))))) (-15 -3065 ((-585 (-632 (-265 (-485)))) (-632 (-348 (-859 (-485)))))))) (T -943)) +((-3065 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-632 (-265 (-485))))) (-5 *1 (-943)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-485))))) (-5 *1 (-943)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-485)))) (-5 *1 (-943)))) (-3062 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-632 (-265 (-485)))) (-5 *1 (-943)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-265 (-485)))) (-5 *1 (-943)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-632 (-265 (-485))))) (-5 *1 (-943)) (-5 *3 (-265 (-485))))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-585 (-632 (-265 (-485)))))))) (-5 *1 (-943))))) +((-3069 (((-585 (-632 |#1|)) (-585 (-632 |#1|))) 69 T ELT) (((-632 |#1|) (-632 |#1|)) 68 T ELT) (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 67 T ELT) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 64 T ELT)) (-3068 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 62 T ELT) (((-632 |#1|) (-632 |#1|) (-832)) 61 T ELT)) (-3070 (((-585 (-632 (-485))) (-585 (-585 (-485)))) 80 T ELT) (((-585 (-632 (-485))) (-585 (-815 (-485))) (-485)) 79 T ELT) (((-632 (-485)) (-585 (-485))) 76 T ELT) (((-632 (-485)) (-815 (-485)) (-485)) 74 T ELT)) (-3067 (((-632 (-859 |#1|)) (-696)) 94 T ELT)) (-3066 (((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832)) 48 (|has| |#1| (-6 (-3998 #1="*"))) ELT) (((-632 |#1|) (-632 |#1|) (-832)) 46 (|has| |#1| (-6 (-3998 #1#))) ELT))) +(((-944 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3998 #1="*"))) (-15 -3066 ((-632 |#1|) (-632 |#1|) (-832))) |%noBranch|) (IF (|has| |#1| (-6 (-3998 #1#))) (-15 -3066 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) |%noBranch|) (-15 -3067 ((-632 (-859 |#1|)) (-696))) (-15 -3068 ((-632 |#1|) (-632 |#1|) (-832))) (-15 -3068 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-832))) (-15 -3069 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3069 ((-585 (-632 |#1|)) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3069 ((-632 |#1|) (-632 |#1|))) (-15 -3069 ((-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3070 ((-632 (-485)) (-815 (-485)) (-485))) (-15 -3070 ((-632 (-485)) (-585 (-485)))) (-15 -3070 ((-585 (-632 (-485))) (-585 (-815 (-485))) (-485))) (-15 -3070 ((-585 (-632 (-485))) (-585 (-585 (-485)))))) (-963)) (T -944)) +((-3070 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-485)))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-815 (-485)))) (-5 *4 (-485)) (-5 *2 (-585 (-632 *4))) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-815 (-485))) (-5 *4 (-485)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) (-4 *5 (-963)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) (-4 *4 (-963)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-963)) (-5 *1 (-944 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-963)) (-5 *1 (-944 *4))))) +((-3074 (((-632 |#1|) (-585 (-632 |#1|)) (-1180 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3419 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1180 (-1180 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1180 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3078 (((-1180 |#1|) (-585 (-1180 |#1|)) (-485)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT)) (-3077 (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT) (((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-485) (-485)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-318))) ELT)) (-3076 (((-85) (-585 (-632 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-585 (-632 |#1|)) (-485)) 100 (|has| |#1| (-312)) ELT)) (-3073 (((-1180 (-1180 |#1|)) (-585 (-632 |#1|)) (-1180 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3072 (((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|)) 46 T ELT)) (-3071 (((-632 |#1|) (-1180 (-1180 |#1|))) 39 T ELT)) (-3075 (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-485)) 93 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-485)) 91 (|has| |#1| (-312)) ELT))) +(((-945 |#1|) (-10 -7 (-15 -3071 ((-632 |#1|) (-1180 (-1180 |#1|)))) (-15 -3072 ((-632 |#1|) (-585 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3073 ((-1180 (-1180 |#1|)) (-585 (-632 |#1|)) (-1180 |#1|))) (-15 -3074 ((-632 |#1|) (-585 (-632 |#1|)) (-1180 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-85) (-485))) (-15 -3075 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3075 ((-632 |#1|) (-585 (-632 |#1|)) (-585 (-632 |#1|)) (-485))) (-15 -3076 ((-85) (-585 (-632 |#1|)) (-485))) (-15 -3076 ((-85) (-585 (-632 |#1|)))) (-15 -3419 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1180 |#1|))) (-15 -3419 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-1180 (-1180 |#1|))))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-312)) (PROGN (-15 -3077 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85) (-485) (-485))) (-15 -3077 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)))) (-15 -3077 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-85))) (-15 -3077 ((-585 (-585 (-632 |#1|))) (-585 (-632 |#1|)) (-832))) (-15 -3078 ((-1180 |#1|) (-585 (-1180 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-963)) (T -945)) +((-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-318)) (-4 *4 (-963)) (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) (-3077 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-318)) (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) (-5 *3 (-585 (-632 *6))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *4)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-963)) (-5 *2 (-85)) (-5 *1 (-945 *5)))) (-3075 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-485)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963)))) (-3075 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) (-4 *4 (-312)) (-4 *4 (-963)))) (-3075 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-632 *6)) (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1180 *5)))) (-3072 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-945 *4)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) (-5 *1 (-945 *4))))) +((-3079 ((|#1| (-832) |#1|) 18 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3079 (|#1| (-832) |#1|))) (-13 (-1015) (-10 -8 (-15 -3840 ($ $ $))))) (T -946)) +((-3079 (*1 *2 *3 *2) (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 -3840 ($ $ $)))))))) +((-3080 ((|#1| |#1| (-832)) 18 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3080 (|#1| |#1| (-832)))) (-13 (-1015) (-10 -8 (-15 * ($ $ $))))) (T -947)) +((-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) +((-3947 ((|#1| (-262)) 11 T ELT) (((-1186) |#1|) 9 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3947 ((-1186) |#1|)) (-15 -3947 (|#1| (-262)))) (-1130)) (T -948)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1130)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-948 *3)) (-4 *3 (-1130))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#4|) 24 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3081 ((|#4| $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3128 (((-696)) 42 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 22 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3843 ($ |#4|)) (-15 -3947 ($ |#4|)) (-15 -3081 (|#4| $)))) (-312) (-719) (-758) (-863 |#1| |#2| |#3|) (-585 |#4|)) (T -949)) +((-3843 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3947 (((-774) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-950) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $))))) (T -950)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-950))))) +((-3158 ((|#2| $) 10 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3158 (|#2| |#1|))) (-952 |#2|) (-1130)) (T -951)) +NIL +((-3159 (((-3 |#1| "failed") $) 9 T ELT)) (-3158 ((|#1| $) 8 T ELT)) (-3947 (($ |#1|) 6 T ELT))) +(((-952 |#1|) (-113) (-1130)) (T -952)) +((-3159 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1130)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1130))))) +(-13 (-557 |t#1|) (-10 -8 (-15 -3159 ((-3 |t#1| "failed") $)) (-15 -3158 (|t#1| $)))) +(((-557 |#1|) . T)) +((-3082 (((-585 (-585 (-249 (-348 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1091))) 38 T ELT))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3082 ((-585 (-585 (-249 (-348 (-859 |#2|))))) (-585 (-859 |#2|)) (-585 (-1091))))) (-496) (-13 (-496) (-952 |#1|))) (T -953)) +((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) (-4 *6 (-13 (-496) (-952 *5))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) +((-3083 (((-585 (-1091)) (-348 (-859 |#1|))) 17 T ELT)) (-3085 (((-348 (-1086 (-348 (-859 |#1|)))) (-348 (-859 |#1|)) (-1091)) 24 T ELT)) (-3086 (((-348 (-859 |#1|)) (-348 (-1086 (-348 (-859 |#1|)))) (-1091)) 26 T ELT)) (-3084 (((-3 (-1091) "failed") (-348 (-859 |#1|))) 20 T ELT)) (-3769 (((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-585 (-249 (-348 (-859 |#1|))))) 32 T ELT) (((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|)))) 33 T ELT) (((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-585 (-1091)) (-585 (-348 (-859 |#1|)))) 28 T ELT) (((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|))) 29 T ELT)) (-3947 (((-348 (-859 |#1|)) |#1|) 11 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3083 ((-585 (-1091)) (-348 (-859 |#1|)))) (-15 -3084 ((-3 (-1091) "failed") (-348 (-859 |#1|)))) (-15 -3085 ((-348 (-1086 (-348 (-859 |#1|)))) (-348 (-859 |#1|)) (-1091))) (-15 -3086 ((-348 (-859 |#1|)) (-348 (-1086 (-348 (-859 |#1|)))) (-1091))) (-15 -3769 ((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|)))) (-15 -3769 ((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-585 (-1091)) (-585 (-348 (-859 |#1|))))) (-15 -3769 ((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-249 (-348 (-859 |#1|))))) (-15 -3769 ((-348 (-859 |#1|)) (-348 (-859 |#1|)) (-585 (-249 (-348 (-859 |#1|)))))) (-15 -3947 ((-348 (-859 |#1|)) |#1|))) (-496)) (T -954)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-496)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-249 (-348 (-859 *4))))) (-5 *2 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *1 (-954 *4)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-348 (-859 *4)))) (-5 *2 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *1 (-954 *4)))) (-3769 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-1091))) (-5 *4 (-585 (-348 (-859 *5)))) (-5 *2 (-348 (-859 *5))) (-4 *5 (-496)) (-5 *1 (-954 *5)))) (-3769 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-348 (-859 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-954 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-1086 (-348 (-859 *5))))) (-5 *4 (-1091)) (-5 *2 (-348 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-496)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-348 (-1086 (-348 (-859 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-348 (-859 *5))))) (-3084 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) (-5 *1 (-954 *4)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-585 (-1091))) (-5 *1 (-954 *4))))) +((-3087 (((-328)) 17 T ELT)) (-3102 (((-1 (-328)) (-328) (-328)) 22 T ELT)) (-3095 (((-1 (-328)) (-696)) 48 T ELT)) (-3088 (((-328)) 37 T ELT)) (-3091 (((-1 (-328)) (-328) (-328)) 38 T ELT)) (-3089 (((-328)) 29 T ELT)) (-3092 (((-1 (-328)) (-328)) 30 T ELT)) (-3090 (((-328) (-696)) 43 T ELT)) (-3093 (((-1 (-328)) (-696)) 44 T ELT)) (-3094 (((-1 (-328)) (-696) (-696)) 47 T ELT)) (-3385 (((-1 (-328)) (-696) (-696)) 45 T ELT))) +(((-955) (-10 -7 (-15 -3087 ((-328))) (-15 -3088 ((-328))) (-15 -3089 ((-328))) (-15 -3090 ((-328) (-696))) (-15 -3102 ((-1 (-328)) (-328) (-328))) (-15 -3091 ((-1 (-328)) (-328) (-328))) (-15 -3092 ((-1 (-328)) (-328))) (-15 -3093 ((-1 (-328)) (-696))) (-15 -3385 ((-1 (-328)) (-696) (-696))) (-15 -3094 ((-1 (-328)) (-696) (-696))) (-15 -3095 ((-1 (-328)) (-696))))) (T -955)) +((-3095 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955)))) (-3094 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955)))) (-3385 (*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955)))) (-3092 (*1 *2 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328)))) (-3102 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-328)) (-5 *1 (-955)))) (-3089 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955)))) (-3088 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955)))) (-3087 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955))))) +((-3733 (((-346 |#1|) |#1|) 33 T ELT))) +(((-956 |#1|) (-10 -7 (-15 -3733 ((-346 |#1|) |#1|))) (-1156 (-348 (-859 (-485))))) (T -956)) +((-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-956 *3)) (-4 *3 (-1156 (-348 (-859 (-485)))))))) +((-3096 (((-348 (-346 (-859 |#1|))) (-348 (-859 |#1|))) 14 T ELT))) +(((-957 |#1|) (-10 -7 (-15 -3096 ((-348 (-346 (-859 |#1|))) (-348 (-859 |#1|))))) (-258)) (T -957)) +((-3096 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-348 (-346 (-859 *4)))) (-5 *1 (-957 *4))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3947 (((-774) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) (((-958 |#1|) (-113) (-23)) (T -958)) -((-3098 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(-13 (-957 |t#1|) (-10 -8 (-15 -3098 ($) -3949))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3679 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3080 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3772 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3707 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3686 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2899 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3154 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3796 (((-3 $ #1#) $) NIL T ELT)) (-3682 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-3403 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3680 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3839 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3693 (((-2 (|:| -3858 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1700 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3195 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3193 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2888 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3178 (((-774 |#2|) $) NIL T ELT)) (-2607 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-1947 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2913 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2912 (((-85) (-774 |#2|) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3189 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3188 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3795 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3190 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3192 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3236 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3437 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3694 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3688 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1352 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3676 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3766 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-248 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3945 (((-695) $) NIL T ELT)) (-1944 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2909 (($ $ (-774 |#2|)) NIL T ELT)) (-2911 (($ $ (-774 |#2|)) NIL T ELT)) (-3681 (($ $) NIL T ELT)) (-2910 (($ $ (-774 |#2|)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3675 (((-695) $) NIL (|has| (-774 |#2|) (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3687 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3187 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3194 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3930 (((-85) (-774 |#2|) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-959 |#1| |#2|) (-13 (-983 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3679 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-389) (-584 (-1089))) (T -959)) -((-3679 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))) -((-3099 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3103 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3101 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3102 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3100 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT))) -(((-960) (-10 -7 (-15 -3099 ((-1 (-484)) (-1001 (-484)))) (-15 -3100 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3101 ((-1 (-484)) |RationalNumber|)) (-15 -3102 ((-1 (-484)) |RationalNumber|)) (-15 -3103 ((-484) (-484) (-484) (-484) (-484))))) (T -960)) -((-3103 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-960)))) (-3102 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))) (-3101 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))) (-3100 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)) (-5 *3 (-484)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-960))))) -((-3943 (((-773) $) NIL T ELT) (($ (-484)) 10 T ELT))) -(((-961 |#1|) (-10 -7 (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-962)) (T -961)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-962) (-113)) (T -962)) -((-3124 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))) -(-13 (-970) (-1060) (-591 $) (-556 (-484)) (-10 -7 (-15 -3124 ((-695)) -3949) (-6 -3989))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3104 (((-347 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3104 ((-347 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1089) (-311)) (T -963)) -((-3104 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-347 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1089))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-964 |#1|) (-113) (-1025)) (T -964)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1025))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3119 (((-85) $) 38 T ELT)) (-3121 (((-85) $) 17 T ELT)) (-3113 (((-695) $) 13 T ELT)) (-3112 (((-695) $) 14 T ELT)) (-3120 (((-85) $) 30 T ELT)) (-3118 (((-85) $) 40 T ELT))) -(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3112 ((-695) |#1|)) (-15 -3113 ((-695) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3119 (((-85) $) 61 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3121 (((-85) $) 63 T ELT)) (-3721 (($) 22 T CONST)) (-3108 (($ $) 44 (|has| |#3| (-257)) ELT)) (-3110 ((|#4| $ (-484)) 49 T ELT)) (-3107 (((-695) $) 43 (|has| |#3| (-495)) ELT)) (-3111 ((|#3| $ (-484) (-484)) 51 T ELT)) (-2888 (((-584 |#3|) $) 75 (|has| $ (-6 -3992)) ELT)) (-3106 (((-695) $) 42 (|has| |#3| (-495)) ELT)) (-3105 (((-584 |#5|) $) 41 (|has| |#3| (-495)) ELT)) (-3113 (((-695) $) 55 T ELT)) (-3112 (((-695) $) 54 T ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-2607 (((-584 |#3|) $) 76 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3116 (((-484) $) 58 T ELT)) (-3114 (((-484) $) 56 T ELT)) (-3122 (($ (-584 (-584 |#3|))) 64 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3591 (((-584 (-584 |#3|)) $) 53 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#3|) (-584 |#3|)) 82 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) 80 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 (-248 |#3|))) 79 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) 65 T ELT)) (-3400 (((-85) $) 68 T ELT)) (-3562 (($) 67 T ELT)) (-3797 ((|#3| $ (-484) (-484)) 52 T ELT) ((|#3| $ (-484) (-484) |#3|) 50 T ELT)) (-3120 (((-85) $) 62 T ELT)) (-1944 (((-695) |#3| $) 77 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 66 T ELT)) (-3109 ((|#5| $ (-484)) 48 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) 60 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#3|) 45 (|has| |#3| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3954 (((-695) $) 69 (|has| $ (-6 -3992)) ELT))) -(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966)) -((-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3111 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3797 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3955 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) (-3108 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-257)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-584 *7))))) -(-13 (-82 |t#3| |t#3|) (-426 |t#3|) (-10 -8 (-6 -3992) (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3122 ($ (-584 (-584 |t#3|)))) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-484) $)) (-15 -3113 ((-695) $)) (-15 -3112 ((-695) $)) (-15 -3591 ((-584 (-584 |t#3|)) $)) (-15 -3797 (|t#3| $ (-484) (-484))) (-15 -3111 (|t#3| $ (-484) (-484))) (-15 -3797 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3110 (|t#4| $ (-484))) (-15 -3109 (|t#5| $ (-484))) (-15 -3955 ($ (-1 |t#3| |t#3|) $)) (-15 -3955 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3463 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -3946 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-257)) (-15 -3108 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3107 ((-695) $)) (-15 -3106 ((-695) $)) (-15 -3105 ((-584 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-259 |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ((-426 |#3|) . T) ((-453 |#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-589 (-484)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) 47 (|has| |#3| (-257)) ELT)) (-3110 (((-197 |#2| |#3|) $ (-484)) 36 T ELT)) (-3123 (($ (-631 |#3|)) 45 T ELT)) (-3107 (((-695) $) 49 (|has| |#3| (-495)) ELT)) (-3111 ((|#3| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3106 (((-695) $) 51 (|has| |#3| (-495)) ELT)) (-3105 (((-584 (-197 |#1| |#3|)) $) 55 (|has| |#3| (-495)) ELT)) (-3113 (((-695) $) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-3122 (($ (-584 (-584 |#3|))) 31 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3591 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3908 (((-107)) 59 (|has| |#3| (-311)) ELT)) (-3120 (((-85) $) NIL T ELT)) (-1944 (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT) (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) 66 (|has| |#3| (-554 (-473))) ELT)) (-3109 (((-197 |#1| |#3|) $ (-484)) 40 T ELT)) (-3943 (((-773) $) 19 T ELT) (((-631 |#3|) $) 42 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-2659 (($) 16 T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-311)) (-6 (-1186 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (-15 -3123 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967)) -((-3123 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))))) -((-3839 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3955 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3955 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3839 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968)) -((-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-969 |#1|) (-113) (-970)) (T -969)) -NIL -(-13 (-21) (-964 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-964 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-970) (-113)) (T -970)) -NIL -(-13 (-21) (-1025)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3828 (((-1089) $) 11 T ELT)) (-3733 ((|#1| $) 12 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3224 (($ (-1089) |#1|) 10 T ELT)) (-3943 (((-773) $) 22 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3055 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT))) -(((-971 |#1| |#2|) (-13 (-1128) (-10 -8 (-15 -3224 ($ (-1089) |#1|)) (-15 -3828 ((-1089) $)) (-15 -3733 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1128)) (T -971)) -((-3224 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3828 (*1 *2 *1) (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3733 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128))))) -((-3768 (($ $) 17 T ELT)) (-3125 (($ $) 25 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 54 T ELT)) (-3130 (($ $) 27 T ELT)) (-3126 (($ $) 12 T ELT)) (-3128 (($ $) 40 T ELT)) (-3969 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-327)) $) 36 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) 31 T ELT)) (-3124 (((-695)) 9 T CONST)) (-3129 (($ $) 44 T ELT))) -(((-972 |#1|) (-10 -7 (-15 -3125 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -2795 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 (|#1| (-484))) (-15 -3969 ((-179) |#1|)) (-15 -3969 ((-327) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 (|#1| |#1|)) (-15 -3124 ((-695)) -3949) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-973)) (T -972)) -((-3124 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3127 (((-484) $) 106 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-3768 (($ $) 104 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-3036 (($ $) 114 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3620 (((-484) $) 131 T ELT)) (-3721 (($) 22 T CONST)) (-3125 (($ $) 103 T ELT)) (-3155 (((-3 (-484) #1="failed") $) 119 T ELT) (((-3 (-347 (-484)) #1#) $) 116 T ELT)) (-3154 (((-484) $) 120 T ELT) (((-347 (-484)) $) 117 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-3720 (((-85) $) 87 T ELT)) (-3184 (((-85) $) 129 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 110 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 113 T ELT)) (-3130 (($ $) 109 T ELT)) (-3185 (((-85) $) 130 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-2530 (($ $ $) 123 T ELT)) (-2856 (($ $ $) 124 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3126 (($ $) 105 T ELT)) (-3128 (($ $) 107 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-3969 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-801 (-327)) $) 111 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-484)) 118 T ELT) (($ (-347 (-484))) 115 T ELT)) (-3124 (((-695)) 38 T CONST)) (-3129 (($ $) 108 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3380 (($ $) 132 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2565 (((-85) $ $) 125 T ELT)) (-2566 (((-85) $ $) 127 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 126 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-3946 (($ $ $) 81 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 112 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT))) -(((-973) (-113)) (T -973)) -((-3130 (*1 *1 *1) (-4 *1 (-973))) (-3129 (*1 *1 *1) (-4 *1 (-973))) (-3128 (*1 *1 *1) (-4 *1 (-973))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3126 (*1 *1 *1) (-4 *1 (-973))) (-3768 (*1 *1 *1) (-4 *1 (-973))) (-3125 (*1 *1 *1) (-4 *1 (-973)))) -(-13 (-311) (-756) (-934) (-951 (-484)) (-951 (-347 (-484))) (-916) (-554 (-801 (-327))) (-797 (-327)) (-120) (-10 -8 (-15 -3130 ($ $)) (-15 -3129 ($ $)) (-15 -3128 ($ $)) (-15 -3127 ((-484) $)) (-15 -3126 ($ $)) (-15 -3768 ($ $)) (-15 -3125 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-801 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-327)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) |#2| $) 26 T ELT)) (-3134 ((|#1| $) 10 T ELT)) (-3620 (((-484) |#2| $) 119 T ELT)) (-3181 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3135 ((|#1| $) 31 T ELT)) (-3180 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3132 (($ $) 28 T ELT)) (-3464 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3184 (((-85) |#2| $) NIL T ELT)) (-3185 (((-85) |#2| $) NIL T ELT)) (-3131 (((-85) |#2| $) 27 T ELT)) (-3133 ((|#1| $) 120 T ELT)) (-3136 ((|#1| $) 30 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3183 ((|#2| $) 104 T ELT)) (-3943 (((-773) $) 95 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3767 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3182 (((-584 $) |#2|) 78 T ELT)) (-3055 (((-85) $ $) 99 T ELT))) -(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3136 (|#1| $)) (-15 -3135 (|#1| $)) (-15 -3134 (|#1| $)) (-15 -3133 (|#1| $)) (-15 -3132 ($ $)) (-15 -3131 ((-85) |#2| $)) (-15 -3180 (|#1| |#2| $ |#1|)))) (-13 (-756) (-311)) (-1154 |#1|)) (T -974)) -((-3180 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3134 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3132 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3131 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-311))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3620 (((-484) $) NIL T ELT)) (-2440 (($ $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3137 (($ (-1089)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3155 (((-3 (-484) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-347 (-484)) $) NIL T ELT)) (-2993 (($) NIL T ELT) (($ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2672 (((-85) $) NIL T ELT)) (-3442 (((-633 $) $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-2043 (($ $) NIL T ELT)) (-3830 (($ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3443 (($) NIL T CONST)) (-2045 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2673 (((-85) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1089)) 9 T ELT)) (-3943 (((-773) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3124 (((-695)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3380 (($ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-3834 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT))) -(((-975) (-13 (-483) (-558 (-1089)) (-10 -8 (-6 -3979) (-6 -3984) (-6 -3980) (-15 -3137 ($ (-1089))) (-15 -3137 ($ (-484)))))) (T -975)) -((-3137 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))) -((-3794 (($ $) 46 T ELT)) (-3164 (((-85) $ $) 82 T ELT)) (-3155 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-347 (-484)))) 247 T ELT) (((-3 $ #1#) (-858 (-484))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-347 (-484)))) 235 T ELT) (($ (-858 (-484))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3956 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3691 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3170 (((-85) $) 60 T ELT)) (-3749 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 125 T ELT)) (-3141 (($ $) 160 T ELT)) (-3152 (($ $) 156 T ELT)) (-3153 (($ $) 155 T ELT)) (-3163 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3162 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3692 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3178 ((|#4| $) 32 T ELT)) (-3157 (($ $ $) 128 T ELT)) (-3171 (((-85) $) 59 T ELT)) (-3177 (((-695) $) 35 T ELT)) (-3138 (($ $) 174 T ELT)) (-3139 (($ $) 171 T ELT)) (-3166 (((-584 $) $) 72 T ELT)) (-3169 (($ $) 62 T ELT)) (-3140 (($ $) 167 T ELT)) (-3167 (((-584 $) $) 69 T ELT)) (-3168 (($ $) 64 T ELT)) (-3172 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3478 (-695))) $ $) 130 T ELT)) (-3158 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $) 126 T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $ |#4|) 127 T ELT)) (-3159 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $) 121 T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $ |#4|) 123 T ELT)) (-3161 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3160 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3174 (((-584 $) $) 54 T ELT)) (-3688 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3683 (($ $ $) 116 T ELT)) (-3443 (($ $) 37 T ELT)) (-3696 (((-85) $ $) 80 T ELT)) (-3689 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3684 (($ $ $) 112 T ELT)) (-3176 (($ $) 41 T ELT)) (-3142 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3150 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3151 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3175 (($ $) 49 T ELT)) (-3173 (($ $) 55 T ELT)) (-3969 (((-801 (-327)) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-858 (-347 (-484)))) 237 T ELT) (($ (-858 (-484))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1072) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3943 (((-773) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3165 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3943 (|#1| |#1|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -3142 (|#1| (-584 |#1|))) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 ((-858 |#2|) |#1|)) (-15 -3969 ((-858 |#2|) |#1|)) (-15 -3969 ((-1072) |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#2| |#2| |#1|)) (-15 -3150 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3150 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3152 (|#1| |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -3969 (|#1| (-858 |#2|))) (-15 -3154 (|#1| (-858 |#2|))) (-15 -3155 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3969 (|#1| (-858 (-484)))) (-15 -3154 (|#1| (-858 (-484)))) (-15 -3155 ((-3 |#1| #1#) (-858 (-484)))) (-15 -3969 (|#1| (-858 (-347 (-484))))) (-15 -3154 (|#1| (-858 (-347 (-484))))) (-15 -3155 ((-3 |#1| #1#) (-858 (-347 (-484))))) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3684 (|#1| |#1| |#1|)) (-15 -3156 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3478 (-695))) |#1| |#1|)) (-15 -3157 (|#1| |#1| |#1|)) (-15 -3749 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3158 ((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -3158 ((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3159 ((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -2901 |#1|)) |#1| |#1| |#4|)) (-15 -3159 ((-2 (|:| -3951 |#1|) (|:| |gap| (-695)) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1| |#4|)) (-15 -3161 (|#1| |#1| |#1| |#4|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3692 ((-85) |#1| (-584 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3688 ((-85) |#1| (-584 |#1|))) (-15 -3688 ((-85) |#1| |#1|)) (-15 -3689 ((-85) |#1| (-584 |#1|))) (-15 -3689 ((-85) |#1| |#1|)) (-15 -3691 ((-85) |#1| (-584 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3164 ((-85) |#1| |#1|)) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3165 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3166 ((-584 |#1|) |#1|)) (-15 -3167 ((-584 |#1|) |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 (|#1| |#1|)) (-15 -3170 ((-85) |#1|)) (-15 -3171 ((-85) |#1|)) (-15 -3956 (|#1| |#1| |#4|)) (-15 -3172 (|#1| |#1| |#4|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 ((-584 |#1|) |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3176 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3177 ((-695) |#1|)) (-15 -3178 (|#4| |#1|)) (-15 -3969 ((-473) |#1|)) (-15 -3969 ((-801 (-484)) |#1|)) (-15 -3969 ((-801 (-327)) |#1|)) (-15 -3943 (|#1| |#4|)) (-15 -3155 ((-3 |#4| #1#) |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -3172 (|#2| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-977 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -976)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 |#3|) $) 121 T ELT)) (-3082 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-3794 (($ $) 291 T ELT)) (-3164 (((-85) $ $) 277 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3752 (($ $ $) 236 (|has| |#1| (-495)) ELT)) (-3146 (((-584 $) $ $) 231 (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3772 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 $ "failed") (-858 (-347 (-484)))) 251 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (((-3 $ "failed") (-858 (-484))) 248 (OR (-12 (-2559 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (((-3 $ "failed") (-858 |#1|)) 245 (OR (-12 (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-38 (-484)))) (|has| |#3| (-554 (-1089)))) (-12 (-2559 (|has| |#1| (-483))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (-2559 (|has| |#1| (-905 (-484)))) (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT)) (-3154 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT) (($ (-858 (-347 (-484)))) 250 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (($ (-858 (-484))) 247 (OR (-12 (-2559 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (($ (-858 |#1|)) 244 (OR (-12 (-2559 (|has| |#1| (-38 (-347 (-484))))) (-2559 (|has| |#1| (-38 (-484)))) (|has| |#3| (-554 (-1089)))) (-12 (-2559 (|has| |#1| (-483))) (-2559 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (-2559 (|has| |#1| (-905 (-484)))) (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT)) (-3753 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT) (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3956 (($ $) 169 T ELT) (($ $ |#3|) 286 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3691 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3170 (((-85) $) 284 T ELT)) (-3749 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 256 T ELT)) (-3141 (($ $) 225 (|has| |#1| (-389)) ELT)) (-3500 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) 120 T ELT)) (-3720 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-3152 (($ $) 241 (|has| |#1| (-495)) ELT)) (-3153 (($ $) 242 (|has| |#1| (-495)) ELT)) (-3163 (($ $ $) 268 T ELT) (($ $ $ |#3|) 266 T ELT)) (-3162 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-1622 (($ $ |#1| |#2| $) 187 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2419 (((-695) $) 184 T ELT)) (-3692 (((-85) $ $) 270 T ELT) (((-85) $ (-584 $)) 269 T ELT)) (-3143 (($ $ $ $ $) 227 (|has| |#1| (-495)) ELT)) (-3178 ((|#3| $) 295 T ELT)) (-3083 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2820 (((-584 $) $) 137 T ELT)) (-3934 (((-85) $) 167 T ELT)) (-2892 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3157 (($ $ $) 255 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 131 T ELT)) (-3171 (((-85) $) 285 T ELT)) (-2819 ((|#2| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-3177 (((-695) $) 294 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3081 (((-3 |#3| #3="failed") $) 134 T ELT)) (-3138 (($ $) 222 (|has| |#1| (-389)) ELT)) (-3139 (($ $) 223 (|has| |#1| (-389)) ELT)) (-3166 (((-584 $) $) 280 T ELT)) (-3169 (($ $) 283 T ELT)) (-3140 (($ $) 224 (|has| |#1| (-389)) ELT)) (-3167 (((-584 $) $) 281 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-3168 (($ $) 282 T ELT)) (-2893 (($ $) 164 T ELT)) (-3172 ((|#1| $) 163 T ELT) (($ $ |#3|) 287 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3478 (-695))) $ $) 254 T ELT)) (-3158 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $) 258 T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $ |#3|) 257 T ELT)) (-3159 (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $) 260 T ELT) (((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $ |#3|) 259 T ELT)) (-3161 (($ $ $) 264 T ELT) (($ $ $ |#3|) 262 T ELT)) (-3160 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3188 (($ $ $) 230 (|has| |#1| (-495)) ELT)) (-3174 (((-584 $) $) 289 T ELT)) (-2822 (((-3 (-584 $) #3#) $) 125 T ELT)) (-2821 (((-3 (-584 $) #3#) $) 126 T ELT)) (-2823 (((-3 (-2 (|:| |var| |#3|) (|:| -2400 (-695))) #3#) $) 124 T ELT)) (-3688 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3683 (($ $ $) 252 T ELT)) (-3443 (($ $) 293 T ELT)) (-3696 (((-85) $ $) 278 T ELT)) (-3689 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3684 (($ $ $) 253 T ELT)) (-3176 (($ $) 292 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3147 (((-2 (|:| -3142 $) (|:| |coef2| $)) $ $) 233 (|has| |#1| (-495)) ELT)) (-3148 (((-2 (|:| -3142 $) (|:| |coef1| $)) $ $) 234 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3142 ((|#1| |#1| $) 226 (|has| |#1| (-389)) ELT) (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3149 (((-2 (|:| -3142 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3463 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3150 (($ $ |#1|) 239 (|has| |#1| (-495)) ELT) (($ $ $) 237 (|has| |#1| (-495)) ELT)) (-3151 (($ $ |#1|) 240 (|has| |#1| (-495)) ELT) (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT)) (-3754 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3945 ((|#2| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT)) (-3175 (($ $) 290 T ELT)) (-3173 (($ $) 288 T ELT)) (-3969 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT) (($ (-858 (-347 (-484)))) 249 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (($ (-858 (-484))) 246 (OR (-12 (-2559 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (($ (-858 |#1|)) 243 (|has| |#3| (-554 (-1089))) ELT) (((-1072) $) 221 (-12 (|has| |#1| (-951 (-484))) (|has| |#3| (-554 (-1089)))) ELT) (((-858 |#1|) $) 220 (|has| |#3| (-554 (-1089))) ELT)) (-2816 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2561 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (((-858 |#1|) $) 219 (|has| |#3| (-554 (-1089))) ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) 183 T ELT)) (-3674 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2701 (((-633 $) $) 90 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-3165 (((-3 (-85) "failed") $ $) 279 T ELT)) (-2665 (($) 43 T CONST)) (-3144 (($ $ $ $ (-695)) 228 (|has| |#1| (-495)) ELT)) (-3145 (($ $ $ (-695)) 229 (|has| |#1| (-495)) ELT)) (-2668 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-977 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -977)) -((-3178 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3174 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3172 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3956 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3169 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3167 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3166 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3165 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3164 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3161 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3159 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -2901 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3159 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -2901 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3158 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3158 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3749 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3157 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3478 (-695)))) (-4 *1 (-977 *3 *4 *5)))) (-3684 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3155 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3155 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3154 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3969 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3155 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-2559 (-4 *3 (-38 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-483))) (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3154 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-2559 (-4 *3 (-38 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-483))) (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2559 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-554 (-1089))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3151 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3150 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3142 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3142 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3147 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3142 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3146 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3188 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3145 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-495)))) (-3144 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-495)))) (-3143 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3142 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389))))) -(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3178 (|t#3| $)) (-15 -3177 ((-695) $)) (-15 -3443 ($ $)) (-15 -3176 ($ $)) (-15 -3794 ($ $)) (-15 -3175 ($ $)) (-15 -3174 ((-584 $) $)) (-15 -3173 ($ $)) (-15 -3172 ($ $ |t#3|)) (-15 -3956 ($ $ |t#3|)) (-15 -3171 ((-85) $)) (-15 -3170 ((-85) $)) (-15 -3169 ($ $)) (-15 -3168 ($ $)) (-15 -3167 ((-584 $) $)) (-15 -3166 ((-584 $) $)) (-15 -3165 ((-3 (-85) "failed") $ $)) (-15 -3696 ((-85) $ $)) (-15 -3164 ((-85) $ $)) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-584 $))) (-15 -3689 ((-85) $ $)) (-15 -3689 ((-85) $ (-584 $))) (-15 -3688 ((-85) $ $)) (-15 -3688 ((-85) $ (-584 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-584 $))) (-15 -3163 ($ $ $)) (-15 -3162 ($ $ $)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ($ $ $)) (-15 -3160 ($ $ $)) (-15 -3161 ($ $ $ |t#3|)) (-15 -3160 ($ $ $ |t#3|)) (-15 -3159 ((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $)) (-15 -3159 ((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -2901 $)) $ $ |t#3|)) (-15 -3158 ((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3158 ((-2 (|:| -3951 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2901 $)) $ $ |t#3|)) (-15 -3749 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3157 ($ $ $)) (-15 -3156 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3478 (-695))) $ $)) (-15 -3684 ($ $ $)) (-15 -3683 ($ $ $)) (IF (|has| |t#3| (-554 (-1089))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3155 ((-3 $ "failed") (-858 (-347 (-484))))) (-15 -3154 ($ (-858 (-347 (-484))))) (-15 -3969 ($ (-858 (-347 (-484))))) (-15 -3155 ((-3 $ "failed") (-858 (-484)))) (-15 -3154 ($ (-858 (-484)))) (-15 -3969 ($ (-858 (-484)))) (IF (|has| |t#1| (-905 (-484))) |%noBranch| (PROGN (-15 -3155 ((-3 $ "failed") (-858 |t#1|))) (-15 -3154 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-347 (-484)))) |%noBranch| (PROGN (-15 -3155 ((-3 $ "failed") (-858 (-484)))) (-15 -3154 ($ (-858 (-484)))) (-15 -3969 ($ (-858 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3155 ((-3 $ "failed") (-858 |t#1|))) (-15 -3154 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-347 (-484)))) |%noBranch| (PROGN (-15 -3155 ((-3 $ "failed") (-858 |t#1|))) (-15 -3154 ($ (-858 |t#1|)))))) (-15 -3969 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-484))) (-6 (-554 (-1072))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3153 ($ $)) (-15 -3152 ($ $)) (-15 -3151 ($ $ |t#1|)) (-15 -3150 ($ $ |t#1|)) (-15 -3151 ($ $ $)) (-15 -3150 ($ $ $)) (-15 -3752 ($ $ $)) (-15 -3149 ((-2 (|:| -3142 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3148 ((-2 (|:| -3142 $) (|:| |coef1| $)) $ $)) (-15 -3147 ((-2 (|:| -3142 $) (|:| |coef2| $)) $ $)) (-15 -3753 ($ $ $)) (-15 -3146 ((-584 $) $ $)) (-15 -3188 ($ $ $)) (-15 -3145 ($ $ $ (-695))) (-15 -3144 ($ $ $ $ (-695))) (-15 -3143 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -3142 (|t#1| |t#1| $)) (-15 -3141 ($ $)) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3138 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1089))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1089))) ((-554 (-1072)) -12 (|has| |#1| (-951 (-484))) (|has| |#3| (-554 (-1089)))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3179 (((-584 (-1048)) $) 18 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-1048) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-978) (-13 (-995) (-10 -8 (-15 -3179 ((-584 (-1048)) $)) (-15 -3231 ((-1048) $))))) (T -978)) -((-3179 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-978)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978))))) -((-3186 (((-85) |#3| $) 15 T ELT)) (-3181 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3464 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3184 (((-85) |#3| $) 19 T ELT)) (-3185 (((-85) |#3| $) 17 T ELT))) -(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3181 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3464 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3184 ((-85) |#3| |#1|)) (-15 -3185 ((-85) |#3| |#1|)) (-15 -3186 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-756) (-311)) (-1154 |#2|)) (T -979)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) |#2| $) 25 T ELT)) (-3620 (((-484) |#2| $) 26 T ELT)) (-3181 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3180 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3464 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3184 (((-85) |#2| $) 23 T ELT)) (-3185 (((-85) |#2| $) 24 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3183 ((|#2| $) 21 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3767 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3182 (((-584 $) |#2|) 20 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-980 |#1| |#2|) (-113) (-13 (-756) (-311)) (-1154 |t#1|)) (T -980)) -((-3620 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-484)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3185 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3464 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-584 *1)) (-4 *1 (-980 *4 *3)))) (-3181 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-311))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))) (-3767 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2)))) (-3180 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2))))) -(-13 (-1013) (-10 -8 (-15 -3620 ((-484) |t#2| $)) (-15 -3186 ((-85) |t#2| $)) (-15 -3185 ((-85) |t#2| $)) (-15 -3184 ((-85) |t#2| $)) (-15 -3464 ((-3 |t#2| "failed") |t#2| $)) (-15 -3183 (|t#2| $)) (-15 -3182 ((-584 $) |t#2|)) (-15 -3181 ((-3 $ "failed") |t#2| (-831))) (-15 -3767 (|t#1| |t#2| $ |t#1|)) (-15 -3180 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3433 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695)) 114 T ELT)) (-3430 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3434 (((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)) 99 T ELT)) (-3428 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3431 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3432 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3969 (((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 92 T ELT)) (-3429 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3427 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3427 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3428 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3432 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3432 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3433 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695))) (-15 -3969 ((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3434 ((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981)) -((-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3432 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9))))) -((-3195 (((-85) |#5| $) 26 T ELT)) (-3193 (((-85) |#5| $) 29 T ELT)) (-3196 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3236 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3766 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3187 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3194 (((-85) |#5| $) 32 T ELT))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3766 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3766 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3766 ((-584 |#1|) |#5| |#1|)) (-15 -3187 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3187 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3187 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3187 ((-584 |#1|) |#5| |#1|)) (-15 -3236 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3236 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3236 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3236 ((-584 |#1|) |#5| |#1|)) (-15 -3193 ((-85) |#5| |#1|)) (-15 -3196 ((-85) |#1|)) (-15 -3194 ((-85) |#5| |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3766 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-389) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -982)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3679 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3685 ((|#4| |#4| $) 97 T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-3796 (((-3 $ #1#) $) 87 T ELT)) (-3682 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3680 ((|#4| |#4| $) 92 T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3195 (((-85) |#4| $) 143 T ELT)) (-3193 (((-85) |#4| $) 140 T ELT)) (-3196 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3795 (((-3 |#4| #1#) $) 88 T ELT)) (-3190 (((-584 $) |#4| $) 136 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3236 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3437 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3694 (((-584 |#4|) $) 112 T ELT)) (-3688 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3683 ((|#4| |#4| $) 95 T ELT)) (-3696 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3684 ((|#4| |#4| $) 96 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3766 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-3945 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3681 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3675 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3187 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) 86 T ELT)) (-3194 (((-85) |#4| $) 142 T ELT)) (-3930 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-983 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -983)) -((-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3772 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3236 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3236 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3236 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3236 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3187 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3187 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3187 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3437 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)))) (-3766 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3766 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3766 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3766 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *5 *6 *7 *8))))) -(-13 (-1123 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3196 ((-85) $)) (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3191 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |t#4| $)) (-15 -3191 ((-85) |t#4| $)) (-15 -3190 ((-584 $) |t#4| $)) (-15 -3189 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3188 ((-584 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| |t#4| $)) (-15 -3772 ((-584 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| $)) (-15 -3236 ((-584 $) |t#4| $)) (-15 -3236 ((-584 $) (-584 |t#4|) $)) (-15 -3236 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3236 ((-584 $) |t#4| (-584 $))) (-15 -3187 ((-584 $) |t#4| $)) (-15 -3187 ((-584 $) |t#4| (-584 $))) (-15 -3187 ((-584 $) (-584 |t#4|) $)) (-15 -3187 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3437 ($ |t#4| $)) (-15 -3437 ($ (-584 |t#4|) $)) (-15 -3766 ((-584 $) |t#4| $)) (-15 -3766 ((-584 $) |t#4| (-584 $))) (-15 -3766 ((-584 $) (-584 |t#4|) $)) (-15 -3766 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3679 ((-584 $) (-584 |t#4|) (-85))))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) -((-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 86 T ELT)) (-3200 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3202 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3201 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3284 (((-1184)) 36 T ELT)) (-3282 (((-1184)) 25 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3281 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)) (-3197 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3198 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3199 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3281 ((-1184) (-1072) (-1072) (-1072))) (-15 -3282 ((-1184))) (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3197 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3198 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3198 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3199 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3200 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3201 ((-85) |#4| |#5|)) (-15 -3201 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3202 ((-584 |#5|) |#4| |#5|)) (-15 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984)) -((-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3199 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3198 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3284 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3282 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3281 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3316 (((-1129) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3204 (((-1048) $) 11 T ELT)) (-3943 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-985) (-13 (-995) (-10 -8 (-15 -3204 ((-1048) $)) (-15 -3316 ((-1129) $))))) (T -985)) -((-3204 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985))))) -((-3264 (((-85) $ $) 7 T ELT))) -(((-986) (-13 (-1128) (-10 -8 (-15 -3264 ((-85) $ $))))) (T -986)) -((-3264 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3207 (($ $ (-584 (-1089)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3208 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1089))) 21 T ELT)) (-3525 ((|#3| $) 13 T ELT)) (-3155 (((-3 (-248 |#3|) "failed") $) 60 T ELT)) (-3154 (((-248 |#3|) $) NIL T ELT)) (-3205 (((-584 (-1089)) $) 16 T ELT)) (-3206 (((-801 |#1|) $) 11 T ELT)) (-3526 ((|#3| $) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3943 (((-773) $) 89 T ELT) (($ (-248 |#3|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 38 T ELT))) -(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-951 (-248 |#3|)) (-10 -8 (-15 -3208 ($ |#3| |#3|)) (-15 -3208 ($ |#3| |#3| (-584 (-1089)))) (-15 -3207 ($ $ (-584 (-1089)) (-1 (-85) (-584 |#3|)))) (-15 -3206 ((-801 |#1|) $)) (-15 -3526 (|#3| $)) (-15 -3525 (|#3| $)) (-15 -3797 (|#3| $ |#3| (-831))) (-15 -3205 ((-584 (-1089)) $)))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -987)) -((-3208 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))) (-3208 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-3207 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 *2))))) (-3526 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3525 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3797 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-3205 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1089))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3539 (((-1089) $) 8 T ELT)) (-3240 (((-1072) $) 17 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 14 T ELT))) -(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3539 ((-1089) $)))) (-1089)) (T -988)) -((-3539 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3210 (($ (-584 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3209 (((-584 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3943 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 21 T ELT))) -(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3210 ($ (-584 (-987 |#1| |#2| |#3|)))) (-15 -3209 ((-584 (-987 |#1| |#2| |#3|)) $)) (-15 -3797 (|#3| $ |#3| (-831))))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -989)) -((-3210 (*1 *1 *2) (-12 (-5 *2 (-584 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))) (-3797 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4))))))) -((-3211 (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3211 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3211 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3211 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-257) (-120)) (-584 (-1089))) (T -990)) -((-3211 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))))) (-3211 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 132 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-311)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-1780 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3327 ((|#1| $) 121 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3134 (((-695)) 43 (|has| |#1| (-317)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) 46 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3839 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-347 |#2|)) NIL (|has| |#1| (-311)) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3107 (((-831)) 80 T ELT)) (-2993 (($) 47 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-2832 (($) NIL (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3769 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2013 ((|#2| $) 87 (|has| |#1| (-311)) ELT)) (-2009 (((-831) $) 140 (|has| |#1| (-317)) ELT)) (-3078 ((|#2| $) 59 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3443 (($) NIL (|has| |#1| (-298)) CONST)) (-2399 (($ (-831)) 131 (|has| |#1| (-317)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2408 (($) 123 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484))))) NIL (|has| |#1| (-298)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3755 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-2407 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3183 ((|#2|) 77 T ELT)) (-1672 (($) NIL (|has| |#1| (-298)) ELT)) (-3222 (((-1178 |#1|) $ (-1178 $)) 92 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 72 T ELT) (((-631 |#1|) (-1178 $)) 88 T ELT)) (-3969 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-298)) ELT)) (-3943 (((-773) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2701 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2448 ((|#2| $) 85 T ELT)) (-3124 (((-695)) 79 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2011 (((-1178 $)) 84 T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 19 T CONST)) (-2668 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-3055 (((-85) $ $) 64 T ELT)) (-3946 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT))) -(((-991 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1154 |#1|) |#2|) (T -991)) -NIL -((-3729 (((-345 |#3|) |#3|) 18 T ELT))) -(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3729 ((-345 |#3|) |#3|))) (-1154 (-347 (-484))) (-13 (-311) (-120) (-662 (-347 (-484)) |#1|)) (-1154 |#2|)) (T -992)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-13 (-311) (-120) (-662 (-347 (-484)) *4))) (-5 *2 (-345 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5))))) -((-3729 (((-345 |#3|) |#3|) 19 T ELT))) -(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3729 ((-345 |#3|) |#3|))) (-1154 (-347 (-858 (-484)))) (-13 (-311) (-120) (-662 (-347 (-858 (-484))) |#1|)) (-1154 |#2|)) (T -993)) -((-3729 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 (-858 (-484))))) (-4 *5 (-13 (-311) (-120) (-662 (-347 (-858 (-484))) *4))) (-5 *2 (-345 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2530 (($ $ $) 16 T ELT)) (-2856 (($ $ $) 17 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3212 (($) 6 T ELT)) (-3969 (((-1089) $) 20 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 9 T ELT))) -(((-994) (-13 (-757) (-554 (-1089)) (-10 -8 (-15 -3212 ($))))) (T -994)) -((-3212 (*1 *1) (-5 *1 (-994)))) -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-995) (-113)) (T -995)) +((-3100 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))) (-3097 (*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3100 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1|) -3953))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3101 (($) 31 T CONST)) (-3725 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3947 (((-774) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT))) +(((-959 |#1|) (-113) (-23)) (T -959)) +((-3101 (*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) +(-13 (-958 |t#1|) (-10 -8 (-15 -3101 ($) -3953))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-958 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 (-705 |#1| (-775 |#2|)))))) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3683 (((-585 $) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85)) NIL T ELT)) (-3083 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3776 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ (-775 |#2|)) NIL T ELT)) (-3711 (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 (-705 |#1| (-775 |#2|)) #1="failed") $ (-775 |#2|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2902 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3158 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3800 (((-3 $ #1#) $) NIL T ELT)) (-3686 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT)) (-3407 (($ (-705 |#1| (-775 |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) (-705 |#1| (-775 |#2|)) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3684 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3843 (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $ (-705 |#1| (-775 |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-705 |#1| (-775 |#2|)) (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-585 (-705 |#1| (-775 |#2|)))) (|:| -1703 (-585 (-705 |#1| (-775 |#2|))))) $) NIL T ELT)) (-3199 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3200 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2891 (((-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 (((-775 |#2|) $) NIL T ELT)) (-2610 (((-585 (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-705 |#1| (-775 |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT)) (-1950 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-2916 (((-585 (-775 |#2|)) $) NIL T ELT)) (-2915 (((-85) (-775 |#2|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 (-705 |#1| (-775 |#2|)) (-585 $)) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3192 (((-585 (-2 (|:| |val| (-705 |#1| (-775 |#2|))) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3799 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-3194 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3196 (((-3 (-85) (-585 $)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3240 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT)) (-3441 (($ (-705 |#1| (-775 |#2|)) $) NIL T ELT) (($ (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3698 (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3692 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| (-705 |#1| (-775 |#2|))) (|:| |den| |#1|)) (-705 |#1| (-775 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-3 (-705 |#1| (-775 |#2|)) #1#) $) NIL T ELT)) (-1355 (((-3 (-705 |#1| (-775 |#2|)) #1#) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ (-705 |#1| (-775 |#2|))) NIL T ELT)) (-3770 (($ $ (-705 |#1| (-775 |#2|))) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-705 |#1| (-775 |#2|))) (-585 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-249 (-705 |#1| (-775 |#2|)))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (($ $ (-585 (-249 (-705 |#1| (-775 |#2|))))) NIL (-12 (|has| (-705 |#1| (-775 |#2|)) (-260 (-705 |#1| (-775 |#2|)))) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3949 (((-696) $) NIL T ELT)) (-1947 (((-696) (-705 |#1| (-775 |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-705 |#1| (-775 |#2|)) (-1015))) ELT) (((-696) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-705 |#1| (-775 |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-2912 (($ $ (-775 |#2|)) NIL T ELT)) (-2914 (($ $ (-775 |#2|)) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2913 (($ $ (-775 |#2|)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (((-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT)) (-3679 (((-696) $) NIL (|has| (-775 |#2|) (-318)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 (-705 |#1| (-775 |#2|))))) #1#) (-585 (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|))) (-1 (-85) (-705 |#1| (-775 |#2|)) (-705 |#1| (-775 |#2|)))) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) (-705 |#1| (-775 |#2|)) (-585 (-705 |#1| (-775 |#2|))))) NIL T ELT)) (-3191 (((-585 $) (-705 |#1| (-775 |#2|)) $) NIL T ELT) (((-585 $) (-705 |#1| (-775 |#2|)) (-585 $)) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) $) NIL T ELT) (((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-585 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-705 |#1| (-775 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 (-775 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-705 |#1| (-775 |#2|)) $) NIL T ELT)) (-3934 (((-85) (-775 |#2|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-960 |#1| |#2|) (-13 (-985 |#1| (-470 (-775 |#2|)) (-775 |#2|) (-705 |#1| (-775 |#2|))) (-10 -8 (-15 -3683 ((-585 $) (-585 (-705 |#1| (-775 |#2|))) (-85) (-85))))) (-390) (-585 (-1091))) (T -960)) +((-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6))))) +((-3102 (((-1 (-485)) (-1003 (-485))) 32 T ELT)) (-3106 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3104 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3105 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT))) +(((-961) (-10 -7 (-15 -3102 ((-1 (-485)) (-1003 (-485)))) (-15 -3103 ((-1 (-485)) (-485) |RationalNumber|)) (-15 -3104 ((-1 (-485)) |RationalNumber|)) (-15 -3105 ((-1 (-485)) |RationalNumber|)) (-15 -3106 ((-485) (-485) (-485) (-485) (-485))))) (T -961)) +((-3106 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-961)))) (-3105 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961)) (-5 *3 (-485)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1003 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-961))))) +((-3947 (((-774) $) NIL T ELT) (($ (-485)) 10 T ELT))) +(((-962 |#1|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-963)) (T -962)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-963) (-113)) (T -963)) +((-3128 (*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696))))) +(-13 (-972) (-1062) (-592 $) (-557 (-485)) (-10 -7 (-15 -3128 ((-696)) -3953) (-6 -3993))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-557 (-485)) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-665) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3107 (((-348 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)) 55 T ELT))) +(((-964 |#1| |#2|) (-10 -7 (-15 -3107 ((-348 (-859 |#2|)) (-585 |#2|) (-585 |#2|) (-696) (-696)))) (-1091) (-312)) (T -964)) +((-3107 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-348 (-859 *6))) (-5 *1 (-964 *5 *6)) (-14 *5 (-1091))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-965 |#1|) (-113) (-1027)) (T -965)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3122 (((-85) $) 38 T ELT)) (-3124 (((-85) $) 17 T ELT)) (-3116 (((-696) $) 13 T ELT)) (-3115 (((-696) $) 14 T ELT)) (-3123 (((-85) $) 30 T ELT)) (-3121 (((-85) $) 40 T ELT))) +(((-966 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3115 ((-696) |#1|)) (-15 -3116 ((-696) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|))) (-967 |#2| |#3| |#4| |#5| |#6|) (-696) (-696) (-963) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -966)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3122 (((-85) $) 62 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 64 T ELT)) (-3725 (($) 23 T CONST)) (-3111 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3113 ((|#4| $ (-485)) 50 T ELT)) (-3110 (((-696) $) 44 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) 52 T ELT)) (-2891 (((-585 |#3|) $) 76 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3109 (((-696) $) 43 (|has| |#3| (-496)) ELT)) (-3108 (((-585 |#5|) $) 42 (|has| |#3| (-496)) ELT)) (-3116 (((-696) $) 56 T ELT)) (-3115 (((-696) $) 55 T ELT)) (-3120 (((-485) $) 60 T ELT)) (-3118 (((-485) $) 58 T ELT)) (-2610 (((-585 |#3|) $) 77 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#3| $) 79 (-12 (|has| |#3| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3119 (((-485) $) 59 T ELT)) (-3117 (((-485) $) 57 T ELT)) (-3125 (($ (-585 (-585 |#3|))) 65 T ELT)) (-1950 (($ (-1 |#3| |#3|) $) 72 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) 71 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3595 (((-585 (-585 |#3|)) $) 54 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#3|) (-585 |#3|)) 83 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) 82 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) 81 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) 80 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1223 (((-85) $ $) 66 T ELT)) (-3404 (((-85) $) 69 T ELT)) (-3566 (($) 68 T ELT)) (-3801 ((|#3| $ (-485) (-485)) 53 T ELT) ((|#3| $ (-485) (-485) |#3|) 51 T ELT)) (-3123 (((-85) $) 63 T ELT)) (-1947 (((-696) |#3| $) 78 (-12 (|has| |#3| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#3|) $) 75 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 67 T ELT)) (-3112 ((|#5| $ (-485)) 49 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) 61 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3958 (((-696) $) 70 (|has| $ (-6 -3996)) ELT))) +(((-967 |#1| |#2| |#3| |#4| |#5|) (-113) (-696) (-696) (-963) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -967)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-696)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-696)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-696)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-585 *7))))) +(-13 (-82 |t#3| |t#3|) (-427 |t#3|) (-10 -8 (-6 -3996) (IF (|has| |t#3| (-146)) (-6 (-656 |t#3|)) |%noBranch|) (-15 -3125 ($ (-585 (-585 |t#3|)))) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-696) $)) (-15 -3115 ((-696) $)) (-15 -3595 ((-585 (-585 |t#3|)) $)) (-15 -3801 (|t#3| $ (-485) (-485))) (-15 -3114 (|t#3| $ (-485) (-485))) (-15 -3801 (|t#3| $ (-485) (-485) |t#3|)) (-15 -3113 (|t#4| $ (-485))) (-15 -3112 (|t#5| $ (-485))) (-15 -3959 ($ (-1 |t#3| |t#3|) $)) (-15 -3959 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3950 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-15 -3110 ((-696) $)) (-15 -3109 ((-696) $)) (-15 -3108 ((-585 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-554 (-774)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-427 |#3|) . T) ((-454 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ((-13) . T) ((-590 (-485)) . T) ((-590 |#3|) . T) ((-592 |#3|) . T) ((-584 |#3|) |has| |#3| (-146)) ((-656 |#3|) |has| |#3| (-146)) ((-965 |#3|) . T) ((-970 |#3|) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) 47 (|has| |#3| (-258)) ELT)) (-3113 (((-197 |#2| |#3|) $ (-485)) 36 T ELT)) (-3126 (($ (-632 |#3|)) 45 T ELT)) (-3110 (((-696) $) 49 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3109 (((-696) $) 51 (|has| |#3| (-496)) ELT)) (-3108 (((-585 (-197 |#1| |#3|)) $) 55 (|has| |#3| (-496)) ELT)) (-3116 (((-696) $) NIL T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-585 (-585 |#3|))) 31 T ELT)) (-1950 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3595 (((-585 (-585 |#3|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3912 (((-107)) 59 (|has| |#3| (-312)) ELT)) (-3123 (((-85) $) NIL T ELT)) (-1947 (((-696) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT) (((-696) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 66 (|has| |#3| (-555 (-474))) ELT)) (-3112 (((-197 |#1| |#3|) $ (-485)) 40 T ELT)) (-3947 (((-774) $) 19 T ELT) (((-632 |#3|) $) 42 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-2662 (($) 16 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-968 |#1| |#2| |#3|) (-13 (-967 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-554 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|) (-15 -3126 ($ (-632 |#3|))))) (-696) (-696) (-963)) (T -968)) +((-3126 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696))))) +((-3843 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3959 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-969 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3959 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3843 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-696) (-696) (-963) (-196 |#2| |#3|) (-196 |#1| |#3|) (-967 |#1| |#2| |#3| |#4| |#5|) (-963) (-196 |#2| |#7|) (-196 |#1| |#7|) (-967 |#1| |#2| |#7| |#8| |#9|)) (T -969)) +((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) +(((-970 |#1|) (-113) (-972)) (T -970)) +NIL +(-13 (-21) (-965 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-965 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-3127 (((-85) $ $) 10 T ELT))) +(((-971 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-972)) (T -971)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-972) (-113)) (T -972)) +((-3127 (*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) +(-13 (-21) (-1027) (-10 -8 (-15 -3127 ((-85) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3832 (((-1091) $) 11 T ELT)) (-3737 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3228 (($ (-1091) |#1|) 10 T ELT)) (-3947 (((-774) $) 22 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-1015)) ELT))) +(((-973 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) |#1|)) (-15 -3832 ((-1091) $)) (-15 -3737 (|#1| $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1008 |#2|) (-1130)) (T -973)) +((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-973 *3 *4)) (-4 *3 (-1008 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1130))))) +((-3772 (($ $) 17 T ELT)) (-3129 (($ $) 25 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 54 T ELT)) (-3134 (($ $) 27 T ELT)) (-3130 (($ $) 12 T ELT)) (-3132 (($ $) 40 T ELT)) (-3973 (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (((-802 (-328)) $) 36 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) 31 T ELT)) (-3128 (((-696)) 9 T CONST)) (-3133 (($ $) 44 T ELT))) +(((-974 |#1|) (-10 -7 (-15 -3129 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2798 ((-800 (-328) |#1|) |#1| (-802 (-328)) (-800 (-328) |#1|))) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 (|#1| (-485))) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-328) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 (|#1| |#1|)) (-15 -3128 ((-696)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-975)) (T -974)) +((-3128 (*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-348 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-348 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-585 $) #2="failed") (-585 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT)) (-2859 (($ $ $) 126 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3973 (((-328) $) 124 T ELT) (((-179) $) 123 T ELT) (((-802 (-328)) $) 113 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-348 (-485))) 117 T ELT)) (-3128 (((-696)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-348 (-485))) 114 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT))) +(((-975) (-113)) (T -975)) +((-3134 (*1 *1 *1) (-4 *1 (-975))) (-3133 (*1 *1 *1) (-4 *1 (-975))) (-3132 (*1 *1 *1) (-4 *1 (-975))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-485)))) (-3130 (*1 *1 *1) (-4 *1 (-975))) (-3772 (*1 *1 *1) (-4 *1 (-975))) (-3129 (*1 *1 *1) (-4 *1 (-975)))) +(-13 (-312) (-757) (-935) (-952 (-485)) (-952 (-348 (-485))) (-917) (-555 (-802 (-328))) (-798 (-328)) (-120) (-10 -8 (-15 -3134 ($ $)) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ((-485) $)) (-15 -3130 ($ $)) (-15 -3772 ($ $)) (-15 -3129 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-555 (-179)) . T) ((-555 (-328)) . T) ((-555 (-802 (-328))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 $) . T) ((-665) . T) ((-716) . T) ((-718) . T) ((-720) . T) ((-723) . T) ((-757) . T) ((-758) . T) ((-761) . T) ((-798 (-328)) . T) ((-834) . T) ((-917) . T) ((-935) . T) ((-952 (-348 (-485))) . T) ((-952 (-485)) . T) ((-965 (-348 (-485))) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) |#2| $) 26 T ELT)) (-3138 ((|#1| $) 10 T ELT)) (-3624 (((-485) |#2| $) 119 T ELT)) (-3185 (((-3 $ #1="failed") |#2| (-832)) 76 T ELT)) (-3139 ((|#1| $) 31 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3136 (($ $) 28 T ELT)) (-3468 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3189 (((-85) |#2| $) NIL T ELT)) (-3135 (((-85) |#2| $) 27 T ELT)) (-3137 ((|#1| $) 120 T ELT)) (-3140 ((|#1| $) 30 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3187 ((|#2| $) 104 T ELT)) (-3947 (((-774) $) 95 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3771 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3186 (((-585 $) |#2|) 78 T ELT)) (-3058 (((-85) $ $) 99 T ELT))) +(((-976 |#1| |#2|) (-13 (-982 |#1| |#2|) (-10 -8 (-15 -3140 (|#1| $)) (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 ($ $)) (-15 -3135 ((-85) |#2| $)) (-15 -3184 (|#1| |#2| $ |#1|)))) (-13 (-757) (-312)) (-1156 |#1|)) (T -976)) +((-3184 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3136 (*1 *1 *1) (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) (-3135 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2443 (($ $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3141 (($ (-1091)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-632 (-485)) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-348 (-485)) $) NIL T ELT)) (-2996 (($) NIL T ELT) (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-3446 (((-634 $) $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2048 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2676 (((-85) $) NIL T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-802 (-485)) $) NIL T ELT) (((-328) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1091)) 9 T ELT)) (-3947 (((-774) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3128 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2045 (($ $ $ $) NIL T ELT)) (-3384 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT))) +(((-977) (-13 (-484) (-559 (-1091)) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3141 ($ (-1091))) (-15 -3141 ($ (-485)))))) (T -977)) +((-3141 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-977)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-977))))) +((-3798 (($ $) 46 T ELT)) (-3168 (((-85) $ $) 82 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-859 (-348 (-485)))) 247 T ELT) (((-3 $ #1#) (-859 (-485))) 246 T ELT) (((-3 $ #1#) (-859 |#2|)) 249 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-859 (-348 (-485)))) 235 T ELT) (($ (-859 (-485))) 231 T ELT) (($ (-859 |#2|)) 255 T ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3695 (((-85) $ $) 131 T ELT) (((-85) $ (-585 $)) 135 T ELT)) (-3174 (((-85) $) 60 T ELT)) (-3753 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 125 T ELT)) (-3145 (($ $) 160 T ELT)) (-3156 (($ $) 156 T ELT)) (-3157 (($ $) 155 T ELT)) (-3167 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3166 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3696 (((-85) $ $) 143 T ELT) (((-85) $ (-585 $)) 144 T ELT)) (-3182 ((|#4| $) 32 T ELT)) (-3161 (($ $ $) 128 T ELT)) (-3175 (((-85) $) 59 T ELT)) (-3181 (((-696) $) 35 T ELT)) (-3142 (($ $) 174 T ELT)) (-3143 (($ $) 171 T ELT)) (-3170 (((-585 $) $) 72 T ELT)) (-3173 (($ $) 62 T ELT)) (-3144 (($ $) 167 T ELT)) (-3171 (((-585 $) $) 69 T ELT)) (-3172 (($ $) 64 T ELT)) (-3176 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-696))) $ $) 130 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $) 126 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $ |#4|) 127 T ELT)) (-3163 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $) 121 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $ |#4|) 123 T ELT)) (-3165 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3164 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3178 (((-585 $) $) 54 T ELT)) (-3692 (((-85) $ $) 140 T ELT) (((-85) $ (-585 $)) 141 T ELT)) (-3687 (($ $ $) 116 T ELT)) (-3447 (($ $) 37 T ELT)) (-3700 (((-85) $ $) 80 T ELT)) (-3693 (((-85) $ $) 136 T ELT) (((-85) $ (-585 $)) 138 T ELT)) (-3688 (($ $ $) 112 T ELT)) (-3180 (($ $) 41 T ELT)) (-3146 ((|#2| |#2| $) 164 T ELT) (($ (-585 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3154 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3155 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3179 (($ $) 49 T ELT)) (-3177 (($ $) 55 T ELT)) (-3973 (((-802 (-328)) $) NIL T ELT) (((-802 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-859 (-348 (-485)))) 237 T ELT) (($ (-859 (-485))) 233 T ELT) (($ (-859 |#2|)) 248 T ELT) (((-1074) $) 278 T ELT) (((-859 |#2|) $) 184 T ELT)) (-3947 (((-774) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-859 |#2|) $) 185 T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3169 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-585 |#1|))) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 ((-859 |#2|) |#1|)) (-15 -3973 ((-859 |#2|) |#1|)) (-15 -3973 ((-1074) |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3146 (|#2| |#2| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3155 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1| |#2|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3973 (|#1| (-859 |#2|))) (-15 -3158 (|#1| (-859 |#2|))) (-15 -3159 ((-3 |#1| #1="failed") (-859 |#2|))) (-15 -3973 (|#1| (-859 (-485)))) (-15 -3158 (|#1| (-859 (-485)))) (-15 -3159 ((-3 |#1| #1#) (-859 (-485)))) (-15 -3973 (|#1| (-859 (-348 (-485))))) (-15 -3158 (|#1| (-859 (-348 (-485))))) (-15 -3159 ((-3 |#1| #1#) (-859 (-348 (-485))))) (-15 -3687 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3160 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3482 (-696))) |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3753 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3163 ((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3163 ((-2 (|:| -3955 |#1|) (|:| |gap| (-696)) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -3696 ((-85) |#1| (-585 |#1|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-585 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-585 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| (-585 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3168 ((-85) |#1| |#1|)) (-15 -3700 ((-85) |#1| |#1|)) (-15 -3169 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3170 ((-585 |#1|) |#1|)) (-15 -3171 ((-585 |#1|) |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3175 ((-85) |#1|)) (-15 -3960 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3177 (|#1| |#1|)) (-15 -3178 ((-585 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -3181 ((-696) |#1|)) (-15 -3182 (|#4| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-802 (-485)) |#1|)) (-15 -3973 ((-802 (-328)) |#1|)) (-15 -3947 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3176 (|#2| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-979 |#2| |#3| |#4|) (-963) (-719) (-758)) (T -978)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) 125 T ELT) (((-696) $ (-585 |#3|)) 124 T ELT)) (-3798 (($ $) 293 T ELT)) (-3168 (((-85) $ $) 279 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 238 (|has| |#1| (-496)) ELT)) (-3150 (((-585 $) $ $) 233 (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-823)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-823)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-485)) #2#) $) 178 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-952 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-859 (-348 (-485)))) 253 (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091)))) ELT) (((-3 $ "failed") (-859 (-485))) 250 (OR (-12 (-2562 (|has| |#1| (-38 (-348 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-555 (-1091)))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091))))) ELT) (((-3 $ "failed") (-859 |#1|)) 247 (OR (-12 (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-555 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-555 (-1091)))) (-12 (-2562 (|has| |#1| (-906 (-485)))) (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091))))) ELT)) (-3158 ((|#1| $) 180 T ELT) (((-348 (-485)) $) 179 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-952 (-485))) ELT) ((|#3| $) 154 T ELT) (($ (-859 (-348 (-485)))) 252 (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091)))) ELT) (($ (-859 (-485))) 249 (OR (-12 (-2562 (|has| |#1| (-38 (-348 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-555 (-1091)))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091))))) ELT) (($ (-859 |#1|)) 246 (OR (-12 (-2562 (|has| |#1| (-38 (-348 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-555 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-348 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-555 (-1091)))) (-12 (-2562 (|has| |#1| (-906 (-485)))) (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091))))) ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-496)) ELT)) (-3960 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 149 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 148 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3695 (((-85) $ $) 278 T ELT) (((-85) $ (-585 $)) 277 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3174 (((-85) $) 286 T ELT)) (-3753 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 258 T ELT)) (-3145 (($ $) 227 (|has| |#1| (-390)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ |#3|) 118 (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-3156 (($ $) 243 (|has| |#1| (-496)) ELT)) (-3157 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3166 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 97 (-12 (|has| |#3| (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 96 (-12 (|has| |#3| (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3696 (((-85) $ $) 272 T ELT) (((-85) $ (-585 $)) 271 T ELT)) (-3147 (($ $ $ $ $) 229 (|has| |#1| (-496)) ELT)) (-3182 ((|#3| $) 297 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-585 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-696)) 132 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 131 T ELT)) (-3161 (($ $ $) 257 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-3175 (((-85) $) 287 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-696) $ |#3|) 135 T ELT) (((-585 (-696)) $ (-585 |#3|)) 134 T ELT)) (-3181 (((-696) $) 296 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3142 (($ $) 224 (|has| |#1| (-390)) ELT)) (-3143 (($ $) 225 (|has| |#1| (-390)) ELT)) (-3170 (((-585 $) $) 282 T ELT)) (-3173 (($ $) 285 T ELT)) (-3144 (($ $) 226 (|has| |#1| (-390)) ELT)) (-3171 (((-585 $) $) 283 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 151 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-632 |#1|) (-1180 $)) 144 T ELT)) (-3172 (($ $) 284 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1892 (($ (-585 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-696))) $ $) 256 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $) 260 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $ |#3|) 259 T ELT)) (-3163 (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $) 262 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $ |#3|) 261 T ELT)) (-3165 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3164 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3192 (($ $ $) 232 (|has| |#1| (-496)) ELT)) (-3178 (((-585 $) $) 291 T ELT)) (-2825 (((-3 (-585 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-585 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2403 (-696))) #3#) $) 126 T ELT)) (-3692 (((-85) $ $) 274 T ELT) (((-85) $ (-585 $)) 273 T ELT)) (-3687 (($ $ $) 254 T ELT)) (-3447 (($ $) 295 T ELT)) (-3700 (((-85) $ $) 280 T ELT)) (-3693 (((-85) $ $) 276 T ELT) (((-85) $ (-585 $)) 275 T ELT)) (-3688 (($ $ $) 255 T ELT)) (-3180 (($ $) 294 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-390)) ELT)) (-3146 ((|#1| |#1| $) 228 (|has| |#1| (-390)) ELT) (($ (-585 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 112 (|has| |#1| (-823)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 241 (|has| |#1| (-496)) ELT) (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-585 |#3|) (-585 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-585 |#3|) (-585 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#3|) (-585 (-696))) 52 T ELT) (($ $ |#3| (-696)) 51 T ELT) (($ $ (-585 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-696) $ |#3|) 143 T ELT) (((-585 (-696)) $ (-585 |#3|)) 142 T ELT)) (-3179 (($ $) 292 T ELT)) (-3177 (($ $) 290 T ELT)) (-3973 (((-802 (-328)) $) 95 (-12 (|has| |#3| (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) 94 (-12 (|has| |#3| (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT) (($ (-859 (-348 (-485)))) 251 (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091)))) ELT) (($ (-859 (-485))) 248 (OR (-12 (-2562 (|has| |#1| (-38 (-348 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-555 (-1091)))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#3| (-555 (-1091))))) ELT) (($ (-859 |#1|)) 245 (|has| |#3| (-555 (-1091))) ELT) (((-1074) $) 223 (-12 (|has| |#1| (-952 (-485))) (|has| |#3| (-555 (-1091)))) ELT) (((-859 |#1|) $) 222 (|has| |#3| (-555 (-1091))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ |#3|) 119 (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-859 |#1|) $) 221 (|has| |#3| (-555 (-1091))) ELT) (($ (-348 (-485))) 91 (OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-696)) 141 T ELT) (($ $ (-585 |#3|) (-585 (-696))) 140 T ELT)) (-2704 (((-634 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3169 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2668 (($) 45 T CONST)) (-3148 (($ $ $ $ (-696)) 230 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-696)) 231 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-585 |#3|) (-585 (-696))) 55 T ELT) (($ $ |#3| (-696)) 54 T ELT) (($ $ (-585 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 175 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 174 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-979 |#1| |#2| |#3|) (-113) (-963) (-719) (-758)) (T -979)) +((-3182 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-696)))) (-3447 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3960 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3169 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -2904 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -2904 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-979 *4 *5 *3)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-979 *3 *4 *5)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-696)))) (-4 *1 (-979 *3 *4 *5)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) (-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3973 (*1 *1 *2) (OR (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-906 (-485)))) (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) (-12 (-5 *2 (-859 *3)) (-12 (-2562 (-4 *3 (-906 (-485)))) (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *5 (-555 (-1091))) (-4 *4 (-719)) (-4 *5 (-758)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3149 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-496)))) (-3148 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *3 (-496)))) (-3147 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-496)))) (-3146 (*1 *2 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-390))))) +(-13 (-863 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3182 (|t#3| $)) (-15 -3181 ((-696) $)) (-15 -3447 ($ $)) (-15 -3180 ($ $)) (-15 -3798 ($ $)) (-15 -3179 ($ $)) (-15 -3178 ((-585 $) $)) (-15 -3177 ($ $)) (-15 -3176 ($ $ |t#3|)) (-15 -3960 ($ $ |t#3|)) (-15 -3175 ((-85) $)) (-15 -3174 ((-85) $)) (-15 -3173 ($ $)) (-15 -3172 ($ $)) (-15 -3171 ((-585 $) $)) (-15 -3170 ((-585 $) $)) (-15 -3169 ((-3 (-85) "failed") $ $)) (-15 -3700 ((-85) $ $)) (-15 -3168 ((-85) $ $)) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-585 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-585 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-585 $))) (-15 -3696 ((-85) $ $)) (-15 -3696 ((-85) $ (-585 $))) (-15 -3167 ($ $ $)) (-15 -3166 ($ $ $)) (-15 -3167 ($ $ $ |t#3|)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $)) (-15 -3163 ((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -2904 $)) $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-696)) (|:| -1974 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -3753 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-696))) $ $)) (-15 -3688 ($ $ $)) (-15 -3687 ($ $ $)) (IF (|has| |t#3| (-555 (-1091))) (PROGN (-6 (-554 (-859 |t#1|))) (-6 (-555 (-859 |t#1|))) (IF (|has| |t#1| (-38 (-348 (-485)))) (PROGN (-15 -3159 ((-3 $ "failed") (-859 (-348 (-485))))) (-15 -3158 ($ (-859 (-348 (-485))))) (-15 -3973 ($ (-859 (-348 (-485))))) (-15 -3159 ((-3 $ "failed") (-859 (-485)))) (-15 -3158 ($ (-859 (-485)))) (-15 -3973 ($ (-859 (-485)))) (IF (|has| |t#1| (-906 (-485))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-859 |t#1|))) (-15 -3158 ($ (-859 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) (IF (|has| |t#1| (-38 (-348 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-859 (-485)))) (-15 -3158 ($ (-859 (-485)))) (-15 -3973 ($ (-859 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-859 |t#1|))) (-15 -3158 ($ (-859 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) |%noBranch| (IF (|has| |t#1| (-38 (-348 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-859 |t#1|))) (-15 -3158 ($ (-859 |t#1|)))))) (-15 -3973 ($ (-859 |t#1|))) (IF (|has| |t#1| (-952 (-485))) (-6 (-555 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3157 ($ $)) (-15 -3156 ($ $)) (-15 -3155 ($ $ |t#1|)) (-15 -3154 ($ $ |t#1|)) (-15 -3155 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3756 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -3757 ($ $ $)) (-15 -3150 ((-585 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3149 ($ $ $ (-696))) (-15 -3148 ($ $ $ $ (-696))) (-15 -3147 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (PROGN (-15 -3146 (|t#1| |t#1| $)) (-15 -3145 ($ $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 |#3|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-554 (-774)) . T) ((-554 (-859 |#1|)) |has| |#3| (-555 (-1091))) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-555 (-474)) -12 (|has| |#1| (-555 (-474))) (|has| |#3| (-555 (-474)))) ((-555 (-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#3| (-555 (-802 (-328))))) ((-555 (-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#3| (-555 (-802 (-485))))) ((-555 (-859 |#1|)) |has| |#3| (-555 (-1091))) ((-555 (-1074)) -12 (|has| |#1| (-952 (-485))) (|has| |#3| (-555 (-1091)))) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-823)) (|has| |#1| (-390))) ((-454 |#3| |#1|) . T) ((-454 |#3| $) . T) ((-454 $ $) . T) ((-496) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390))) ((-665) . T) ((-808 $ |#3|) . T) ((-811 |#3|) . T) ((-813 |#3|) . T) ((-798 (-328)) -12 (|has| |#1| (-798 (-328))) (|has| |#3| (-798 (-328)))) ((-798 (-485)) -12 (|has| |#1| (-798 (-485))) (|has| |#3| (-798 (-485)))) ((-863 |#1| |#2| |#3|) . T) ((-823) |has| |#1| (-823)) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) |has| |#1| (-823))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-585 (-1050)) $) 18 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-980) (-13 (-997) (-10 -8 (-15 -3183 ((-585 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -980)) +((-3183 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-980)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-980))))) +((-3190 (((-85) |#3| $) 15 T ELT)) (-3185 (((-3 $ #1="failed") |#3| (-832)) 29 T ELT)) (-3468 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3188 (((-85) |#3| $) 19 T ELT)) (-3189 (((-85) |#3| $) 17 T ELT))) +(((-981 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-3 |#1| #1="failed") |#3| (-832))) (-15 -3468 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|)) (-15 -3190 ((-85) |#3| |#1|))) (-982 |#2| |#3|) (-13 (-757) (-312)) (-1156 |#2|)) (T -981)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) |#2| $) 25 T ELT)) (-3624 (((-485) |#2| $) 26 T ELT)) (-3185 (((-3 $ "failed") |#2| (-832)) 19 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3468 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3188 (((-85) |#2| $) 23 T ELT)) (-3189 (((-85) |#2| $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3187 ((|#2| $) 21 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3771 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3186 (((-585 $) |#2|) 20 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-982 |#1| |#2|) (-113) (-13 (-757) (-312)) (-1156 |t#1|)) (T -982)) +((-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-485)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3468 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1156 *3)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1156 *3)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-585 *1)) (-4 *1 (-982 *4 *3)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) (-4 *1 (-982 *4 *2)) (-4 *2 (-1156 *4)))) (-3771 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1156 *2)))) (-3184 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1156 *2))))) +(-13 (-1015) (-10 -8 (-15 -3624 ((-485) |t#2| $)) (-15 -3190 ((-85) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3468 ((-3 |t#2| "failed") |t#2| $)) (-15 -3187 (|t#2| $)) (-15 -3186 ((-585 $) |t#2|)) (-15 -3185 ((-3 $ "failed") |t#2| (-832))) (-15 -3771 (|t#1| |t#2| $ |t#1|)) (-15 -3184 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3437 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696)) 114 T ELT)) (-3434 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 63 T ELT)) (-3438 (((-1186) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)) 99 T ELT)) (-3432 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 65 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85)) 67 T ELT)) (-3436 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 87 T ELT)) (-3973 (((-1074) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3433 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3431 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) +(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3432 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3433 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85))) (-15 -3434 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3434 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3436 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696))) (-15 -3973 ((-1074) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3438 ((-1186) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -983)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1186)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1074)) (-5 *1 (-983 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-983 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9))))) +((-3199 (((-85) |#5| $) 26 T ELT)) (-3197 (((-85) |#5| $) 29 T ELT)) (-3200 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3240 (((-585 $) |#5| $) NIL T ELT) (((-585 $) (-585 |#5|) $) 94 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 92 T ELT) (((-585 $) |#5| (-585 $)) 95 T ELT)) (-3770 (($ $ |#5|) NIL T ELT) (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 73 T ELT) (((-585 $) (-585 |#5|) $) 75 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 77 T ELT)) (-3191 (((-585 $) |#5| $) NIL T ELT) (((-585 $) |#5| (-585 $)) 64 T ELT) (((-585 $) (-585 |#5|) $) 69 T ELT) (((-585 $) (-585 |#5|) (-585 $)) 71 T ELT)) (-3198 (((-85) |#5| $) 32 T ELT))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3770 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3770 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3770 ((-585 |#1|) |#5| |#1|)) (-15 -3191 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3191 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3191 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3191 ((-585 |#1|) |#5| |#1|)) (-15 -3240 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3240 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3240 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3240 ((-585 |#1|) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#5| |#1|)) (-15 -3770 (|#1| |#1| |#5|))) (-985 |#2| |#3| |#4| |#5|) (-390) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -984)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 90 T ELT)) (-3683 (((-585 $) (-585 |#4|)) 91 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 133 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-3800 (((-3 $ #1#) $) 87 T ELT)) (-3686 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3684 ((|#4| |#4| $) 92 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 143 T ELT)) (-3197 (((-85) |#4| $) 140 T ELT)) (-3200 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) 135 T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 134 T ELT)) (-3799 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-585 $) |#4| $) 136 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) 139 T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3240 (((-585 $) |#4| $) 132 T ELT) (((-585 $) (-585 |#4|) $) 131 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT)) (-3441 (($ |#4| $) 124 T ELT) (($ (-585 |#4|) $) 123 T ELT)) (-3698 (((-585 |#4|) $) 112 T ELT)) (-3692 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-3700 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3770 (($ $ |#4|) 82 T ELT) (((-585 $) |#4| $) 122 T ELT) (((-585 $) |#4| (-585 $)) 121 T ELT) (((-585 $) (-585 |#4|) $) 120 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 119 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-3949 (((-696) $) 111 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-3685 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-3679 (((-696) $) 81 (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 103 T ELT)) (-3191 (((-585 $) |#4| $) 128 T ELT) (((-585 $) |#4| (-585 $)) 127 T ELT) (((-585 $) (-585 |#4|) $) 126 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 125 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3934 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-985 |#1| |#2| |#3| |#4|) (-113) (-390) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -985)) +((-3200 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3776 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-985 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3441 (*1 *1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) (-3770 (*1 *2 *3 *1) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) (-3770 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8))))) +(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3200 ((-85) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3200 ((-85) $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-3 (-85) (-585 $)) |t#4| $)) (-15 -3195 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |t#4| $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-585 $) |t#4| $)) (-15 -3193 ((-3 |t#4| (-585 $)) |t#4| |t#4| $)) (-15 -3192 ((-585 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-15 -3776 ((-585 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-15 -3240 ((-585 $) |t#4| $)) (-15 -3240 ((-585 $) (-585 |t#4|) $)) (-15 -3240 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3240 ((-585 $) |t#4| (-585 $))) (-15 -3191 ((-585 $) |t#4| $)) (-15 -3191 ((-585 $) |t#4| (-585 $))) (-15 -3191 ((-585 $) (-585 |t#4|) $)) (-15 -3191 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3441 ($ |t#4| $)) (-15 -3441 ($ (-585 |t#4|) $)) (-15 -3770 ((-585 $) |t#4| $)) (-15 -3770 ((-585 $) |t#4| (-585 $))) (-15 -3770 ((-585 $) (-585 |t#4|) $)) (-15 -3770 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3683 ((-585 $) (-585 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3207 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3204 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3206 (((-585 |#5|) |#4| |#5|) 74 T ELT)) (-3205 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)) (-3201 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3202 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 117 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3203 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3201 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3202 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3203 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-85) |#4| |#5|)) (-15 -3205 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3206 ((-585 |#5|) |#4| |#5|)) (-15 -3207 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -986)) +((-3207 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-986 *6 *7 *4 *8 *9)))) (-3202 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-986 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3947 (((-774) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-987) (-13 (-997) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -987)) +((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-987)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-987))))) +((-3268 (((-85) $ $) 7 T ELT))) +(((-988) (-13 (-1130) (-10 -8 (-15 -3268 ((-85) $ $))))) (T -988)) +((-3268 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3211 (($ $ (-585 (-1091)) (-1 (-85) (-585 |#3|))) 34 T ELT)) (-3212 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-585 (-1091))) 21 T ELT)) (-3529 ((|#3| $) 13 T ELT)) (-3159 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3158 (((-249 |#3|) $) NIL T ELT)) (-3209 (((-585 (-1091)) $) 16 T ELT)) (-3210 (((-802 |#1|) $) 11 T ELT)) (-3530 ((|#3| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-832)) 41 T ELT)) (-3947 (((-774) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 38 T ELT))) +(((-989 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-952 (-249 |#3|)) (-10 -8 (-15 -3212 ($ |#3| |#3|)) (-15 -3212 ($ |#3| |#3| (-585 (-1091)))) (-15 -3211 ($ $ (-585 (-1091)) (-1 (-85) (-585 |#3|)))) (-15 -3210 ((-802 |#1|) $)) (-15 -3530 (|#3| $)) (-15 -3529 (|#3| $)) (-15 -3801 (|#3| $ |#3| (-832))) (-15 -3209 ((-585 (-1091)) $)))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-362 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -989)) +((-3212 (*1 *1 *2 *2) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))))) (-3212 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-1 (-85) (-585 *6))) (-4 *6 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-798 *3) (-555 *2))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-1091))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT))) +(((-990 |#1|) (-13 (-1015) (-10 -8 (-15 -3543 ((-1091) $)))) (-1091)) (T -990)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-990 *3)) (-14 *3 *2)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3214 (($ (-585 (-989 |#1| |#2| |#3|))) 15 T ELT)) (-3213 (((-585 (-989 |#1| |#2| |#3|)) $) 22 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-832)) 28 T ELT)) (-3947 (((-774) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 21 T ELT))) +(((-991 |#1| |#2| |#3|) (-13 (-1015) (-241 |#3| |#3|) (-10 -8 (-15 -3214 ($ (-585 (-989 |#1| |#2| |#3|)))) (-15 -3213 ((-585 (-989 |#1| |#2| |#3|)) $)) (-15 -3801 (|#3| $ |#3| (-832))))) (-1015) (-13 (-963) (-798 |#1|) (-555 (-802 |#1|))) (-13 (-362 |#2|) (-798 |#1|) (-555 (-802 |#1|)))) (T -991)) +((-3214 (*1 *1 *2) (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-832)) (-4 *4 (-1015)) (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4))))))) +((-3215 (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 88 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 92 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 90 T ELT))) +(((-992 |#1| |#2|) (-10 -7 (-15 -3215 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3215 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3215 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-585 (-1091))) (T -992)) +((-3215 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))))) (-3215 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1091))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 132 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1783 (((-632 |#1|) (-1180 $)) NIL T ELT) (((-632 |#1|)) 117 T ELT)) (-3331 ((|#1| $) 121 T ELT)) (-1676 (((-1103 (-832) (-696)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-696)) 43 (|has| |#1| (-318)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1782 (((-632 |#1|) $ (-1180 $)) NIL T ELT) (((-632 |#1|) $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 109 T ELT) (((-632 |#1|) (-632 $)) 104 T ELT)) (-3843 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-348 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-832)) 80 T ELT)) (-2996 (($) 47 (|has| |#1| (-318)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-696)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-832) $) NIL (|has| |#1| (-299)) ELT) (((-745 (-832)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2016 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2012 (((-832) $) 140 (|has| |#1| (-318)) ELT)) (-3081 ((|#2| $) 59 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2402 (($ (-832)) 131 (|has| |#1| (-318)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2411 (($) 123 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1677 (((-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1766 (((-696) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-696) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-2410 (((-632 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 92 T ELT) (((-632 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 72 T ELT) (((-632 |#1|) (-1180 $)) 88 T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (|has| |#1| (-299)) ELT)) (-3947 (((-774) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 85 T ELT)) (-3128 (((-696)) 79 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2014 (((-1180 $)) 84 T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 19 T CONST)) (-2671 (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-813 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-312)) ELT))) +(((-993 |#1| |#2| |#3|) (-663 |#1| |#2|) (-146) (-1156 |#1|) |#2|) (T -993)) +NIL +((-3733 (((-346 |#3|) |#3|) 18 T ELT))) +(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-346 |#3|) |#3|))) (-1156 (-348 (-485))) (-13 (-312) (-120) (-663 (-348 (-485)) |#1|)) (-1156 |#2|)) (T -994)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-13 (-312) (-120) (-663 (-348 (-485)) *4))) (-5 *2 (-346 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-3733 (((-346 |#3|) |#3|) 19 T ELT))) +(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-346 |#3|) |#3|))) (-1156 (-348 (-859 (-485)))) (-13 (-312) (-120) (-663 (-348 (-859 (-485))) |#1|)) (-1156 |#2|)) (T -995)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-1156 (-348 (-859 (-485))))) (-4 *5 (-13 (-312) (-120) (-663 (-348 (-859 (-485))) *4))) (-5 *2 (-346 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3216 (($) 6 T ELT)) (-3973 (((-1091) $) 20 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 9 T ELT))) +(((-996) (-13 (-758) (-555 (-1091)) (-10 -8 (-15 -3216 ($))))) (T -996)) +((-3216 (*1 *1) (-5 *1 (-996)))) +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-997) (-113)) (T -997)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3215 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3213 (((-1184)) 21 T ELT)) (-3214 (((-584 |#1|)) 13 T ELT))) -(((-996 |#1|) (-10 -7 (-15 -3213 ((-1184))) (-15 -3214 ((-584 |#1|))) (-15 -3215 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3215 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996)) -((-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3214 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3213 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -((-3218 (($ (-78) $) 20 T ELT)) (-3219 (((-633 (-78)) (-444) $) 19 T ELT)) (-3562 (($) 7 T ELT)) (-3217 (($) 21 T ELT)) (-3216 (($) 22 T ELT)) (-3220 (((-584 (-149)) $) 10 T ELT)) (-3943 (((-773) $) 25 T ELT))) -(((-997) (-13 (-553 (-773)) (-10 -8 (-15 -3562 ($)) (-15 -3220 ((-584 (-149)) $)) (-15 -3219 ((-633 (-78)) (-444) $)) (-15 -3218 ($ (-78) $)) (-15 -3217 ($)) (-15 -3216 ($))))) (T -997)) -((-3562 (*1 *1) (-5 *1 (-997))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-997)))) (-3219 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-997)))) (-3218 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3217 (*1 *1) (-5 *1 (-997))) (-3216 (*1 *1) (-5 *1 (-997)))) -((-3221 (((-1178 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1178 (-631 (-858 |#1|))) (-584 (-1089)) (-631 (-858 |#1|))) 75 T ELT) (((-1178 (-631 (-347 (-858 |#1|)))) (-584 (-1089)) (-631 (-347 (-858 |#1|)))) 92 T ELT)) (-3222 (((-1178 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT))) -(((-998 |#1|) (-10 -7 (-15 -3221 ((-1178 (-631 (-347 (-858 |#1|)))) (-584 (-1089)) (-631 (-347 (-858 |#1|))))) (-15 -3221 ((-1178 (-631 (-858 |#1|))) (-584 (-1089)) (-631 (-858 |#1|)))) (-15 -3221 ((-1178 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3222 ((-1178 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-311)) (T -998)) -((-3222 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-998 *4)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-858 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-631 (-858 *5))))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-347 (-858 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-631 (-347 (-858 *5))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1089)) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3080 (((-584 (-1000 (-1089))) $) NIL T ELT)) (-3082 (((-1084 $) $ (-1000 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1000 (-1089)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-1000 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-1000 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3753 (($ $ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-1000 (-1089))) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1000 (-1089)) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1000 (-1089)) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ (-1089)) NIL T ELT) (((-695) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3083 (($ (-1084 |#1|) (-1000 (-1089))) NIL T ELT) (($ (-1084 $) (-1000 (-1089))) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-1000 (-1089))) NIL T ELT)) (-2819 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-695) $ (-1000 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-1000 (-1089)))) NIL T ELT)) (-1623 (($ (-1 (-469 (-1000 (-1089))) (-469 (-1000 (-1089)))) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) (-1089)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3081 (((-3 (-1000 (-1089)) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1484 (((-1000 (-1089)) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-1000 (-1089))) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1000 (-1089)) |#1|) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 |#1|)) NIL T ELT) (($ $ (-1000 (-1089)) $) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3754 (($ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 (-1089)) $) NIL T ELT)) (-3945 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-695) $ (-1000 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-1000 (-1089)))) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-999 |#1|) (-13 (-213 |#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) (-951 (-1038 |#1| (-1089)))) (-962)) (T -999)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) NIL T ELT)) (-3828 ((|#1| $) 10 T ELT)) (-3155 (((-3 |#1| "failed") $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT)) (-3769 (((-695) $) 11 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-695)) 9 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3755 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2668 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 16 T ELT))) -(((-1000 |#1|) (-228 |#1|) (-757)) (T -1000)) -NIL -((-2567 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3733 (($ |#1| |#1|) 16 T ELT)) (-3955 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3227 ((|#1| $) 12 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3225 (((-484) $) 15 T ELT)) (-3226 ((|#1| $) 14 T ELT)) (-3228 ((|#1| $) 13 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3960 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3969 (($ |#1|) 29 T ELT)) (-3943 (((-773) $) 28 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3734 (($ |#1| |#1|) 10 T ELT)) (-3230 (($ $ (-484)) 17 T ELT)) (-3055 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) -(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1007 |#1| (-584 |#1|))) |%noBranch|))) (-1128)) (T -1001)) -NIL -((-3955 (((-584 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT))) -(((-1002 |#1| |#2|) (-10 -7 (-15 -3955 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-756)) (-15 -3955 ((-584 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1002)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-1002 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3223 (((-584 (-1048)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1003) (-13 (-995) (-10 -8 (-15 -3223 ((-584 (-1048)) $))))) (T -1003)) -((-3223 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1003))))) -((-2567 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3828 (((-1089) $) NIL T ELT)) (-3733 (((-1001 |#1|) $) NIL T ELT)) (-3240 (((-1072) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3224 (($ (-1089) (-1001 |#1|)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3055 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT))) -(((-1004 |#1|) (-13 (-1128) (-10 -8 (-15 -3224 ($ (-1089) (-1001 |#1|))) (-15 -3828 ((-1089) $)) (-15 -3733 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1004)) -((-3224 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))) -((-3955 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -3955 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1128) (-1128)) (T -1005)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))) -((-3733 (($ |#1| |#1|) 8 T ELT)) (-3227 ((|#1| $) 11 T ELT)) (-3229 ((|#1| $) 13 T ELT)) (-3225 (((-484) $) 9 T ELT)) (-3226 ((|#1| $) 10 T ELT)) (-3228 ((|#1| $) 12 T ELT)) (-3969 (($ |#1|) 6 T ELT)) (-3734 (($ |#1| |#1|) 15 T ELT)) (-3230 (($ $ (-484)) 14 T ELT))) -(((-1006 |#1|) (-113) (-1128)) (T -1006)) -((-3734 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3230 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3733 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) -(-13 (-558 |t#1|) (-10 -8 (-15 -3734 ($ |t#1| |t#1|)) (-15 -3230 ($ $ (-484))) (-15 -3229 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3227 (|t#1| $)) (-15 -3226 (|t#1| $)) (-15 -3225 ((-484) $)) (-15 -3733 ($ |t#1| |t#1|)))) -(((-558 |#1|) . T)) -((-3733 (($ |#1| |#1|) 8 T ELT)) (-3955 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3227 ((|#1| $) 11 T ELT)) (-3229 ((|#1| $) 13 T ELT)) (-3225 (((-484) $) 9 T ELT)) (-3226 ((|#1| $) 10 T ELT)) (-3228 ((|#1| $) 12 T ELT)) (-3960 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3969 (($ |#1|) 6 T ELT)) (-3734 (($ |#1| |#1|) 15 T ELT)) (-3230 (($ $ (-484)) 14 T ELT))) -(((-1007 |#1| |#2|) (-113) (-756) (-1063 |t#1|)) (T -1007)) -((-3960 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1063 *4)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1063 *3)))) (-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1063 *4))))) -(-13 (-1006 |t#1|) (-10 -8 (-15 -3960 (|t#2| (-584 $))) (-15 -3960 (|t#2| $)) (-15 -3955 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-558 |#1|) . T) ((-1006 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3795 (((-1048) $) 14 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3231 (((-584 (-1048)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1008) (-13 (-995) (-10 -8 (-15 -3231 ((-584 (-1048)) $)) (-15 -3795 ((-1048) $))))) (T -1008)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1008)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008))))) -((-2567 (((-85) $ $) NIL T ELT)) (-1800 (($) NIL (|has| |#1| (-317)) ELT)) (-3232 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3234 (($ $ $) 81 T ELT)) (-3233 (((-85) $ $) 83 T ELT)) (-3134 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3237 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) 75 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3992)) ELT)) (-2993 (($) NIL (|has| |#1| (-317)) ELT)) (-2888 (((-584 |#1|) $) 20 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) NIL T ELT)) (-2530 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2856 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2009 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3236 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 26 T ELT)) (-3606 (($ |#1| $) 70 T ELT)) (-2399 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1273 ((|#1| $) 28 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 22 T ELT)) (-3562 (($) 12 T ELT)) (-3235 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 17 T ELT)) (-3969 (((-473) $) 51 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 63 T ELT)) (-1801 (($ $) NIL (|has| |#1| (-317)) ELT)) (-3943 (((-773) $) NIL T ELT)) (-1802 (((-695) $) NIL T ELT)) (-3238 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 53 T ELT)) (-3954 (((-695) $) 11 (|has| $ (-6 -3992)) ELT))) -(((-1009 |#1|) (-366 |#1|) (-1013)) (T -1009)) -NIL -((-3232 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3234 (($ $ $) 10 T ELT)) (-3235 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -3232 (|#1| |#2| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3232 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3234 (($ $ $) 24 T ELT)) (-3233 (((-85) $ $) 23 T ELT)) (-3237 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3707 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 37 T CONST)) (-1351 (($ $) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3992)) ELT)) (-2888 (((-584 |#1|) $) 44 (|has| $ (-6 -3992)) ELT)) (-3239 (((-85) $ $) 32 T ELT)) (-2607 (((-584 |#1|) $) 45 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3236 (($ $ $) 27 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#1|) (-584 |#1|)) 51 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 49 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-248 |#1|))) 48 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 33 T ELT)) (-3400 (((-85) $) 36 T ELT)) (-3562 (($) 35 T ELT)) (-3235 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1944 (((-695) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 34 T ELT)) (-3969 (((-473) $) 61 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 52 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-3238 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 38 (|has| $ (-6 -3992)) ELT))) -(((-1011 |#1|) (-113) (-1013)) (T -1011)) -((-3239 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3238 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3237 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3233 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3232 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3232 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3982) (-15 -3239 ((-85) $ $)) (-15 -3238 ($)) (-15 -3238 ($ (-584 |t#1|))) (-15 -3237 ($)) (-15 -3237 ($ (-584 |t#1|))) (-15 -3236 ($ $ $)) (-15 -3235 ($ $ $)) (-15 -3235 ($ $ |t#1|)) (-15 -3234 ($ $ $)) (-15 -3233 ((-85) $ $)) (-15 -3232 ($ $ $)) (-15 -3232 ($ $ |t#1|)) (-15 -3232 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-3240 (((-1072) $) 10 T ELT)) (-3241 (((-1033) $) 8 T ELT))) -(((-1012 |#1|) (-10 -7 (-15 -3240 ((-1072) |#1|)) (-15 -3241 ((-1033) |#1|))) (-1013)) (T -1012)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1013) (-113)) (T -1013)) -((-3241 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072))))) -(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3241 ((-1033) $)) (-15 -3240 ((-1072) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) 36 T ELT)) (-3245 (($ (-584 (-831))) 70 T ELT)) (-3247 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2993 (($) 40 T ELT)) (-3243 (((-85) (-831) $) 42 T ELT)) (-2009 (((-831) $) 64 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 39 T ELT)) (-3248 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3244 (((-1178 $)) 47 T ELT)) (-3246 (((-584 (-831)) $) 27 T ELT)) (-3242 (((-695) $ (-831) (-831)) 78 T ELT)) (-3943 (((-773) $) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 24 T ELT))) -(((-1014 |#1| |#2|) (-13 (-317) (-10 -8 (-15 -3248 ((-3 $ #1="failed") $ (-831))) (-15 -3247 ((-3 $ #1#) $ (-831) (-831))) (-15 -3246 ((-584 (-831)) $)) (-15 -3245 ($ (-584 (-831)))) (-15 -3244 ((-1178 $))) (-15 -3243 ((-85) (-831) $)) (-15 -3242 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1014)) -((-3248 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3247 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3244 (*1 *2) (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3243 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3242 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-1089) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3532 (((-1072) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3253 (((-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3252 (((-179) $) NIL T ELT)) (-3251 (((-773) $) NIL T ELT)) (-3264 (((-85) $ $) NIL T ELT)) (-3797 (($ $ (-484)) NIL T ELT) (($ $ (-584 (-484))) NIL T ELT)) (-3255 (((-584 $) $) NIL T ELT)) (-3969 (($ (-1072)) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3249 (($ $) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-484) $) NIL T ELT))) -(((-1015) (-1016 (-1072) (-1089) (-484) (-179) (-773))) (T -1015)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3258 (((-85) $) 36 T ELT)) (-3254 ((|#2| $) 31 T ELT)) (-3259 (((-85) $) 37 T ELT)) (-3532 ((|#1| $) 32 T ELT)) (-3261 (((-85) $) 39 T ELT)) (-3263 (((-85) $) 41 T ELT)) (-3260 (((-85) $) 38 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3257 (((-85) $) 35 T ELT)) (-3253 ((|#3| $) 30 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3256 (((-85) $) 34 T ELT)) (-3252 ((|#4| $) 29 T ELT)) (-3251 ((|#5| $) 28 T ELT)) (-3264 (((-85) $ $) 42 T ELT)) (-3797 (($ $ (-484)) 44 T ELT) (($ $ (-584 (-484))) 43 T ELT)) (-3255 (((-584 $) $) 33 T ELT)) (-3969 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-3249 (($ $) 26 T ELT)) (-3250 (($ $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3262 (((-85) $) 40 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-484) $) 25 T ELT))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016)) -((-3264 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3255 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))) -(-13 (-1013) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-484) $) (-241 (-584 (-484)) $) (-10 -8 (-15 -3264 ((-85) $ $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3256 ((-85) $)) (-15 -3255 ((-584 $) $)) (-15 -3532 (|t#1| $)) (-15 -3254 (|t#2| $)) (-15 -3253 (|t#3| $)) (-15 -3252 (|t#4| $)) (-15 -3251 (|t#5| $)) (-15 -3250 ($ $)) (-15 -3249 ($ $)) (-15 -3954 ((-484) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-584 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3258 (((-85) $) 45 T ELT)) (-3254 ((|#2| $) 48 T ELT)) (-3259 (((-85) $) 20 T ELT)) (-3532 ((|#1| $) 21 T ELT)) (-3261 (((-85) $) 42 T ELT)) (-3263 (((-85) $) 14 T ELT)) (-3260 (((-85) $) 44 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3257 (((-85) $) 46 T ELT)) (-3253 ((|#3| $) 50 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3256 (((-85) $) 47 T ELT)) (-3252 ((|#4| $) 49 T ELT)) (-3251 ((|#5| $) 51 T ELT)) (-3264 (((-85) $ $) 41 T ELT)) (-3797 (($ $ (-484)) 62 T ELT) (($ $ (-584 (-484))) 64 T ELT)) (-3255 (((-584 $) $) 27 T ELT)) (-3969 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3943 (((-773) $) 28 T ELT)) (-3249 (($ $) 26 T ELT)) (-3250 (($ $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) 23 T ELT)) (-3055 (((-85) $ $) 40 T ELT)) (-3954 (((-484) $) 60 T ELT))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017)) -NIL -((-3267 (((-85) |#5| |#5|) 44 T ELT)) (-3270 (((-85) |#5| |#5|) 59 T ELT)) (-3275 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3271 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3277 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3266 (((-1184)) 32 T ELT)) (-3265 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3276 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3278 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) 93 T ELT)) (-3279 (((-584 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3269 (((-85) |#5| |#5|) 53 T ELT)) (-3274 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3272 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3273 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3696 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3280 (((-3 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3268 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3265 ((-1184) (-1072) (-1072) (-1072))) (-15 -3266 ((-1184))) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-584 |#5|) (-584 |#5|))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3272 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3273 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3696 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3274 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3275 ((-85) |#5| |#5|)) (-15 -3275 ((-85) |#5| (-584 |#5|))) (-15 -3276 ((-584 |#5|) (-584 |#5|))) (-15 -3277 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3278 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-15 -3279 ((-584 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3280 ((-3 (-2 (|:| -3264 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018)) -((-3280 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3266 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3265 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-3295 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 106 T ELT)) (-3285 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3288 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3290 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3292 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3294 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3289 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 107 T ELT)) (-3291 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 128 T ELT)) (-3293 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3286 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3287 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3284 (((-1184)) 36 T ELT)) (-3282 (((-1184)) 25 T ELT)) (-3283 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3281 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3281 ((-1184) (-1072) (-1072) (-1072))) (-15 -3282 ((-1184))) (-15 -3283 ((-1184) (-1072) (-1072) (-1072))) (-15 -3284 ((-1184))) (-15 -3285 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3286 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3286 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3287 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3288 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3293 ((-85) |#4| |#5|)) (-15 -3289 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3290 ((-584 |#5|) |#4| |#5|)) (-15 -3291 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3292 ((-584 |#5|) |#4| |#5|)) (-15 -3293 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3294 ((-584 |#5|) |#4| |#5|)) (-15 -3295 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019)) -((-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3286 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3285 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3284 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3282 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3281 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3679 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3685 ((|#4| |#4| $) 97 T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-3796 (((-3 $ #1#) $) 87 T ELT)) (-3682 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3680 ((|#4| |#4| $) 92 T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3195 (((-85) |#4| $) 143 T ELT)) (-3193 (((-85) |#4| $) 140 T ELT)) (-3196 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3795 (((-3 |#4| #1#) $) 88 T ELT)) (-3190 (((-584 $) |#4| $) 136 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3236 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3437 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3694 (((-584 |#4|) $) 112 T ELT)) (-3688 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3683 ((|#4| |#4| $) 95 T ELT)) (-3696 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3684 ((|#4| |#4| $) 96 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3766 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-3945 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3681 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3675 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3187 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) 86 T ELT)) (-3194 (((-85) |#4| $) 142 T ELT)) (-3930 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-1020 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1020)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) -((-3306 (((-584 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3305 (((-584 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3304 (((-584 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3303 (((-484) (-484) (-484)) 22 T ELT)) (-3302 (((-1178 (-484)) (-584 (-484)) (-1178 (-484)) (-484)) 78 T ELT) (((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484)) 73 T ELT)) (-3301 (((-584 (-484)) (-584 (-831)) (-584 (-484)) (-85)) 56 T ELT)) (-3300 (((-631 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484))) 77 T ELT)) (-3299 (((-631 (-484)) (-584 (-831)) (-584 (-484))) 61 T ELT)) (-3298 (((-584 (-631 (-484))) (-584 (-831))) 66 T ELT)) (-3297 (((-584 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484))) 81 T ELT)) (-3296 (((-631 (-484)) (-584 (-484)) (-584 (-484)) (-584 (-484))) 91 T ELT))) -(((-1021) (-10 -7 (-15 -3296 ((-631 (-484)) (-584 (-484)) (-584 (-484)) (-584 (-484)))) (-15 -3297 ((-584 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484)))) (-15 -3298 ((-584 (-631 (-484))) (-584 (-831)))) (-15 -3299 ((-631 (-484)) (-584 (-831)) (-584 (-484)))) (-15 -3300 ((-631 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484)))) (-15 -3301 ((-584 (-484)) (-584 (-831)) (-584 (-484)) (-85))) (-15 -3302 ((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484))) (-15 -3302 ((-1178 (-484)) (-584 (-484)) (-1178 (-484)) (-484))) (-15 -3303 ((-484) (-484) (-484))) (-15 -3304 ((-584 (-484)) (-484) (-484) (-484))) (-15 -3305 ((-584 (-484)) (-484) (-484) (-484))) (-15 -3306 ((-584 (-484)) (-484) (-484) (-484))))) (T -1021)) -((-3306 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3305 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3304 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3303 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3302 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-584 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3302 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3301 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-484))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3300 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-484))) (-5 *3 (-584 (-484))) (-5 *1 (-1021)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-1021)))) (-3297 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *3 (-631 (-484))) (-5 *1 (-1021)))) (-3296 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3307 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3307 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022)) -((-3307 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) -((-3797 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-1023 |#1|) (-113) (-72)) (T -1023)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3055 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T)) -((** (($ $ (-831)) 10 T ELT))) -(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1025)) (T -1024)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1025) (-113)) (T -1025)) -((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-831))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831))))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3704 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-2482 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3134 (((-695)) NIL (|has| |#3| (-317)) ELT)) (-3785 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3154 (((-484) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3464 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2993 (($) NIL (|has| |#3| (-317)) ELT)) (-1574 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#3| $ (-484)) 12 T ELT)) (-3184 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2888 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2607 (((-584 |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2009 (((-831) $) NIL (|has| |#3| (-317)) ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1178 $)) NIL (|has| |#3| (-962)) ELT)) (-3240 (((-1072) $) NIL (|has| |#3| (-1013)) ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-2399 (($ (-831)) NIL (|has| |#3| (-317)) ELT)) (-3241 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3798 ((|#3| $) NIL (|has| (-484) (-757)) ELT)) (-2198 (($ $ |#3|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-2204 (((-584 |#3|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3833 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1466 (($ (-1178 |#3|)) NIL T ELT)) (-3908 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3755 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#3| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3943 (((-1178 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3124 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2659 (($) NIL (|has| |#3| (-23)) CONST)) (-2665 (($) NIL (|has| |#3| (-962)) CONST)) (-2668 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2684 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3946 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3834 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1026)) -NIL -((-3308 (((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 50 T ELT)) (-3314 (((-484) (-1147 |#2| |#1|)) 95 (|has| |#1| (-389)) ELT)) (-3312 (((-484) (-1147 |#2| |#1|)) 79 T ELT)) (-3309 (((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 58 T ELT)) (-3313 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 81 (|has| |#1| (-389)) ELT)) (-3310 (((-584 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 61 T ELT)) (-3311 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 78 T ELT))) -(((-1027 |#1| |#2|) (-10 -7 (-15 -3308 ((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3309 ((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3310 ((-584 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3311 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3312 ((-484) (-1147 |#2| |#1|))) (IF (|has| |#1| (-389)) (PROGN (-15 -3313 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3314 ((-484) (-1147 |#2| |#1|)))) |%noBranch|)) (-741) (-1089)) (T -1027)) -((-3314 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3311 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3310 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 *4)) (-5 *1 (-1027 *4 *5)))) (-3309 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-3308 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3316 (((-1094) $) 12 T ELT)) (-3315 (((-584 (-1094)) $) 14 T ELT)) (-3317 (($ (-584 (-1094)) (-1094)) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-1028) (-13 (-1013) (-10 -8 (-15 -3317 ($ (-584 (-1094)) (-1094))) (-15 -3316 ((-1094) $)) (-15 -3315 ((-584 (-1094)) $))))) (T -1028)) -((-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1028))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3318 (($ (-444) (-1028)) 14 T ELT)) (-3317 (((-1028) $) 20 T ELT)) (-3539 (((-444) $) 17 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1029) (-13 (-995) (-10 -8 (-15 -3318 ($ (-444) (-1028))) (-15 -3539 ((-444) $)) (-15 -3317 ((-1028) $))))) (T -1029)) -((-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1029)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) -((-3620 (((-3 (-484) #1="failed") |#2| (-1089) |#2| (-1072)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1089) (-751 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -3620 ((-3 (-484) #1="failed") |#2|)) (-15 -3620 ((-3 (-484) #1#) |#2| (-1089) (-751 |#2|))) (-15 -3620 ((-3 (-484) #1#) |#2| (-1089) |#2| (-1072)))) (-13 (-495) (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|))) (T -1030)) -((-3620 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))))) (-3620 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3620 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))) -((-3620 (((-3 (-484) #1="failed") (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)) (-1072)) 38 T ELT) (((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-751 (-347 (-858 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-347 (-858 |#1|))) 14 T ELT))) -(((-1031 |#1|) (-10 -7 (-15 -3620 ((-3 (-484) #1="failed") (-347 (-858 |#1|)))) (-15 -3620 ((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-751 (-347 (-858 |#1|))))) (-15 -3620 ((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)) (-1072)))) (-389)) (T -1031)) -((-3620 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3620 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 (-347 (-858 *6)))) (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *4))))) -((-3646 (((-264 (-484)) (-48)) 12 T ELT))) -(((-1032) (-10 -7 (-15 -3646 ((-264 (-484)) (-48))))) (T -1032)) -((-3646 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-484))) (-5 *1 (-1032))))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 22 T ELT)) (-3186 (((-85) $) 49 T ELT)) (-3319 (($ $ $) 28 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 75 T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2041 (($ $ $ $) 59 T ELT)) (-3772 (($ $) NIL T ELT)) (-3968 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) 61 T ELT)) (-3620 (((-484) $) NIL T ELT)) (-2440 (($ $ $) 56 T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL T ELT)) (-2563 (($ $ $) 42 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 70 T ELT) (((-631 (-484)) (-631 $)) 8 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3023 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3022 (((-85) $) NIL T ELT)) (-3021 (((-347 (-484)) $) NIL T ELT)) (-2993 (($) 73 T ELT) (($ $) 72 T ELT)) (-2562 (($ $ $) 41 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL T ELT)) (-3720 (((-85) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2047 (($ $ $) 71 T ELT)) (-3184 (((-85) $) 76 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2560 (($ $ $) 27 T ELT)) (-2409 (((-85) $) 50 T ELT)) (-2672 (((-85) $) 47 T ELT)) (-2559 (($ $) 23 T ELT)) (-3442 (((-633 $) $) NIL T ELT)) (-3185 (((-85) $) 60 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2040 (($ $ $ $) 57 T ELT)) (-2530 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2856 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2043 (($ $) NIL T ELT)) (-2009 (((-831) $) 66 T ELT)) (-3830 (($ $) 55 T ELT)) (-2279 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2038 (($ $ $) NIL T ELT)) (-3443 (($) NIL T CONST)) (-2399 (($ (-831)) 65 T ELT)) (-2045 (($ $) 33 T ELT)) (-3241 (((-1033) $) 54 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3142 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3729 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2673 (((-85) $) 48 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 44 T ELT)) (-3755 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2044 (($ $) 34 T ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3943 (((-773) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3124 (((-695)) NIL T CONST)) (-2048 (((-85) $ $) NIL T ELT)) (-3100 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2693 (($) 17 T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2561 (($ $ $) 26 T ELT)) (-2042 (($ $ $ $) 58 T ELT)) (-3380 (($ $) 46 T ELT)) (-2310 (($ $ $) 25 T ELT)) (-2659 (($) 15 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2565 (((-85) $ $) 32 T ELT)) (-2566 (((-85) $ $) 30 T ELT)) (-3055 (((-85) $ $) 21 T ELT)) (-2683 (((-85) $ $) 31 T ELT)) (-2684 (((-85) $ $) 29 T ELT)) (-2311 (($ $ $) 24 T ELT)) (-3834 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3836 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT))) -(((-1033) (-13 (-483) (-753) (-84) (-10 -8 (-6 -3979) (-6 -3984) (-6 -3980) (-15 -3319 ($ $ $))))) (T -1033)) -((-3319 (*1 *1 *1 *1) (-5 *1 (-1033)))) -((-484) (|%ismall?| |#1|)) -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3321 ((|#1| $) 48 T ELT)) (-3721 (($) 7 T CONST)) (-3323 ((|#1| |#1| $) 50 T ELT)) (-3322 ((|#1| $) 49 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3606 (($ |#1| $) 44 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3320 (((-695) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1034 |#1|) (-113) (-1128)) (T -1034)) -((-3323 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3992) (-15 -3323 (|t#1| |t#1| $)) (-15 -3322 (|t#1| $)) (-15 -3321 (|t#1| $)) (-15 -3320 ((-695) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-3327 ((|#3| $) 87 T ELT)) (-3155 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3154 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3755 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3326 ((|#3| $) 89 T ELT)) (-3328 ((|#4| $) 43 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-484)) 95 T ELT))) -(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3326 (|#3| |#1|)) (-15 -3327 (|#3| |#1|)) (-15 -3328 (|#4| |#1|)) (-15 -2278 ((-631 |#3|) (-631 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2278 ((-631 (-484)) (-631 |#1|))) (-15 -3943 (|#1| |#3|)) (-15 -3155 ((-3 |#3| #1="failed") |#1|)) (-15 -3154 (|#3| |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3755 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3755 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3943 (|#1| (-484))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3943 ((-773) |#1|))) (-1036 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1035)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3327 ((|#2| $) 88 T ELT)) (-3119 (((-85) $) 129 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3121 (((-85) $) 127 T ELT)) (-3330 (($ |#2|) 91 T ELT)) (-3721 (($) 22 T CONST)) (-3108 (($ $) 146 (|has| |#2| (-257)) ELT)) (-3110 ((|#3| $ (-484)) 141 T ELT)) (-3155 (((-3 (-484) #1="failed") $) 107 (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) 101 T ELT)) (-3154 (((-484) $) 106 (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) 102 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 97 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 96 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 95 T ELT) (((-631 |#2|) (-631 $)) 94 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3107 (((-695) $) 147 (|has| |#2| (-495)) ELT)) (-3111 ((|#2| $ (-484) (-484)) 139 T ELT)) (-2888 (((-584 |#2|) $) 115 (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-3106 (((-695) $) 148 (|has| |#2| (-495)) ELT)) (-3105 (((-584 |#4|) $) 149 (|has| |#2| (-495)) ELT)) (-3113 (((-695) $) 135 T ELT)) (-3112 (((-695) $) 136 T ELT)) (-3324 ((|#2| $) 83 (|has| |#2| (-6 (-3994 #2="*"))) ELT)) (-3117 (((-484) $) 131 T ELT)) (-3115 (((-484) $) 133 T ELT)) (-2607 (((-584 |#2|) $) 114 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) 112 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3116 (((-484) $) 132 T ELT)) (-3114 (((-484) $) 134 T ELT)) (-3122 (($ (-584 (-584 |#2|))) 126 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 119 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2| |#2|) $ $) 143 T ELT) (($ (-1 |#2| |#2|) $) 120 T ELT)) (-3591 (((-584 (-584 |#2|)) $) 137 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 99 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 98 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 93 T ELT) (((-631 |#2|) (-1178 $)) 92 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3587 (((-3 $ "failed") $) 82 (|has| |#2| (-311)) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3463 (((-3 $ "failed") $ |#2|) 144 (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) 111 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 110 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 109 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 108 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 125 T ELT)) (-3400 (((-85) $) 122 T ELT)) (-3562 (($) 123 T ELT)) (-3797 ((|#2| $ (-484) (-484) |#2|) 140 T ELT) ((|#2| $ (-484) (-484)) 138 T ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) 63 T ELT) (($ $ (-1 |#2| |#2|)) 62 T ELT) (($ $) 53 (|has| |#2| (-189)) ELT) (($ $ (-695)) 51 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 61 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 59 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 58 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 57 (|has| |#2| (-812 (-1089))) ELT)) (-3326 ((|#2| $) 87 T ELT)) (-3329 (($ (-584 |#2|)) 90 T ELT)) (-3120 (((-85) $) 128 T ELT)) (-3328 ((|#3| $) 89 T ELT)) (-3325 ((|#2| $) 84 (|has| |#2| (-6 (-3994 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) 113 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 124 T ELT)) (-3109 ((|#4| $ (-484)) 142 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 105 (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) 100 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) 130 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-695)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 60 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 56 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 55 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 54 (|has| |#2| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#2|) 145 (|has| |#2| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 151 T ELT) (($ |#2| $) 150 T ELT) ((|#4| $ |#4|) 86 T ELT) ((|#3| |#3| $) 85 T ELT)) (-3954 (((-695) $) 121 (|has| $ (-6 -3992)) ELT))) -(((-1036 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1036)) -((-3330 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3329 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3994 #1="*"))) (-4 *2 (-962)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3994 #1#))) (-4 *2 (-962)))) (-3587 (*1 *1 *1) (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-352 |t#2|) (-326 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3330 ($ |t#2|)) (-15 -3329 ($ (-584 |t#2|))) (-15 -3328 (|t#3| $)) (-15 -3327 (|t#2| $)) (-15 -3326 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3994 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3325 (|t#2| $)) (-15 -3324 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-311)) (PROGN (-15 -3587 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3994 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#2| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-326 |#2|) . T) ((-352 |#2|) . T) ((-426 |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-484)) |has| |#2| (-581 (-484))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3994 #1#)))) ((-581 (-484)) |has| |#2| (-581 (-484))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3994 #1#)))) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#2| (-812 (-1089))) (|has| |#2| (-810 (-1089)))) ((-810 (-1089)) |has| |#2| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#2| (-812 (-1089))) (|has| |#2| (-810 (-1089)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-347 (-484))) |has| |#2| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#2| (-951 (-484))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3333 ((|#4| |#4|) 81 T ELT)) (-3331 ((|#4| |#4|) 76 T ELT)) (-3335 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2011 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3334 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3332 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1037 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3331 (|#4| |#4|)) (-15 -3332 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3333 (|#4| |#4|)) (-15 -3334 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3335 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2011 (-584 |#3|))) |#4| |#3|))) (-257) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -1037)) -((-3335 (*1 *2 *3 *4) (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-584 *4)))) (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3333 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3331 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 18 T ELT)) (-3080 (((-584 |#2|) $) 174 T ELT)) (-3082 (((-1084 $) $ |#2|) 60 T ELT) (((-1084 |#1|) $) 49 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3154 ((|#1| $) 165 T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3753 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3956 (($ $) 218 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) 90 T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2409 (((-85) $) 20 T ELT)) (-2419 (((-695) $) 30 T ELT)) (-3083 (($ (-1084 |#1|) |#2|) 54 T ELT) (($ (-1084 $) |#2|) 71 T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) 38 T ELT)) (-2892 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ |#2|) NIL T ELT)) (-2819 (((-469 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1623 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3081 (((-3 |#2| #1#) $) 177 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) 217 T ELT)) (-3172 ((|#1| $) 43 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| |#2|) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 39 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 148 (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) 153 (|has| |#1| (-389)) ELT) (($ $ $) 138 (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3754 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3945 (((-469 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#1| $) 134 (|has| |#1| (-389)) ELT) (($ $ |#2|) 137 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3943 (((-773) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3814 (((-584 |#1|) $) 162 T ELT)) (-3674 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 87 T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-2659 (($) 12 T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) 106 T ELT)) (-3946 (($ $ |#1|) 132 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3836 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1038 |#1| |#2|) (-862 |#1| (-469 |#2|) |#2|) (-962) (-757)) (T -1038)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3489 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 125 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 121 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3491 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 129 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3811 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ $ (-584 |#2|) (-584 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) 119 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3809 (($ $ |#2|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3673 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 (($ $ (-695)) 17 T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3940 (($ $) 117 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3755 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3945 (((-469 |#2|) $) NIL T ELT)) (-3336 (((-1 (-1068 |#3|) |#3|) (-584 |#2|) (-584 (-1068 |#3|))) 87 T ELT)) (-3492 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 131 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 127 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 123 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 19 T ELT)) (-3943 (((-773) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3674 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 133 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3498 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 139 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 135 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 52 T CONST)) (-2665 (($) 62 T CONST)) (-2668 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) 196 (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 109 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-347 (-484))) 114 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1039 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3674 (|#3| $ (-695))) (-15 -3943 ($ |#2|)) (-15 -3943 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3336 ((-1 (-1068 |#3|) |#3|) (-584 |#2|) (-584 (-1068 |#3|)))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $ |#2| |#1|)) (-15 -3673 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-469 |#2|) |#2|)) (T -1039)) -((-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3943 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2)))) (-3943 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-862 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-862 *3 (-469 *4) *4)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1068 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-469 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1039 *5 *6 *7)))) (-3809 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2)))) (-3673 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-862 *4 (-469 *3) *3))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3679 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3685 ((|#4| |#4| $) 97 T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-3796 (((-3 $ #1#) $) 87 T ELT)) (-3682 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3680 ((|#4| |#4| $) 92 T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3195 (((-85) |#4| $) 143 T ELT)) (-3193 (((-85) |#4| $) 140 T ELT)) (-3196 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3795 (((-3 |#4| #1#) $) 88 T ELT)) (-3190 (((-584 $) |#4| $) 136 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3236 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3437 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3694 (((-584 |#4|) $) 112 T ELT)) (-3688 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3683 ((|#4| |#4| $) 95 T ELT)) (-3696 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3684 ((|#4| |#4| $) 96 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3766 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-3945 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3681 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3675 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3187 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) 86 T ELT)) (-3194 (((-85) |#4| $) 142 T ELT)) (-3930 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-1040 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1040)) -NIL -(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T)) -((-3570 (((-584 |#2|) |#1|) 15 T ELT)) (-3342 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3340 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3337 ((|#2| |#1|) 54 T ELT)) (-3338 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3339 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3341 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3346 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3344 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3343 ((|#2| |#2| |#2|) 50 T ELT)) (-3345 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1041 |#1| |#2|) (-10 -7 (-15 -3570 ((-584 |#2|) |#1|)) (-15 -3337 (|#2| |#1|)) (-15 -3338 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3339 ((-584 |#2|) |#1|)) (-15 -3340 ((-584 |#2|) |#1|)) (-15 -3341 ((-584 |#2|) |#1|)) (-15 -3342 ((-584 |#2|) |#1|)) (-15 -3339 ((-584 |#2|) |#2| |#2|)) (-15 -3340 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3341 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3342 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3343 (|#2| |#2| |#2|)) (-15 -3344 (|#2| |#2| |#2| |#2|)) (-15 -3345 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1154 |#2|) (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (T -1041)) -((-3346 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3345 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3344 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3343 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3342 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3341 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3340 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3339 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))) -((-3347 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089))) 118 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 113 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|)))) 97 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))) (-1089)) 98 T ELT) (((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|))) 92 T ELT) (((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)) (-1089)) 82 T ELT)) (-3348 (((-584 (-584 (-264 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 111 T ELT) (((-584 (-264 |#1|)) (-347 (-858 |#1|)) (-1089)) 54 T ELT)) (-3349 (((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-347 (-858 |#1|)) (-1089)) 123 T ELT) (((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089)) 122 T ELT))) -(((-1042 |#1|) (-10 -7 (-15 -3347 ((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -3347 ((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)))) (-15 -3347 ((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3347 ((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))))) (-15 -3347 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3347 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))))) (-15 -3347 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089)))) (-15 -3347 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3348 ((-584 (-264 |#1|)) (-347 (-858 |#1|)) (-1089))) (-15 -3348 ((-584 (-584 (-264 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3349 ((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3349 ((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-347 (-858 |#1|)) (-1089)))) (-13 (-257) (-120))) (T -1042)) -((-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-264 *5)))) (-5 *1 (-1042 *5)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-264 *5))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 *5))))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5))))) -((-3351 (((-347 (-1084 (-264 |#1|))) (-1178 (-264 |#1|)) (-347 (-1084 (-264 |#1|))) (-484)) 36 T ELT)) (-3350 (((-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|)))) 48 T ELT))) -(((-1043 |#1|) (-10 -7 (-15 -3350 ((-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))))) (-15 -3351 ((-347 (-1084 (-264 |#1|))) (-1178 (-264 |#1|)) (-347 (-1084 (-264 |#1|))) (-484)))) (-495)) (T -1043)) -((-3351 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-347 (-1084 (-264 *5)))) (-5 *3 (-1178 (-264 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-347 (-1084 (-264 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3))))) -((-3570 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1089))) 244 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1089)) 23 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1089)) 29 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|))) 28 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|)) 24 T ELT))) -(((-1044 |#1|) (-10 -7 (-15 -3570 ((-584 (-248 (-264 |#1|))) (-264 |#1|))) (-15 -3570 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)))) (-15 -3570 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1089))) (-15 -3570 ((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1089))) (-15 -3570 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1089))))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (T -1044)) -((-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-584 (-248 (-264 *5)))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-264 *5)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-248 (-264 *5))))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-248 (-264 *4))))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-264 *4))))) -((-3353 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3352 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -3352 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3353 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3352 (|#2| |#2|)) (-15 -3353 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-539 (-484) |#1|) (-10 -7 (-6 -3992) (-6 -3993)))) (T -1045)) -((-3353 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3992) (-6 -3993)))))) (-3352 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3992) (-6 -3993)))))) (-3353 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3992) (-6 -3993)))))) (-3352 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3992) (-6 -3993))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3885 (((-1078 3 |#1|) $) 141 T ELT)) (-3363 (((-85) $) 101 T ELT)) (-3364 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3369 (((-85) $) 72 T ELT)) (-3703 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3355 (((-2 (|:| -3847 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3373 (((-695) $) 53 T ELT)) (-3374 (((-695) $) 52 T ELT)) (-3884 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3361 (((-85) $) 111 T ELT)) (-3362 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3515 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3356 (((-584 (-145)) $) 133 T ELT)) (-3360 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3357 (((-584 (-584 (-145))) $) 132 T ELT)) (-3358 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3359 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3370 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3367 (((-85) $) 84 T ELT)) (-3368 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3375 (($) 48 T ELT) (($ (-1078 3 |#1|)) 49 T ELT)) (-3397 (($ $) 63 T ELT)) (-3371 (((-584 $) $) 62 T ELT)) (-3751 (($ (-584 $)) 59 T ELT)) (-3372 (((-584 $) $) 61 T ELT)) (-3943 (((-773) $) 146 T ELT)) (-3365 (((-85) $) 94 T ELT)) (-3366 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3354 (($ $) 140 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1046 |#1|) (-1047 |#1|) (-962)) (T -1046)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3885 (((-1078 3 |#1|) $) 17 T ELT)) (-3363 (((-85) $) 33 T ELT)) (-3364 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3369 (((-85) $) 48 T ELT)) (-3703 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3355 (((-2 (|:| -3847 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3373 (((-695) $) 62 T ELT)) (-3374 (((-695) $) 63 T ELT)) (-3884 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3361 (((-85) $) 25 T ELT)) (-3362 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3515 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3356 (((-584 (-145)) $) 20 T ELT)) (-3360 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3357 (((-584 (-584 (-145))) $) 21 T ELT)) (-3358 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3359 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3370 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3367 (((-85) $) 43 T ELT)) (-3368 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3375 (($) 65 T ELT) (($ (-1078 3 |#1|)) 64 T ELT)) (-3397 (($ $) 56 T ELT)) (-3371 (((-584 $) $) 57 T ELT)) (-3751 (($ (-584 $)) 59 T ELT)) (-3372 (((-584 $) $) 58 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-3365 (((-85) $) 38 T ELT)) (-3366 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3354 (($ $) 18 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1047 |#1|) (-113) (-962)) (T -1047)) -((-3943 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3375 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3515 (*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3372 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3884 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-962)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-962)))) (-3362 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3362 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3362 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1047 *4)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3847 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3354 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-1078 3 *3))))) -(-13 (-1013) (-10 -8 (-15 -3375 ($)) (-15 -3375 ($ (-1078 3 |t#1|))) (-15 -3374 ((-695) $)) (-15 -3373 ((-695) $)) (-15 -3515 ($ (-584 $))) (-15 -3515 ($ $ $)) (-15 -3751 ($ (-584 $))) (-15 -3372 ((-584 $) $)) (-15 -3371 ((-584 $) $)) (-15 -3397 ($ $)) (-15 -3370 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3884 ($ $ (-695) (-855 |t#1|))) (-15 -3703 ($ $ (-855 |t#1|))) (-15 -3703 ($ $ (-584 |t#1|))) (-15 -3703 ($ $ (-695))) (-15 -3703 ($ (-855 |t#1|))) (-15 -3703 ((-855 |t#1|) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-584 (-855 |t#1|)))) (-15 -3368 ($ $ (-584 (-584 |t#1|)))) (-15 -3368 ($ (-584 (-855 |t#1|)))) (-15 -3368 ((-584 (-855 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-584 (-855 |t#1|)))) (-15 -3366 ($ $ (-584 (-584 |t#1|)))) (-15 -3366 ($ (-584 (-855 |t#1|)))) (-15 -3366 ((-584 (-855 |t#1|)) $)) (-15 -3365 ((-85) $)) (-15 -3364 ($ $ (-584 (-855 |t#1|)))) (-15 -3364 ($ $ (-584 (-584 |t#1|)))) (-15 -3364 ($ (-584 (-855 |t#1|)))) (-15 -3364 ((-584 (-855 |t#1|)) $)) (-15 -3363 ((-85) $)) (-15 -3362 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3362 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3362 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3362 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3362 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3362 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3362 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3361 ((-85) $)) (-15 -3360 ((-584 (-855 |t#1|)) $)) (-15 -3359 ((-584 (-584 (-584 (-695)))) $)) (-15 -3358 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3357 ((-584 (-584 (-145))) $)) (-15 -3356 ((-584 (-145)) $)) (-15 -3355 ((-2 (|:| -3847 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3354 ($ $)) (-15 -3885 ((-1078 3 |t#1|) $)) (-15 -3943 ((-773) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 185 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) 7 T ELT)) (-3563 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1189))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-456))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1190))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1066))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-262))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1080))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-415))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-444))) 140 T ELT) (((-85) $ (|[\|\|]| (-1072))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3569 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1189) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-456) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1190) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1066) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-262) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1080) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-415) $) 133 T ELT) (((-528) $) 137 T ELT) (((-444) $) 141 T ELT) (((-1072) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1048) (-1050)) (T -1048)) -NIL -((-3376 (((-584 (-1094)) (-1072)) 9 T ELT))) -(((-1049) (-10 -7 (-15 -3376 ((-584 (-1094)) (-1072))))) (T -1049)) -((-3376 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-1049))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-3563 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1189))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-456))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1190))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1066))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-262))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1080))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-415))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-444))) 28 T ELT) (((-85) $ (|[\|\|]| (-1072))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3569 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1189) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-456) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1190) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1066) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-262) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1080) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-415) $) 31 T ELT) (((-528) $) 29 T ELT) (((-444) $) 27 T ELT) (((-1072) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1050) (-113)) (T -1050)) -((-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-618)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-540)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-623)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-456)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-614)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-262)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-949)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-884)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-566)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-415)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-444)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) (-3563 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484))))) -(-13 (-995) (-1174) (-10 -8 (-15 -3563 ((-85) $ (|[\|\|]| (-462)))) (-15 -3569 ((-462) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-172)))) (-15 -3569 ((-172) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-618)))) (-15 -3569 ((-618) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3569 ((-1189) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-111)))) (-15 -3569 ((-111) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-540)))) (-15 -3569 ((-540) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-106)))) (-15 -3569 ((-106) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3569 ((-1029) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-67)))) (-15 -3569 ((-67) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-623)))) (-15 -3569 ((-623) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-456)))) (-15 -3569 ((-456) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-978)))) (-15 -3569 ((-978) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3569 ((-1190) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-463)))) (-15 -3569 ((-463) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1066)))) (-15 -3569 ((-1066) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-127)))) (-15 -3569 ((-127) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-614)))) (-15 -3569 ((-614) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-262)))) (-15 -3569 ((-262) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-949)))) (-15 -3569 ((-949) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-154)))) (-15 -3569 ((-154) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-884)))) (-15 -3569 ((-884) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-985)))) (-15 -3569 ((-985) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3569 ((-1003) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3569 ((-1008) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-566)))) (-15 -3569 ((-566) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1080)))) (-15 -3569 ((-1080) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-129)))) (-15 -3569 ((-129) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-110)))) (-15 -3569 ((-110) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-415)))) (-15 -3569 ((-415) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-528)))) (-15 -3569 ((-528) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-444)))) (-15 -3569 ((-444) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3569 ((-1072) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-484)))) (-15 -3569 ((-484) $)))) -(((-64) . T) ((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1128) . T) ((-1174) . T)) -((-3379 (((-1184) (-584 (-773))) 22 T ELT) (((-1184) (-773)) 21 T ELT)) (-3378 (((-1184) (-584 (-773))) 20 T ELT) (((-1184) (-773)) 19 T ELT)) (-3377 (((-1184) (-584 (-773))) 18 T ELT) (((-1184) (-773)) 10 T ELT) (((-1184) (-1072) (-773)) 16 T ELT))) -(((-1051) (-10 -7 (-15 -3377 ((-1184) (-1072) (-773))) (-15 -3377 ((-1184) (-773))) (-15 -3378 ((-1184) (-773))) (-15 -3379 ((-1184) (-773))) (-15 -3377 ((-1184) (-584 (-773)))) (-15 -3378 ((-1184) (-584 (-773)))) (-15 -3379 ((-1184) (-584 (-773)))))) (T -1051)) -((-3379 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051))))) -((-3383 (($ $ $) 10 T ELT)) (-3382 (($ $) 9 T ELT)) (-3386 (($ $ $) 13 T ELT)) (-3388 (($ $ $) 15 T ELT)) (-3385 (($ $ $) 12 T ELT)) (-3387 (($ $ $) 14 T ELT)) (-3390 (($ $) 17 T ELT)) (-3389 (($ $) 16 T ELT)) (-3380 (($ $) 6 T ELT)) (-3384 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3381 (($ $ $) 8 T ELT))) +(((-64) . T) ((-72) . T) ((-557 (-1096)) . T) ((-554 (-774)) . T) ((-554 (-1096)) . T) ((-428 (-1096)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3219 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3217 (((-1186)) 21 T ELT)) (-3218 (((-585 |#1|)) 13 T ELT))) +(((-998 |#1|) (-10 -7 (-15 -3217 ((-1186))) (-15 -3218 ((-585 |#1|))) (-15 -3219 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3219 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-105)) (T -998)) +((-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) (-3218 (*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105)))) (-3217 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +((-3222 (($ (-78) $) 20 T ELT)) (-3223 (((-634 (-78)) (-445) $) 19 T ELT)) (-3566 (($) 7 T ELT)) (-3221 (($) 21 T ELT)) (-3220 (($) 22 T ELT)) (-3224 (((-585 (-149)) $) 10 T ELT)) (-3947 (((-774) $) 25 T ELT))) +(((-999) (-13 (-554 (-774)) (-10 -8 (-15 -3566 ($)) (-15 -3224 ((-585 (-149)) $)) (-15 -3223 ((-634 (-78)) (-445) $)) (-15 -3222 ($ (-78) $)) (-15 -3221 ($)) (-15 -3220 ($))))) (T -999)) +((-3566 (*1 *1) (-5 *1 (-999))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-78))) (-5 *1 (-999)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999)))) (-3221 (*1 *1) (-5 *1 (-999))) (-3220 (*1 *1) (-5 *1 (-999)))) +((-3225 (((-1180 (-632 |#1|)) (-585 (-632 |#1|))) 45 T ELT) (((-1180 (-632 (-859 |#1|))) (-585 (-1091)) (-632 (-859 |#1|))) 75 T ELT) (((-1180 (-632 (-348 (-859 |#1|)))) (-585 (-1091)) (-632 (-348 (-859 |#1|)))) 92 T ELT)) (-3226 (((-1180 |#1|) (-632 |#1|) (-585 (-632 |#1|))) 39 T ELT))) +(((-1000 |#1|) (-10 -7 (-15 -3225 ((-1180 (-632 (-348 (-859 |#1|)))) (-585 (-1091)) (-632 (-348 (-859 |#1|))))) (-15 -3225 ((-1180 (-632 (-859 |#1|))) (-585 (-1091)) (-632 (-859 |#1|)))) (-15 -3225 ((-1180 (-632 |#1|)) (-585 (-632 |#1|)))) (-15 -3226 ((-1180 |#1|) (-632 |#1|) (-585 (-632 |#1|))))) (-312)) (T -1000)) +((-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 (-1180 *5)) (-5 *1 (-1000 *5)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-632 *4))) (-5 *1 (-1000 *4)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-632 (-859 *5)))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-632 (-348 (-859 *5))))) (-5 *1 (-1000 *5)) (-5 *4 (-632 (-348 (-859 *5))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-585 (-696)) $) NIL T ELT) (((-585 (-696)) $ (-1091)) NIL T ELT)) (-1523 (((-696) $) NIL T ELT) (((-696) $ (-1091)) NIL T ELT)) (-3083 (((-585 (-1002 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-1002 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-1002 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-1002 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-1002 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3757 (($ $ $ (-1002 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1002 (-1091))) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-470 (-1002 (-1091))) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-1002 (-1091)) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-1002 (-1091)) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ (-1091)) NIL T ELT) (((-696) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1002 (-1091))) NIL T ELT) (($ (-1086 $) (-1002 (-1091))) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1002 (-1091)))) NIL T ELT) (($ $ (-1002 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1091))) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-1002 (-1091))) NIL T ELT)) (-2822 (((-470 (-1002 (-1091))) $) NIL T ELT) (((-696) $ (-1002 (-1091))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1002 (-1091))) (-470 (-1002 (-1091)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-696)) (-1091)) NIL T ELT) (((-1 $ (-696)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-1002 (-1091)) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-1002 (-1091)) $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1002 (-1091))) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-1002 (-1091)) |#1|) NIL T ELT) (($ $ (-585 (-1002 (-1091))) (-585 |#1|)) NIL T ELT) (($ $ (-1002 (-1091)) $) NIL T ELT) (($ $ (-585 (-1002 (-1091))) (-585 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1091)) (-585 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-585 (-1091)) (-585 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-1002 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-1002 (-1091))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1091)))) NIL T ELT) (($ $ (-1002 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-585 (-1091)) $) NIL T ELT)) (-3949 (((-470 (-1002 (-1091))) $) NIL T ELT) (((-696) $ (-1002 (-1091))) NIL T ELT) (((-585 (-696)) $ (-585 (-1002 (-1091)))) NIL T ELT) (((-696) $ (-1091)) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-1002 (-1091)) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-1002 (-1091)) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1002 (-1091)) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT) (($ $ (-1002 (-1091))) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1002 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1002 (-1091)))) NIL T ELT) (($ $ (-1002 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1091))) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-1002 (-1091))) (-585 (-696))) NIL T ELT) (($ $ (-1002 (-1091)) (-696)) NIL T ELT) (($ $ (-585 (-1002 (-1091)))) NIL T ELT) (($ $ (-1002 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-696)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1001 |#1|) (-13 (-213 |#1| (-1091) (-1002 (-1091)) (-470 (-1002 (-1091)))) (-952 (-1040 |#1| (-1091)))) (-963)) (T -1001)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-696) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3773 (((-696) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-696)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3759 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-696)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 16 T ELT))) +(((-1002 |#1|) (-228 |#1|) (-758)) (T -1002)) +NIL +((-2570 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3737 (($ |#1| |#1|) 16 T ELT)) (-3959 (((-585 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3233 ((|#1| $) 11 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3229 (((-485) $) 15 T ELT)) (-3230 ((|#1| $) 14 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3964 (((-585 |#1|) $) 42 (|has| |#1| (-757)) ELT) (((-585 |#1|) (-585 $)) 41 (|has| |#1| (-757)) ELT)) (-3973 (($ |#1|) 29 T ELT)) (-3947 (((-774) $) 28 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3738 (($ |#1| |#1|) 10 T ELT)) (-3234 (($ $ (-485)) 17 T ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) +(((-1003 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-585 |#1|))) |%noBranch|))) (-1130)) (T -1003)) +NIL +((-3959 (((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 27 (|has| |#1| (-757)) ELT) (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 14 T ELT))) +(((-1004 |#1| |#2|) (-10 -7 (-15 -3959 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) (IF (|has| |#1| (-757)) (-15 -3959 ((-585 |#2|) (-1 |#2| |#1|) (-1003 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1004)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3227 (((-585 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1005) (-13 (-997) (-10 -8 (-15 -3227 ((-585 (-1050)) $))))) (T -1005)) +((-3227 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-1005))))) +((-2570 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3832 (((-1091) $) NIL T ELT)) (-3737 (((-1003 |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3228 (($ (-1091) (-1003 |#1|)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT)) (-3058 (((-85) $ $) NIL (|has| (-1003 |#1|) (-1015)) ELT))) +(((-1006 |#1|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) (-1003 |#1|))) (-15 -3832 ((-1091) $)) (-15 -3737 ((-1003 |#1|) $)) (IF (|has| (-1003 |#1|) (-1015)) (-6 (-1015)) |%noBranch|))) (-1130)) (T -1006)) +((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1003 *4)) (-4 *4 (-1130)) (-5 *1 (-1006 *4)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1006 *3)) (-4 *3 (-1130)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1130))))) +((-3959 (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 19 T ELT))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -3959 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)))) (-1130) (-1130)) (T -1007)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6))))) +((-3737 (($ |#1| |#1|) 8 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT))) +(((-1008 |#1|) (-113) (-1130)) (T -1008)) +((-3738 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) (-3234 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1008 *3)) (-4 *3 (-1130)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3737 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130))))) +(-13 (-559 |t#1|) (-10 -8 (-15 -3738 ($ |t#1| |t#1|)) (-15 -3234 ($ $ (-485))) (-15 -3233 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 ((-485) $)) (-15 -3737 ($ |t#1| |t#1|)))) +(((-559 |#1|) . T)) +((-3737 (($ |#1| |#1|) 8 T ELT)) (-3959 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3964 ((|#2| (-585 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT))) +(((-1009 |#1| |#2|) (-113) (-757) (-1065 |t#1|)) (T -1009)) +((-3964 (*1 *2 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1065 *4)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1065 *3)))) (-3959 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) (-4 *2 (-1065 *4))))) +(-13 (-1008 |t#1|) (-10 -8 (-15 -3964 (|t#2| (-585 $))) (-15 -3964 (|t#2| $)) (-15 -3959 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-559 |#1|) . T) ((-1008 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3799 (((-1050) $) 14 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-585 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1010) (-13 (-997) (-10 -8 (-15 -3235 ((-585 (-1050)) $)) (-15 -3799 ((-1050) $))))) (T -1010)) +((-3235 (*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-1010)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1010))))) +((-2570 (((-85) $ $) NIL T ELT)) (-1803 (($) NIL (|has| |#1| (-318)) ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3238 (($ $ $) 81 T ELT)) (-3237 (((-85) $ $) 83 T ELT)) (-3138 (((-696)) NIL (|has| |#1| (-318)) ELT)) (-3241 (($ (-585 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3406 (($ |#1| $) 75 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3996)) ELT)) (-2996 (($) NIL (|has| |#1| (-318)) ELT)) (-2891 (((-585 |#1|) $) 20 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 ((|#1| $) 56 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2859 ((|#1| $) 54 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2012 (((-832) $) NIL (|has| |#1| (-318)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 26 T ELT)) (-3610 (($ |#1| $) 70 T ELT)) (-2402 (($ (-832)) NIL (|has| |#1| (-318)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1276 ((|#1| $) 28 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 22 T ELT)) (-3566 (($) 12 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-585 |#1|)) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 17 T ELT)) (-3973 (((-474) $) 51 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 63 T ELT)) (-1804 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3947 (((-774) $) NIL T ELT)) (-1805 (((-696) $) NIL T ELT)) (-3242 (($ (-585 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-585 |#1|)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 53 T ELT)) (-3958 (((-696) $) 11 (|has| $ (-6 -3996)) ELT))) +(((-1011 |#1|) (-367 |#1|) (-1015)) (T -1011)) +NIL +((-3236 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3238 (($ $ $) 10 T ELT)) (-3239 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -3236 (|#1| |#2| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3239 (|#1| |#1| |#1|))) (-1013 |#2|) (-1015)) (T -1012)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3236 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3238 (($ $ $) 24 T ELT)) (-3237 (((-85) $ $) 23 T ELT)) (-3241 (($) 29 T ELT) (($ (-585 |#1|)) 28 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 37 T CONST)) (-1354 (($ $) 60 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 59 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3996)) ELT)) (-2891 (((-585 |#1|) $) 44 (|has| $ (-6 -3996)) ELT)) (-3243 (((-85) $ $) 32 T ELT)) (-2610 (((-585 |#1|) $) 45 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3240 (($ $ $) 27 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#1|) (-585 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 33 T ELT)) (-3404 (((-85) $) 36 T ELT)) (-3566 (($) 35 T ELT)) (-3239 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1947 (((-696) |#1| $) 46 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 34 T ELT)) (-3973 (((-474) $) 61 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 52 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-3242 (($) 31 T ELT) (($ (-585 |#1|)) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 38 (|has| $ (-6 -3996)) ELT))) +(((-1013 |#1|) (-113) (-1015)) (T -1013)) +((-3243 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3242 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3241 (*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3239 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3237 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) (-3236 (*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(-13 (-1015) (-124 |t#1|) (-10 -8 (-6 -3986) (-15 -3243 ((-85) $ $)) (-15 -3242 ($)) (-15 -3242 ($ (-585 |t#1|))) (-15 -3241 ($)) (-15 -3241 ($ (-585 |t#1|))) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ |t#1|)) (-15 -3238 ($ $ $)) (-15 -3237 ((-85) $ $)) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |t#1|)) (-15 -3236 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-554 (-774)) . T) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-3244 (((-1074) $) 10 T ELT)) (-3245 (((-1035) $) 8 T ELT))) +(((-1014 |#1|) (-10 -7 (-15 -3244 ((-1074) |#1|)) (-15 -3245 ((-1035) |#1|))) (-1015)) (T -1014)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-1015) (-113)) (T -1015)) +((-3245 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1074))))) +(-13 (-72) (-554 (-774)) (-10 -8 (-15 -3245 ((-1035) $)) (-15 -3244 ((-1074) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) 36 T ELT)) (-3249 (($ (-585 (-832))) 70 T ELT)) (-3251 (((-3 $ #1="failed") $ (-832) (-832)) 81 T ELT)) (-2996 (($) 40 T ELT)) (-3247 (((-85) (-832) $) 42 T ELT)) (-2012 (((-832) $) 64 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 39 T ELT)) (-3252 (((-3 $ #1#) $ (-832)) 77 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3248 (((-1180 $)) 47 T ELT)) (-3250 (((-585 (-832)) $) 27 T ELT)) (-3246 (((-696) $ (-832) (-832)) 78 T ELT)) (-3947 (((-774) $) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT))) +(((-1016 |#1| |#2|) (-13 (-318) (-10 -8 (-15 -3252 ((-3 $ #1="failed") $ (-832))) (-15 -3251 ((-3 $ #1#) $ (-832) (-832))) (-15 -3250 ((-585 (-832)) $)) (-15 -3249 ($ (-585 (-832)))) (-15 -3248 ((-1180 $))) (-15 -3247 ((-85) (-832) $)) (-15 -3246 ((-696) $ (-832) (-832))))) (-832) (-832)) (T -1016)) +((-3252 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3248 (*1 *2) (-12 (-5 *2 (-1180 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-1091) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3536 (((-1074) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-3255 (((-774) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-485)) NIL T ELT) (($ $ (-585 (-485))) NIL T ELT)) (-3259 (((-585 $) $) NIL T ELT)) (-3973 (($ (-1074)) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-774)) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-485) $) NIL T ELT))) +(((-1017) (-1018 (-1074) (-1091) (-485) (-179) (-774))) (T -1017)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3262 (((-85) $) 36 T ELT)) (-3258 ((|#2| $) 31 T ELT)) (-3263 (((-85) $) 37 T ELT)) (-3536 ((|#1| $) 32 T ELT)) (-3265 (((-85) $) 39 T ELT)) (-3267 (((-85) $) 41 T ELT)) (-3264 (((-85) $) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-3257 ((|#3| $) 30 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3260 (((-85) $) 34 T ELT)) (-3256 ((|#4| $) 29 T ELT)) (-3255 ((|#5| $) 28 T ELT)) (-3268 (((-85) $ $) 42 T ELT)) (-3801 (($ $ (-485)) 44 T ELT) (($ $ (-585 (-485))) 43 T ELT)) (-3259 (((-585 $) $) 33 T ELT)) (-3973 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-585 $)) 45 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3266 (((-85) $) 40 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-485) $) 25 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-113) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1018)) +((-3268 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-485))))) +(-13 (-1015) (-559 |t#1|) (-559 |t#2|) (-559 |t#3|) (-559 |t#4|) (-559 |t#4|) (-559 |t#5|) (-559 (-585 $)) (-241 (-485) $) (-241 (-585 (-485)) $) (-10 -8 (-15 -3268 ((-85) $ $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-585 $) $)) (-15 -3536 (|t#1| $)) (-15 -3258 (|t#2| $)) (-15 -3257 (|t#3| $)) (-15 -3256 (|t#4| $)) (-15 -3255 (|t#5| $)) (-15 -3254 ($ $)) (-15 -3253 ($ $)) (-15 -3958 ((-485) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-559 (-585 $)) . T) ((-559 |#1|) . T) ((-559 |#2|) . T) ((-559 |#3|) . T) ((-559 |#4|) . T) ((-559 |#5|) . T) ((-241 (-485) $) . T) ((-241 (-585 (-485)) $) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) 45 T ELT)) (-3258 ((|#2| $) 48 T ELT)) (-3263 (((-85) $) 20 T ELT)) (-3536 ((|#1| $) 21 T ELT)) (-3265 (((-85) $) 42 T ELT)) (-3267 (((-85) $) 14 T ELT)) (-3264 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) 46 T ELT)) (-3257 ((|#3| $) 50 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3260 (((-85) $) 47 T ELT)) (-3256 ((|#4| $) 49 T ELT)) (-3255 ((|#5| $) 51 T ELT)) (-3268 (((-85) $ $) 41 T ELT)) (-3801 (($ $ (-485)) 62 T ELT) (($ $ (-585 (-485))) 64 T ELT)) (-3259 (((-585 $) $) 27 T ELT)) (-3973 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-585 $)) 52 T ELT)) (-3947 (((-774) $) 28 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 23 T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-3958 (((-485) $) 60 T ELT))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-1018 |#1| |#2| |#3| |#4| |#5|) (-1015) (-1015) (-1015) (-1015) (-1015)) (T -1019)) +NIL +((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-585 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-585 |#4|) (-585 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-585 |#5|) (-585 |#5|)) 101 T ELT)) (-3282 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3283 (((-585 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85)) 123 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-585 |#4|) (-585 |#4|)) 64 T ELT)) (-3277 (((-85) (-585 |#4|) (-585 |#4|)) 66 T ELT)) (-3700 (((-85) (-585 |#4|) (-585 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3272 (((-585 |#5|) (-585 |#5|)) 49 T ELT))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-585 |#5|) (-585 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3276 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3277 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3700 ((-85) (-585 |#4|) (-585 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-585 |#5|))) (-15 -3280 ((-585 |#5|) (-585 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-585 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-585 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-585 |#4|))) #1#) (-585 |#4|) |#5| (-585 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1020)) +((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-3299 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3289 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3292 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3294 (((-585 |#5|) |#4| |#5|) 122 T ELT)) (-3296 (((-585 |#5|) |#4| |#5|) 129 T ELT)) (-3298 (((-585 |#5|) |#4| |#5|) 130 T ELT)) (-3293 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3295 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3297 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3290 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 91 T ELT) (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3291 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT))) +(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3289 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3290 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3291 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3292 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3297 ((-85) |#4| |#5|)) (-15 -3293 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3294 ((-585 |#5|) |#4| |#5|)) (-15 -3295 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3296 ((-585 |#5|) |#4| |#5|)) (-15 -3297 ((-585 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3298 ((-585 |#5|) |#4| |#5|)) (-15 -3299 ((-585 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-985 |#1| |#2| |#3| |#4|)) (T -1021)) +((-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *4 (-758)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) (-3290 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-985 *4 *5 *6 *7))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 90 T ELT)) (-3683 (((-585 $) (-585 |#4|)) 91 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 133 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-3800 (((-3 $ #1#) $) 87 T ELT)) (-3686 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3684 ((|#4| |#4| $) 92 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 143 T ELT)) (-3197 (((-85) |#4| $) 140 T ELT)) (-3200 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) 135 T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 134 T ELT)) (-3799 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-585 $) |#4| $) 136 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) 139 T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3240 (((-585 $) |#4| $) 132 T ELT) (((-585 $) (-585 |#4|) $) 131 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT)) (-3441 (($ |#4| $) 124 T ELT) (($ (-585 |#4|) $) 123 T ELT)) (-3698 (((-585 |#4|) $) 112 T ELT)) (-3692 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-3700 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3770 (($ $ |#4|) 82 T ELT) (((-585 $) |#4| $) 122 T ELT) (((-585 $) |#4| (-585 $)) 121 T ELT) (((-585 $) (-585 |#4|) $) 120 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 119 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-3949 (((-696) $) 111 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-3685 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-3679 (((-696) $) 81 (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 103 T ELT)) (-3191 (((-585 $) |#4| $) 128 T ELT) (((-585 $) |#4| (-585 $)) 127 T ELT) (((-585 $) (-585 |#4|) $) 126 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 125 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3934 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-1022 |#1| |#2| |#3| |#4|) (-113) (-390) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1022)) +NIL +(-13 (-985 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3310 (((-585 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3309 (((-585 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3308 (((-585 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3307 (((-485) (-485) (-485)) 22 T ELT)) (-3306 (((-1180 (-485)) (-585 (-485)) (-1180 (-485)) (-485)) 78 T ELT) (((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485)) 73 T ELT)) (-3305 (((-585 (-485)) (-585 (-832)) (-585 (-485)) (-85)) 56 T ELT)) (-3304 (((-632 (-485)) (-585 (-485)) (-585 (-485)) (-632 (-485))) 77 T ELT)) (-3303 (((-632 (-485)) (-585 (-832)) (-585 (-485))) 61 T ELT)) (-3302 (((-585 (-632 (-485))) (-585 (-832))) 66 T ELT)) (-3301 (((-585 (-485)) (-585 (-485)) (-585 (-485)) (-632 (-485))) 81 T ELT)) (-3300 (((-632 (-485)) (-585 (-485)) (-585 (-485)) (-585 (-485))) 91 T ELT))) +(((-1023) (-10 -7 (-15 -3300 ((-632 (-485)) (-585 (-485)) (-585 (-485)) (-585 (-485)))) (-15 -3301 ((-585 (-485)) (-585 (-485)) (-585 (-485)) (-632 (-485)))) (-15 -3302 ((-585 (-632 (-485))) (-585 (-832)))) (-15 -3303 ((-632 (-485)) (-585 (-832)) (-585 (-485)))) (-15 -3304 ((-632 (-485)) (-585 (-485)) (-585 (-485)) (-632 (-485)))) (-15 -3305 ((-585 (-485)) (-585 (-832)) (-585 (-485)) (-85))) (-15 -3306 ((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485))) (-15 -3306 ((-1180 (-485)) (-585 (-485)) (-1180 (-485)) (-485))) (-15 -3307 ((-485) (-485) (-485))) (-15 -3308 ((-585 (-485)) (-485) (-485) (-485))) (-15 -3309 ((-585 (-485)) (-485) (-485) (-485))) (-15 -3310 ((-585 (-485)) (-485) (-485) (-485))))) (T -1023)) +((-3310 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485)))) (-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1023)))) (-3306 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-585 (-485))) (-5 *4 (-485)) (-5 *1 (-1023)))) (-3306 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1023)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-585 (-485))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) (-5 *1 (-1023)))) (-3304 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-485))) (-5 *3 (-585 (-485))) (-5 *1 (-1023)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-1023)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-1023)))) (-3301 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 (-485))) (-5 *3 (-632 (-485))) (-5 *1 (-1023)))) (-3300 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-1023))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3311 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1024 |#1|) (-13 (-1025 |#1|) (-1015) (-10 -8 (-15 -3311 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1024)) +((-3311 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1025 |#1|) (-113) (-72)) (T -1025)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((** (($ $ (-832)) 10 T ELT))) +(((-1026 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-832)))) (-1027)) (T -1026)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-832)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1027) (-113)) (T -1027)) +((* (*1 *1 *1 *1) (-4 *1 (-1027))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832))))) +(-13 (-1015) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-832))))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3708 (($ (-832)) NIL (|has| |#3| (-963)) ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-719)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3138 (((-696)) NIL (|has| |#3| (-318)) ELT)) (-3789 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1015)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT) ((|#3| $) NIL (|has| |#3| (-1015)) ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 $) (-1180 $)) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-963)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-963)) ELT)) (-2996 (($) NIL (|has| |#3| (-318)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#3| $ (-485)) 12 T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-719)) ELT)) (-2891 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2412 (((-85) $) NIL (|has| |#3| (-963)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-2610 (((-585 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-758)) ELT)) (-1950 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2012 (((-832) $) NIL (|has| |#3| (-318)) ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-582 (-485))) (|has| |#3| (-963))) ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-963)) ELT) (((-632 |#3|) (-1180 $)) NIL (|has| |#3| (-963)) ELT)) (-3244 (((-1074) $) NIL (|has| |#3| (-1015)) ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-2402 (($ (-832)) NIL (|has| |#3| (-318)) ELT)) (-3245 (((-1035) $) NIL (|has| |#3| (-1015)) ELT)) (-3802 ((|#3| $) NIL (|has| (-485) (-758)) ELT)) (-2201 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-2207 (((-585 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-963)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-952 (-485))) (|has| |#3| (-1015))) (|has| |#3| (-963))) ELT) (($ (-348 (-485))) NIL (-12 (|has| |#3| (-952 (-348 (-485)))) (|has| |#3| (-1015))) ELT) (($ |#3|) NIL (|has| |#3| (-1015)) ELT) (((-774) $) NIL (|has| |#3| (-554 (-774))) ELT)) (-3128 (((-696)) NIL (|has| |#3| (-963)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-963)) ELT)) (-2662 (($) NIL (|has| |#3| (-23)) CONST)) (-2668 (($) NIL (|has| |#3| (-963)) CONST)) (-2671 (($ $ (-696)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-813 (-1091))) (|has| |#3| (-963))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-963)) ELT) (($ $ (-1 |#3| |#3|) (-696)) NIL (|has| |#3| (-963)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-758)) ELT)) (-2687 (((-85) $ $) 24 (|has| |#3| (-758)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-696)) NIL (|has| |#3| (-963)) ELT) (($ $ (-832)) NIL (|has| |#3| (-963)) ELT)) (* (($ $ $) NIL (|has| |#3| (-963)) ELT) (($ $ |#3|) NIL (|has| |#3| (-665)) ELT) (($ |#3| $) NIL (|has| |#3| (-665)) ELT) (($ (-485) $) NIL (|has| |#3| (-21)) ELT) (($ (-696) $) NIL (|has| |#3| (-23)) ELT) (($ (-832) $) NIL (|has| |#3| (-25)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1028 |#1| |#2| |#3|) (-196 |#1| |#3|) (-696) (-696) (-719)) (T -1028)) +NIL +((-3312 (((-585 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 50 T ELT)) (-3318 (((-485) (-1149 |#2| |#1|)) 95 (|has| |#1| (-390)) ELT)) (-3316 (((-485) (-1149 |#2| |#1|)) 79 T ELT)) (-3313 (((-585 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 58 T ELT)) (-3317 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 81 (|has| |#1| (-390)) ELT)) (-3314 (((-585 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 61 T ELT)) (-3315 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 78 T ELT))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3312 ((-585 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3313 ((-585 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3314 ((-585 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3315 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3316 ((-485) (-1149 |#2| |#1|))) (IF (|has| |#1| (-390)) (PROGN (-15 -3317 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3318 ((-485) (-1149 |#2| |#1|)))) |%noBranch|)) (-742) (-1091)) (T -1029)) +((-3318 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-390)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1029 *4 *5)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-390)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1029 *4 *5)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1029 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1029 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 *4)) (-5 *1 (-1029 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 (-1149 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1149 *5 *4)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 (-1149 *5 *4))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-1149 *5 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1096) $) 12 T ELT)) (-3319 (((-585 (-1096)) $) 14 T ELT)) (-3321 (($ (-585 (-1096)) (-1096)) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) +(((-1030) (-13 (-1015) (-10 -8 (-15 -3321 ($ (-585 (-1096)) (-1096))) (-15 -3320 ((-1096) $)) (-15 -3319 ((-585 (-1096)) $))))) (T -1030)) +((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1030)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1030)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1030))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3322 (($ (-445) (-1030)) 14 T ELT)) (-3321 (((-1030) $) 20 T ELT)) (-3543 (((-445) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1031) (-13 (-997) (-10 -8 (-15 -3322 ($ (-445) (-1030))) (-15 -3543 ((-445) $)) (-15 -3321 ((-1030) $))))) (T -1031)) +((-3322 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1030)) (-5 *1 (-1031)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1031)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) +((-3624 (((-3 (-485) #1="failed") |#2| (-1091) |#2| (-1074)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1091) (-752 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") |#2|)) (-15 -3624 ((-3 (-485) #1#) |#2| (-1091) (-752 |#2|))) (-15 -3624 ((-3 (-485) #1#) |#2| (-1091) |#2| (-1074)))) (-13 (-496) (-952 (-485)) (-582 (-485)) (-390)) (-13 (-27) (-1116) (-362 |#1|))) (T -1032)) +((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-752 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) (-4 *6 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) (-5 *1 (-1032 *6 *3)))) (-3624 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4)))))) +((-3624 (((-3 (-485) #1="failed") (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|)) (-1074)) 38 T ELT) (((-3 (-485) #1#) (-348 (-859 |#1|)) (-1091) (-752 (-348 (-859 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-348 (-859 |#1|))) 14 T ELT))) +(((-1033 |#1|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") (-348 (-859 |#1|)))) (-15 -3624 ((-3 (-485) #1#) (-348 (-859 |#1|)) (-1091) (-752 (-348 (-859 |#1|))))) (-15 -3624 ((-3 (-485) #1#) (-348 (-859 |#1|)) (-1091) (-348 (-859 |#1|)) (-1074)))) (-390)) (T -1033)) +((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-348 (-859 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-390)) (-5 *2 (-485)) (-5 *1 (-1033 *6)))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-752 (-348 (-859 *6)))) (-5 *3 (-348 (-859 *6))) (-4 *6 (-390)) (-5 *2 (-485)) (-5 *1 (-1033 *6)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-390)) (-5 *2 (-485)) (-5 *1 (-1033 *4))))) +((-3650 (((-265 (-485)) (-48)) 12 T ELT))) +(((-1034) (-10 -7 (-15 -3650 ((-265 (-485)) (-48))))) (T -1034)) +((-3650 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1034))))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 22 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-3323 (($ $ $) 28 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 75 T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2044 (($ $ $ $) 59 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-346 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) 61 T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 56 T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 42 T ELT)) (-2281 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 70 T ELT) (((-632 (-485)) (-632 $)) 8 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-348 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-348 (-485)) $) NIL T ELT)) (-2996 (($) 73 T ELT) (($ $) 72 T ELT)) (-2565 (($ $ $) 41 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2050 (($ $ $) 71 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL T ELT)) (-2563 (($ $ $) 27 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 50 T ELT)) (-2675 (((-85) $) 47 T ELT)) (-2562 (($ $) 23 T ELT)) (-3446 (((-634 $) $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL T ELT)) (-2043 (($ $ $ $) 57 T ELT)) (-2533 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2859 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2046 (($ $) NIL T ELT)) (-2012 (((-832) $) 66 T ELT)) (-3834 (($ $) 55 T ELT)) (-2282 (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-632 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2041 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2402 (($ (-832)) 65 T ELT)) (-2048 (($ $) 33 T ELT)) (-3245 (((-1035) $) 54 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 45 T ELT) (($ (-585 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-346 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL T ELT)) (-2676 (((-85) $) 48 T ELT)) (-1608 (((-696) $) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 44 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2047 (($ $) 34 T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-802 (-485)) $) NIL T ELT) (((-328) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3947 (((-774) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3128 (((-696)) NIL T CONST)) (-2051 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 17 T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 26 T ELT)) (-2045 (($ $ $ $) 58 T ELT)) (-3384 (($ $) 46 T ELT)) (-2313 (($ $ $) 25 T ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2568 (((-85) $ $) 32 T ELT)) (-2569 (((-85) $ $) 30 T ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 31 T ELT)) (-2687 (((-85) $ $) 29 T ELT)) (-2314 (($ $ $) 24 T ELT)) (-3838 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 40 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT))) +(((-1035) (-13 (-484) (-754) (-84) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3323 ($ $ $))))) (T -1035)) +((-3323 (*1 *1 *1 *1) (-5 *1 (-1035)))) +((-485) (|%ismall?| |#1|)) +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 48 T ELT)) (-3725 (($) 7 T CONST)) (-3327 ((|#1| |#1| $) 50 T ELT)) (-3326 ((|#1| $) 49 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3324 (((-696) $) 47 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1036 |#1|) (-113) (-1130)) (T -1036)) +((-3327 (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1130)) (-5 *2 (-696))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3996) (-15 -3327 (|t#1| |t#1| $)) (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 ((-696) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-3331 ((|#3| $) 87 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL T ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 $) (-1180 $)) 84 T ELT) (((-632 |#3|) (-632 $)) 76 T ELT)) (-3759 (($ $ (-1 |#3| |#3|) (-696)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-3330 ((|#3| $) 89 T ELT)) (-3332 ((|#4| $) 43 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 24 T ELT) (($ $ (-485)) 95 T ELT))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3330 (|#3| |#1|)) (-15 -3331 (|#3| |#1|)) (-15 -3332 (|#4| |#1|)) (-15 -2281 ((-632 |#3|) (-632 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 |#3|)) (|:| |vec| (-1180 |#3|))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 |#1|) (-1180 |#1|))) (-15 -2281 ((-632 (-485)) (-632 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-696))) (-15 -3947 (|#1| (-485))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3947 ((-774) |#1|))) (-1038 |#2| |#3| |#4| |#5|) (-696) (-963) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1037)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3331 ((|#2| $) 90 T ELT)) (-3122 (((-85) $) 131 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 129 T ELT)) (-3334 (($ |#2|) 93 T ELT)) (-3725 (($) 23 T CONST)) (-3111 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3113 ((|#3| $ (-485)) 143 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#2| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) 106 (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#2| (-952 (-485))) ELT) (((-348 (-485)) $) 105 (|has| |#2| (-952 (-348 (-485)))) ELT) ((|#2| $) 104 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 99 (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 98 (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 97 T ELT) (((-632 |#2|) (-632 $)) 96 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-696) $) 149 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) 141 T ELT)) (-2891 (((-585 |#2|) $) 117 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3109 (((-696) $) 150 (|has| |#2| (-496)) ELT)) (-3108 (((-585 |#4|) $) 151 (|has| |#2| (-496)) ELT)) (-3116 (((-696) $) 137 T ELT)) (-3115 (((-696) $) 138 T ELT)) (-3328 ((|#2| $) 85 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3120 (((-485) $) 133 T ELT)) (-3118 (((-485) $) 135 T ELT)) (-2610 (((-585 |#2|) $) 116 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) 114 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3119 (((-485) $) 134 T ELT)) (-3117 (((-485) $) 136 T ELT)) (-3125 (($ (-585 (-585 |#2|))) 128 T ELT)) (-1950 (($ (-1 |#2| |#2|) $) 121 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 122 T ELT)) (-3595 (((-585 (-585 |#2|)) $) 139 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 101 (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 100 (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 95 T ELT) (((-632 |#2|) (-1180 $)) 94 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3591 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 119 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) 113 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 112 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 111 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 110 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) 127 T ELT)) (-3404 (((-85) $) 124 T ELT)) (-3566 (($) 125 T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) 142 T ELT) ((|#2| $ (-485) (-485)) 140 T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-696)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 63 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 61 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 60 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 59 (|has| |#2| (-813 (-1091))) ELT)) (-3330 ((|#2| $) 89 T ELT)) (-3333 (($ (-585 |#2|)) 92 T ELT)) (-3123 (((-85) $) 130 T ELT)) (-3332 ((|#3| $) 91 T ELT)) (-3329 ((|#2| $) 86 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) 115 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 126 T ELT)) (-3112 ((|#4| $ (-485)) 144 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 107 (|has| |#2| (-952 (-348 (-485)))) ELT) (($ |#2|) 102 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 120 (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) 132 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-696)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 62 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 58 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 57 (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 56 (|has| |#2| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3958 (((-696) $) 123 (|has| $ (-6 -3996)) ELT))) +(((-1038 |#1| |#2| |#3| |#4|) (-113) (-696) (-963) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1038)) +((-3334 (*1 *1 *2) (-12 (-4 *2 (-963)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-963)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-963)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-963)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-967 |t#1| |t#1| |t#2| |t#3| |t#4|) (-353 |t#2|) (-327 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-656 |t#2|)) |%noBranch|) (-15 -3334 ($ |t#2|)) (-15 -3333 ($ (-585 |t#2|))) (-15 -3332 (|t#3| $)) (-15 -3331 (|t#2| $)) (-15 -3330 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3998 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3329 (|t#2| $)) (-15 -3328 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3998 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-348 (-485))) |has| |#2| (-952 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-327 |#2|) . T) ((-353 |#2|) . T) ((-427 |#2|) . T) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-590 (-485)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 (-485)) |has| |#2| (-582 (-485))) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-582 (-485)) |has| |#2| (-582 (-485))) ((-582 |#2|) . T) ((-656 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-665) . T) ((-808 $ (-1091)) OR (|has| |#2| (-813 (-1091))) (|has| |#2| (-811 (-1091)))) ((-811 (-1091)) |has| |#2| (-811 (-1091))) ((-813 (-1091)) OR (|has| |#2| (-813 (-1091))) (|has| |#2| (-811 (-1091)))) ((-967 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-348 (-485))) |has| |#2| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#2| (-952 (-485))) ((-952 |#2|) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3337 ((|#4| |#4|) 81 T ELT)) (-3335 ((|#4| |#4|) 76 T ELT)) (-3339 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|) 91 T ELT)) (-3338 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3336 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1039 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3335 (|#4| |#4|)) (-15 -3336 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3337 (|#4| |#4|)) (-15 -3338 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3339 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2014 (-585 |#3|))) |#4| |#3|))) (-258) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|)) (T -1039)) +((-3339 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-322 *5)) (-4 *4 (-322 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 18 T ELT)) (-3083 (((-585 |#2|) $) 174 T ELT)) (-3085 (((-1086 $) $ |#2|) 60 T ELT) (((-1086 |#1|) $) 49 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 120 (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 |#2|)) 214 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#1| $) 165 T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) 218 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT) (($ $ |#2|) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| |#1| (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| |#1| (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 20 T ELT)) (-2422 (((-696) $) 30 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) 54 T ELT) (($ (-1086 $) |#2|) 71 T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) 38 T ELT)) (-2895 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-696)) 58 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-2822 (((-470 |#2|) $) 205 T ELT) (((-696) $ |#2|) 206 T ELT) (((-585 (-696)) $ (-585 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3084 (((-3 |#2| #1#) $) 177 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) 217 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) 39 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 148 (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) 153 (|has| |#1| (-390)) ELT) (($ $ $) 138 (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-823)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-585 |#2|) (-585 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-585 |#2|) (-585 $)) 194 T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3949 (((-470 |#2|) $) 201 T ELT) (((-696) $ |#2|) 196 T ELT) (((-585 (-696)) $ (-585 |#2|)) 199 T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| |#1| (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| |#1| (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#1| $) 134 (|has| |#1| (-390)) ELT) (($ $ |#2|) 137 (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3947 (((-774) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3818 (((-585 |#1|) $) 162 T ELT)) (-3678 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 87 T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) 123 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) 106 T ELT)) (-3950 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3840 (($ $ $) 55 T ELT)) (** (($ $ (-832)) 110 T ELT) (($ $ (-696)) 109 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1040 |#1| |#2|) (-863 |#1| (-470 |#2|) |#2|) (-963) (-758)) (T -1040)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3493 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 125 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 121 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3495 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 129 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-859 |#1|) $ (-696)) NIL T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $ |#2|) NIL T ELT) (((-696) $ |#2| (-696)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ $ (-585 |#2|) (-585 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-696)) 63 T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 119 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3813 (($ $ |#2|) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3677 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3770 (($ $ (-696)) 17 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) 117 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (($ $ |#2| $) 104 T ELT) (($ $ (-585 |#2|) (-585 $)) 99 T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3759 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3949 (((-470 |#2|) $) NIL T ELT)) (-3340 (((-1 (-1070 |#3|) |#3|) (-585 |#2|) (-585 (-1070 |#3|))) 87 T ELT)) (-3496 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 131 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 127 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 123 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 19 T ELT)) (-3947 (((-774) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3678 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) ((|#3| $ (-696)) 43 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 137 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 133 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 141 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 139 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 135 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 52 T CONST)) (-2668 (($) 62 T CONST)) (-2671 (($ $ (-585 |#2|) (-585 (-696))) NIL T ELT) (($ $ |#2| (-696)) NIL T ELT) (($ $ (-585 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 109 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-348 (-485))) 114 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 112 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1041 |#1| |#2| |#3|) (-13 (-681 |#1| |#2|) (-10 -8 (-15 -3678 (|#3| $ (-696))) (-15 -3947 ($ |#2|)) (-15 -3947 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3340 ((-1 (-1070 |#3|) |#3|) (-585 |#2|) (-585 (-1070 |#3|)))) (IF (|has| |#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $ |#2| |#1|)) (-15 -3677 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-963) (-758) (-863 |#1| (-470 |#2|) |#2|)) (T -1041)) +((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-758)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-863 *3 (-470 *2) *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-863 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-863 *3 (-470 *4) *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1070 *7))) (-4 *6 (-758)) (-4 *7 (-863 *5 (-470 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1041 *5 *6 *7)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-863 *3 (-470 *2) *2)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-863 *4 (-470 *3) *3))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 90 T ELT)) (-3683 (((-585 $) (-585 |#4|)) 91 T ELT) (((-585 $) (-585 |#4|) (-85)) 118 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 133 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-3800 (((-3 $ #1#) $) 87 T ELT)) (-3686 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3684 ((|#4| |#4| $) 92 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 110 T ELT)) (-3199 (((-85) |#4| $) 143 T ELT)) (-3197 (((-85) |#4| $) 140 T ELT)) (-3200 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) 135 T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 134 T ELT)) (-3799 (((-3 |#4| #1#) $) 88 T ELT)) (-3194 (((-585 $) |#4| $) 136 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) 139 T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3240 (((-585 $) |#4| $) 132 T ELT) (((-585 $) (-585 |#4|) $) 131 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 130 T ELT) (((-585 $) |#4| (-585 $)) 129 T ELT)) (-3441 (($ |#4| $) 124 T ELT) (($ (-585 |#4|) $) 123 T ELT)) (-3698 (((-585 |#4|) $) 112 T ELT)) (-3692 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-3700 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3770 (($ $ |#4|) 82 T ELT) (((-585 $) |#4| $) 122 T ELT) (((-585 $) |#4| (-585 $)) 121 T ELT) (((-585 $) (-585 |#4|) $) 120 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 119 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-3949 (((-696) $) 111 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-3685 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-3679 (((-696) $) 81 (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 103 T ELT)) (-3191 (((-585 $) |#4| $) 128 T ELT) (((-585 $) |#4| (-585 $)) 127 T ELT) (((-585 $) (-585 |#4|) $) 126 T ELT) (((-585 $) (-585 |#4|) (-585 $)) 125 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) 86 T ELT)) (-3198 (((-85) |#4| $) 142 T ELT)) (-3934 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-1042 |#1| |#2| |#3| |#4|) (-113) (-390) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1042)) +NIL +(-13 (-1022 |t#1| |t#2| |t#3| |t#4|) (-709 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-709 |#1| |#2| |#3| |#4|) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1022 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3574 (((-585 |#2|) |#1|) 15 T ELT)) (-3346 (((-585 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-585 |#2|) |#1|) 61 T ELT)) (-3344 (((-585 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-585 |#2|) |#1|) 59 T ELT)) (-3341 ((|#2| |#1|) 54 T ELT)) (-3342 (((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3343 (((-585 |#2|) |#2| |#2|) 42 T ELT) (((-585 |#2|) |#1|) 58 T ELT)) (-3345 (((-585 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-585 |#2|) |#1|) 60 T ELT)) (-3350 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3348 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3347 ((|#2| |#2| |#2|) 50 T ELT)) (-3349 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1043 |#1| |#2|) (-10 -7 (-15 -3574 ((-585 |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3342 ((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3343 ((-585 |#2|) |#1|)) (-15 -3344 ((-585 |#2|) |#1|)) (-15 -3345 ((-585 |#2|) |#1|)) (-15 -3346 ((-585 |#2|) |#1|)) (-15 -3343 ((-585 |#2|) |#2| |#2|)) (-15 -3344 ((-585 |#2|) |#2| |#2| |#2|)) (-15 -3345 ((-585 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3346 ((-585 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1156 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (T -1043)) +((-3350 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3349 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3348 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3347 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3346 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3345 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-2 (|:| |solns| (-585 *5)) (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))) (-3341 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))) +((-3351 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-348 (-859 |#1|))))) 119 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-348 (-859 |#1|)))) (-585 (-1091))) 118 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-348 (-859 |#1|)))) 116 T ELT) (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-348 (-859 |#1|))) (-585 (-1091))) 113 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-348 (-859 |#1|)))) 97 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-348 (-859 |#1|))) (-1091)) 98 T ELT) (((-585 (-249 (-265 |#1|))) (-348 (-859 |#1|))) 92 T ELT) (((-585 (-249 (-265 |#1|))) (-348 (-859 |#1|)) (-1091)) 82 T ELT)) (-3352 (((-585 (-585 (-265 |#1|))) (-585 (-348 (-859 |#1|))) (-585 (-1091))) 111 T ELT) (((-585 (-265 |#1|)) (-348 (-859 |#1|)) (-1091)) 54 T ELT)) (-3353 (((-1081 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-348 (-859 |#1|)) (-1091)) 123 T ELT) (((-1081 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-348 (-859 |#1|))) (-1091)) 122 T ELT))) +(((-1044 |#1|) (-10 -7 (-15 -3351 ((-585 (-249 (-265 |#1|))) (-348 (-859 |#1|)) (-1091))) (-15 -3351 ((-585 (-249 (-265 |#1|))) (-348 (-859 |#1|)))) (-15 -3351 ((-585 (-249 (-265 |#1|))) (-249 (-348 (-859 |#1|))) (-1091))) (-15 -3351 ((-585 (-249 (-265 |#1|))) (-249 (-348 (-859 |#1|))))) (-15 -3351 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-348 (-859 |#1|))) (-585 (-1091)))) (-15 -3351 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-348 (-859 |#1|))))) (-15 -3351 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-348 (-859 |#1|)))) (-585 (-1091)))) (-15 -3351 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-348 (-859 |#1|)))))) (-15 -3352 ((-585 (-265 |#1|)) (-348 (-859 |#1|)) (-1091))) (-15 -3352 ((-585 (-585 (-265 |#1|))) (-585 (-348 (-859 |#1|))) (-585 (-1091)))) (-15 -3353 ((-1081 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-249 (-348 (-859 |#1|))) (-1091))) (-15 -3353 ((-1081 (-585 (-265 |#1|)) (-585 (-249 (-265 |#1|)))) (-348 (-859 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -1044)) +((-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-859 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-265 *5))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-585 (-249 (-348 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-249 (-348 (-859 *5))))) (-5 *4 (-585 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-585 (-348 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-249 (-348 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-348 (-859 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1044 *5))))) +((-3355 (((-348 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-348 (-1086 (-265 |#1|))) (-485)) 36 T ELT)) (-3354 (((-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|)))) 48 T ELT))) +(((-1045 |#1|) (-10 -7 (-15 -3354 ((-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|))) (-348 (-1086 (-265 |#1|))))) (-15 -3355 ((-348 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-348 (-1086 (-265 |#1|))) (-485)))) (-496)) (T -1045)) +((-3355 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-348 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-348 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) +((-3574 (((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1091))) 244 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1091)) 23 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091)) 29 T ELT) (((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-585 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) +(((-1046 |#1|) (-10 -7 (-15 -3574 ((-585 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3574 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3574 ((-585 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091))) (-15 -3574 ((-585 (-249 (-265 |#1|))) (-265 |#1|) (-1091))) (-15 -3574 ((-585 (-585 (-249 (-265 |#1|)))) (-585 (-249 (-265 |#1|))) (-585 (-1091))))) (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (T -1046)) +((-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1091))) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-585 (-249 (-265 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-249 (-265 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-249 (-265 *4))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4))))) +((-3357 ((|#2| |#2|) 28 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3356 ((|#2| |#2|) 27 (|has| |#1| (-758)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1047 |#1| |#2|) (-10 -7 (-15 -3356 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3357 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-758)) (PROGN (-15 -3356 (|#2| |#2|)) (-15 -3357 (|#2| |#2|))) |%noBranch|)) (-1130) (-13 (-540 (-485) |#1|) (-10 -7 (-6 -3996) (-6 -3997)))) (T -1047)) +((-3357 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-540 (-485) *3) (-10 -7 (-6 -3996) (-6 -3997)))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-758)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-540 (-485) *3) (-10 -7 (-6 -3996) (-6 -3997)))))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-540 (-485) *4) (-10 -7 (-6 -3996) (-6 -3997)))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-540 (-485) *4) (-10 -7 (-6 -3996) (-6 -3997))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3889 (((-1080 3 |#1|) $) 141 T ELT)) (-3367 (((-85) $) 101 T ELT)) (-3368 (($ $ (-585 (-856 |#1|))) 44 T ELT) (($ $ (-585 (-585 |#1|))) 104 T ELT) (($ (-585 (-856 |#1|))) 103 T ELT) (((-585 (-856 |#1|)) $) 102 T ELT)) (-3373 (((-85) $) 72 T ELT)) (-3707 (($ $ (-856 |#1|)) 76 T ELT) (($ $ (-585 |#1|)) 81 T ELT) (($ $ (-696)) 83 T ELT) (($ (-856 |#1|)) 77 T ELT) (((-856 |#1|) $) 75 T ELT)) (-3359 (((-2 (|:| -3851 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 139 T ELT)) (-3377 (((-696) $) 53 T ELT)) (-3378 (((-696) $) 52 T ELT)) (-3888 (($ $ (-696) (-856 |#1|)) 67 T ELT)) (-3365 (((-85) $) 111 T ELT)) (-3366 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 118 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 120 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 127 T ELT) (($ (-585 (-585 (-856 |#1|)))) 116 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 117 T ELT) (((-585 (-585 (-856 |#1|))) $) 114 T ELT)) (-3519 (($ (-585 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3360 (((-585 (-145)) $) 133 T ELT)) (-3364 (((-585 (-856 |#1|)) $) 130 T ELT)) (-3361 (((-585 (-585 (-145))) $) 132 T ELT)) (-3362 (((-585 (-585 (-585 (-856 |#1|)))) $) NIL T ELT)) (-3363 (((-585 (-585 (-585 (-696)))) $) 131 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3374 (((-696) $ (-585 (-856 |#1|))) 65 T ELT)) (-3371 (((-85) $) 84 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 86 T ELT) (($ $ (-585 (-585 |#1|))) 92 T ELT) (($ (-585 (-856 |#1|))) 87 T ELT) (((-585 (-856 |#1|)) $) 85 T ELT)) (-3379 (($) 48 T ELT) (($ (-1080 3 |#1|)) 49 T ELT)) (-3401 (($ $) 63 T ELT)) (-3375 (((-585 $) $) 62 T ELT)) (-3755 (($ (-585 $)) 59 T ELT)) (-3376 (((-585 $) $) 61 T ELT)) (-3947 (((-774) $) 146 T ELT)) (-3369 (((-85) $) 94 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 96 T ELT) (($ $ (-585 (-585 |#1|))) 99 T ELT) (($ (-585 (-856 |#1|))) 97 T ELT) (((-585 (-856 |#1|)) $) 95 T ELT)) (-3358 (($ $) 140 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1048 |#1|) (-1049 |#1|) (-963)) (T -1048)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3889 (((-1080 3 |#1|) $) 17 T ELT)) (-3367 (((-85) $) 33 T ELT)) (-3368 (($ $ (-585 (-856 |#1|))) 37 T ELT) (($ $ (-585 (-585 |#1|))) 36 T ELT) (($ (-585 (-856 |#1|))) 35 T ELT) (((-585 (-856 |#1|)) $) 34 T ELT)) (-3373 (((-85) $) 48 T ELT)) (-3707 (($ $ (-856 |#1|)) 53 T ELT) (($ $ (-585 |#1|)) 52 T ELT) (($ $ (-696)) 51 T ELT) (($ (-856 |#1|)) 50 T ELT) (((-856 |#1|) $) 49 T ELT)) (-3359 (((-2 (|:| -3851 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $) 19 T ELT)) (-3377 (((-696) $) 62 T ELT)) (-3378 (((-696) $) 63 T ELT)) (-3888 (($ $ (-696) (-856 |#1|)) 54 T ELT)) (-3365 (((-85) $) 25 T ELT)) (-3366 (($ $ (-585 (-585 (-856 |#1|))) (-585 (-145)) (-145)) 32 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-145)) (-145)) 31 T ELT) (($ $ (-585 (-585 (-856 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-585 (-585 (-585 |#1|))) (-85) (-85)) 29 T ELT) (($ (-585 (-585 (-856 |#1|)))) 28 T ELT) (($ (-585 (-585 (-856 |#1|))) (-85) (-85)) 27 T ELT) (((-585 (-585 (-856 |#1|))) $) 26 T ELT)) (-3519 (($ (-585 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3360 (((-585 (-145)) $) 20 T ELT)) (-3364 (((-585 (-856 |#1|)) $) 24 T ELT)) (-3361 (((-585 (-585 (-145))) $) 21 T ELT)) (-3362 (((-585 (-585 (-585 (-856 |#1|)))) $) 22 T ELT)) (-3363 (((-585 (-585 (-585 (-696)))) $) 23 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3374 (((-696) $ (-585 (-856 |#1|))) 55 T ELT)) (-3371 (((-85) $) 43 T ELT)) (-3372 (($ $ (-585 (-856 |#1|))) 47 T ELT) (($ $ (-585 (-585 |#1|))) 46 T ELT) (($ (-585 (-856 |#1|))) 45 T ELT) (((-585 (-856 |#1|)) $) 44 T ELT)) (-3379 (($) 65 T ELT) (($ (-1080 3 |#1|)) 64 T ELT)) (-3401 (($ $) 56 T ELT)) (-3375 (((-585 $) $) 57 T ELT)) (-3755 (($ (-585 $)) 59 T ELT)) (-3376 (((-585 $) $) 58 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-3369 (((-85) $) 38 T ELT)) (-3370 (($ $ (-585 (-856 |#1|))) 42 T ELT) (($ $ (-585 (-585 |#1|))) 41 T ELT) (($ (-585 (-856 |#1|))) 40 T ELT) (((-585 (-856 |#1|)) $) 39 T ELT)) (-3358 (($ $) 18 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-1049 |#1|) (-113) (-963)) (T -1049)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) (-3379 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)))) (-3401 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3888 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-963)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-963)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-963)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-963)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-963)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) (-3366 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) (-4 *1 (-1049 *4)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696))))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-856 *3))))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145)))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3851 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696)))))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-1080 3 *3))))) +(-13 (-1015) (-10 -8 (-15 -3379 ($)) (-15 -3379 ($ (-1080 3 |t#1|))) (-15 -3378 ((-696) $)) (-15 -3377 ((-696) $)) (-15 -3519 ($ (-585 $))) (-15 -3519 ($ $ $)) (-15 -3755 ($ (-585 $))) (-15 -3376 ((-585 $) $)) (-15 -3375 ((-585 $) $)) (-15 -3401 ($ $)) (-15 -3374 ((-696) $ (-585 (-856 |t#1|)))) (-15 -3888 ($ $ (-696) (-856 |t#1|))) (-15 -3707 ($ $ (-856 |t#1|))) (-15 -3707 ($ $ (-585 |t#1|))) (-15 -3707 ($ $ (-696))) (-15 -3707 ($ (-856 |t#1|))) (-15 -3707 ((-856 |t#1|) $)) (-15 -3373 ((-85) $)) (-15 -3372 ($ $ (-585 (-856 |t#1|)))) (-15 -3372 ($ $ (-585 (-585 |t#1|)))) (-15 -3372 ($ (-585 (-856 |t#1|)))) (-15 -3372 ((-585 (-856 |t#1|)) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-585 (-856 |t#1|)))) (-15 -3370 ($ $ (-585 (-585 |t#1|)))) (-15 -3370 ($ (-585 (-856 |t#1|)))) (-15 -3370 ((-585 (-856 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-585 (-856 |t#1|)))) (-15 -3368 ($ $ (-585 (-585 |t#1|)))) (-15 -3368 ($ (-585 (-856 |t#1|)))) (-15 -3368 ((-585 (-856 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-585 (-585 (-856 |t#1|))) (-585 (-145)) (-145))) (-15 -3366 ($ $ (-585 (-585 (-585 |t#1|))) (-585 (-145)) (-145))) (-15 -3366 ($ $ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3366 ($ $ (-585 (-585 (-585 |t#1|))) (-85) (-85))) (-15 -3366 ($ (-585 (-585 (-856 |t#1|))))) (-15 -3366 ($ (-585 (-585 (-856 |t#1|))) (-85) (-85))) (-15 -3366 ((-585 (-585 (-856 |t#1|))) $)) (-15 -3365 ((-85) $)) (-15 -3364 ((-585 (-856 |t#1|)) $)) (-15 -3363 ((-585 (-585 (-585 (-696)))) $)) (-15 -3362 ((-585 (-585 (-585 (-856 |t#1|)))) $)) (-15 -3361 ((-585 (-585 (-145))) $)) (-15 -3360 ((-585 (-145)) $)) (-15 -3359 ((-2 (|:| -3851 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) (|:| |constructs| (-696))) $)) (-15 -3358 ($ $)) (-15 -3889 ((-1080 3 |t#1|) $)) (-15 -3947 ((-774) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 185 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) 7 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-463))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-619))) 27 T ELT) (((-85) $ (|[\|\|]| (-1191))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-541))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1031))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-624))) 55 T ELT) (((-85) $ (|[\|\|]| (-457))) 59 T ELT) (((-85) $ (|[\|\|]| (-980))) 63 T ELT) (((-85) $ (|[\|\|]| (-1192))) 67 T ELT) (((-85) $ (|[\|\|]| (-464))) 71 T ELT) (((-85) $ (|[\|\|]| (-1068))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-615))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-950))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-885))) 99 T ELT) (((-85) $ (|[\|\|]| (-987))) 103 T ELT) (((-85) $ (|[\|\|]| (-1005))) 107 T ELT) (((-85) $ (|[\|\|]| (-1010))) 111 T ELT) (((-85) $ (|[\|\|]| (-567))) 116 T ELT) (((-85) $ (|[\|\|]| (-1082))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-416))) 132 T ELT) (((-85) $ (|[\|\|]| (-529))) 136 T ELT) (((-85) $ (|[\|\|]| (-445))) 140 T ELT) (((-85) $ (|[\|\|]| (-1074))) 144 T ELT) (((-85) $ (|[\|\|]| (-485))) 148 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-463) $) 20 T ELT) (((-172) $) 24 T ELT) (((-619) $) 28 T ELT) (((-1191) $) 32 T ELT) (((-111) $) 36 T ELT) (((-541) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1031) $) 48 T ELT) (((-67) $) 52 T ELT) (((-624) $) 56 T ELT) (((-457) $) 60 T ELT) (((-980) $) 64 T ELT) (((-1192) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1068) $) 76 T ELT) (((-127) $) 80 T ELT) (((-615) $) 84 T ELT) (((-263) $) 88 T ELT) (((-950) $) 92 T ELT) (((-154) $) 96 T ELT) (((-885) $) 100 T ELT) (((-987) $) 104 T ELT) (((-1005) $) 108 T ELT) (((-1010) $) 112 T ELT) (((-567) $) 117 T ELT) (((-1082) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-416) $) 133 T ELT) (((-529) $) 137 T ELT) (((-445) $) 141 T ELT) (((-1074) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1050) (-1052)) (T -1050)) +NIL +((-3380 (((-585 (-1096)) (-1074)) 9 T ELT))) +(((-1051) (-10 -7 (-15 -3380 ((-585 (-1096)) (-1074))))) (T -1051)) +((-3380 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-1096))) (-5 *1 (-1051))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-463))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-619))) 84 T ELT) (((-85) $ (|[\|\|]| (-1191))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-541))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1031))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-624))) 70 T ELT) (((-85) $ (|[\|\|]| (-457))) 68 T ELT) (((-85) $ (|[\|\|]| (-980))) 66 T ELT) (((-85) $ (|[\|\|]| (-1192))) 64 T ELT) (((-85) $ (|[\|\|]| (-464))) 62 T ELT) (((-85) $ (|[\|\|]| (-1068))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-615))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-950))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-885))) 48 T ELT) (((-85) $ (|[\|\|]| (-987))) 46 T ELT) (((-85) $ (|[\|\|]| (-1005))) 44 T ELT) (((-85) $ (|[\|\|]| (-1010))) 42 T ELT) (((-85) $ (|[\|\|]| (-567))) 40 T ELT) (((-85) $ (|[\|\|]| (-1082))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-416))) 32 T ELT) (((-85) $ (|[\|\|]| (-529))) 30 T ELT) (((-85) $ (|[\|\|]| (-445))) 28 T ELT) (((-85) $ (|[\|\|]| (-1074))) 26 T ELT) (((-85) $ (|[\|\|]| (-485))) 24 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3573 (((-463) $) 87 T ELT) (((-172) $) 85 T ELT) (((-619) $) 83 T ELT) (((-1191) $) 81 T ELT) (((-111) $) 79 T ELT) (((-541) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1031) $) 73 T ELT) (((-67) $) 71 T ELT) (((-624) $) 69 T ELT) (((-457) $) 67 T ELT) (((-980) $) 65 T ELT) (((-1192) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1068) $) 59 T ELT) (((-127) $) 57 T ELT) (((-615) $) 55 T ELT) (((-263) $) 53 T ELT) (((-950) $) 51 T ELT) (((-154) $) 49 T ELT) (((-885) $) 47 T ELT) (((-987) $) 45 T ELT) (((-1005) $) 43 T ELT) (((-1010) $) 41 T ELT) (((-567) $) 39 T ELT) (((-1082) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-416) $) 31 T ELT) (((-529) $) 29 T ELT) (((-445) $) 27 T ELT) (((-1074) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) (((-1052) (-113)) (T -1052)) -((-3390 (*1 *1 *1) (-4 *1 (-1052))) (-3389 (*1 *1 *1) (-4 *1 (-1052))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3382 (*1 *1 *1) (-4 *1 (-1052))) (-3381 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3384 (*1 *1 *1) (-4 *1 (-1052))) (-3380 (*1 *1 *1) (-4 *1 (-1052)))) -(-13 (-10 -8 (-15 -3380 ($ $)) (-15 -3384 ($ $)) (-15 -3381 ($ $ $)) (-15 -3382 ($ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $)) (-15 -3390 ($ $)))) -((-2567 (((-85) $ $) 44 T ELT)) (-3399 ((|#1| $) 17 T ELT)) (-3391 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3398 (((-85) $) 19 T ELT)) (-3396 (($ $ |#1|) 30 T ELT)) (-3394 (($ $ (-85)) 32 T ELT)) (-3393 (($ $) 33 T ELT)) (-3395 (($ $ |#2|) 31 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3392 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3400 (((-85) $) 16 T ELT)) (-3562 (($) 13 T ELT)) (-3397 (($ $) 29 T ELT)) (-3527 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3919 ((|#2| $) 18 T ELT)) (-3943 (((-773) $) 53 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 42 T ELT))) -(((-1053 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3562 ($)) (-15 -3400 ((-85) $)) (-15 -3399 (|#1| $)) (-15 -3919 (|#2| $)) (-15 -3398 ((-85) $)) (-15 -3527 ($ |#1| |#2| (-85))) (-15 -3527 ($ |#1| |#2|)) (-15 -3527 ($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) (-15 -3527 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))))) (-15 -3527 ((-584 $) |#1| (-584 |#2|))) (-15 -3397 ($ $)) (-15 -3396 ($ $ |#1|)) (-15 -3395 ($ $ |#2|)) (-15 -3394 ($ $ (-85))) (-15 -3393 ($ $)) (-15 -3392 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3391 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1053)) -((-3562 (*1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3399 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3919 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3527 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1598 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-584 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-584 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3396 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3395 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3394 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3393 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3392 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3391 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) -((-2567 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3399 (((-1053 |#1| |#2|) $) 27 T ELT)) (-3408 (($ $) 91 T ELT)) (-3404 (((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3401 (($ $ $ (-584 (-1053 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3024 (((-1053 |#1| |#2|) $ (-1053 |#1| |#2|)) 46 (|has| $ (-6 -3993)) ELT)) (-3785 (((-1053 |#1| |#2|) $ #1="value" (-1053 |#1| |#2|)) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 44 (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-3406 (((-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $) 95 T ELT)) (-3402 (($ (-1053 |#1| |#2|) $) 42 T ELT)) (-3403 (($ (-1053 |#1| |#2|) $) 34 T ELT)) (-2888 (((-584 (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3405 (((-85) (-1053 |#1| |#2|) $) 97 T ELT)) (-3026 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-2607 (((-584 (-1053 |#1| |#2|)) $) 58 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1947 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 50 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 49 T ELT)) (-3029 (((-584 (-1053 |#1| |#2|)) $) 56 T ELT)) (-3524 (((-85) $) 45 T ELT)) (-3240 (((-1072) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3409 (((-3 $ "failed") $) 89 T ELT)) (-1945 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-1053 |#1| |#2|)))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-248 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-1053 |#1| |#2|) (-1053 |#1| |#2|)) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-584 (-1053 |#1| |#2|)) (-584 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1220 (((-85) $ $) 53 T ELT)) (-3400 (((-85) $) 24 T ELT)) (-3562 (($) 26 T ELT)) (-3797 (((-1053 |#1| |#2|) $ #1#) NIL T ELT)) (-3028 (((-484) $ $) NIL T ELT)) (-3630 (((-85) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-3397 (($ $) 52 T ELT)) (-3527 (($ (-1053 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1053 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3407 (((-584 |#2|) $) 96 T ELT)) (-3943 (((-773) $) 87 (|has| (-1053 |#1| |#2|) (-553 (-773))) ELT)) (-3519 (((-584 $) $) 31 T ELT)) (-3027 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 70 (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3954 (((-695) $) 64 (|has| $ (-6 -3992)) ELT))) -(((-1054 |#1| |#2|) (-13 (-924 (-1053 |#1| |#2|)) (-10 -8 (-6 -3993) (-6 -3992) (-15 -3409 ((-3 $ "failed") $)) (-15 -3408 ($ $)) (-15 -3527 ($ (-1053 |#1| |#2|))) (-15 -3527 ($ |#1| |#2| (-584 $))) (-15 -3527 ($ |#1| |#2| (-584 (-1053 |#1| |#2|)))) (-15 -3527 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3407 ((-584 |#2|) $)) (-15 -3406 ((-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $)) (-15 -3405 ((-85) (-1053 |#1| |#2|) $)) (-15 -3404 ((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3403 ($ (-1053 |#1| |#2|) $)) (-15 -3402 ($ (-1053 |#1| |#2|) $)) (-15 -3401 ($ $ $ (-584 (-1053 |#1| |#2|)))) (-15 -3401 ($ $ $ (-584 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054)) -((-3409 (*1 *1 *1) (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3527 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3527 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) (-3527 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3405 (*1 *2 *3 *1) (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))) (-3404 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3403 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3401 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3401 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1054 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3411 (($ $) NIL T ELT)) (-3327 ((|#2| $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3410 (($ (-631 |#2|)) 55 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3330 (($ |#2|) 14 T ELT)) (-3721 (($) NIL T CONST)) (-3108 (($ $) 68 (|has| |#2| (-257)) ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) 82 T ELT)) (-3107 (((-695) $) 70 (|has| |#2| (-495)) ELT)) (-3111 ((|#2| $ (-484) (-484)) NIL T ELT)) (-2888 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-3106 (((-695) $) 72 (|has| |#2| (-495)) ELT)) (-3105 (((-584 (-197 |#1| |#2|)) $) 76 (|has| |#2| (-495)) ELT)) (-3113 (((-695) $) NIL T ELT)) (-3611 (($ |#2|) 25 T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3324 ((|#2| $) 66 (|has| |#2| (-6 (-3994 #2="*"))) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-2607 (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-3122 (($ (-584 (-584 |#2|))) 37 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3591 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3587 (((-3 $ #1#) $) 79 (|has| |#2| (-311)) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3326 ((|#2| $) NIL T ELT)) (-3329 (($ (-584 |#2|)) 50 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3328 (((-197 |#1| |#2|) $) NIL T ELT)) (-3325 ((|#2| $) 64 (|has| |#2| (-6 (-3994 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) 89 (|has| |#2| (-554 (-473))) ELT)) (-3109 (((-197 |#1| |#2|) $ (-484)) 44 T ELT)) (-3943 (((-773) $) 47 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 52 T ELT)) (-3124 (((-695)) 23 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3118 (((-85) $) NIL T ELT)) (-2659 (($) 16 T CONST)) (-2665 (($) 21 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 62 T ELT) (($ $ (-484)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 58 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 60 T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1055 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3611 ($ |#2|)) (-15 -3411 ($ $)) (-15 -3410 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3994 #1="*"))) (-6 -3981) |%noBranch|) (IF (|has| |#2| (-6 (-3994 #1#))) (IF (|has| |#2| (-6 -3989)) (-6 -3989) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|))) (-695) (-962)) (T -1055)) -((-3611 (*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-695))))) -((-3424 (($ $) 19 T ELT)) (-3414 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3422 (((-85) $ $) 24 T ELT)) (-3426 (($ $) 17 T ELT)) (-3797 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3943 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT))) -(((-1056 |#1|) (-10 -7 (-15 -3943 ((-773) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3414 (|#1| |#1| (-114))) (-15 -3414 (|#1| |#1| (-117))) (-15 -3943 (|#1| (-117))) (-15 -3422 ((-85) |#1| |#1|)) (-15 -3424 (|#1| |#1|)) (-15 -3426 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-1145 (-484)))) (-15 -3797 ((-117) |#1| (-484))) (-15 -3797 ((-117) |#1| (-484) (-117)))) (-1057)) (T -1056)) -NIL -((-2567 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3423 (($ $) 129 T ELT)) (-3424 (($ $) 130 T ELT)) (-3414 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-3421 (((-85) $ $) 127 T ELT)) (-3420 (((-85) $ $ (-484)) 126 T ELT)) (-3415 (((-584 $) $ (-117)) 119 T ELT) (((-584 $) $ (-114)) 118 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-757)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3993)) ELT) (($ $) 97 (-12 (|has| (-117) (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-757)) ELT)) (-3785 (((-117) $ (-484) (-117)) 56 (|has| $ (-6 -3993)) ELT) (((-117) $ (-1145 (-484)) (-117)) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-3412 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2296 (($ $) 99 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 109 T ELT)) (-3417 (($ $ (-1145 (-484)) $) 123 T ELT)) (-1351 (($ $) 84 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ (-117) $) 83 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3992))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3992)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 (((-117) $ (-484) (-117)) 57 (|has| $ (-6 -3993)) ELT)) (-3111 (((-117) $ (-484)) 55 T ELT)) (-3422 (((-85) $ $) 128 T ELT)) (-3416 (((-484) (-1 (-85) (-117)) $) 106 T ELT) (((-484) (-117) $) 105 (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 104 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 122 T ELT) (((-484) (-114) $ (-484)) 121 T ELT)) (-2888 (((-584 (-117)) $) 30 (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) (-117)) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 91 (|has| (-117) (-757)) ELT)) (-3515 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-757)) ELT)) (-2607 (((-584 (-117)) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 92 (|has| (-117) (-757)) ELT)) (-3418 (((-85) $ $ (-117)) 124 T ELT)) (-3419 (((-695) $ $ (-117)) 125 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3425 (($ $) 131 T ELT)) (-3426 (($ $) 132 T ELT)) (-3413 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3240 (((-1072) $) 22 (|has| (-117) (-1013)) ELT)) (-2303 (($ (-117) $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| (-117) (-1013)) ELT)) (-3798 (((-117) $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2198 (($ $ (-117)) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-117)))) 26 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) 25 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 23 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-2204 (((-584 (-117)) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 (((-117) $ (-484) (-117)) 54 T ELT) (((-117) $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT) (($ $ $) 111 T ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) (-117) $) 28 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| (-117) (-554 (-473))) ELT)) (-3527 (($ (-584 (-117))) 76 T ELT)) (-3799 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (($ (-117)) 120 T ELT) (((-773) $) 17 (|has| (-117) (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 93 (|has| (-117) (-757)) ELT)) (-2566 (((-85) $ $) 95 (|has| (-117) (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| (-117) (-757)) ELT)) (-2684 (((-85) $ $) 96 (|has| (-117) (-757)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1057) (-113)) (T -1057)) -((-3426 (*1 *1 *1) (-4 *1 (-1057))) (-3425 (*1 *1 *1) (-4 *1 (-1057))) (-3424 (*1 *1 *1) (-4 *1 (-1057))) (-3423 (*1 *1 *1) (-4 *1 (-1057))) (-3422 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3421 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3420 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3419 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3418 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3417 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))) (-3416 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))) (-3416 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) (-3415 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))) (-3415 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3797 (*1 *1 *1 *1) (-4 *1 (-1057)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3426 ($ $)) (-15 -3425 ($ $)) (-15 -3424 ($ $)) (-15 -3423 ($ $)) (-15 -3422 ((-85) $ $)) (-15 -3421 ((-85) $ $)) (-15 -3420 ((-85) $ $ (-484))) (-15 -3419 ((-695) $ $ (-117))) (-15 -3418 ((-85) $ $ (-117))) (-15 -3417 ($ $ (-1145 (-484)) $)) (-15 -3416 ((-484) $ $ (-484))) (-15 -3416 ((-484) (-114) $ (-484))) (-15 -3943 ($ (-117))) (-15 -3415 ((-584 $) $ (-117))) (-15 -3415 ((-584 $) $ (-114))) (-15 -3414 ($ $ (-117))) (-15 -3414 ($ $ (-114))) (-15 -3413 ($ $ (-117))) (-15 -3413 ($ $ (-114))) (-15 -3412 ($ $ (-117))) (-15 -3412 ($ $ (-114))) (-15 -3797 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1013)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-473)) |has| (-117) (-554 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-259 (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ((-321 (-117)) . T) ((-426 (-117)) . T) ((-539 (-484) (-117)) . T) ((-453 (-117) (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-757))) ((-1128) . T)) -((-3433 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695)) 112 T ELT)) (-3430 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3434 (((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)) 97 T ELT)) (-3428 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3431 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3432 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3969 (((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 90 T ELT)) (-3429 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 60 T ELT)) (-3427 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) -(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3427 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3428 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3431 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3432 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3432 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3433 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695))) (-15 -3969 ((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3434 ((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1058)) -((-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1058 *7 *8 *9 *10 *11)))) (-3432 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3429 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3679 (((-584 $) (-584 |#4|)) 118 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 117 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3080 (((-584 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3772 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 91 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3707 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3154 (($ (-584 |#4|)) NIL T ELT)) (-3796 (((-3 $ #1#) $) 45 T ELT)) (-3682 ((|#4| |#4| $) 73 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3403 (($ |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3435 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 133 T ELT)) (-2888 (((-584 |#4|) $) 18 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 19 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2913 (((-584 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3189 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3188 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 111 T ELT)) (-3795 (((-3 |#4| #1#) $) 42 T ELT)) (-3190 (((-584 $) |#4| $) 96 T ELT)) (-3192 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3236 (((-584 $) |#4| $) 115 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 116 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3436 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3437 (($ |#4| $) 82 T ELT) (($ (-584 |#4|) $) 83 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3694 (((-584 |#4|) $) NIL T ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3676 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3766 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 98 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 93 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 17 T ELT)) (-3562 (($) 14 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 13 T ELT)) (-3969 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 22 T ELT)) (-2909 (($ $ |#3|) 49 T ELT)) (-2911 (($ $ |#3|) 51 T ELT)) (-3681 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3943 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3675 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3187 (((-584 $) |#4| $) 63 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3930 (((-85) |#3| $) 69 T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1059 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3437 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3679 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3679 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3436 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3435 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -1059)) -((-3437 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3679 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3679 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1059 *5 *6 *7 *8))))) (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 31 T ELT)) (-2409 (((-85) $) 29 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 28 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 30 T ELT) (($ $ (-831)) 27 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1060) (-113)) (T -1060)) -NIL -(-13 (-23) (-664)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3321 ((|#1| $) 38 T ELT)) (-3438 (($ (-584 |#1|)) 46 T ELT)) (-3721 (($) NIL T CONST)) (-3323 ((|#1| |#1| $) 41 T ELT)) (-3322 ((|#1| $) 36 T ELT)) (-2888 (((-584 |#1|) $) 19 (|has| $ (-6 -3992)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 39 T ELT)) (-3606 (($ |#1| $) 42 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 37 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 33 T ELT)) (-3562 (($) 44 T ELT)) (-3320 (((-695) $) 31 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 28 T ELT)) (-3943 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 32 (|has| $ (-6 -3992)) ELT))) -(((-1061 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3438 ($ (-584 |#1|))))) (-1128)) (T -1061)) -((-3438 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3))))) -((-3785 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3440 (((-85) $) 12 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3798 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2198 (($ $ |#2|) 49 T ELT)) (-3441 (((-85) $) 11 T ELT)) (-3797 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3788 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3799 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1062 |#1| |#2|) (-10 -7 (-15 -3440 ((-85) |#1|)) (-15 -3441 ((-85) |#1|)) (-15 -3785 (|#2| |#1| (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484) |#2|)) (-15 -3797 (|#2| |#1| (-484))) (-15 -2198 (|#1| |#1| |#2|)) (-15 -3797 (|#1| |#1| (-1145 (-484)))) (-15 -3799 (|#1| |#1| |#2|)) (-15 -3799 (|#1| (-584 |#1|))) (-15 -3785 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -3785 (|#2| |#1| #1="last" |#2|)) (-15 -3785 (|#1| |#1| #2="rest" |#1|)) (-15 -3785 (|#2| |#1| #3="first" |#2|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -3797 (|#2| |#1| #1#)) (-15 -3797 (|#1| |#1| #2#)) (-15 -3798 (|#1| |#1| (-695))) (-15 -3797 (|#2| |#1| #3#)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#2| |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3785 (|#2| |#1| #4="value" |#2|)) (-15 -3797 (|#2| |#1| #4#)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|))) (-1063 |#2|) (-1128)) (T -1062)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3792 ((|#1| $) 71 T ELT)) (-3794 (($ $) 73 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 58 (|has| $ (-6 -3993)) ELT)) (-3439 (((-85) $ (-695)) 90 T ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 62 (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) 60 (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3992)) ELT)) (-3793 ((|#1| $) 72 T ELT)) (-3721 (($) 7 T CONST)) (-3796 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3992)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 97 T ELT)) (-3440 (((-85) $) 93 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3611 (($ (-695) |#1|) 119 T ELT)) (-3716 (((-85) $ (-695)) 91 T ELT)) (-2199 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3713 (((-85) $ (-695)) 92 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2303 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2202 (((-584 (-484)) $) 102 T ELT)) (-2203 (((-85) (-484) $) 101 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2198 (($ $ |#1|) 106 (|has| $ (-6 -3993)) ELT)) (-3441 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 100 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-2304 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-3789 (($ $) 68 T ELT)) (-3787 (($ $) 65 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) 69 T ELT)) (-3791 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 117 T ELT)) (-3788 (($ $ $) 67 (|has| $ (-6 -3993)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3993)) ELT)) (-3799 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1063 |#1|) (-113) (-1128)) (T -1063)) -((-3441 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3716 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3439 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))) -(-13 (-1167 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3441 ((-85) $)) (-15 -3440 ((-85) $)) (-15 -3713 ((-85) $ (-695))) (-15 -3716 ((-85) $ (-695))) (-15 -3439 ((-85) $ (-695))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T) ((-1167 |#1|) . T)) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1064 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) |#2|) (T -1064)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3442 (((-633 $) $) 17 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3443 (($) 18 T CONST)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3055 (((-85) $ $) 8 T ELT))) -(((-1065) (-113)) (T -1065)) -((-3443 (*1 *1) (-4 *1 (-1065))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1065))))) -(-13 (-1013) (-10 -8 (-15 -3443 ($) -3949) (-15 -3442 ((-633 $) $)))) -(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3445 (((-633 (-1048)) $) 28 T ELT)) (-3444 (((-1048) $) 16 T ELT)) (-3446 (((-1048) $) 18 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3447 (((-444) $) 14 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 38 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1066) (-13 (-995) (-10 -8 (-15 -3447 ((-444) $)) (-15 -3446 ((-1048) $)) (-15 -3445 ((-633 (-1048)) $)) (-15 -3444 ((-1048) $))))) (T -1066)) -((-3447 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1066)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-633 (-1048))) (-5 *1 (-1066)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) -((-3450 (((-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (-3448 (((-1068 |#1|) (-1068 |#1|)) 13 T ELT)) (-3451 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 20 T ELT)) (-3449 (((-1068 |#1|) (-1068 |#1|)) 15 T ELT))) -(((-1067 |#1|) (-10 -7 (-15 -3448 ((-1068 |#1|) (-1068 |#1|))) (-15 -3449 ((-1068 |#1|) (-1068 |#1|))) (-15 -3450 ((-1068 |#1|) (-1068 |#1|))) (-15 -3451 ((-1068 |#1|) (-1068 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1067)) -((-3451 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1067 *4)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) NIL T ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3794 (($ $) 60 T ELT)) (-2197 (((-1184) $ (-484) (-484)) 93 (|has| $ (-6 -3993)) ELT)) (-3782 (($ $ (-484)) 122 (|has| $ (-6 -3993)) ELT)) (-3439 (((-85) $ (-695)) NIL T ELT)) (-3456 (((-773) $) 46 (|has| |#1| (-1013)) ELT)) (-3455 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3024 ((|#1| $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 109 (|has| $ (-6 -3993)) ELT) (($ $ (-484) $) 135 T ELT)) (-3783 ((|#1| $ |#1|) 119 (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 114 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3993)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3993)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 106 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3793 ((|#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2322 (($ $) 11 T ELT)) (-3796 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3461 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3462 (($ (-584 |#1|)) 124 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3440 (((-85) $) NIL T ELT)) (-2888 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3457 (((-1184) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2321 (((-695) $) 131 T ELT)) (-3030 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-3716 (((-85) $ (-695)) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3713 (((-85) $ (-695)) NIL T ELT)) (-3029 (((-584 |#1|) $) NIL T ELT)) (-3524 (((-85) $) NIL T ELT)) (-2324 (($ $) 107 T ELT)) (-2325 (((-85) $) 10 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2303 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) 90 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3454 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2323 ((|#1| $) 7 T ELT)) (-3798 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3460 (((-2 (|:| |cycle?| (-85)) (|:| -2594 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3453 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3452 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2198 (($ $ |#1|) 85 (|has| $ (-6 -3993)) ELT)) (-3766 (($ $ (-484)) 40 T ELT)) (-3441 (((-85) $) 88 T ELT)) (-2326 (((-85) $) 9 T ELT)) (-2327 (((-85) $) 130 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 25 T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) 14 T ELT)) (-3562 (($) 53 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3028 (((-484) $ $) 57 T ELT)) (-2304 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3459 (($ (-1 $)) 56 T ELT)) (-3630 (((-85) $) 86 T ELT)) (-3789 (($ $) 87 T ELT)) (-3787 (($ $) 110 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 52 T ELT)) (-3969 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 68 T ELT)) (-3458 (($ |#1| $) 108 T ELT)) (-3788 (($ $ $) 112 (|has| $ (-6 -3993)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3993)) ELT)) (-3799 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2890 (($ $) 59 T ELT)) (-3943 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1068 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-10 -8 (-6 -3993) (-15 -3462 ($ (-584 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3461 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3460 ((-2 (|:| |cycle?| (-85)) (|:| -2594 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3459 ($ (-1 $))) (-15 -3458 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3457 ((-1184) (-484) $)) (-15 -3456 ((-773) $)) (-15 -3455 ((-85)))) |%noBranch|) (-15 -3784 ($ $ (-484) $)) (-15 -3454 ($ (-1 |#1|))) (-15 -3454 ($ (-1 |#1| |#1|) |#1|)) (-15 -3453 ($ (-1 (-85) |#1|) $)) (-15 -3452 ($ (-1 (-85) |#1|) $)))) (-1128)) (T -1068)) -((-3462 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3461 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) (-5 *1 (-1068 *4)))) (-3460 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2594 (-695)) (|:| |period| (-695)))) (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-695)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3455 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3784 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3453 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3452 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) -((-3799 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15 T ELT))) -(((-1069 |#1|) (-10 -7 (-15 -3799 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1128)) (T -1069)) -((-3799 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-1128))))) -((-3838 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25 T ELT)) (-3839 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26 T ELT)) (-3955 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16 T ELT))) -(((-1070 |#1| |#2|) (-10 -7 (-15 -3955 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -3838 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -3839 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1128) (-1128)) (T -1070)) -((-3839 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1070 *5 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6))))) -((-3955 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21 T ELT))) -(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -1071)) -((-3955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-1071 *6 *7 *8))))) -((-2567 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3423 (($ $) 42 T ELT)) (-3424 (($ $) NIL T ELT)) (-3414 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3421 (((-85) $ $) 67 T ELT)) (-3420 (((-85) $ $ (-484)) 62 T ELT)) (-3532 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-444)) 11 T ELT)) (-3415 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| (-117) (-757))) ELT)) (-2908 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3785 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3993)) ELT) (((-117) $ (-1145 (-484)) (-117)) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-3412 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-3417 (($ $ (-1145 (-484)) $) 57 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-3403 (($ (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3992)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3993)) ELT)) (-3111 (((-117) $ (-484)) NIL T ELT)) (-3422 (((-85) $ $) 91 T ELT)) (-3416 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-2888 (((-584 (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3611 (($ (-695) (-117)) 14 T ELT)) (-2199 (((-484) $) 36 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3515 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2607 (((-584 (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-2200 (((-484) $) 50 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3418 (((-85) $ $ (-117)) 92 T ELT)) (-3419 (((-695) $ $ (-117)) 88 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3425 (($ $) 45 T ELT)) (-3426 (($ $) NIL T ELT)) (-3413 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3240 (((-1072) $) 46 (|has| (-117) (-1013)) ELT)) (-2303 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3798 (((-117) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2198 (($ $ (-117)) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-2204 (((-584 (-117)) $) NIL T ELT)) (-3400 (((-85) $) 19 T ELT)) (-3562 (($) 16 T ELT)) (-3797 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1145 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-117) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-1013))) ELT)) (-1729 (($ $ $ (-484)) 83 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 24 T ELT)) (-3969 (((-473) $) NIL (|has| (-117) (-554 (-473))) ELT)) (-3527 (($ (-584 (-117))) NIL T ELT)) (-3799 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3943 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3055 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2684 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3954 (((-695) $) 20 (|has| $ (-6 -3992)) ELT))) -(((-1072) (-13 (-1057) (-10 -8 (-15 -3532 ($ (-484))) (-15 -3532 ($ (-179))) (-15 -3532 ($ (-444)))))) (T -1072)) -((-3532 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1072))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-2197 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#1| #1="failed") (-1072) $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#1| #1#) (-1072) $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-1072)) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2231 (((-584 (-1072)) $) NIL T ELT)) (-2232 (((-85) (-1072) $) NIL T ELT)) (-1272 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2202 (((-584 (-1072)) $) NIL T ELT)) (-2203 (((-85) (-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3798 ((|#1| $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-1072)) NIL T ELT) ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1073 |#1|) (-13 (-1106 (-1072) |#1|) (-10 -7 (-6 -3992))) (-1013)) (T -1073)) -NIL -((-3802 (((-1068 |#1|) (-1068 |#1|)) 83 T ELT)) (-3464 (((-3 (-1068 |#1|) #1="failed") (-1068 |#1|)) 39 T ELT)) (-3475 (((-1068 |#1|) (-347 (-484)) (-1068 |#1|)) 131 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3478 (((-1068 |#1|) |#1| (-1068 |#1|)) 135 (|has| |#1| (-311)) ELT)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 97 T ELT)) (-3466 (((-1068 (-484)) (-484)) 63 T ELT)) (-3474 (((-1068 |#1|) (-1068 (-1068 |#1|))) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3801 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 103 T ELT)) (-3935 (((-1068 |#1|) |#1| (-484)) 51 T ELT)) (-3468 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3476 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 133 (|has| |#1| (-311)) ELT)) (-3473 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 115 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3477 (((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|))) 134 (|has| |#1| (-311)) ELT)) (-3806 (((-1068 |#1|) (-1068 |#1|)) 96 T ELT)) (-3807 (((-1068 |#1|) (-1068 |#1|)) 82 T ELT)) (-3800 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 104 T ELT)) (-3809 (((-1068 |#1|) |#1| (-1068 |#1|)) 113 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3465 (((-1068 (-484)) (-484)) 62 T ELT)) (-3467 (((-1068 |#1|) |#1|) 65 T ELT)) (-3803 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 100 T ELT)) (-3470 (((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|)) 72 T ELT)) (-3463 (((-3 (-1068 |#1|) #1#) (-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3804 (((-1068 |#1|) (-1068 |#1|)) 98 T ELT)) (-3765 (((-1068 |#1|) (-1068 |#1|) |#1|) 77 T ELT)) (-3469 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3471 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 78 T ELT)) (-3943 (((-1068 |#1|) |#1|) 73 T ELT)) (-3472 (((-1068 |#1|) (-1068 (-1068 |#1|))) 88 T ELT)) (-3946 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3834 (((-1068 |#1|) (-1068 |#1|)) 21 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23 T ELT)) (-3836 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29 T ELT) (((-1068 |#1|) |#1| (-1068 |#1|)) 26 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27 T ELT))) -(((-1074 |#1|) (-10 -7 (-15 -3836 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3834 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3834 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3463 ((-3 (-1068 |#1|) #1="failed") (-1068 |#1|) (-1068 |#1|))) (-15 -3946 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3464 ((-3 (-1068 |#1|) #1#) (-1068 |#1|))) (-15 -3935 ((-1068 |#1|) |#1| (-484))) (-15 -3465 ((-1068 (-484)) (-484))) (-15 -3466 ((-1068 (-484)) (-484))) (-15 -3467 ((-1068 |#1|) |#1|)) (-15 -3468 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3469 ((-1068 |#1|) (-1068 |#1|))) (-15 -3470 ((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|))) (-15 -3943 ((-1068 |#1|) |#1|)) (-15 -3765 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3471 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3807 ((-1068 |#1|) (-1068 |#1|))) (-15 -3802 ((-1068 |#1|) (-1068 |#1|))) (-15 -3472 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3806 ((-1068 |#1|) (-1068 |#1|))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3804 ((-1068 |#1|) (-1068 |#1|))) (-15 -3803 ((-1068 |#1|) (-1068 |#1|) (-484) (-484))) (-15 -3801 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (-15 -3800 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3473 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3474 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3475 ((-1068 |#1|) (-347 (-484)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3476 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3477 ((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|)))) (-15 -3478 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-962)) (T -1074)) -((-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))) (-3476 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-347 (-484))) (-5 *1 (-1074 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))) (-3809 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3800 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3801 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3803 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-962)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3765 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3470 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3466 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) (-5 *3 (-484)))) (-3465 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) (-5 *3 (-484)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3464 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3946 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3463 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3834 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) -((-3489 (((-1068 |#1|) (-1068 |#1|)) 102 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 59 T ELT)) (-3480 (((-2 (|:| -3487 (-1068 |#1|)) (|:| -3488 (-1068 |#1|))) (-1068 |#1|)) 98 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 99 T ELT)) (-3479 (((-2 (|:| -3635 (-1068 |#1|)) (|:| -3631 (-1068 |#1|))) (-1068 |#1|)) 54 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 55 T ELT)) (-3491 (((-1068 |#1|) (-1068 |#1|)) 104 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3939 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3940 (((-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 105 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 67 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 103 T ELT)) (-3632 (((-1068 |#1|) (-1068 |#1|)) 62 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 100 T ELT)) (-3631 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 113 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 88 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 107 T ELT)) (-3481 (((-1068 |#1|) (-1068 |#1|)) 84 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 117 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 92 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 119 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 94 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 115 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 90 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 109 T ELT)) (-3482 (((-1068 |#1|) (-1068 |#1|)) 86 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 41 T ELT))) -(((-1075 |#1|) (-10 -7 (-15 -3940 ((-1068 |#1|) (-1068 |#1|))) (-15 -3939 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3479 ((-2 (|:| -3635 (-1068 |#1|)) (|:| -3631 (-1068 |#1|))) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3631 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3632 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3480 ((-2 (|:| -3487 (-1068 |#1|)) (|:| -3488 (-1068 |#1|))) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-347 (-484)))) (T -1075)) -((-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-2 (|:| -3487 (-1068 *4)) (|:| -3488 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-2 (|:| -3635 (-1068 *4)) (|:| -3631 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))) -((-3489 (((-1068 |#1|) (-1068 |#1|)) 60 T ELT)) (-3636 (((-1068 |#1|) (-1068 |#1|)) 42 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3491 (((-1068 |#1|) (-1068 |#1|)) 63 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 45 T ELT)) (-3939 (((-1068 |#1|) (-1068 |#1|)) 34 T ELT)) (-3940 (((-1068 |#1|) (-1068 |#1|)) 29 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 64 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 46 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 61 T ELT)) (-3632 (((-1068 |#1|) (-1068 |#1|)) 43 T ELT)) (-3488 (((-1068 |#1|) (-1068 |#1|)) 58 T ELT)) (-3631 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 50 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3481 (((-1068 |#1|) (-1068 |#1|)) 48 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 71 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 53 T ELT)) (-3498 (((-1068 |#1|) (-1068 |#1|)) 72 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 54 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 70 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 52 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 69 T ELT)) (-3482 (((-1068 |#1|) (-1068 |#1|)) 51 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36 T ELT))) -(((-1076 |#1|) (-10 -7 (-15 -3940 ((-1068 |#1|) (-1068 |#1|))) (-15 -3939 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3631 ((-1068 |#1|) (-1068 |#1|))) (-15 -3636 ((-1068 |#1|) (-1068 |#1|))) (-15 -3632 ((-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|))) (-15 -3498 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-347 (-484)))) (T -1076)) -((-3498 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) -((-3499 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3500 ((|#2| |#2| |#1|) 19 (|has| |#1| (-257)) ELT))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -3499 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-257)) (-15 -3500 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1154 |#1|)) (T -1077)) -((-3500 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-870 *3)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1154 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3508 (($ $ (-584 (-695))) 79 T ELT)) (-3885 (($) 33 T ELT)) (-3517 (($ $) 51 T ELT)) (-3748 (((-584 $) $) 60 T ELT)) (-3523 (((-85) $) 19 T ELT)) (-3501 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3502 (($ $) 80 T ELT)) (-3518 (((-695) $) 47 T ELT)) (-3611 (($) 32 T ELT)) (-3511 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3515 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3503 (((-695) $) 87 T ELT)) (-3524 (((-85) $) 15 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3522 (((-85) $) 22 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3504 (((-145) $) 85 T ELT)) (-3507 (((-855 |#2|) $) 81 T ELT)) (-3506 (((-695) $) 82 T ELT)) (-3505 (((-85) $) 84 T ELT)) (-3509 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3516 (($ $) 52 T ELT)) (-3943 (((-773) $) 99 T ELT)) (-3510 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3519 (((-584 $) $) 11 T ELT)) (-3520 (($ $ (-695)) 46 T ELT)) (-3521 (($ $) 43 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3512 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3513 (($ $ (-855 |#2|)) 67 T ELT)) (-3514 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3055 (((-85) $ $) 92 T ELT))) -(((-1078 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3524 ((-85) $)) (-15 -3523 ((-85) $)) (-15 -3522 ((-85) $)) (-15 -3611 ($)) (-15 -3885 ($)) (-15 -3521 ($ $)) (-15 -3520 ($ $ (-695))) (-15 -3519 ((-584 $) $)) (-15 -3518 ((-695) $)) (-15 -3517 ($ $)) (-15 -3516 ($ $)) (-15 -3515 ($ $ $)) (-15 -3515 ($ (-584 $))) (-15 -3748 ((-584 $) $)) (-15 -3514 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3513 ($ $ (-855 |#2|))) (-15 -3512 ($ $ $ (-855 |#2|) (-695))) (-15 -3511 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3514 ($ $ (-584 (-695)) (-695))) (-15 -3511 ($ $ (-584 (-695)) (-695))) (-15 -3514 ((-695) $ (-855 |#2|))) (-15 -3511 ($ $ (-695) (-855 |#2|))) (-15 -3510 ($ $ (-584 (-695)) (-85))) (-15 -3509 ($ $ (-584 (-695)) (-145))) (-15 -3508 ($ $ (-584 (-695)))) (-15 -3507 ((-855 |#2|) $)) (-15 -3506 ((-695) $)) (-15 -3505 ((-85) $)) (-15 -3504 ((-145) $)) (-15 -3503 ((-695) $)) (-15 -3502 ($ $)) (-15 -3501 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1078)) -((-3524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3611 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3885 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3516 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3515 (*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)))) (-3512 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3509 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3502 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3525 ((|#2| $) 11 T ELT)) (-3526 ((|#1| $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3527 (($ |#1| |#2|) 9 T ELT)) (-3943 (((-773) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3527 ($ |#1| |#2|)) (-15 -3526 (|#1| $)) (-15 -3525 (|#2| $)))) (-1013) (-1013)) (T -1079)) -((-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3526 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3528 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1080) (-13 (-995) (-10 -8 (-15 -3528 ((-1048) $))))) (T -1080)) -((-3528 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3768 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3728 (((-1088 |#1| |#2| |#3|) $) 42 T ELT)) (-3725 (((-3 (-1088 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3726 (((-1088 |#1| |#2| |#3|) $) 33 T ELT)) (-3489 (($ $) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 92 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 88 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3620 (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) 120 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 96 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3154 (((-1088 |#1| |#2| |#3|) $) 140 T ELT) (((-1089) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3727 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-1088 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3464 (((-3 $ #1#) $) 54 T ELT)) (-3724 (((-347 (-858 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2993 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3184 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2891 (((-85) $) 28 T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3769 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2997 (((-1088 |#1| |#2| |#3|) $) 44 (|has| |#1| (-311)) ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (((-633 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) ELT)) (-3185 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3774 (($ $ (-831)) NIL T ELT)) (-3812 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) 81 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2279 (((-631 (-1088 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-484) (-1088 |#1| |#2| |#3|)) 36 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) 79 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 80 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3126 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3128 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-484)) 158 T ELT)) (-3463 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) 82 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1088 |#1| |#2| |#3|)) (-584 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 (((-1088 |#1| |#2| |#3|) $) 46 (|has| |#1| (-311)) ELT)) (-3945 (((-484) $) 43 T ELT)) (-3492 (($ $) 122 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 98 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 118 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 94 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 114 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 90 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3969 (((-473) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-473))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1088 |#1| |#2| |#3|)) 30 T ELT) (($ (-1175 |#2|)) 25 T ELT) (($ (-1089)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT) (($ (-347 (-484))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3674 ((|#1| $ (-484)) 77 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 12 T ELT)) (-3129 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 128 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 104 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3493 (($ $) 124 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 100 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 132 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 108 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 134 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 110 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 130 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 106 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 126 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 102 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3380 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 49 (|has| |#1| (-311)) ELT) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 50 (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1088 |#1| |#2| |#3|)) 48 (|has| |#1| (-311)) ELT) (($ (-1088 |#1| |#2| |#3|) $) 47 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1081 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1088 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3943 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1081)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3529 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1089)) 28 T ELT))) -(((-1082 |#1| |#2|) (-10 -7 (-15 -3529 (|#2| |#2| (-1089))) (-15 -3529 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-361 |#1|) (-133) (-27) (-1114))) (T -1082)) -((-3529 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2)))) (-3529 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114)))))) -((-3529 (((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1004 (-347 (-858 |#1|)))) 31 T ELT) (((-347 (-858 |#1|)) (-858 |#1|) (-1004 (-858 |#1|))) 44 T ELT) (((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1089)) 33 T ELT) (((-347 (-858 |#1|)) (-858 |#1|) (-1089)) 36 T ELT))) -(((-1083 |#1|) (-10 -7 (-15 -3529 ((-347 (-858 |#1|)) (-858 |#1|) (-1089))) (-15 -3529 ((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1089))) (-15 -3529 ((-347 (-858 |#1|)) (-858 |#1|) (-1004 (-858 |#1|)))) (-15 -3529 ((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1004 (-347 (-858 |#1|)))))) (-13 (-495) (-951 (-484)))) (T -1083)) -((-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 *3 (-264 *5))) (-5 *1 (-1083 *5)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 *3)) (-5 *1 (-1083 *5)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 (-347 (-858 *5)) (-264 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-347 (-858 *5))))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-858 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-858 *5))))) -((-2567 (((-85) $ $) 172 T ELT)) (-3186 (((-85) $) 44 T ELT)) (-3764 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3762 (($ (-1084 |#1|)) NIL T ELT)) (-3082 (((-1084 $) $ (-994)) 83 T ELT) (((-1084 |#1|) $) 72 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3752 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 97 (|has| |#1| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) 117 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3758 (($ $ (-695)) 62 T ELT)) (-3757 (($ $ (-695)) 64 T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3154 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3753 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) 81 T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3756 (($ $ $) 133 T ELT)) (-3750 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3749 (((-2 (|:| -3951 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3500 (($ $) 167 (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) 70 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3530 (((-773) $ (-773)) 150 T ELT)) (-3769 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2409 (((-85) $) 49 T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3083 (($ (-1084 |#1|) (-994)) 74 T ELT) (($ (-1084 $) (-994)) 91 T ELT)) (-3774 (($ $ (-695)) 52 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) 89 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 155 T ELT)) (-2819 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3763 (((-1084 |#1|) $) NIL T ELT)) (-3081 (((-3 (-994) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) 77 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) 61 T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-994)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3809 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (|has| |#1| (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 51 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 105 (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 169 (|has| |#1| (-389)) ELT)) (-3735 (($ $ (-695) |#1| $) 125 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 103 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 102 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3761 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 173 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3945 (((-695) $) 79 T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) 164 (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3751 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3943 (((-773) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 20 T CONST)) (-2668 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 122 T ELT)) (-3946 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1084 |#1|) (-13 (-1154 |#1|) (-10 -8 (-15 -3530 ((-773) $ (-773))) (-15 -3735 ($ $ (-695) |#1| $)))) (-962)) (T -1084)) -((-3530 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1084 *3)) (-4 *3 (-962)))) (-3735 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1084 *3)) (-4 *3 (-962))))) -((-3955 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 13 T ELT))) -(((-1085 |#1| |#2|) (-10 -7 (-15 -3955 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-962) (-962)) (T -1085)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6))))) -((-3968 (((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))) 51 T ELT)) (-3729 (((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))) 52 T ELT))) -(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 ((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|)))) (-15 -3968 ((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))))) (-718) (-757) (-389) (-862 |#3| |#1| |#2|)) (T -1086)) -((-3968 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-347 *7))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-347 *7)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3154 (((-1081 |#1| |#2| |#3|) $) NIL T ELT) (((-1088 |#1| |#2| |#3|) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3778 (((-347 (-484)) $) 59 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3779 (($ (-347 (-484)) (-1081 |#1| |#2| |#3|)) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-347 (-484))) 20 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3777 (((-1081 |#1| |#2| |#3|) $) 41 T ELT)) (-3775 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3776 (((-1081 |#1| |#2| |#3|) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) 39 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3945 (((-347 (-484)) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1081 |#1| |#2| |#3|)) 30 T ELT) (($ (-1088 |#1| |#2| |#3|)) 31 T ELT) (($ (-1175 |#2|)) 26 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 22 T CONST)) (-2665 (($) 16 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1087 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1081 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-951 (-1088 |#1| |#2| |#3|)) (-556 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1087)) -((-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 129 T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 119 T ELT)) (-3808 (((-1147 |#2| |#1|) $ (-695)) 69 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3489 (($ $) 173 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1068 |#1|)) 113 T ELT)) (-3491 (($ $) 177 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 25 T ELT)) (-3813 (($ $) 28 T ELT)) (-3811 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2891 (((-85) $) 124 T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) NIL T ELT)) (-3812 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) 13 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) 135 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3809 (($ $) 133 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 134 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3766 (($ $ (-695)) 15 T ELT)) (-3463 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3940 (($ $) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3797 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1025)) ELT)) (-3755 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) 31 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-3492 (($ $) 179 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 175 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 55 T ELT) (($ (-1175 |#2|)) 36 T ELT)) (-3814 (((-1068 |#1|) $) 101 T ELT)) (-3674 ((|#1| $ (-695)) 121 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 185 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 181 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 189 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 191 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 187 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 183 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 17 T CONST)) (-2665 (($) 20 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3836 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-311)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1088 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3943 ($ (-1147 |#2| |#1|))) (-15 -3808 ((-1147 |#2| |#1|) $ (-695))) (-15 -3943 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1088)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3534 (($ $ (-584 (-773))) 48 T ELT)) (-3535 (($ $ (-584 (-773))) 46 T ELT)) (-3532 (((-1072) $) 88 T ELT)) (-3537 (((-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3538 (((-85) $) 86 T ELT)) (-3536 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3721 (($) 151 T CONST)) (-3155 (((-3 (-444) "failed") $) 155 T ELT)) (-3154 (((-444) $) NIL T ELT)) (-3540 (((-1184)) 123 T ELT)) (-2795 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 55 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 62 T ELT)) (-3611 (($) 109 T ELT) (($ $) 118 T ELT)) (-3539 (($ $) 87 T ELT)) (-2530 (($ $ $) NIL T ELT)) (-2856 (($ $ $) NIL T ELT)) (-3531 (((-584 $) $) 124 T ELT)) (-3240 (((-1072) $) 101 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3797 (($ $ (-584 (-773))) 47 T ELT)) (-3969 (((-473) $) 33 T ELT) (((-1089) $) 34 T ELT) (((-801 (-484)) $) 66 T ELT) (((-801 (-327)) $) 64 T ELT)) (-3943 (((-773) $) 41 T ELT) (($ (-1072)) 35 T ELT) (($ (-444)) 153 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3533 (($ $ (-584 (-773))) 49 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 37 T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) 38 T ELT))) -(((-1089) (-13 (-757) (-554 (-473)) (-554 (-1089)) (-556 (-1072)) (-951 (-444)) (-554 (-801 (-484))) (-554 (-801 (-327))) (-797 (-484)) (-797 (-327)) (-10 -8 (-15 -3611 ($)) (-15 -3611 ($ $)) (-15 -3540 ((-1184))) (-15 -3539 ($ $)) (-15 -3538 ((-85) $)) (-15 -3537 ((-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3536 ($ $ (-584 (-584 (-773))))) (-15 -3536 ($ $ (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3535 ($ $ (-584 (-773)))) (-15 -3534 ($ $ (-584 (-773)))) (-15 -3533 ($ $ (-584 (-773)))) (-15 -3797 ($ $ (-584 (-773)))) (-15 -3532 ((-1072) $)) (-15 -3531 ((-584 $) $)) (-15 -3721 ($) -3949)))) (T -1089)) -((-3611 (*1 *1) (-5 *1 (-1089))) (-3611 (*1 *1 *1) (-5 *1 (-1089))) (-3540 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))) (-3539 (*1 *1 *1) (-5 *1 (-1089))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1089)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1089)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1089)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1089)))) (-3721 (*1 *1) (-5 *1 (-1089)))) -((-3541 (((-1178 |#1|) |#1| (-831)) 18 T ELT) (((-1178 |#1|) (-584 |#1|)) 25 T ELT))) -(((-1090 |#1|) (-10 -7 (-15 -3541 ((-1178 |#1|) (-584 |#1|))) (-15 -3541 ((-1178 |#1|) |#1| (-831)))) (-962)) (T -1090)) -((-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-962)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3154 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| (-885) $) NIL T ELT)) (-2409 (((-85) $) 18 T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-885)) NIL T ELT)) (-2819 (((-885) $) NIL T ELT)) (-1623 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3735 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-495))) ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3945 (((-885) $) NIL T ELT)) (-2816 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-885)) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2659 (($) 13 T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1091 |#1|) (-13 (-276 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-885) (-104)) (-15 -3735 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|))) (-962)) (T -1091)) -((-3735 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) (-4 *3 (-962))))) -((-3542 (((-1093) (-1089) $) 26 T ELT)) (-3552 (($) 30 T ELT)) (-3544 (((-3 (|:| |fst| (-374)) (|:| -3907 #1="void")) (-1089) $) 23 T ELT)) (-3546 (((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3907 #1#)) $) 42 T ELT) (((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) 43 T ELT) (((-1184) (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) 44 T ELT)) (-3554 (((-1184) (-1089)) 59 T ELT)) (-3545 (((-1184) (-1089) $) 56 T ELT) (((-1184) (-1089)) 57 T ELT) (((-1184)) 58 T ELT)) (-3550 (((-1184) (-1089)) 38 T ELT)) (-3548 (((-1089)) 37 T ELT)) (-3562 (($) 35 T ELT)) (-3561 (((-376) (-1089) (-376) (-1089) $) 46 T ELT) (((-376) (-584 (-1089)) (-376) (-1089) $) 50 T ELT) (((-376) (-1089) (-376)) 47 T ELT) (((-376) (-1089) (-376) (-1089)) 51 T ELT)) (-3549 (((-1089)) 36 T ELT)) (-3943 (((-773) $) 29 T ELT)) (-3551 (((-1184)) 31 T ELT) (((-1184) (-1089)) 34 T ELT)) (-3543 (((-584 (-1089)) (-1089) $) 25 T ELT)) (-3547 (((-1184) (-1089) (-584 (-1089)) $) 39 T ELT) (((-1184) (-1089) (-584 (-1089))) 40 T ELT) (((-1184) (-584 (-1089))) 41 T ELT))) -(((-1092) (-13 (-553 (-773)) (-10 -8 (-15 -3552 ($)) (-15 -3551 ((-1184))) (-15 -3551 ((-1184) (-1089))) (-15 -3561 ((-376) (-1089) (-376) (-1089) $)) (-15 -3561 ((-376) (-584 (-1089)) (-376) (-1089) $)) (-15 -3561 ((-376) (-1089) (-376))) (-15 -3561 ((-376) (-1089) (-376) (-1089))) (-15 -3550 ((-1184) (-1089))) (-15 -3549 ((-1089))) (-15 -3548 ((-1089))) (-15 -3547 ((-1184) (-1089) (-584 (-1089)) $)) (-15 -3547 ((-1184) (-1089) (-584 (-1089)))) (-15 -3547 ((-1184) (-584 (-1089)))) (-15 -3546 ((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3907 #1="void")) $)) (-15 -3546 ((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3907 #1#)))) (-15 -3546 ((-1184) (-3 (|:| |fst| (-374)) (|:| -3907 #1#)))) (-15 -3545 ((-1184) (-1089) $)) (-15 -3545 ((-1184) (-1089))) (-15 -3545 ((-1184))) (-15 -3554 ((-1184) (-1089))) (-15 -3562 ($)) (-15 -3544 ((-3 (|:| |fst| (-374)) (|:| -3907 #1#)) (-1089) $)) (-15 -3543 ((-584 (-1089)) (-1089) $)) (-15 -3542 ((-1093) (-1089) $))))) (T -1092)) -((-3552 (*1 *1) (-5 *1 (-1092))) (-3551 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3561 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3561 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) (-3561 (*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3561 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3549 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3548 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3907 #1="void"))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3562 (*1 *1) (-5 *1 (-1092))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *1 (-1092)))) (-3543 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) -((-3556 (((-584 (-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) $) 66 T ELT)) (-3558 (((-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))) (-374) $) 47 T ELT)) (-3553 (($ (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| (-376))))) 17 T ELT)) (-3554 (((-1184) $) 73 T ELT)) (-3559 (((-584 (-1089)) $) 22 T ELT)) (-3555 (((-1015) $) 60 T ELT)) (-3560 (((-376) (-1089) $) 27 T ELT)) (-3557 (((-584 (-1089)) $) 30 T ELT)) (-3562 (($) 19 T ELT)) (-3561 (((-376) (-584 (-1089)) (-376) $) 25 T ELT) (((-376) (-1089) (-376) $) 24 T ELT)) (-3943 (((-773) $) 12 T ELT) (((-1101 (-1089) (-376)) $) 13 T ELT))) -(((-1093) (-13 (-553 (-773)) (-10 -8 (-15 -3943 ((-1101 (-1089) (-376)) $)) (-15 -3562 ($)) (-15 -3561 ((-376) (-584 (-1089)) (-376) $)) (-15 -3561 ((-376) (-1089) (-376) $)) (-15 -3560 ((-376) (-1089) $)) (-15 -3559 ((-584 (-1089)) $)) (-15 -3558 ((-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))) (-374) $)) (-15 -3557 ((-584 (-1089)) $)) (-15 -3556 ((-584 (-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) $)) (-15 -3555 ((-1015) $)) (-15 -3554 ((-1184) $)) (-15 -3553 ($ (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| (-376))))))))) (T -1093)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-376))) (-5 *1 (-1093)))) (-3562 (*1 *1) (-5 *1 (-1093))) (-3561 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *1 (-1093)))) (-3561 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1093)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-376)) (-5 *1 (-1093)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *3 (-374)) (-5 *2 (-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) (-5 *1 (-1093)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3539 (-1089)) (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))))) (-5 *1 (-1093)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| (-376))))) (-5 *1 (-1093))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3155 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-444) #1#) $) 43 T ELT) (((-3 (-1072) #1#) $) 47 T ELT)) (-3154 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-444) $) 40 T ELT) (((-1072) $) 48 T ELT)) (-3567 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3566 (((-3 (-484) (-179) (-444) (-1072) $) $) 56 T ELT)) (-3565 (((-584 $) $) 58 T ELT)) (-3969 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3564 (((-85) $) 57 T ELT)) (-3943 (((-773) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-444)) 38 T ELT) (($ (-1072)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-444) $) 41 T ELT) (((-1072) $) 49 T ELT)) (-3563 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-444))) 19 T ELT) (((-85) $ (|[\|\|]| (-1072))) 16 T ELT)) (-3568 (($ (-444) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3569 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-444) $) 39 T ELT) (((-1072) $) 45 T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-1094) (-13 (-1174) (-1013) (-951 (-484)) (-951 (-179)) (-951 (-444)) (-951 (-1072)) (-553 (-473)) (-10 -8 (-15 -3969 ((-1015) $)) (-15 -3969 ($ (-1015))) (-15 -3943 ((-484) $)) (-15 -3569 ((-484) $)) (-15 -3943 ((-179) $)) (-15 -3569 ((-179) $)) (-15 -3943 ((-444) $)) (-15 -3569 ((-444) $)) (-15 -3943 ((-1072) $)) (-15 -3569 ((-1072) $)) (-15 -3568 ($ (-444) (-584 $))) (-15 -3568 ($ $ (-584 $))) (-15 -3567 ((-85) $)) (-15 -3566 ((-3 (-484) (-179) (-444) (-1072) $) $)) (-15 -3565 ((-584 $) $)) (-15 -3564 ((-85) $)) (-15 -3563 ((-85) $ (|[\|\|]| (-484)))) (-15 -3563 ((-85) $ (|[\|\|]| (-179)))) (-15 -3563 ((-85) $ (|[\|\|]| (-444)))) (-15 -3563 ((-85) $ (|[\|\|]| (-1072))))))) (T -1094)) -((-3969 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-1094))) (-5 *1 (-1094)))) (-3568 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-444) (-1072) (-1094))) (-5 *1 (-1094)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3134 (((-695)) 21 T ELT)) (-3721 (($) 10 T CONST)) (-2993 (($) 25 T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2009 (((-831) $) 23 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) 22 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT))) -(((-1095 |#1|) (-13 (-753) (-10 -8 (-15 -3721 ($) -3949))) (-831)) (T -1095)) -((-3721 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-831))))) -((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) 24 T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) 18 T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2856 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3722 (($ $ $) 20 T ELT)) (-3723 (($ $ $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 22 T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 21 T ELT))) -(((-1096 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949))) (-831)) (T -1096)) -((-3723 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) (-3722 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) (-3721 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831))))) -((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 7 T ELT))) -(((-1097) (-1013)) (T -1097)) -NIL -((-3571 (((-584 (-584 (-858 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 69 T ELT)) (-3570 (((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|)))) 81 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|))) 77 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089)) 82 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089)) 76 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089))) 109 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 106 T ELT))) -(((-1098 |#1|) (-10 -7 (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089)))) (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))))) (-15 -3570 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3570 ((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089))) (-15 -3570 ((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3570 ((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)))) (-15 -3570 ((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))))) (-15 -3571 ((-584 (-584 (-858 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))))) (-495)) (T -1098)) -((-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1098 *5)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-248 (-347 (-858 *4)))))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-347 (-858 *4))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-248 (-347 (-858 *5)))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-347 (-858 *5))))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-584 (-248 (-347 (-858 *4))))))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-584 (-248 (-347 (-858 *5))))))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5))))) -((-3576 (((-1072)) 7 T ELT)) (-3573 (((-1072)) 11 T CONST)) (-3572 (((-1184) (-1072)) 13 T ELT)) (-3575 (((-1072)) 8 T CONST)) (-3574 (((-103)) 10 T CONST))) -(((-1099) (-13 (-1128) (-10 -7 (-15 -3576 ((-1072))) (-15 -3575 ((-1072)) -3949) (-15 -3574 ((-103)) -3949) (-15 -3573 ((-1072)) -3949) (-15 -3572 ((-1184) (-1072)))))) (T -1099)) -((-3576 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3575 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3574 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))) (-3573 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099))))) -((-3580 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3583 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3584 (((-1102 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3586 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3589 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3588 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3585 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3587 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3579 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3578 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3577 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3581 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3582 (((-584 (-584 |#1|)) (-1102 (-584 |#1|))) 60 T ELT))) -(((-1100 |#1|) (-10 -7 (-15 -3577 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3578 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3579 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3580 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3581 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3582 ((-584 (-584 |#1|)) (-1102 (-584 |#1|)))) (-15 -3583 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3584 ((-1102 (-584 |#1|)) (-584 |#1|))) (-15 -3585 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3586 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3587 ((-584 |#1|) (-584 |#1|))) (-15 -3588 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3589 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1100)) -((-3589 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3588 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-584 *5)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1100 *3)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-584 *4)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1100 *3)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1102 (-584 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-584 *4)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 *4))))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1102 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-757)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1100 *4)))) (-3579 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1100 *4)))) (-3578 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1100 *5)))) (-3577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-584 *4))))) -((-2567 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3596 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2197 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2231 (((-584 |#1|) $) NIL T ELT)) (-2232 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2202 (((-584 |#1|) $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL T ELT)) (-3241 (((-1033) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2198 (($ $ |#2|) NIL (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3943 (((-773) $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1101 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3992))) (-1013) (-1013)) (T -1101)) -NIL -((-3590 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3591 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3943 (((-773) $) 33 T ELT))) -(((-1102 |#1|) (-10 -8 (-15 -3590 ($ (-584 (-584 |#1|)))) (-15 -3591 ((-584 (-584 |#1|)) $)) (-15 -3943 ((-773) $))) (-1013)) (T -1102)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3592 (($ |#1| (-55)) 11 T ELT)) (-3539 ((|#1| $) 13 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2632 (((-85) $ |#1|) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2520 (((-55) $) 15 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1103 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3592 ($ |#1| (-55))))) (-1013)) (T -1103)) -((-3592 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013))))) -((-3593 ((|#1| (-584 |#1|)) 46 T ELT)) (-3595 ((|#1| |#1| (-484)) 24 T ELT)) (-3594 (((-1084 |#1|) |#1| (-831)) 20 T ELT))) -(((-1104 |#1|) (-10 -7 (-15 -3593 (|#1| (-584 |#1|))) (-15 -3594 ((-1084 |#1|) |#1| (-831))) (-15 -3595 (|#1| |#1| (-484)))) (-311)) (T -1104)) -((-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-311)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-311)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-311))))) -((-3596 (($) 10 T ELT) (($ (-584 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3402 (($ (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-584 |#3|) $) 41 T ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1272 (((-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3606 (($ (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2202 (((-584 |#2|) $) 19 T ELT)) (-2203 (((-85) |#2| $) 65 T ELT)) (-1352 (((-3 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1273 (((-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2204 (((-584 |#3|) $) 43 T ELT)) (-3797 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 79 T ELT)) (-3943 (((-773) $) 27 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3055 (((-85) $ $) 51 T ELT))) -(((-1105 |#1| |#2| |#3|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3943 ((-773) |#1|)) (-15 -3955 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3596 (|#1| (-584 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))))) (-15 -3596 (|#1|)) (-15 -3955 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#3|) |#1|)) (-15 -2888 ((-584 |#3|) |#1|)) (-15 -1944 ((-695) |#3| |#1|)) (-15 -3797 (|#3| |#1| |#2| |#3|)) (-15 -3797 (|#3| |#1| |#2|)) (-15 -2204 ((-584 |#3|) |#1|)) (-15 -2203 ((-85) |#2| |#1|)) (-15 -2202 ((-584 |#2|) |#1|)) (-15 -3402 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3402 (|#1| (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3402 (|#1| (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1352 ((-3 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1272 ((-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3606 (|#1| (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1273 ((-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1944 ((-695) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2888 ((-584 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1944 ((-695) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-85) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 (|#1| (-1 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3955 (|#1| (-1 (-2 (|:| -3857 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3857 |#2|) (|:| |entry| |#3|))) |#1|))) (-1106 |#2| |#3|) (-1013) (-1013)) (T -1105)) -NIL -((-2567 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3596 (($) 77 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2197 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3992)) ELT)) (-3707 (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3992)) ELT)) (-2230 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3721 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT)) (-3402 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3992)) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3992)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3403 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3992)) ELT)) (-3839 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#2| $ |#1|) 93 T ELT)) (-2888 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) 84 (|has| $ (-6 -3992)) ELT)) (-2199 ((|#1| $) 101 (|has| |#1| (-757)) ELT)) (-2607 (((-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3992)) ELT) (((-584 |#2|) $) 85 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 ((|#1| $) 100 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3993)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3240 (((-1072) $) 22 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2231 (((-584 |#1|) $) 67 T ELT)) (-2232 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3606 (($ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2202 (((-584 |#1|) $) 98 T ELT)) (-2203 (((-85) |#1| $) 97 T ELT)) (-3241 (((-1033) $) 21 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3798 ((|#2| $) 102 (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2198 (($ $ |#2|) 103 (|has| $ (-6 -3993)) ELT)) (-1273 (((-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3992)) (|has| |#2| (-1013))) ELT)) (-2204 (((-584 |#2|) $) 96 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 63 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3527 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3943 (((-773) $) 17 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3992)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1106 |#1| |#2|) (-113) (-1013) (-1013)) (T -1106)) -((-3785 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-3596 (*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3857 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) (-3955 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(-13 (-550 |t#1| |t#2|) (-539 |t#1| |t#2|) (-10 -8 (-15 -3785 (|t#2| $ |t#1| |t#2|)) (-15 -3596 ($)) (-15 -3596 ($ (-584 (-2 (|:| -3857 |t#1|) (|:| |entry| |t#2|))))) (-15 -3955 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-426 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-539 |#1| |#2|) . T) ((-453 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3857 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013))) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3857 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1128) . T)) -((-3602 (((-85)) 29 T ELT)) (-3599 (((-1184) (-1072)) 31 T ELT)) (-3603 (((-85)) 41 T ELT)) (-3600 (((-1184)) 39 T ELT)) (-3598 (((-1184) (-1072) (-1072)) 30 T ELT)) (-3604 (((-85)) 42 T ELT)) (-3606 (((-1184) |#1| |#2|) 53 T ELT)) (-3597 (((-1184)) 26 T ELT)) (-3605 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3601 (((-1184)) 40 T ELT))) -(((-1107 |#1| |#2|) (-10 -7 (-15 -3597 ((-1184))) (-15 -3598 ((-1184) (-1072) (-1072))) (-15 -3599 ((-1184) (-1072))) (-15 -3600 ((-1184))) (-15 -3601 ((-1184))) (-15 -3602 ((-85))) (-15 -3603 ((-85))) (-15 -3604 ((-85))) (-15 -3605 ((-3 |#2| "failed") |#1|)) (-15 -3606 ((-1184) |#1| |#2|))) (-1013) (-1013)) (T -1107)) -((-3606 (*1 *2 *3 *4) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3605 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))) (-3604 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3603 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3602 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3601 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3600 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3598 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3597 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3612 (((-584 (-1072)) $) 37 T ELT)) (-3608 (((-584 (-1072)) $ (-584 (-1072))) 40 T ELT)) (-3607 (((-584 (-1072)) $ (-584 (-1072))) 39 T ELT)) (-3609 (((-584 (-1072)) $ (-584 (-1072))) 41 T ELT)) (-3610 (((-584 (-1072)) $) 36 T ELT)) (-3611 (($) 26 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3613 (((-584 (-1072)) $) 38 T ELT)) (-3614 (((-1184) $ (-484)) 33 T ELT) (((-1184) $) 34 T ELT)) (-3969 (($ (-773) (-484)) 31 T ELT) (($ (-773) (-484) (-773)) NIL T ELT)) (-3943 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1108) (-13 (-1013) (-556 (-773)) (-10 -8 (-15 -3969 ($ (-773) (-484))) (-15 -3969 ($ (-773) (-484) (-773))) (-15 -3614 ((-1184) $ (-484))) (-15 -3614 ((-1184) $)) (-15 -3613 ((-584 (-1072)) $)) (-15 -3612 ((-584 (-1072)) $)) (-15 -3611 ($)) (-15 -3610 ((-584 (-1072)) $)) (-15 -3609 ((-584 (-1072)) $ (-584 (-1072)))) (-15 -3608 ((-584 (-1072)) $ (-584 (-1072)))) (-15 -3607 ((-584 (-1072)) $ (-584 (-1072))))))) (T -1108)) -((-3969 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3969 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3614 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3611 (*1 *1) (-5 *1 (-1108))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3609 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3608 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3607 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -((-3943 (((-1108) |#1|) 11 T ELT))) -(((-1109 |#1|) (-10 -7 (-15 -3943 ((-1108) |#1|))) (-1013)) (T -1109)) -((-3943 (*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3619 (((-1072) $ (-1072)) 21 T ELT) (((-1072) $) 20 T ELT)) (-1695 (((-1072) $ (-1072)) 19 T ELT)) (-1699 (($ $ (-1072)) NIL T ELT)) (-3617 (((-3 (-1072) #1="failed") $) 11 T ELT)) (-3618 (((-1072) $) 8 T ELT)) (-3616 (((-3 (-1072) #1#) $) 12 T ELT)) (-1696 (((-1072) $) 9 T ELT)) (-1700 (($ (-335)) NIL T ELT) (($ (-335) (-1072)) NIL T ELT)) (-3539 (((-335) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-1697 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3615 (((-85) $) 25 T ELT)) (-3943 (((-773) $) NIL T ELT)) (-1698 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1110) (-13 (-313 (-335) (-1072)) (-10 -8 (-15 -3619 ((-1072) $ (-1072))) (-15 -3619 ((-1072) $)) (-15 -3618 ((-1072) $)) (-15 -3617 ((-3 (-1072) #1="failed") $)) (-15 -3616 ((-3 (-1072) #1#) $)) (-15 -3615 ((-85) $))))) (T -1110)) -((-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110))))) -((-3620 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3621 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3622 (((-484) (-1072)) 33 T ELT))) -(((-1111 |#1|) (-10 -7 (-15 -3620 ((-3 (-484) #1="failed") |#1|)) (-15 -3621 ((-3 (-484) #1#) |#1|)) (-15 -3622 ((-484) (-1072)))) (-962)) (T -1111)) -((-3622 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-962)))) (-3621 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962)))) (-3620 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962))))) -((-3623 (((-1046 (-179))) 9 T ELT))) -(((-1112) (-10 -7 (-15 -3623 ((-1046 (-179)))))) (T -1112)) -((-3623 (*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112))))) -((-3624 (($) 12 T ELT)) (-3495 (($ $) 36 T ELT)) (-3493 (($ $) 34 T ELT)) (-3481 (($ $) 26 T ELT)) (-3497 (($ $) 18 T ELT)) (-3498 (($ $) 16 T ELT)) (-3496 (($ $) 20 T ELT)) (-3484 (($ $) 31 T ELT)) (-3494 (($ $) 35 T ELT)) (-3482 (($ $) 30 T ELT))) -(((-1113 |#1|) (-10 -7 (-15 -3624 (|#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3482 (|#1| |#1|))) (-1114)) (T -1113)) -NIL -((-3489 (($ $) 26 T ELT)) (-3636 (($ $) 11 T ELT)) (-3487 (($ $) 27 T ELT)) (-3635 (($ $) 10 T ELT)) (-3491 (($ $) 28 T ELT)) (-3634 (($ $) 9 T ELT)) (-3624 (($) 16 T ELT)) (-3939 (($ $) 19 T ELT)) (-3940 (($ $) 18 T ELT)) (-3492 (($ $) 29 T ELT)) (-3633 (($ $) 8 T ELT)) (-3490 (($ $) 30 T ELT)) (-3632 (($ $) 7 T ELT)) (-3488 (($ $) 31 T ELT)) (-3631 (($ $) 6 T ELT)) (-3495 (($ $) 20 T ELT)) (-3483 (($ $) 32 T ELT)) (-3493 (($ $) 21 T ELT)) (-3481 (($ $) 33 T ELT)) (-3497 (($ $) 22 T ELT)) (-3485 (($ $) 34 T ELT)) (-3498 (($ $) 23 T ELT)) (-3486 (($ $) 35 T ELT)) (-3496 (($ $) 24 T ELT)) (-3484 (($ $) 36 T ELT)) (-3494 (($ $) 25 T ELT)) (-3482 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1114) (-113)) (T -1114)) -((-3624 (*1 *1) (-4 *1 (-1114)))) -(-13 (-1117) (-66) (-430) (-35) (-239) (-10 -8 (-15 -3624 ($)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-1117) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 19 T ELT)) (-3629 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3024 ((|#1| $ |#1|) 14 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 13 (|has| $ (-6 -3993)) ELT)) (-3721 (($) NIL T CONST)) (-2888 (((-584 |#1|) $) 70 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 59 T ELT)) (-3026 (((-85) $ $) 50 (|has| |#1| (-1013)) ELT)) (-2607 (((-584 |#1|) $) 71 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3029 (((-584 |#1|) $) 55 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 102 T ELT)) (-3400 (((-85) $) 9 T ELT)) (-3562 (($) 10 T ELT)) (-3797 ((|#1| $ #1#) NIL T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3625 (((-584 $) $) 84 T ELT)) (-3626 (((-85) $ $) 105 T ELT)) (-3627 (((-584 $) $) 100 T ELT)) (-3628 (($ $) 101 T ELT)) (-3630 (((-85) $) 77 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 17 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3397 (($ $) 83 T ELT)) (-3943 (((-773) $) 86 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 12 T ELT)) (-3027 (((-85) $ $) 39 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 81 (|has| $ (-6 -3992)) ELT))) -(((-1115 |#1|) (-13 (-924 |#1|) (-10 -8 (-6 -3992) (-6 -3993) (-15 -3629 ($ |#1| (-584 $))) (-15 -3629 ($ (-584 |#1|))) (-15 -3629 ($ |#1|)) (-15 -3630 ((-85) $)) (-15 -3628 ($ $)) (-15 -3627 ((-584 $) $)) (-15 -3626 ((-85) $ $)) (-15 -3625 ((-584 $) $)))) (-1013)) (T -1115)) -((-3630 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3629 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) (-3629 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3626 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) -((-3636 (($ $) 15 T ELT)) (-3634 (($ $) 12 T ELT)) (-3633 (($ $) 10 T ELT)) (-3632 (($ $) 17 T ELT))) -(((-1116 |#1|) (-10 -7 (-15 -3632 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3636 (|#1| |#1|))) (-1117)) (T -1116)) -NIL -((-3636 (($ $) 11 T ELT)) (-3635 (($ $) 10 T ELT)) (-3634 (($ $) 9 T ELT)) (-3633 (($ $) 8 T ELT)) (-3632 (($ $) 7 T ELT)) (-3631 (($ $) 6 T ELT))) -(((-1117) (-113)) (T -1117)) -((-3636 (*1 *1 *1) (-4 *1 (-1117))) (-3635 (*1 *1 *1) (-4 *1 (-1117))) (-3634 (*1 *1 *1) (-4 *1 (-1117))) (-3633 (*1 *1 *1) (-4 *1 (-1117))) (-3632 (*1 *1 *1) (-4 *1 (-1117))) (-3631 (*1 *1 *1) (-4 *1 (-1117)))) -(-13 (-10 -8 (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3633 ($ $)) (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)))) -((-3639 ((|#2| |#2|) 95 T ELT)) (-3642 (((-85) |#2|) 29 T ELT)) (-3640 ((|#2| |#2|) 33 T ELT)) (-3641 ((|#2| |#2|) 35 T ELT)) (-3637 ((|#2| |#2| (-1089)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3643 (((-142 |#2|) |#2|) 31 T ELT)) (-3638 ((|#2| |#2| (-1089)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1118 |#1| |#2|) (-10 -7 (-15 -3637 (|#2| |#2|)) (-15 -3637 (|#2| |#2| (-1089))) (-15 -3638 (|#2| |#2|)) (-15 -3638 (|#2| |#2| (-1089))) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 ((-85) |#2|)) (-15 -3643 ((-142 |#2|) |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -1118)) -((-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3638 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3)))))) -((-3644 ((|#4| |#4| |#1|) 31 T ELT)) (-3645 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3644 (|#4| |#4| |#1|)) (-15 -3645 (|#4| |#4| |#1|))) (-495) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -1119)) -((-3645 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3644 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -((-3663 ((|#2| |#2|) 148 T ELT)) (-3665 ((|#2| |#2|) 145 T ELT)) (-3662 ((|#2| |#2|) 136 T ELT)) (-3664 ((|#2| |#2|) 133 T ELT)) (-3661 ((|#2| |#2|) 141 T ELT)) (-3660 ((|#2| |#2|) 129 T ELT)) (-3649 ((|#2| |#2|) 44 T ELT)) (-3648 ((|#2| |#2|) 105 T ELT)) (-3646 ((|#2| |#2|) 88 T ELT)) (-3659 ((|#2| |#2|) 143 T ELT)) (-3658 ((|#2| |#2|) 131 T ELT)) (-3671 ((|#2| |#2|) 153 T ELT)) (-3669 ((|#2| |#2|) 151 T ELT)) (-3670 ((|#2| |#2|) 152 T ELT)) (-3668 ((|#2| |#2|) 150 T ELT)) (-3647 ((|#2| |#2|) 163 T ELT)) (-3672 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3650 ((|#2| |#2|) 89 T ELT)) (-3651 ((|#2| |#2|) 154 T ELT)) (-3960 ((|#2| |#2|) 155 T ELT)) (-3657 ((|#2| |#2|) 142 T ELT)) (-3656 ((|#2| |#2|) 130 T ELT)) (-3655 ((|#2| |#2|) 149 T ELT)) (-3667 ((|#2| |#2|) 147 T ELT)) (-3654 ((|#2| |#2|) 137 T ELT)) (-3666 ((|#2| |#2|) 135 T ELT)) (-3653 ((|#2| |#2|) 139 T ELT)) (-3652 ((|#2| |#2|) 127 T ELT))) -(((-1120 |#1| |#2|) (-10 -7 (-15 -3960 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3672 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-389) (-13 (-361 |#1|) (-1114))) (T -1120)) -((-3672 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-1089)) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3811 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $ (-1089)) NIL T ELT) (((-695) $ (-1089) (-695)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ $ (-584 (-1089)) (-584 (-469 (-1089)))) NIL T ELT) (($ $ (-1089) (-469 (-1089))) NIL T ELT) (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3809 (($ $ (-1089)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3673 (($ (-1 $) (-1089) |#1|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 (($ $ (-695)) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (($ $ (-1089) $) NIL T ELT) (($ $ (-584 (-1089)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3755 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3945 (((-469 (-1089)) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-1089)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3674 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-2668 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1121 |#1|) (-13 (-680 |#1| (-1089)) (-10 -8 (-15 -3674 ((-858 |#1|) $ (-695))) (-15 -3943 ($ (-1089))) (-15 -3943 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $ (-1089) |#1|)) (-15 -3673 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) (-962)) (T -1121)) -((-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-962)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-962)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1121 *3)))) (-3809 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))) (-3673 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962))))) -((-3690 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3685 ((|#5| |#5| $) 83 T ELT)) (-3707 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3686 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3155 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3796 (((-3 $ #1#) $) 119 T ELT)) (-3682 ((|#5| |#5| $) 101 T ELT)) (-3691 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3680 ((|#5| |#5| $) 105 T ELT)) (-3839 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#5|)) (|:| -1700 (-584 |#5|))) $) 63 T ELT)) (-3692 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3178 ((|#4| $) 115 T ELT)) (-3795 (((-3 |#5| #1#) $) 117 T ELT)) (-3694 (((-584 |#5|) $) 55 T ELT)) (-3688 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3683 ((|#5| |#5| $) 89 T ELT)) (-3696 (((-85) $ $) 29 T ELT)) (-3689 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3684 ((|#5| |#5| $) 86 T ELT)) (-3798 (((-3 |#5| #1#) $) 116 T ELT)) (-3766 (($ $ |#5|) 135 T ELT)) (-3945 (((-695) $) 60 T ELT)) (-3527 (($ (-584 |#5|)) 132 T ELT)) (-2909 (($ $ |#4|) 130 T ELT)) (-2911 (($ $ |#4|) 128 T ELT)) (-3681 (($ $) 127 T ELT)) (-3943 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3675 (((-695) $) 139 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3687 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3677 (((-584 |#4|) $) 122 T ELT)) (-3930 (((-85) |#4| $) 125 T ELT)) (-3055 (((-85) $ $) 20 T ELT))) -(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3675 ((-695) |#1|)) (-15 -3766 (|#1| |#1| |#5|)) (-15 -3707 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3930 ((-85) |#4| |#1|)) (-15 -3677 ((-584 |#4|) |#1|)) (-15 -3796 ((-3 |#1| #1#) |#1|)) (-15 -3795 ((-3 |#5| #1#) |#1|)) (-15 -3798 ((-3 |#5| #1#) |#1|)) (-15 -3680 (|#5| |#5| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 (|#5| |#5| |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3839 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3688 ((-85) |#1|)) (-15 -3689 ((-85) |#1|)) (-15 -3690 ((-85) |#1|)) (-15 -3687 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3688 ((-85) |#5| |#1|)) (-15 -3689 ((-85) |#5| |#1|)) (-15 -3690 ((-85) |#5| |#1|)) (-15 -3691 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3692 ((-85) |#1|)) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-2 (|:| -3858 (-584 |#5|)) (|:| -1700 (-584 |#5|))) |#1|)) (-15 -3945 ((-695) |#1|)) (-15 -3694 ((-584 |#5|) |#1|)) (-15 -3695 ((-3 (-2 (|:| |bas| |#1|) (|:| -3321 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3695 ((-3 (-2 (|:| |bas| |#1|) (|:| -3321 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -2909 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -3178 (|#4| |#1|)) (-15 -3155 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3943 ((-584 |#5|) |#1|)) (-15 -3527 (|#1| (-584 |#5|))) (-15 -3839 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3839 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3707 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3839 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3943 ((-773) |#1|)) (-15 -3055 ((-85) |#1| |#1|))) (-1123 |#2| |#3| |#4| |#5|) (-495) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -1122)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3679 (((-584 $) (-584 |#4|)) 91 T ELT)) (-3080 (((-584 |#3|) $) 37 T ELT)) (-2907 (((-85) $) 30 T ELT)) (-2898 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3685 ((|#4| |#4| $) 97 T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3707 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3992)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3721 (($) 46 T CONST)) (-2903 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3154 (($ (-584 |#4|)) 39 T ELT)) (-3796 (((-3 $ "failed") $) 87 T ELT)) (-3682 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3680 ((|#4| |#4| $) 92 T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-2888 (((-584 |#4|) $) 53 (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3178 ((|#3| $) 38 T ELT)) (-2607 (((-584 |#4|) $) 54 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2913 (((-584 |#3|) $) 36 T ELT)) (-2912 (((-85) |#3| $) 35 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3795 (((-3 |#4| "failed") $) 88 T ELT)) (-3694 (((-584 |#4|) $) 112 T ELT)) (-3688 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3683 ((|#4| |#4| $) 95 T ELT)) (-3696 (((-85) $ $) 115 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3684 ((|#4| |#4| $) 96 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3798 (((-3 |#4| "failed") $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3676 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3766 (($ $ |#4|) 82 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3400 (((-85) $) 45 T ELT)) (-3562 (($) 44 T ELT)) (-3945 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3992))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) 43 T ELT)) (-3969 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) 61 T ELT)) (-2909 (($ $ |#3|) 32 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3681 (($ $) 93 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-3943 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3675 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) 86 T ELT)) (-3930 (((-85) |#3| $) 85 T ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3954 (((-695) $) 47 (|has| $ (-6 -3992)) ELT))) -(((-1123 |#1| |#2| |#3| |#4|) (-113) (-495) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1123)) -((-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3321 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1123 *5 *6 *7 *8)))) (-3695 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3321 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1123 *6 *7 *8 *9)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-695)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3858 (-584 *6)) (|:| -1700 (-584 *6)))))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3690 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3688 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3687 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3839 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-977 *5 *6 *7)))) (-3686 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3683 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3681 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4)))) (-3680 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3678 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3858 *1) (|:| -1700 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3795 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3796 (*1 *1 *1) (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3930 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3707 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-977 *4 *5 *3)))) (-3676 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-695))))) -(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3992) (-6 -3993) (-15 -3696 ((-85) $ $)) (-15 -3695 ((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3695 ((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3694 ((-584 |t#4|) $)) (-15 -3945 ((-695) $)) (-15 -3693 ((-2 (|:| -3858 (-584 |t#4|)) (|:| -1700 (-584 |t#4|))) $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3692 ((-85) $)) (-15 -3691 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3690 ((-85) |t#4| $)) (-15 -3689 ((-85) |t#4| $)) (-15 -3688 ((-85) |t#4| $)) (-15 -3687 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3690 ((-85) $)) (-15 -3689 ((-85) $)) (-15 -3688 ((-85) $)) (-15 -3839 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3686 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 (|t#4| |t#4| $)) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 ($ $)) (-15 -3680 (|t#4| |t#4| $)) (-15 -3679 ((-584 $) (-584 |t#4|))) (-15 -3678 ((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3798 ((-3 |t#4| "failed") $)) (-15 -3795 ((-3 |t#4| "failed") $)) (-15 -3796 ((-3 $ "failed") $)) (-15 -3677 ((-584 |t#3|) $)) (-15 -3930 ((-85) |t#3| $)) (-15 -3707 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3676 ((-3 $ "failed") $ |t#4|)) (-15 -3766 ($ $ |t#4|)) (IF (|has| |t#3| (-317)) (-15 -3675 ((-695) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1128) . T)) -((-3702 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3701 (((-85) $ (-85)) 18 T ELT)) (-3700 (((-85) $) 17 T ELT)) (-3698 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3697 ((|#1| $) 8 T ELT)) (-3699 (((-85) $) 15 T ELT))) -(((-1124 |#1|) (-10 -8 (-15 -3697 (|#1| $)) (-15 -3698 ((-584 (-584 (-855 (-179)))) $)) (-15 -3699 ((-85) $)) (-15 -3700 ((-85) $)) (-15 -3701 ((-85) $ (-85))) (-15 -3702 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1124)) -((-3702 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) (-4 *2 (-888)))) (-3701 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3697 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-888))))) -((-3704 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3703 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3706 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3833 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3831 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3705 (((-584 (-584 (-179))) (-484)) 45 T ELT)) (-3834 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3836 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT))) -(((-1125) (-10 -7 (-15 -3703 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3836 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3834 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3833 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3831 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3704 ((-855 (-179)) (-855 (-179)))) (-15 -3705 ((-584 (-584 (-179))) (-484))) (-15 -3706 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1125)) -((-3706 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1125)) (-5 *3 (-855 *4)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1125)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3833 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) (-3834 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) (-3703 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)) (-5 *3 (-179))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3707 ((|#1| $ (-695)) 18 T ELT)) (-3830 (((-695) $) 13 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3943 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3055 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) -(((-1126 |#1|) (-13 (-427 (-870 |#1|)) (-10 -8 (-15 -3707 (|#1| $ (-695))) (-15 -3830 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1126)) -((-3707 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1126 *3)) (-4 *3 (-1128))))) -((-3710 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)) 92 T ELT)) (-3708 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 84 T ELT)) (-3709 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 68 T ELT))) -(((-1127 |#1|) (-10 -7 (-15 -3708 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3709 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3710 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)))) (-298)) (T -1127)) -((-3710 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-298)) (-5 *2 (-345 (-1084 (-1084 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4)))))) -NIL -(((-1128) (-113)) (T -1128)) +((-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-619)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-541)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1031)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-624)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-457)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-980)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-615)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-950)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-885)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-987)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1005)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1010)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-567)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-416))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-416)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-445)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485))))) +(-13 (-997) (-1176) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-463)))) (-15 -3573 ((-463) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-172)))) (-15 -3573 ((-172) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-619)))) (-15 -3573 ((-619) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3573 ((-1191) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-111)))) (-15 -3573 ((-111) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-541)))) (-15 -3573 ((-541) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-106)))) (-15 -3573 ((-106) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1031)))) (-15 -3573 ((-1031) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-67)))) (-15 -3573 ((-67) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-624)))) (-15 -3573 ((-624) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-457)))) (-15 -3573 ((-457) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-980)))) (-15 -3573 ((-980) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3573 ((-1192) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-464)))) (-15 -3573 ((-464) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1068)))) (-15 -3573 ((-1068) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-127)))) (-15 -3573 ((-127) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-615)))) (-15 -3573 ((-615) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-263)))) (-15 -3573 ((-263) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-950)))) (-15 -3573 ((-950) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-154)))) (-15 -3573 ((-154) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-885)))) (-15 -3573 ((-885) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-987)))) (-15 -3573 ((-987) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1005)))) (-15 -3573 ((-1005) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1010)))) (-15 -3573 ((-1010) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-567)))) (-15 -3573 ((-567) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1082)))) (-15 -3573 ((-1082) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-129)))) (-15 -3573 ((-129) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-110)))) (-15 -3573 ((-110) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-416)))) (-15 -3573 ((-416) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-529)))) (-15 -3573 ((-529) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-445)))) (-15 -3573 ((-445) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3573 ((-1074) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-485)))) (-15 -3573 ((-485) $)))) +(((-64) . T) ((-72) . T) ((-557 (-1096)) . T) ((-554 (-774)) . T) ((-554 (-1096)) . T) ((-428 (-1096)) . T) ((-13) . T) ((-1015) . T) ((-997) . T) ((-1130) . T) ((-1176) . T)) +((-3383 (((-1186) (-585 (-774))) 22 T ELT) (((-1186) (-774)) 21 T ELT)) (-3382 (((-1186) (-585 (-774))) 20 T ELT) (((-1186) (-774)) 19 T ELT)) (-3381 (((-1186) (-585 (-774))) 18 T ELT) (((-1186) (-774)) 10 T ELT) (((-1186) (-1074) (-774)) 16 T ELT))) +(((-1053) (-10 -7 (-15 -3381 ((-1186) (-1074) (-774))) (-15 -3381 ((-1186) (-774))) (-15 -3382 ((-1186) (-774))) (-15 -3383 ((-1186) (-774))) (-15 -3381 ((-1186) (-585 (-774)))) (-15 -3382 ((-1186) (-585 (-774)))) (-15 -3383 ((-1186) (-585 (-774)))))) (T -1053)) +((-3383 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053))))) +((-3387 (($ $ $) 10 T ELT)) (-3386 (($ $) 9 T ELT)) (-3390 (($ $ $) 13 T ELT)) (-3392 (($ $ $) 15 T ELT)) (-3389 (($ $ $) 12 T ELT)) (-3391 (($ $ $) 14 T ELT)) (-3394 (($ $) 17 T ELT)) (-3393 (($ $) 16 T ELT)) (-3384 (($ $) 6 T ELT)) (-3388 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3385 (($ $ $) 8 T ELT))) +(((-1054) (-113)) (T -1054)) +((-3394 (*1 *1 *1) (-4 *1 (-1054))) (-3393 (*1 *1 *1) (-4 *1 (-1054))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3386 (*1 *1 *1) (-4 *1 (-1054))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1) (-4 *1 (-1054))) (-3384 (*1 *1 *1) (-4 *1 (-1054)))) +(-13 (-10 -8 (-15 -3384 ($ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $)) (-15 -3394 ($ $)))) +((-2570 (((-85) $ $) 44 T ELT)) (-3403 ((|#1| $) 17 T ELT)) (-3395 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3400 (($ $ |#1|) 30 T ELT)) (-3398 (($ $ (-85)) 32 T ELT)) (-3397 (($ $) 33 T ELT)) (-3399 (($ $ |#2|) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3396 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3404 (((-85) $) 16 T ELT)) (-3566 (($) 13 T ELT)) (-3401 (($ $) 29 T ELT)) (-3531 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-585 $) |#1| (-585 |#2|)) 28 T ELT)) (-3923 ((|#2| $) 18 T ELT)) (-3947 (((-774) $) 53 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 42 T ELT))) +(((-1055 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3403 (|#1| $)) (-15 -3923 (|#2| $)) (-15 -3402 ((-85) $)) (-15 -3531 ($ |#1| |#2| (-85))) (-15 -3531 ($ |#1| |#2|)) (-15 -3531 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-15 -3531 ((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-15 -3531 ((-585 $) |#1| (-585 |#2|))) (-15 -3401 ($ $)) (-15 -3400 ($ $ |#1|)) (-15 -3399 ($ $ |#2|)) (-15 -3398 ($ $ (-85))) (-15 -3397 ($ $)) (-15 -3396 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3395 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1055)) +((-3566 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3403 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1015) (-34))))) (-3923 (*1 *2 *1) (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1015) (-34))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1055 *3 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-585 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1015) (-34))))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1015) (-34))) (-4 *2 (-13 (-1015) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3396 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3395 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) +((-2570 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3403 (((-1055 |#1| |#2|) $) 27 T ELT)) (-3412 (($ $) 91 T ELT)) (-3408 (((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3405 (($ $ $ (-585 (-1055 |#1| |#2|))) 108 T ELT) (($ $ $ (-585 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3027 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 46 (|has| $ (-6 -3997)) ELT)) (-3789 (((-1055 |#1| |#2|) $ #1="value" (-1055 |#1| |#2|)) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 44 (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3410 (((-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3406 (($ (-1055 |#1| |#2|) $) 42 T ELT)) (-3407 (($ (-1055 |#1| |#2|) $) 34 T ELT)) (-2891 (((-585 (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3409 (((-85) (-1055 |#1| |#2|) $) 97 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-1015)) ELT)) (-2610 (((-585 (-1055 |#1| |#2|)) $) 58 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-1055 |#1| |#2|) (-1015))) ELT)) (-1950 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 50 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 49 T ELT)) (-3032 (((-585 (-1055 |#1| |#2|)) $) 56 T ELT)) (-3528 (((-85) $) 45 T ELT)) (-3244 (((-1074) $) NIL (|has| (-1055 |#1| |#2|) (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| (-1055 |#1| |#2|) (-1015)) ELT)) (-3413 (((-3 $ "failed") $) 89 T ELT)) (-1948 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1015))) ELT) (($ $ (-249 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1015))) ELT) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1015))) ELT) (($ $ (-585 (-1055 |#1| |#2|)) (-585 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1015))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 24 T ELT)) (-3566 (($) 26 T ELT)) (-3801 (((-1055 |#1| |#2|) $ #1#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) 47 T ELT)) (-1947 (((-696) (-1 (-85) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-1055 |#1| |#2|) (-1015))) ELT)) (-3401 (($ $) 52 T ELT)) (-3531 (($ (-1055 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-585 $)) 13 T ELT) (($ |#1| |#2| (-585 (-1055 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-585 |#2|)) 18 T ELT)) (-3411 (((-585 |#2|) $) 96 T ELT)) (-3947 (((-774) $) 87 (|has| (-1055 |#1| |#2|) (-554 (-774))) ELT)) (-3523 (((-585 $) $) 31 T ELT)) (-3030 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 70 (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3958 (((-696) $) 64 (|has| $ (-6 -3996)) ELT))) +(((-1056 |#1| |#2|) (-13 (-925 (-1055 |#1| |#2|)) (-10 -8 (-6 -3997) (-6 -3996) (-15 -3413 ((-3 $ "failed") $)) (-15 -3412 ($ $)) (-15 -3531 ($ (-1055 |#1| |#2|))) (-15 -3531 ($ |#1| |#2| (-585 $))) (-15 -3531 ($ |#1| |#2| (-585 (-1055 |#1| |#2|)))) (-15 -3531 ($ |#1| |#2| |#1| (-585 |#2|))) (-15 -3411 ((-585 |#2|) $)) (-15 -3410 ((-585 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-15 -3409 ((-85) (-1055 |#1| |#2|) $)) (-15 -3408 ((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3407 ($ (-1055 |#1| |#2|) $)) (-15 -3406 ($ (-1055 |#1| |#2|) $)) (-15 -3405 ($ $ $ (-585 (-1055 |#1| |#2|)))) (-15 -3405 ($ $ $ (-585 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1015) (-34)) (-13 (-1015) (-34))) (T -1056)) +((-3413 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1055 *2 *3))) (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)))) (-3531 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-585 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))))) (-3409 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)))) (-3408 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3405 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-585 (-1055 *3 *4))) (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) (-3405 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) (-5 *1 (-1056 *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3415 (($ $) NIL T ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3414 (($ (-632 |#2|)) 55 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3334 (($ |#2|) 14 T ELT)) (-3725 (($) NIL T CONST)) (-3111 (($ $) 68 (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) 42 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 82 T ELT)) (-3110 (((-696) $) 70 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-2891 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3109 (((-696) $) 72 (|has| |#2| (-496)) ELT)) (-3108 (((-585 (-197 |#1| |#2|)) $) 76 (|has| |#2| (-496)) ELT)) (-3116 (((-696) $) NIL T ELT)) (-3615 (($ |#2|) 25 T ELT)) (-3115 (((-696) $) NIL T ELT)) (-3328 ((|#2| $) 66 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-585 (-585 |#2|))) 37 T ELT)) (-1950 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-585 (-585 |#2|)) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3591 (((-3 $ #1#) $) 79 (|has| |#2| (-312)) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-585 |#2|)) 50 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) 64 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 89 (|has| |#2| (-555 (-474))) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) 44 T ELT)) (-3947 (((-774) $) 47 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-632 |#2|) $) 52 T ELT)) (-3128 (((-696)) 23 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 16 T CONST)) (-2668 (($) 21 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-696)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 62 T ELT) (($ $ (-485)) 81 (|has| |#2| (-312)) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 58 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 60 T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1057 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-554 (-632 |#2|)) (-10 -8 (-15 -3615 ($ |#2|)) (-15 -3415 ($ $)) (-15 -3414 ($ (-632 |#2|))) (IF (|has| |#2| (-6 (-3998 #1="*"))) (-6 -3985) |%noBranch|) (IF (|has| |#2| (-6 (-3998 #1#))) (IF (|has| |#2| (-6 -3993)) (-6 -3993) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-555 (-474))) (-6 (-555 (-474))) |%noBranch|))) (-696) (-963)) (T -1057)) +((-3615 (*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-696))))) +((-3428 (($ $) 19 T ELT)) (-3418 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3426 (((-85) $ $) 24 T ELT)) (-3430 (($ $) 17 T ELT)) (-3801 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3947 (($ (-117)) 29 T ELT) (((-774) $) NIL T ELT))) +(((-1058 |#1|) (-10 -7 (-15 -3947 ((-774) |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| (-114))) (-15 -3418 (|#1| |#1| (-117))) (-15 -3947 (|#1| (-117))) (-15 -3426 ((-85) |#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3801 ((-117) |#1| (-485))) (-15 -3801 ((-117) |#1| (-485) (-117)))) (-1059)) (T -1058)) +NIL +((-2570 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3427 (($ $) 129 T ELT)) (-3428 (($ $) 130 T ELT)) (-3418 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3425 (((-85) $ $) 127 T ELT)) (-3424 (((-85) $ $ (-485)) 126 T ELT)) (-3419 (((-585 $) $ (-117)) 119 T ELT) (((-585 $) $ (-114)) 118 T ELT)) (-1733 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-758)) ELT)) (-1731 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3997)) ELT) (($ $) 97 (-12 (|has| (-117) (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-758)) ELT)) (-3789 (((-117) $ (-485) (-117)) 56 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1147 (-485)) (-117)) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-3416 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2299 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 109 T ELT)) (-3421 (($ $ (-1147 (-485)) $) 123 T ELT)) (-1354 (($ $) 84 (-12 (|has| (-117) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-117) $) 83 (-12 (|has| (-117) (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1015)) (|has| $ (-6 -3996))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 (((-117) $ (-485) (-117)) 57 (|has| $ (-6 -3997)) ELT)) (-3114 (((-117) $ (-485)) 55 T ELT)) (-3426 (((-85) $ $) 128 T ELT)) (-3420 (((-485) (-1 (-85) (-117)) $) 106 T ELT) (((-485) (-117) $) 105 (|has| (-117) (-1015)) ELT) (((-485) (-117) $ (-485)) 104 (|has| (-117) (-1015)) ELT) (((-485) $ $ (-485)) 122 T ELT) (((-485) (-114) $ (-485)) 121 T ELT)) (-2891 (((-585 (-117)) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) (-117)) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 91 (|has| (-117) (-758)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-758)) ELT)) (-2610 (((-585 (-117)) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 92 (|has| (-117) (-758)) ELT)) (-3422 (((-85) $ $ (-117)) 124 T ELT)) (-3423 (((-696) $ $ (-117)) 125 T ELT)) (-1950 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3429 (($ $) 131 T ELT)) (-3430 (($ $) 132 T ELT)) (-3417 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3244 (((-1074) $) 22 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| (-117) (-1015)) ELT)) (-3802 (((-117) $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2201 (($ $ (-117)) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-2207 (((-585 (-117)) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 (((-117) $ (-485) (-117)) 54 T ELT) (((-117) $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT) (($ $ $) 111 T ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-696) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) (-117) $) 28 (-12 (|has| (-117) (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 100 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| (-117) (-555 (-474))) ELT)) (-3531 (($ (-585 (-117))) 76 T ELT)) (-3803 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (($ (-117)) 120 T ELT) (((-774) $) 17 (|has| (-117) (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 93 (|has| (-117) (-758)) ELT)) (-2569 (((-85) $ $) 95 (|has| (-117) (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) 94 (|has| (-117) (-758)) ELT)) (-2687 (((-85) $ $) 96 (|has| (-117) (-758)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1059) (-113)) (T -1059)) +((-3430 (*1 *1 *1) (-4 *1 (-1059))) (-3429 (*1 *1 *1) (-4 *1 (-1059))) (-3428 (*1 *1 *1) (-4 *1 (-1059))) (-3427 (*1 *1 *1) (-4 *1 (-1059))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-696)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3421 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))) (-3420 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1059)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1059)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3801 (*1 *1 *1 *1) (-4 *1 (-1059)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ((-85) $ $)) (-15 -3425 ((-85) $ $)) (-15 -3424 ((-85) $ $ (-485))) (-15 -3423 ((-696) $ $ (-117))) (-15 -3422 ((-85) $ $ (-117))) (-15 -3421 ($ $ (-1147 (-485)) $)) (-15 -3420 ((-485) $ $ (-485))) (-15 -3420 ((-485) (-114) $ (-485))) (-15 -3947 ($ (-117))) (-15 -3419 ((-585 $) $ (-117))) (-15 -3419 ((-585 $) $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3801 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-72))) ((-554 (-774)) OR (|has| (-117) (-1015)) (|has| (-117) (-758)) (|has| (-117) (-554 (-774)))) ((-124 (-117)) . T) ((-555 (-474)) |has| (-117) (-555 (-474))) ((-241 (-485) (-117)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-322 (-117)) . T) ((-427 (-117)) . T) ((-540 (-485) (-117)) . T) ((-454 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ((-13) . T) ((-595 (-117)) . T) ((-19 (-117)) . T) ((-758) |has| (-117) (-758)) ((-761) |has| (-117) (-758)) ((-1015) OR (|has| (-117) (-1015)) (|has| (-117) (-758))) ((-1130) . T)) +((-3437 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696)) 112 T ELT)) (-3434 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 61 T ELT)) (-3438 (((-1186) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)) 97 T ELT)) (-3432 (((-696) (-585 |#4|) (-585 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696)) 63 T ELT) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85)) 65 T ELT)) (-3436 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85)) 85 T ELT)) (-3973 (((-1074) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3433 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3431 (((-696) (-585 |#4|) (-585 |#5|)) 21 T ELT))) +(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3432 ((-696) (-585 |#4|) (-585 |#5|))) (-15 -3433 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3434 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696) (-85))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-696))) (-15 -3435 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85))) (-15 -3436 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))))) (-696))) (-15 -3973 ((-1074) (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|)))) (-15 -3438 ((-1186) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1601 |#5|))) (-696)))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -1060)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1186)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1074)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-696)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3683 (((-585 $) (-585 |#4|)) 118 T ELT) (((-585 $) (-585 |#4|) (-85)) 119 T ELT) (((-585 $) (-585 |#4|) (-85) (-85)) 117 T ELT) (((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3083 (((-585 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 91 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3158 (($ (-585 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) 73 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85)) 133 T ELT)) (-2891 (((-585 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 19 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2916 (((-585 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-585 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 111 T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3194 (((-585 $) |#4| $) 96 T ELT)) (-3196 (((-3 (-85) (-585 $)) |#4| $) NIL T ELT)) (-3195 (((-585 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3240 (((-585 $) |#4| $) 115 T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 116 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT)) (-3440 (((-585 $) (-585 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3441 (($ |#4| $) 82 T ELT) (($ (-585 |#4|) $) 83 T ELT) (((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3698 (((-585 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-585 $) |#4| $) 98 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) 93 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-1947 (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 22 T ELT)) (-2912 (($ $ |#3|) 49 T ELT)) (-2914 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3947 (((-774) $) 35 T ELT) (((-585 |#4|) $) 46 T ELT)) (-3679 (((-696) $) NIL (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-3191 (((-585 $) |#4| $) 63 T ELT) (((-585 $) |#4| (-585 $)) NIL T ELT) (((-585 $) (-585 |#4|) $) NIL T ELT) (((-585 $) (-585 |#4|) (-585 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 69 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-585 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-585 $) (-585 |#4|) (-85) (-85))) (-15 -3683 ((-585 $) (-585 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-585 $) (-585 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-85) (-85))))) (-390) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1061)) +((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-979 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-696)) 31 T ELT) (($ $ (-832)) 28 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ $ $) 27 T ELT))) +(((-1062) (-113)) (T -1062)) +NIL +(-13 (-23) (-665)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-665) . T) ((-1027) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 38 T ELT)) (-3442 (($ (-585 |#1|)) 46 T ELT)) (-3725 (($) NIL T CONST)) (-3327 ((|#1| |#1| $) 41 T ELT)) (-3326 ((|#1| $) 36 T ELT)) (-2891 (((-585 |#1|) $) 19 (|has| $ (-6 -3996)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-1275 ((|#1| $) 39 T ELT)) (-3610 (($ |#1| $) 42 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 33 T ELT)) (-3566 (($) 44 T ELT)) (-3324 (((-696) $) 31 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 28 T ELT)) (-3947 (((-774) $) 15 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-585 |#1|)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 32 (|has| $ (-6 -3996)) ELT))) +(((-1063 |#1|) (-13 (-1036 |#1|) (-10 -8 (-15 -3442 ($ (-585 |#1|))))) (-1130)) (T -1063)) +((-3442 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) +((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 53 T ELT) ((|#2| $ (-485) |#2|) 50 T ELT)) (-3444 (((-85) $) 12 T ELT)) (-1950 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-696)) 17 T ELT)) (-2201 (($ $ |#2|) 49 T ELT)) (-3445 (((-85) $) 11 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3792 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3803 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-585 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1064 |#1| |#2|) (-10 -7 (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -2201 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3803 (|#1| (-585 |#1|))) (-15 -3789 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3802 (|#1| |#1| (-696))) (-15 -3801 (|#2| |#1| #3#)) (-15 -3802 (|#2| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -1950 (|#1| (-1 |#2| |#2|) |#1|))) (-1065 |#2|) (-1130)) (T -1064)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-696)) 90 T ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-3800 (($ $) 79 T ELT) (($ $ (-696)) 77 T ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-3615 (($ (-696) |#1|) 119 T ELT)) (-3720 (((-85) $ (-696)) 91 T ELT)) (-2202 (((-485) $) 105 (|has| (-485) (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 104 (|has| (-485) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3717 (((-85) $ (-696)) 92 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-696)) 74 T ELT)) (-2306 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2205 (((-585 (-485)) $) 102 T ELT)) (-2206 (((-85) (-485) $) 101 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-696)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2201 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) 94 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-2307 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-585 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1065 |#1|) (-113) (-1130)) (T -1065)) +((-3445 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3720 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) +(-13 (-1169 |t#1|) (-595 |t#1|) (-10 -8 (-15 -3445 ((-85) $)) (-15 -3444 ((-85) $)) (-15 -3717 ((-85) $ (-696))) (-15 -3720 ((-85) $ (-696))) (-15 -3443 ((-85) $ (-696))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T) ((-1169 |#1|) . T)) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1066 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1015) (-1015) |#2|) (T -1066)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3446 (((-634 $) $) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3447 (($) 18 T CONST)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT))) +(((-1067) (-113)) (T -1067)) +((-3447 (*1 *1) (-4 *1 (-1067))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1067))))) +(-13 (-1015) (-10 -8 (-15 -3447 ($) -3953) (-15 -3446 ((-634 $) $)))) +(((-72) . T) ((-554 (-774)) . T) ((-13) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3449 (((-634 (-1050)) $) 28 T ELT)) (-3448 (((-1050) $) 16 T ELT)) (-3450 (((-1050) $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3451 (((-445) $) 14 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 38 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1068) (-13 (-997) (-10 -8 (-15 -3451 ((-445) $)) (-15 -3450 ((-1050) $)) (-15 -3449 ((-634 (-1050)) $)) (-15 -3448 ((-1050) $))))) (T -1068)) +((-3451 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1068)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-634 (-1050))) (-5 *1 (-1068)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) +((-3454 (((-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (-3452 (((-1070 |#1|) (-1070 |#1|)) 13 T ELT)) (-3455 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 20 T ELT)) (-3453 (((-1070 |#1|) (-1070 |#1|)) 15 T ELT))) +(((-1069 |#1|) (-10 -7 (-15 -3452 ((-1070 |#1|) (-1070 |#1|))) (-15 -3453 ((-1070 |#1|) (-1070 |#1|))) (-15 -3454 ((-1070 |#1|) (-1070 |#1|))) (-15 -3455 ((-1070 |#1|) (-1070 |#1|) (-485) (-485)))) (-13 (-496) (-120))) (T -1069)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1069 *4)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) 60 T ELT)) (-2200 (((-1186) $ (-485) (-485)) 93 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 122 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-696)) NIL T ELT)) (-3460 (((-774) $) 46 (|has| |#1| (-1015)) ELT)) (-3459 (((-85)) 49 (|has| |#1| (-1015)) ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 109 (|has| $ (-6 -3997)) ELT) (($ $ (-485) $) 135 T ELT)) (-3787 ((|#1| $ |#1|) 119 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 114 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 106 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2325 (($ $) 11 T ELT)) (-3800 (($ $) 35 T ELT) (($ $ (-696)) 105 T ELT)) (-3465 (((-85) (-585 |#1|) $) 128 (|has| |#1| (-1015)) ELT)) (-3466 (($ (-585 |#1|)) 124 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-2891 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3461 (((-1186) (-485) $) 133 (|has| |#1| (-1015)) ELT)) (-2324 (((-696) $) 131 T ELT)) (-3033 (((-585 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-3720 (((-85) $ (-696)) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3717 (((-85) $ (-696)) NIL T ELT)) (-3032 (((-585 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-2327 (($ $) 107 T ELT)) (-2328 (((-85) $) 10 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-696)) NIL T ELT)) (-2306 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) 90 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3458 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2326 ((|#1| $) 7 T ELT)) (-3802 ((|#1| $) 34 T ELT) (($ $ (-696)) 58 T ELT)) (-3464 (((-2 (|:| |cycle?| (-85)) (|:| -2597 (-696)) (|:| |period| (-696))) (-696) $) 29 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2201 (($ $ |#1|) 85 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-485)) 40 T ELT)) (-3445 (((-85) $) 88 T ELT)) (-2329 (((-85) $) 9 T ELT)) (-2330 (((-85) $) 130 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 25 T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 14 T ELT)) (-3566 (($) 53 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) 57 T ELT)) (-2307 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3463 (($ (-1 $)) 56 T ELT)) (-3634 (((-85) $) 86 T ELT)) (-3793 (($ $) 87 T ELT)) (-3791 (($ $) 110 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 52 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 68 T ELT)) (-3462 (($ |#1| $) 108 T ELT)) (-3792 (($ $ $) 112 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-585 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2893 (($ $) 59 T ELT)) (-3947 (($ (-585 |#1|)) 123 T ELT) (((-774) $) 50 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1070 |#1|) (-13 (-618 |#1|) (-557 (-585 |#1|)) (-10 -8 (-6 -3997) (-15 -3466 ($ (-585 |#1|))) (IF (|has| |#1| (-1015)) (-15 -3465 ((-85) (-585 |#1|) $)) |%noBranch|) (-15 -3464 ((-2 (|:| |cycle?| (-85)) (|:| -2597 (-696)) (|:| |period| (-696))) (-696) $)) (-15 -3463 ($ (-1 $))) (-15 -3462 ($ |#1| $)) (IF (|has| |#1| (-1015)) (PROGN (-15 -3461 ((-1186) (-485) $)) (-15 -3460 ((-774) $)) (-15 -3459 ((-85)))) |%noBranch|) (-15 -3788 ($ $ (-485) $)) (-15 -3458 ($ (-1 |#1|))) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)))) (-1130)) (T -1070)) +((-3466 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1130)) (-5 *2 (-85)) (-5 *1 (-1070 *4)))) (-3464 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-696)) (|:| |period| (-696)))) (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-696)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))) (-3461 (*1 *2 *3 *1) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1015)) (-4 *4 (-1130)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1070 *3)) (-4 *3 (-1015)) (-4 *3 (-1130)))) (-3459 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1015)) (-4 *3 (-1130)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +((-3803 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15 T ELT))) +(((-1071 |#1|) (-10 -7 (-15 -3803 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1130)) (T -1071)) +((-3803 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) (-4 *4 (-1130))))) +((-3842 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25 T ELT)) (-3843 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26 T ELT)) (-3959 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16 T ELT))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -3959 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -3842 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3843 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1130) (-1130)) (T -1072)) +((-3843 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1072 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6))))) +((-3959 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21 T ELT))) +(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -1073)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-1073 *6 *7 *8))))) +((-2570 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3427 (($ $) 42 T ELT)) (-3428 (($ $) NIL T ELT)) (-3418 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3425 (((-85) $ $) 67 T ELT)) (-3424 (((-85) $ $ (-485)) 62 T ELT)) (-3536 (($ (-485)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-445)) 11 T ELT)) (-3419 (((-585 $) $ (-117)) 76 T ELT) (((-585 $) $ (-114)) 77 T ELT)) (-1733 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-758)) ELT)) (-1731 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-117) (-758))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-758)) ELT)) (-3789 (((-117) $ (-485) (-117)) 59 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1147 (-485)) (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-3416 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-3421 (($ $ (-1147 (-485)) $) 57 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-3407 (($ (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-117) $ (-485) (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-3114 (((-117) $ (-485)) NIL T ELT)) (-3426 (((-85) $ $) 91 T ELT)) (-3420 (((-485) (-1 (-85) (-117)) $) NIL T ELT) (((-485) (-117) $) NIL (|has| (-117) (-1015)) ELT) (((-485) (-117) $ (-485)) 64 (|has| (-117) (-1015)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-114) $ (-485)) 66 T ELT)) (-2891 (((-585 (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-696) (-117)) 14 T ELT)) (-2202 (((-485) $) 36 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-2610 (((-585 (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-2203 (((-485) $) 50 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| (-117) (-758)) ELT)) (-3422 (((-85) $ $ (-117)) 92 T ELT)) (-3423 (((-696) $ $ (-117)) 88 T ELT)) (-1950 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3429 (($ $) 45 T ELT)) (-3430 (($ $) NIL T ELT)) (-3417 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3244 (((-1074) $) 46 (|has| (-117) (-1015)) ELT)) (-2306 (($ (-117) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) 87 (|has| (-117) (-1015)) ELT)) (-3802 (((-117) $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2201 (($ $ (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT) (($ $ (-585 (-117)) (-585 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-2207 (((-585 (-117)) $) NIL T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 16 T ELT)) (-3801 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) 69 T ELT) (($ $ (-1147 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1015))) ELT)) (-1732 (($ $ $ (-485)) 83 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 24 T ELT)) (-3973 (((-474) $) NIL (|has| (-117) (-555 (-474))) ELT)) (-3531 (($ (-585 (-117))) NIL T ELT)) (-3803 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-585 $)) 84 T ELT)) (-3947 (($ (-117)) NIL T ELT) (((-774) $) 35 (|has| (-117) (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-3058 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-117) (-758)) ELT)) (-2687 (((-85) $ $) 22 (|has| (-117) (-758)) ELT)) (-3958 (((-696) $) 20 (|has| $ (-6 -3996)) ELT))) +(((-1074) (-13 (-1059) (-10 -8 (-15 -3536 ($ (-485))) (-15 -3536 ($ (-179))) (-15 -3536 ($ (-445)))))) (T -1074)) +((-3536 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-1074))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-2200 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#1| #1="failed") (-1074) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#1| #1#) (-1074) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-1074) $) NIL (|has| (-1074) (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-2234 (((-585 (-1074)) $) NIL T ELT)) (-2235 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2205 (((-585 (-1074)) $) NIL T ELT)) (-2206 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015)) (|has| |#1| (-1015))) ELT)) (-3802 ((|#1| $) NIL (|has| (-1074) (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-1074)) NIL T ELT) ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1015))) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-554 (-774))) (|has| |#1| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1075 |#1|) (-13 (-1108 (-1074) |#1|) (-10 -7 (-6 -3996))) (-1015)) (T -1075)) +NIL +((-3806 (((-1070 |#1|) (-1070 |#1|)) 83 T ELT)) (-3468 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 39 T ELT)) (-3479 (((-1070 |#1|) (-348 (-485)) (-1070 |#1|)) 131 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3482 (((-1070 |#1|) |#1| (-1070 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3809 (((-1070 |#1|) (-1070 |#1|)) 97 T ELT)) (-3470 (((-1070 (-485)) (-485)) 63 T ELT)) (-3478 (((-1070 |#1|) (-1070 (-1070 |#1|))) 116 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3805 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 103 T ELT)) (-3939 (((-1070 |#1|) |#1| (-485)) 51 T ELT)) (-3472 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3480 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3477 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 115 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3481 (((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3810 (((-1070 |#1|) (-1070 |#1|)) 96 T ELT)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 82 T ELT)) (-3804 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 104 T ELT)) (-3813 (((-1070 |#1|) |#1| (-1070 |#1|)) 113 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3469 (((-1070 (-485)) (-485)) 62 T ELT)) (-3471 (((-1070 |#1|) |#1|) 65 T ELT)) (-3807 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 100 T ELT)) (-3474 (((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|)) 72 T ELT)) (-3467 (((-3 (-1070 |#1|) #1#) (-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3808 (((-1070 |#1|) (-1070 |#1|)) 98 T ELT)) (-3769 (((-1070 |#1|) (-1070 |#1|) |#1|) 77 T ELT)) (-3473 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3475 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 78 T ELT)) (-3947 (((-1070 |#1|) |#1|) 73 T ELT)) (-3476 (((-1070 |#1|) (-1070 (-1070 |#1|))) 88 T ELT)) (-3950 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3838 (((-1070 |#1|) (-1070 |#1|)) 21 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23 T ELT)) (-3840 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29 T ELT) (((-1070 |#1|) |#1| (-1070 |#1|)) 26 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27 T ELT))) +(((-1076 |#1|) (-10 -7 (-15 -3840 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3838 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3838 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3467 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|) (-1070 |#1|))) (-15 -3950 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3468 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -3939 ((-1070 |#1|) |#1| (-485))) (-15 -3469 ((-1070 (-485)) (-485))) (-15 -3470 ((-1070 (-485)) (-485))) (-15 -3471 ((-1070 |#1|) |#1|)) (-15 -3472 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3473 ((-1070 |#1|) (-1070 |#1|))) (-15 -3474 ((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|))) (-15 -3947 ((-1070 |#1|) |#1|)) (-15 -3769 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3475 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3806 ((-1070 |#1|) (-1070 |#1|))) (-15 -3476 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3810 ((-1070 |#1|) (-1070 |#1|))) (-15 -3809 ((-1070 |#1|) (-1070 |#1|))) (-15 -3808 ((-1070 |#1|) (-1070 |#1|))) (-15 -3807 ((-1070 |#1|) (-1070 |#1|) (-485) (-485))) (-15 -3805 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (-15 -3804 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (IF (|has| |#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -3477 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -3478 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3479 ((-1070 |#1|) (-348 (-485)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3480 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3481 ((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|)))) (-15 -3482 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-963)) (T -1076)) +((-3482 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-348 (-485))) (-5 *1 (-1076 *4)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) (-3805 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) (-3807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-963)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963)))) (-3474 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-963)) (-5 *3 (-485)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-963)) (-5 *3 (-485)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963)))) (-3468 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3467 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) +((-3493 (((-1070 |#1|) (-1070 |#1|)) 102 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 59 T ELT)) (-3484 (((-2 (|:| -3491 (-1070 |#1|)) (|:| -3492 (-1070 |#1|))) (-1070 |#1|)) 98 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 99 T ELT)) (-3483 (((-2 (|:| -3639 (-1070 |#1|)) (|:| -3635 (-1070 |#1|))) (-1070 |#1|)) 54 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 55 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 104 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3943 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 105 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 67 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 103 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 62 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 100 T ELT)) (-3635 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 113 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 88 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 107 T ELT)) (-3485 (((-1070 |#1|) (-1070 |#1|)) 84 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 117 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 92 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 119 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 94 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 115 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 90 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 109 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 86 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 41 T ELT))) +(((-1077 |#1|) (-10 -7 (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 -3943 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3483 ((-2 (|:| -3639 (-1070 |#1|)) (|:| -3635 (-1070 |#1|))) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3635 ((-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3484 ((-2 (|:| -3491 (-1070 |#1|)) (|:| -3492 (-1070 |#1|))) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-348 (-485)))) (T -1077)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-38 (-348 (-485)))) (-5 *2 (-2 (|:| -3491 (-1070 *4)) (|:| -3492 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-38 (-348 (-485)))) (-5 *2 (-2 (|:| -3639 (-1070 *4)) (|:| -3635 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3))))) +((-3493 (((-1070 |#1|) (-1070 |#1|)) 60 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 42 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 63 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 45 T ELT)) (-3943 (((-1070 |#1|) (-1070 |#1|)) 34 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 29 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 64 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 46 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 61 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 43 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 58 T ELT)) (-3635 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 50 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3485 (((-1070 |#1|) (-1070 |#1|)) 48 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 53 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 72 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 54 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 70 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 52 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 69 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 51 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36 T ELT))) +(((-1078 |#1|) (-10 -7 (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 -3943 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3635 ((-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-348 (-485)))) (T -1078)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) +((-3503 (((-871 |#2|) |#2| |#2|) 51 T ELT)) (-3504 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) +(((-1079 |#1| |#2|) (-10 -7 (-15 -3503 ((-871 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3504 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1156 |#1|)) (T -1079)) +((-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))) (-3503 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-871 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1156 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3512 (($ $ (-585 (-696))) 79 T ELT)) (-3889 (($) 33 T ELT)) (-3521 (($ $) 51 T ELT)) (-3752 (((-585 $) $) 60 T ELT)) (-3527 (((-85) $) 19 T ELT)) (-3505 (((-585 (-856 |#2|)) $) 86 T ELT)) (-3506 (($ $) 80 T ELT)) (-3522 (((-696) $) 47 T ELT)) (-3615 (($) 32 T ELT)) (-3515 (($ $ (-585 (-696)) (-856 |#2|)) 72 T ELT) (($ $ (-585 (-696)) (-696)) 73 T ELT) (($ $ (-696) (-856 |#2|)) 75 T ELT)) (-3519 (($ $ $) 57 T ELT) (($ (-585 $)) 59 T ELT)) (-3507 (((-696) $) 87 T ELT)) (-3528 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3526 (((-85) $) 22 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3508 (((-145) $) 85 T ELT)) (-3511 (((-856 |#2|) $) 81 T ELT)) (-3510 (((-696) $) 82 T ELT)) (-3509 (((-85) $) 84 T ELT)) (-3513 (($ $ (-585 (-696)) (-145)) 78 T ELT)) (-3520 (($ $) 52 T ELT)) (-3947 (((-774) $) 99 T ELT)) (-3514 (($ $ (-585 (-696)) (-85)) 77 T ELT)) (-3523 (((-585 $) $) 11 T ELT)) (-3524 (($ $ (-696)) 46 T ELT)) (-3525 (($ $) 43 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3516 (($ $ $ (-856 |#2|) (-696)) 68 T ELT)) (-3517 (($ $ (-856 |#2|)) 67 T ELT)) (-3518 (($ $ (-585 (-696)) (-856 |#2|)) 66 T ELT) (($ $ (-585 (-696)) (-696)) 70 T ELT) (((-696) $ (-856 |#2|)) 71 T ELT)) (-3058 (((-85) $ $) 92 T ELT))) +(((-1080 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3528 ((-85) $)) (-15 -3527 ((-85) $)) (-15 -3526 ((-85) $)) (-15 -3615 ($)) (-15 -3889 ($)) (-15 -3525 ($ $)) (-15 -3524 ($ $ (-696))) (-15 -3523 ((-585 $) $)) (-15 -3522 ((-696) $)) (-15 -3521 ($ $)) (-15 -3520 ($ $)) (-15 -3519 ($ $ $)) (-15 -3519 ($ (-585 $))) (-15 -3752 ((-585 $) $)) (-15 -3518 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3517 ($ $ (-856 |#2|))) (-15 -3516 ($ $ $ (-856 |#2|) (-696))) (-15 -3515 ($ $ (-585 (-696)) (-856 |#2|))) (-15 -3518 ($ $ (-585 (-696)) (-696))) (-15 -3515 ($ $ (-585 (-696)) (-696))) (-15 -3518 ((-696) $ (-856 |#2|))) (-15 -3515 ($ $ (-696) (-856 |#2|))) (-15 -3514 ($ $ (-585 (-696)) (-85))) (-15 -3513 ($ $ (-585 (-696)) (-145))) (-15 -3512 ($ $ (-585 (-696)))) (-15 -3511 ((-856 |#2|) $)) (-15 -3510 ((-696) $)) (-15 -3509 ((-85) $)) (-15 -3508 ((-145) $)) (-15 -3507 ((-696) $)) (-15 -3506 ($ $)) (-15 -3505 ((-585 (-856 |#2|)) $)))) (-832) (-963)) (T -1080)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3615 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3889 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3519 (*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)))) (-3516 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-832)) (-4 *5 (-963)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-856 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963)))) (-3506 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3529 ((|#2| $) 11 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3531 (($ |#1| |#2|) 9 T ELT)) (-3947 (((-774) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1081 |#1| |#2|) (-13 (-1015) (-10 -8 (-15 -3531 ($ |#1| |#2|)) (-15 -3530 (|#1| $)) (-15 -3529 (|#2| $)))) (-1015) (-1015)) (T -1081)) +((-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1015)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1082) (-13 (-997) (-10 -8 (-15 -3532 ((-1050) $))))) (T -1082)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3772 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1090 |#1| |#2| |#3|) $) 42 T ELT)) (-3729 (((-3 (-1090 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3730 (((-1090 |#1| |#2| |#3|) $) 33 T ELT)) (-3493 (($ $) 116 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 92 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 112 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 88 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) 120 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 96 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1090 |#1| |#2| |#3|) $) 140 T ELT) (((-1091) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (((-348 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-1090 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) 54 T ELT)) (-3728 (((-348 (-859 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-348 (-859 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 28 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-798 (-328))) (|has| |#1| (-312))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-798 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1090 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3446 (((-634 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-832)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 19 T ELT) (($ $ (-996) (-485)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 81 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2282 (((-632 (-1090 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) (-1090 |#1| |#2| |#3|)) 36 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 79 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 80 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 158 T ELT)) (-3467 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 82 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-454 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091)) (-585 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-454 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1090 |#1| |#2| |#3|)) (-585 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1027)) ELT) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1090 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 43 T ELT)) (-3496 (($ $) 122 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 98 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 118 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 94 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 114 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 90 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3973 (((-474) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-555 (-474))) (|has| |#1| (-312))) ELT) (((-328) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-328)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-555 (-802 (-328)))) (|has| |#1| (-312))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-555 (-802 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1090 |#1| |#2| |#3|)) 30 T ELT) (($ (-1177 |#2|)) 25 T ELT) (($ (-1091)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-348 (-485))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-348 (-485))))) ELT)) (-3678 ((|#1| $ (-485)) 77 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-3133 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 128 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 104 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) 124 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 100 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 132 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 108 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 134 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 110 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 130 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 106 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 126 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 102 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 137 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1090 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1083 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1090 |#1| |#2| |#3|)) (-808 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1083)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3533 ((|#2| |#2| (-1006 |#2|)) 26 T ELT) ((|#2| |#2| (-1091)) 28 T ELT))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -3533 (|#2| |#2| (-1091))) (-15 -3533 (|#2| |#2| (-1006 |#2|)))) (-13 (-496) (-952 (-485)) (-582 (-485))) (-13 (-362 |#1|) (-133) (-27) (-1116))) (T -1084)) +((-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1116))) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1084 *4 *2)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1116)))))) +((-3533 (((-3 (-348 (-859 |#1|)) (-265 |#1|)) (-348 (-859 |#1|)) (-1006 (-348 (-859 |#1|)))) 31 T ELT) (((-348 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|))) 44 T ELT) (((-3 (-348 (-859 |#1|)) (-265 |#1|)) (-348 (-859 |#1|)) (-1091)) 33 T ELT) (((-348 (-859 |#1|)) (-859 |#1|) (-1091)) 36 T ELT))) +(((-1085 |#1|) (-10 -7 (-15 -3533 ((-348 (-859 |#1|)) (-859 |#1|) (-1091))) (-15 -3533 ((-3 (-348 (-859 |#1|)) (-265 |#1|)) (-348 (-859 |#1|)) (-1091))) (-15 -3533 ((-348 (-859 |#1|)) (-859 |#1|) (-1006 (-859 |#1|)))) (-15 -3533 ((-3 (-348 (-859 |#1|)) (-265 |#1|)) (-348 (-859 |#1|)) (-1006 (-348 (-859 |#1|)))))) (-13 (-496) (-952 (-485)))) (T -1085)) +((-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1085 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-348 *3)) (-5 *1 (-1085 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-3 (-348 (-859 *5)) (-265 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-348 (-859 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-348 (-859 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-859 *5))))) +((-2570 (((-85) $ $) 172 T ELT)) (-3190 (((-85) $) 44 T ELT)) (-3768 (((-1180 |#1|) $ (-696)) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-996)) 83 T ELT) (((-1086 |#1|) $) 72 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 97 (|has| |#1| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-696)) 62 T ELT)) (-3761 (($ $ (-696)) 64 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-390)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-996) $) NIL T ELT)) (-3757 (($ $ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 81 T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#1|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 133 T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) 167 (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) 70 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-996) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-996) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3534 (((-774) $ (-774)) 150 T ELT)) (-3773 (((-696) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 49 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-996)) 74 T ELT) (($ (-1086 $) (-996)) 91 T ELT)) (-3778 (($ $ (-696)) 52 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) 89 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 155 T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-632 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 77 T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) NIL (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) 61 T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) 51 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 105 (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-390)) ELT) (($ $ $) 169 (|has| |#1| (-390)) ELT)) (-3739 (($ $ (-696) |#1| $) 125 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 110 (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#1|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#1|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-348 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-696)) 55 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-996)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3949 (((-696) $) 79 T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-996) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-996) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-996) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) 164 (|has| |#1| (-390)) ELT) (($ $ (-996)) NIL (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-774) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-996)) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) 42 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#1| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 122 T ELT)) (-3950 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 92 T ELT)) (** (($ $ (-832)) 14 T ELT) (($ $ (-696)) 12 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1086 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -3534 ((-774) $ (-774))) (-15 -3739 ($ $ (-696) |#1| $)))) (-963)) (T -1086)) +((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1086 *3)) (-4 *3 (-963)))) (-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1086 *3)) (-4 *3 (-963))))) +((-3959 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13 T ELT))) +(((-1087 |#1| |#2|) (-10 -7 (-15 -3959 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-963) (-963)) (T -1087)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6))))) +((-3972 (((-346 (-1086 (-348 |#4|))) (-1086 (-348 |#4|))) 51 T ELT)) (-3733 (((-346 (-1086 (-348 |#4|))) (-1086 (-348 |#4|))) 52 T ELT))) +(((-1088 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-346 (-1086 (-348 |#4|))) (-1086 (-348 |#4|)))) (-15 -3972 ((-346 (-1086 (-348 |#4|))) (-1086 (-348 |#4|))))) (-719) (-758) (-390) (-863 |#3| |#1| |#2|)) (T -1088)) +((-3972 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-390)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-346 (-1086 (-348 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-348 *7))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-390)) (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-346 (-1086 (-348 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-348 *7)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) NIL T ELT) (($ $ (-348 (-485)) (-348 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3158 (((-1083 |#1| |#2| |#3|) $) NIL T ELT) (((-1090 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-348 (-485)) $) 59 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-348 (-485)) (-1083 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) NIL T ELT) (((-348 (-485)) $ (-348 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-348 (-485))) 20 T ELT) (($ $ (-996) (-348 (-485))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1083 |#1| |#2| |#3|) $) 41 T ELT)) (-3779 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1083 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3949 (((-348 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1083 |#1| |#2| |#3|)) 30 T ELT) (($ (-1090 |#1| |#2| |#3|)) 31 T ELT) (($ (-1177 |#2|)) 26 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 24 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1089 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1083 |#1| |#2| |#3|)) (-808 $ (-1177 |#2|)) (-952 (-1090 |#1| |#2| |#3|)) (-557 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1089)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 129 T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 119 T ELT)) (-3812 (((-1149 |#2| |#1|) $ (-696)) 69 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-696)) 85 T ELT) (($ $ (-696) (-696)) 82 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 105 T ELT)) (-3493 (($ $) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1070 |#1|)) 113 T ELT)) (-3495 (($ $) 177 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 25 T ELT)) (-3817 (($ $) 28 T ELT)) (-3815 (((-859 |#1|) $ (-696)) 81 T ELT) (((-859 |#1|) $ (-696) (-696)) 83 T ELT)) (-2894 (((-85) $) 124 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $) 126 T ELT) (((-696) $ (-696)) 128 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) 13 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 135 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3813 (($ $) 133 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 134 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3770 (($ $ (-696)) 15 T ELT)) (-3467 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 137 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3801 ((|#1| $ (-696)) 122 T ELT) (($ $ $) 132 (|has| (-696) (-1027)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1177 |#2|)) 31 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-3496 (($ $) 179 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 175 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 55 T ELT) (($ (-1177 |#2|)) 36 T ELT)) (-3818 (((-1070 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ (-696)) 121 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 185 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 181 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 189 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-696)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 191 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 187 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 183 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 141 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1090 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-808 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1149 |#2| |#1|))) (-15 -3812 ((-1149 |#2| |#1|) $ (-696))) (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1090)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1091)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3538 (($ $ (-585 (-774))) 48 T ELT)) (-3539 (($ $ (-585 (-774))) 46 T ELT)) (-3536 (((-1074) $) 88 T ELT)) (-3541 (((-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774)))) $) 95 T ELT)) (-3542 (((-85) $) 86 T ELT)) (-3540 (($ $ (-585 (-585 (-774)))) 45 T ELT) (($ $ (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774))))) 85 T ELT)) (-3725 (($) 151 T CONST)) (-3159 (((-3 (-445) "failed") $) 155 T ELT)) (-3158 (((-445) $) NIL T ELT)) (-3544 (((-1186)) 123 T ELT)) (-2798 (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 55 T ELT) (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 62 T ELT)) (-3615 (($) 109 T ELT) (($ $) 118 T ELT)) (-3543 (($ $) 87 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3535 (((-585 $) $) 124 T ELT)) (-3244 (((-1074) $) 101 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3801 (($ $ (-585 (-774))) 47 T ELT)) (-3973 (((-474) $) 33 T ELT) (((-1091) $) 34 T ELT) (((-802 (-485)) $) 66 T ELT) (((-802 (-328)) $) 64 T ELT)) (-3947 (((-774) $) 41 T ELT) (($ (-1074)) 35 T ELT) (($ (-445)) 153 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3537 (($ $ (-585 (-774))) 49 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT))) +(((-1091) (-13 (-758) (-555 (-474)) (-555 (-1091)) (-557 (-1074)) (-952 (-445)) (-555 (-802 (-485))) (-555 (-802 (-328))) (-798 (-485)) (-798 (-328)) (-10 -8 (-15 -3615 ($)) (-15 -3615 ($ $)) (-15 -3544 ((-1186))) (-15 -3543 ($ $)) (-15 -3542 ((-85) $)) (-15 -3541 ((-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774)))) $)) (-15 -3540 ($ $ (-585 (-585 (-774))))) (-15 -3540 ($ $ (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774)))))) (-15 -3539 ($ $ (-585 (-774)))) (-15 -3538 ($ $ (-585 (-774)))) (-15 -3537 ($ $ (-585 (-774)))) (-15 -3801 ($ $ (-585 (-774)))) (-15 -3536 ((-1074) $)) (-15 -3535 ((-585 $) $)) (-15 -3725 ($) -3953)))) (T -1091)) +((-3615 (*1 *1) (-5 *1 (-1091))) (-3615 (*1 *1 *1) (-5 *1 (-1091))) (-3544 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091)))) (-3543 (*1 *1 *1) (-5 *1 (-1091))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) (|:| |args| (-585 (-774))))) (-5 *1 (-1091)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1091)))) (-3725 (*1 *1) (-5 *1 (-1091)))) +((-3545 (((-1180 |#1|) |#1| (-832)) 18 T ELT) (((-1180 |#1|) (-585 |#1|)) 25 T ELT))) +(((-1092 |#1|) (-10 -7 (-15 -3545 ((-1180 |#1|) (-585 |#1|))) (-15 -3545 ((-1180 |#1|) |#1| (-832)))) (-963)) (T -1092)) +((-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-963)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| |#1| (-952 (-348 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-390)) ELT)) (-1625 (($ $ |#1| (-886) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 18 T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-886)) NIL T ELT)) (-2822 (((-886) $) NIL T ELT)) (-1626 (($ (-1 (-886) (-886)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-3739 (($ $ (-886) |#1| $) NIL (-12 (|has| (-886) (-104)) (|has| |#1| (-496))) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3949 (((-886) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-952 (-348 (-485))))) ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-886)) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1093 |#1|) (-13 (-277 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-886) (-104)) (-15 -3739 ($ $ (-886) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-963)) (T -1093)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) (-4 *3 (-963))))) +((-3546 (((-1095) (-1091) $) 26 T ELT)) (-3556 (($) 30 T ELT)) (-3548 (((-3 (|:| |fst| (-375)) (|:| -3911 #1="void")) (-1091) $) 23 T ELT)) (-3550 (((-1186) (-1091) (-3 (|:| |fst| (-375)) (|:| -3911 #1#)) $) 42 T ELT) (((-1186) (-1091) (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) 43 T ELT) (((-1186) (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) 44 T ELT)) (-3558 (((-1186) (-1091)) 59 T ELT)) (-3549 (((-1186) (-1091) $) 56 T ELT) (((-1186) (-1091)) 57 T ELT) (((-1186)) 58 T ELT)) (-3554 (((-1186) (-1091)) 38 T ELT)) (-3552 (((-1091)) 37 T ELT)) (-3566 (($) 35 T ELT)) (-3565 (((-377) (-1091) (-377) (-1091) $) 46 T ELT) (((-377) (-585 (-1091)) (-377) (-1091) $) 50 T ELT) (((-377) (-1091) (-377)) 47 T ELT) (((-377) (-1091) (-377) (-1091)) 51 T ELT)) (-3553 (((-1091)) 36 T ELT)) (-3947 (((-774) $) 29 T ELT)) (-3555 (((-1186)) 31 T ELT) (((-1186) (-1091)) 34 T ELT)) (-3547 (((-585 (-1091)) (-1091) $) 25 T ELT)) (-3551 (((-1186) (-1091) (-585 (-1091)) $) 39 T ELT) (((-1186) (-1091) (-585 (-1091))) 40 T ELT) (((-1186) (-585 (-1091))) 41 T ELT))) +(((-1094) (-13 (-554 (-774)) (-10 -8 (-15 -3556 ($)) (-15 -3555 ((-1186))) (-15 -3555 ((-1186) (-1091))) (-15 -3565 ((-377) (-1091) (-377) (-1091) $)) (-15 -3565 ((-377) (-585 (-1091)) (-377) (-1091) $)) (-15 -3565 ((-377) (-1091) (-377))) (-15 -3565 ((-377) (-1091) (-377) (-1091))) (-15 -3554 ((-1186) (-1091))) (-15 -3553 ((-1091))) (-15 -3552 ((-1091))) (-15 -3551 ((-1186) (-1091) (-585 (-1091)) $)) (-15 -3551 ((-1186) (-1091) (-585 (-1091)))) (-15 -3551 ((-1186) (-585 (-1091)))) (-15 -3550 ((-1186) (-1091) (-3 (|:| |fst| (-375)) (|:| -3911 #1="void")) $)) (-15 -3550 ((-1186) (-1091) (-3 (|:| |fst| (-375)) (|:| -3911 #1#)))) (-15 -3550 ((-1186) (-3 (|:| |fst| (-375)) (|:| -3911 #1#)))) (-15 -3549 ((-1186) (-1091) $)) (-15 -3549 ((-1186) (-1091))) (-15 -3549 ((-1186))) (-15 -3558 ((-1186) (-1091))) (-15 -3566 ($)) (-15 -3548 ((-3 (|:| |fst| (-375)) (|:| -3911 #1#)) (-1091) $)) (-15 -3547 ((-585 (-1091)) (-1091) $)) (-15 -3546 ((-1095) (-1091) $))))) (T -1094)) +((-3556 (*1 *1) (-5 *1 (-1094))) (-3555 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-377)) (-5 *3 (-585 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3553 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3552 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-585 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3911 #1="void"))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3566 (*1 *1) (-5 *1 (-1094))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *1 (-1094)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) +((-3560 (((-585 (-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485))))))))) $) 66 T ELT)) (-3562 (((-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485)))))))) (-375) $) 47 T ELT)) (-3557 (($ (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| (-377))))) 17 T ELT)) (-3558 (((-1186) $) 73 T ELT)) (-3563 (((-585 (-1091)) $) 22 T ELT)) (-3559 (((-1017) $) 60 T ELT)) (-3564 (((-377) (-1091) $) 27 T ELT)) (-3561 (((-585 (-1091)) $) 30 T ELT)) (-3566 (($) 19 T ELT)) (-3565 (((-377) (-585 (-1091)) (-377) $) 25 T ELT) (((-377) (-1091) (-377) $) 24 T ELT)) (-3947 (((-774) $) 12 T ELT) (((-1103 (-1091) (-377)) $) 13 T ELT))) +(((-1095) (-13 (-554 (-774)) (-10 -8 (-15 -3947 ((-1103 (-1091) (-377)) $)) (-15 -3566 ($)) (-15 -3565 ((-377) (-585 (-1091)) (-377) $)) (-15 -3565 ((-377) (-1091) (-377) $)) (-15 -3564 ((-377) (-1091) $)) (-15 -3563 ((-585 (-1091)) $)) (-15 -3562 ((-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485)))))))) (-375) $)) (-15 -3561 ((-585 (-1091)) $)) (-15 -3560 ((-585 (-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485))))))))) $)) (-15 -3559 ((-1017) $)) (-15 -3558 ((-1186) $)) (-15 -3557 ($ (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| (-377))))))))) (T -1095)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-377))) (-5 *1 (-1095)))) (-3566 (*1 *1) (-5 *1 (-1095))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-585 (-1091))) (-5 *1 (-1095)))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3564 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-377)) (-5 *1 (-1095)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1095)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-375)) (-5 *2 (-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485))))))))) (-5 *1 (-1095)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1095)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-3 (|:| -3543 (-1091)) (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485)))))))))) (-5 *1 (-1095)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1095)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| (-377))))) (-5 *1 (-1095))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3159 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-445) #1#) $) 43 T ELT) (((-3 (-1074) #1#) $) 47 T ELT)) (-3158 (((-485) $) 30 T ELT) (((-179) $) 36 T ELT) (((-445) $) 40 T ELT) (((-1074) $) 48 T ELT)) (-3571 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3570 (((-3 (-485) (-179) (-445) (-1074) $) $) 56 T ELT)) (-3569 (((-585 $) $) 58 T ELT)) (-3973 (((-1017) $) 24 T ELT) (($ (-1017)) 25 T ELT)) (-3568 (((-85) $) 57 T ELT)) (-3947 (((-774) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-445)) 38 T ELT) (($ (-1074)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-179) $) 37 T ELT) (((-445) $) 41 T ELT) (((-1074) $) 49 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-485))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-445))) 19 T ELT) (((-85) $ (|[\|\|]| (-1074))) 16 T ELT)) (-3572 (($ (-445) (-585 $)) 51 T ELT) (($ $ (-585 $)) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-485) $) 27 T ELT) (((-179) $) 33 T ELT) (((-445) $) 39 T ELT) (((-1074) $) 45 T ELT)) (-3058 (((-85) $ $) 7 T ELT))) +(((-1096) (-13 (-1176) (-1015) (-952 (-485)) (-952 (-179)) (-952 (-445)) (-952 (-1074)) (-554 (-474)) (-10 -8 (-15 -3973 ((-1017) $)) (-15 -3973 ($ (-1017))) (-15 -3947 ((-485) $)) (-15 -3573 ((-485) $)) (-15 -3947 ((-179) $)) (-15 -3573 ((-179) $)) (-15 -3947 ((-445) $)) (-15 -3573 ((-445) $)) (-15 -3947 ((-1074) $)) (-15 -3573 ((-1074) $)) (-15 -3572 ($ (-445) (-585 $))) (-15 -3572 ($ $ (-585 $))) (-15 -3571 ((-85) $)) (-15 -3570 ((-3 (-485) (-179) (-445) (-1074) $) $)) (-15 -3569 ((-585 $) $)) (-15 -3568 ((-85) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-485)))) (-15 -3567 ((-85) $ (|[\|\|]| (-179)))) (-15 -3567 ((-85) $ (|[\|\|]| (-445)))) (-15 -3567 ((-85) $ (|[\|\|]| (-1074))))))) (T -1096)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-1096))) (-5 *1 (-1096)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1096)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-3 (-485) (-179) (-445) (-1074) (-1096))) (-5 *1 (-1096)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1096)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-696)) 21 T ELT)) (-3725 (($) 10 T CONST)) (-2996 (($) 25 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2012 (((-832) $) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) 22 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT))) +(((-1097 |#1|) (-13 (-754) (-10 -8 (-15 -3725 ($) -3953))) (-832)) (T -1097)) +((-3725 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-832))))) +((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) 24 T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) 18 T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3726 (($ $ $) 20 T ELT)) (-3727 (($ $ $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 22 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) 21 T ELT))) +(((-1098 |#1|) (-13 (-754) (-606) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953))) (-832)) (T -1098)) +((-3727 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) (-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) (-3725 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832))))) +((-696) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT))) +(((-1099) (-1015)) (T -1099)) +NIL +((-3575 (((-585 (-585 (-859 |#1|))) (-585 (-348 (-859 |#1|))) (-585 (-1091))) 69 T ELT)) (-3574 (((-585 (-249 (-348 (-859 |#1|)))) (-249 (-348 (-859 |#1|)))) 81 T ELT) (((-585 (-249 (-348 (-859 |#1|)))) (-348 (-859 |#1|))) 77 T ELT) (((-585 (-249 (-348 (-859 |#1|)))) (-249 (-348 (-859 |#1|))) (-1091)) 82 T ELT) (((-585 (-249 (-348 (-859 |#1|)))) (-348 (-859 |#1|)) (-1091)) 76 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-249 (-348 (-859 |#1|))))) 108 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-348 (-859 |#1|)))) 107 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-249 (-348 (-859 |#1|)))) (-585 (-1091))) 109 T ELT) (((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-348 (-859 |#1|))) (-585 (-1091))) 106 T ELT))) +(((-1100 |#1|) (-10 -7 (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-348 (-859 |#1|))) (-585 (-1091)))) (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-249 (-348 (-859 |#1|)))) (-585 (-1091)))) (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-348 (-859 |#1|))))) (-15 -3574 ((-585 (-585 (-249 (-348 (-859 |#1|))))) (-585 (-249 (-348 (-859 |#1|)))))) (-15 -3574 ((-585 (-249 (-348 (-859 |#1|)))) (-348 (-859 |#1|)) (-1091))) (-15 -3574 ((-585 (-249 (-348 (-859 |#1|)))) (-249 (-348 (-859 |#1|))) (-1091))) (-15 -3574 ((-585 (-249 (-348 (-859 |#1|)))) (-348 (-859 |#1|)))) (-15 -3574 ((-585 (-249 (-348 (-859 |#1|)))) (-249 (-348 (-859 |#1|))))) (-15 -3575 ((-585 (-585 (-859 |#1|))) (-585 (-348 (-859 |#1|))) (-585 (-1091))))) (-496)) (T -1100)) +((-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1100 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-249 (-348 (-859 *4)))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-348 (-859 *4))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-249 (-348 (-859 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-348 (-859 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-585 (-249 (-348 (-859 *4))))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-585 (-348 (-859 *4)))) (-4 *4 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-1100 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1091))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-1100 *5)) (-5 *3 (-585 (-249 (-348 (-859 *5))))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-1100 *5))))) +((-3580 (((-1074)) 7 T ELT)) (-3577 (((-1074)) 11 T CONST)) (-3576 (((-1186) (-1074)) 13 T ELT)) (-3579 (((-1074)) 8 T CONST)) (-3578 (((-103)) 10 T CONST))) +(((-1101) (-13 (-1130) (-10 -7 (-15 -3580 ((-1074))) (-15 -3579 ((-1074)) -3953) (-15 -3578 ((-103)) -3953) (-15 -3577 ((-1074)) -3953) (-15 -3576 ((-1186) (-1074)))))) (T -1101)) +((-3580 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3579 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3578 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101)))) (-3577 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) +((-3584 (((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 56 T ELT)) (-3587 (((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|))) 38 T ELT)) (-3588 (((-1104 (-585 |#1|)) (-585 |#1|)) 49 T ELT)) (-3590 (((-585 (-585 |#1|)) (-585 |#1|)) 45 T ELT)) (-3593 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))) 53 T ELT)) (-3592 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|)))) 52 T ELT)) (-3589 (((-585 (-585 |#1|)) (-585 (-585 |#1|))) 43 T ELT)) (-3591 (((-585 |#1|) (-585 |#1|)) 46 T ELT)) (-3583 (((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 32 T ELT)) (-3582 (((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 29 T ELT)) (-3581 (((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|))) 24 T ELT)) (-3585 (((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 58 T ELT)) (-3586 (((-585 (-585 |#1|)) (-1104 (-585 |#1|))) 60 T ELT))) +(((-1102 |#1|) (-10 -7 (-15 -3581 ((-2 (|:| |fs| (-85)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|)))) (-15 -3582 ((-585 (-585 (-585 |#1|))) (-1 (-85) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3583 ((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3584 ((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3585 ((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -3586 ((-585 (-585 |#1|)) (-1104 (-585 |#1|)))) (-15 -3587 ((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)))) (-15 -3588 ((-1104 (-585 |#1|)) (-585 |#1|))) (-15 -3589 ((-585 (-585 |#1|)) (-585 (-585 |#1|)))) (-15 -3590 ((-585 (-585 |#1|)) (-585 |#1|))) (-15 -3591 ((-585 |#1|) (-585 |#1|))) (-15 -3592 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))))) (-15 -3593 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))))) (-758)) (T -1102)) +((-3593 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) (-5 *1 (-1102 *4)) (-5 *3 (-585 (-585 (-585 *4)))))) (-3592 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) (-5 *1 (-1102 *6)) (-5 *4 (-585 *5)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1102 *3)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-585 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1102 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-1104 (-585 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-585 *4)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-585 (-585 *4))))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1104 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1102 *4)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1102 *4)) (-4 *4 (-758)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) (-5 *1 (-1102 *4)))) (-3583 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *1 (-1102 *4)))) (-3582 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1102 *5)))) (-3581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) (-5 *1 (-1102 *6)) (-5 *5 (-585 *4))))) +((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2200 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2203 ((|#1| $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-2234 (((-585 |#1|) $) NIL T ELT)) (-2235 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2205 (((-585 |#1|) $) NIL T ELT)) (-2206 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1035) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2201 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (((-696) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT) (((-696) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-774) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-554 (-774)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1103 |#1| |#2|) (-13 (-1108 |#1| |#2|) (-10 -7 (-6 -3996))) (-1015) (-1015)) (T -1103)) +NIL +((-3594 (($ (-585 (-585 |#1|))) 10 T ELT)) (-3595 (((-585 (-585 |#1|)) $) 11 T ELT)) (-3947 (((-774) $) 33 T ELT))) +(((-1104 |#1|) (-10 -8 (-15 -3594 ($ (-585 (-585 |#1|)))) (-15 -3595 ((-585 (-585 |#1|)) $)) (-15 -3947 ((-774) $))) (-1015)) (T -1104)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1104 *3)) (-4 *3 (-1015)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1015)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1104 *3))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3596 (($ |#1| (-55)) 11 T ELT)) (-3543 ((|#1| $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ |#1|) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 15 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1105 |#1|) (-13 (-749 |#1|) (-10 -8 (-15 -3596 ($ |#1| (-55))))) (-1015)) (T -1105)) +((-3596 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1015))))) +((-3597 ((|#1| (-585 |#1|)) 46 T ELT)) (-3599 ((|#1| |#1| (-485)) 24 T ELT)) (-3598 (((-1086 |#1|) |#1| (-832)) 20 T ELT))) +(((-1106 |#1|) (-10 -7 (-15 -3597 (|#1| (-585 |#1|))) (-15 -3598 ((-1086 |#1|) |#1| (-832))) (-15 -3599 (|#1| |#1| (-485)))) (-312)) (T -1106)) +((-3599 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-832)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) +((-3600 (($) 10 T ELT) (($ (-585 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3406 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-585 |#3|) $) 41 T ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1275 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3610 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2205 (((-585 |#2|) $) 19 T ELT)) (-2206 (((-85) |#2| $) 65 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1276 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2207 (((-585 |#3|) $) 43 T ELT)) (-3801 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-696) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-696) |#3| $) NIL T ELT) (((-696) (-1 (-85) |#3|) $) 79 T ELT)) (-3947 (((-774) $) 27 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3058 (((-85) $ $) 51 T ELT))) +(((-1107 |#1| |#2| |#3|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3947 ((-774) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3600 (|#1| (-585 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))))) (-15 -3600 (|#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1950 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1947 ((-696) (-1 (-85) |#3|) |#1|)) (-15 -2891 ((-585 |#3|) |#1|)) (-15 -1947 ((-696) |#3| |#1|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -3801 (|#3| |#1| |#2|)) (-15 -2207 ((-585 |#3|) |#1|)) (-15 -2206 ((-85) |#2| |#1|)) (-15 -2205 ((-585 |#2|) |#1|)) (-15 -3406 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3406 (|#1| (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3406 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1355 ((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1275 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3610 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1947 ((-696) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2891 ((-585 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-696) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1950 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3959 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1015) (-1015)) (T -1107)) +NIL +((-2570 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3600 (($) 77 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2200 (((-1186) $ |#1| |#1|) 104 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT)) (-2233 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#2| $ |#1|) 93 T ELT)) (-2891 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) 84 (|has| $ (-6 -3996)) ELT)) (-2202 ((|#1| $) 101 (|has| |#1| (-758)) ELT)) (-2610 (((-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT) (((-585 |#2|) $) 85 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 ((|#1| $) 100 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3997)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3244 (((-1074) $) 22 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-2234 (((-585 |#1|) $) 67 T ELT)) (-2235 (((-85) |#1| $) 68 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2205 (((-585 |#1|) $) 98 T ELT)) (-2206 (((-85) |#1| $) 97 T ELT)) (-3245 (((-1035) $) 21 (OR (|has| |#2| (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT)) (-3802 ((|#2| $) 102 (|has| |#1| (-758)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2201 (($ $ |#2|) 103 (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 91 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-249 |#2|)) 89 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT) (($ $ (-585 (-249 |#2|))) 88 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1015))) ELT)) (-2207 (((-585 |#2|) $) 96 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1467 (($) 53 T ELT) (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1947 (((-696) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) |#2| $) 86 (-12 (|has| |#2| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ELT)) (-3531 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3947 (((-774) $) 17 (OR (|has| |#2| (-554 (-774))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774)))) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-585 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1108 |#1| |#2|) (-113) (-1015) (-1015)) (T -1108)) +((-3789 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) (-3600 (*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) (-3600 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *1 (-1108 *3 *4)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(-13 (-551 |t#1| |t#2|) (-540 |t#1| |t#2|) (-10 -8 (-15 -3789 (|t#2| $ |t#1| |t#2|)) (-15 -3600 ($)) (-15 -3600 ($ (-585 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))))) (-15 -3959 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1015)) (|has| |#2| (-72))) ((-554 (-774)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-774))) (|has| |#2| (-1015)) (|has| |#2| (-554 (-774)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-555 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-555 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-427 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-427 |#2|) . T) ((-540 |#1| |#2|) . T) ((-454 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015))) ((-454 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1015))) ((-13) . T) ((-551 |#1| |#2|) . T) ((-1015) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1015)) (|has| |#2| (-1015))) ((-1130) . T)) +((-3606 (((-85)) 29 T ELT)) (-3603 (((-1186) (-1074)) 31 T ELT)) (-3607 (((-85)) 41 T ELT)) (-3604 (((-1186)) 39 T ELT)) (-3602 (((-1186) (-1074) (-1074)) 30 T ELT)) (-3608 (((-85)) 42 T ELT)) (-3610 (((-1186) |#1| |#2|) 53 T ELT)) (-3601 (((-1186)) 26 T ELT)) (-3609 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3605 (((-1186)) 40 T ELT))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -3601 ((-1186))) (-15 -3602 ((-1186) (-1074) (-1074))) (-15 -3603 ((-1186) (-1074))) (-15 -3604 ((-1186))) (-15 -3605 ((-1186))) (-15 -3606 ((-85))) (-15 -3607 ((-85))) (-15 -3608 ((-85))) (-15 -3609 ((-3 |#2| "failed") |#1|)) (-15 -3610 ((-1186) |#1| |#2|))) (-1015) (-1015)) (T -1109)) +((-3610 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3609 (*1 *2 *3) (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1015)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3605 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3604 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3602 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)))) (-3601 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3616 (((-585 (-1074)) $) 37 T ELT)) (-3612 (((-585 (-1074)) $ (-585 (-1074))) 40 T ELT)) (-3611 (((-585 (-1074)) $ (-585 (-1074))) 39 T ELT)) (-3613 (((-585 (-1074)) $ (-585 (-1074))) 41 T ELT)) (-3614 (((-585 (-1074)) $) 36 T ELT)) (-3615 (($) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3617 (((-585 (-1074)) $) 38 T ELT)) (-3618 (((-1186) $ (-485)) 33 T ELT) (((-1186) $) 34 T ELT)) (-3973 (($ (-774) (-485)) 31 T ELT) (($ (-774) (-485) (-774)) NIL T ELT)) (-3947 (((-774) $) 47 T ELT) (($ (-774)) 30 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1110) (-13 (-1015) (-557 (-774)) (-10 -8 (-15 -3973 ($ (-774) (-485))) (-15 -3973 ($ (-774) (-485) (-774))) (-15 -3618 ((-1186) $ (-485))) (-15 -3618 ((-1186) $)) (-15 -3617 ((-585 (-1074)) $)) (-15 -3616 ((-585 (-1074)) $)) (-15 -3615 ($)) (-15 -3614 ((-585 (-1074)) $)) (-15 -3613 ((-585 (-1074)) $ (-585 (-1074)))) (-15 -3612 ((-585 (-1074)) $ (-585 (-1074)))) (-15 -3611 ((-585 (-1074)) $ (-585 (-1074))))))) (T -1110)) +((-3973 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3973 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110)))) (-3615 (*1 *1) (-5 *1 (-1110))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +((-3947 (((-1110) |#1|) 11 T ELT))) +(((-1111 |#1|) (-10 -7 (-15 -3947 ((-1110) |#1|))) (-1015)) (T -1111)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1015))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3623 (((-1074) $ (-1074)) 21 T ELT) (((-1074) $) 20 T ELT)) (-1698 (((-1074) $ (-1074)) 19 T ELT)) (-1702 (($ $ (-1074)) NIL T ELT)) (-3621 (((-3 (-1074) #1="failed") $) 11 T ELT)) (-3622 (((-1074) $) 8 T ELT)) (-3620 (((-3 (-1074) #1#) $) 12 T ELT)) (-1699 (((-1074) $) 9 T ELT)) (-1703 (($ (-336)) NIL T ELT) (($ (-336) (-1074)) NIL T ELT)) (-3543 (((-336) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3619 (((-85) $) 25 T ELT)) (-3947 (((-774) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1112) (-13 (-314 (-336) (-1074)) (-10 -8 (-15 -3623 ((-1074) $ (-1074))) (-15 -3623 ((-1074) $)) (-15 -3622 ((-1074) $)) (-15 -3621 ((-3 (-1074) #1="failed") $)) (-15 -3620 ((-3 (-1074) #1#) $)) (-15 -3619 ((-85) $))))) (T -1112)) +((-3623 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3620 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) +((-3624 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3625 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3626 (((-485) (-1074)) 33 T ELT))) +(((-1113 |#1|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") |#1|)) (-15 -3625 ((-3 (-485) #1#) |#1|)) (-15 -3626 ((-485) (-1074)))) (-963)) (T -1113)) +((-3626 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-963)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-963)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-963))))) +((-3627 (((-1048 (-179))) 9 T ELT))) +(((-1114) (-10 -7 (-15 -3627 ((-1048 (-179)))))) (T -1114)) +((-3627 (*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) +((-3628 (($) 12 T ELT)) (-3499 (($ $) 36 T ELT)) (-3497 (($ $) 34 T ELT)) (-3485 (($ $) 26 T ELT)) (-3501 (($ $) 18 T ELT)) (-3502 (($ $) 16 T ELT)) (-3500 (($ $) 20 T ELT)) (-3488 (($ $) 31 T ELT)) (-3498 (($ $) 35 T ELT)) (-3486 (($ $) 30 T ELT))) +(((-1115 |#1|) (-10 -7 (-15 -3628 (|#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-1116)) (T -1115)) +NIL +((-3493 (($ $) 26 T ELT)) (-3640 (($ $) 11 T ELT)) (-3491 (($ $) 27 T ELT)) (-3639 (($ $) 10 T ELT)) (-3495 (($ $) 28 T ELT)) (-3638 (($ $) 9 T ELT)) (-3628 (($) 16 T ELT)) (-3943 (($ $) 19 T ELT)) (-3944 (($ $) 18 T ELT)) (-3496 (($ $) 29 T ELT)) (-3637 (($ $) 8 T ELT)) (-3494 (($ $) 30 T ELT)) (-3636 (($ $) 7 T ELT)) (-3492 (($ $) 31 T ELT)) (-3635 (($ $) 6 T ELT)) (-3499 (($ $) 20 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 21 T ELT)) (-3485 (($ $) 33 T ELT)) (-3501 (($ $) 22 T ELT)) (-3489 (($ $) 34 T ELT)) (-3502 (($ $) 23 T ELT)) (-3490 (($ $) 35 T ELT)) (-3500 (($ $) 24 T ELT)) (-3488 (($ $) 36 T ELT)) (-3498 (($ $) 25 T ELT)) (-3486 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1116) (-113)) (T -1116)) +((-3628 (*1 *1) (-4 *1 (-1116)))) +(-13 (-1119) (-66) (-431) (-35) (-239) (-10 -8 (-15 -3628 ($)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-431) . T) ((-1119) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 19 T ELT)) (-3633 (($ |#1| (-585 $)) 28 T ELT) (($ (-585 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3027 ((|#1| $ |#1|) 14 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 13 (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-2891 (((-585 |#1|) $) 70 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 59 T ELT)) (-3029 (((-85) $ $) 50 (|has| |#1| (-1015)) ELT)) (-2610 (((-585 |#1|) $) 71 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3032 (((-585 |#1|) $) 55 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 102 T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 10 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3629 (((-585 $) $) 84 T ELT)) (-3630 (((-85) $ $) 105 T ELT)) (-3631 (((-585 $) $) 100 T ELT)) (-3632 (($ $) 101 T ELT)) (-3634 (((-85) $) 77 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 17 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3401 (($ $) 83 T ELT)) (-3947 (((-774) $) 86 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 12 T ELT)) (-3030 (((-85) $ $) 39 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 81 (|has| $ (-6 -3996)) ELT))) +(((-1117 |#1|) (-13 (-925 |#1|) (-10 -8 (-6 -3996) (-6 -3997) (-15 -3633 ($ |#1| (-585 $))) (-15 -3633 ($ (-585 |#1|))) (-15 -3633 ($ |#1|)) (-15 -3634 ((-85) $)) (-15 -3632 ($ $)) (-15 -3631 ((-585 $) $)) (-15 -3630 ((-85) $ $)) (-15 -3629 ((-585 $) $)))) (-1015)) (T -1117)) +((-3634 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1015)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1015)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1117 *3)))) (-3633 (*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1015)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1015)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-585 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1015)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1015)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-585 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1015))))) +((-3640 (($ $) 15 T ELT)) (-3638 (($ $) 12 T ELT)) (-3637 (($ $) 10 T ELT)) (-3636 (($ $) 17 T ELT))) +(((-1118 |#1|) (-10 -7 (-15 -3636 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3640 (|#1| |#1|))) (-1119)) (T -1118)) +NIL +((-3640 (($ $) 11 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 9 T ELT)) (-3637 (($ $) 8 T ELT)) (-3636 (($ $) 7 T ELT)) (-3635 (($ $) 6 T ELT))) +(((-1119) (-113)) (T -1119)) +((-3640 (*1 *1 *1) (-4 *1 (-1119))) (-3639 (*1 *1 *1) (-4 *1 (-1119))) (-3638 (*1 *1 *1) (-4 *1 (-1119))) (-3637 (*1 *1 *1) (-4 *1 (-1119))) (-3636 (*1 *1 *1) (-4 *1 (-1119))) (-3635 (*1 *1 *1) (-4 *1 (-1119)))) +(-13 (-10 -8 (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)))) +((-3643 ((|#2| |#2|) 95 T ELT)) (-3646 (((-85) |#2|) 29 T ELT)) (-3644 ((|#2| |#2|) 33 T ELT)) (-3645 ((|#2| |#2|) 35 T ELT)) (-3641 ((|#2| |#2| (-1091)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3647 (((-142 |#2|) |#2|) 31 T ELT)) (-3642 ((|#2| |#2| (-1091)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1091))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3647 ((-142 |#2|) |#2|))) (-13 (-390) (-952 (-485)) (-582 (-485))) (-13 (-27) (-1116) (-362 |#1|))) (T -1120)) +((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-142 *3)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-85)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *3)))))) +((-3648 ((|#4| |#4| |#1|) 31 T ELT)) (-3649 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 (|#4| |#4| |#1|)) (-15 -3649 (|#4| |#4| |#1|))) (-496) (-322 |#1|) (-322 |#1|) (-629 |#1| |#2| |#3|)) (T -1121)) +((-3649 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-3648 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +((-3667 ((|#2| |#2|) 148 T ELT)) (-3669 ((|#2| |#2|) 145 T ELT)) (-3666 ((|#2| |#2|) 136 T ELT)) (-3668 ((|#2| |#2|) 133 T ELT)) (-3665 ((|#2| |#2|) 141 T ELT)) (-3664 ((|#2| |#2|) 129 T ELT)) (-3653 ((|#2| |#2|) 44 T ELT)) (-3652 ((|#2| |#2|) 105 T ELT)) (-3650 ((|#2| |#2|) 88 T ELT)) (-3663 ((|#2| |#2|) 143 T ELT)) (-3662 ((|#2| |#2|) 131 T ELT)) (-3675 ((|#2| |#2|) 153 T ELT)) (-3673 ((|#2| |#2|) 151 T ELT)) (-3674 ((|#2| |#2|) 152 T ELT)) (-3672 ((|#2| |#2|) 150 T ELT)) (-3651 ((|#2| |#2|) 163 T ELT)) (-3676 ((|#2| |#2|) 30 (-12 (|has| |#2| (-555 (-802 |#1|))) (|has| |#2| (-798 |#1|)) (|has| |#1| (-555 (-802 |#1|))) (|has| |#1| (-798 |#1|))) ELT)) (-3654 ((|#2| |#2|) 89 T ELT)) (-3655 ((|#2| |#2|) 154 T ELT)) (-3964 ((|#2| |#2|) 155 T ELT)) (-3661 ((|#2| |#2|) 142 T ELT)) (-3660 ((|#2| |#2|) 130 T ELT)) (-3659 ((|#2| |#2|) 149 T ELT)) (-3671 ((|#2| |#2|) 147 T ELT)) (-3658 ((|#2| |#2|) 137 T ELT)) (-3670 ((|#2| |#2|) 135 T ELT)) (-3657 ((|#2| |#2|) 139 T ELT)) (-3656 ((|#2| |#2|) 127 T ELT))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (IF (|has| |#1| (-798 |#1|)) (IF (|has| |#1| (-555 (-802 |#1|))) (IF (|has| |#2| (-555 (-802 |#1|))) (IF (|has| |#2| (-798 |#1|)) (-15 -3676 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-390) (-13 (-362 |#1|) (-1116))) (T -1122)) +((-3676 (*1 *2 *2) (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-1091)) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-859 |#1|) $ (-696)) 18 T ELT) (((-859 |#1|) $ (-696) (-696)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $ (-1091)) NIL T ELT) (((-696) $ (-1091) (-696)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ $ (-585 (-1091)) (-585 (-470 (-1091)))) NIL T ELT) (($ $ (-1091) (-470 (-1091))) NIL T ELT) (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3813 (($ $ (-1091)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3677 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3770 (($ $ (-696)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (($ $ (-1091) $) NIL T ELT) (($ $ (-585 (-1091)) (-585 $)) NIL T ELT) (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT)) (-3759 (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3949 (((-470 (-1091)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-1091)) NIL T ELT) (($ (-859 |#1|)) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (((-859 |#1|) $ (-696)) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1123 |#1|) (-13 (-681 |#1| (-1091)) (-10 -8 (-15 -3678 ((-859 |#1|) $ (-696))) (-15 -3947 ($ (-1091))) (-15 -3947 ($ (-859 |#1|))) (IF (|has| |#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $ (-1091) |#1|)) (-15 -3677 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-963)) (T -1123)) +((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-963)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-963)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1123 *3)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963))))) +((-3694 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3689 ((|#5| |#5| $) 83 T ELT)) (-3711 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3690 (((-585 |#5|) (-585 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3159 (((-3 $ #1#) (-585 |#5|)) 134 T ELT)) (-3800 (((-3 $ #1#) $) 119 T ELT)) (-3686 ((|#5| |#5| $) 101 T ELT)) (-3695 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3684 ((|#5| |#5| $) 105 T ELT)) (-3843 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#5|)) (|:| -1703 (-585 |#5|))) $) 63 T ELT)) (-3696 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3182 ((|#4| $) 115 T ELT)) (-3799 (((-3 |#5| #1#) $) 117 T ELT)) (-3698 (((-585 |#5|) $) 55 T ELT)) (-3692 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3687 ((|#5| |#5| $) 89 T ELT)) (-3700 (((-85) $ $) 29 T ELT)) (-3693 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3688 ((|#5| |#5| $) 86 T ELT)) (-3802 (((-3 |#5| #1#) $) 116 T ELT)) (-3770 (($ $ |#5|) 135 T ELT)) (-3949 (((-696) $) 60 T ELT)) (-3531 (($ (-585 |#5|)) 132 T ELT)) (-2912 (($ $ |#4|) 130 T ELT)) (-2914 (($ $ |#4|) 128 T ELT)) (-3685 (($ $) 127 T ELT)) (-3947 (((-774) $) NIL T ELT) (((-585 |#5|) $) 120 T ELT)) (-3679 (((-696) $) 139 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3691 (((-85) $ (-1 (-85) |#5| (-585 |#5|))) 107 T ELT)) (-3681 (((-585 |#4|) $) 122 T ELT)) (-3934 (((-85) |#4| $) 125 T ELT)) (-3058 (((-85) $ $) 20 T ELT))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3679 ((-696) |#1|)) (-15 -3770 (|#1| |#1| |#5|)) (-15 -3711 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3934 ((-85) |#4| |#1|)) (-15 -3681 ((-585 |#4|) |#1|)) (-15 -3800 ((-3 |#1| #1#) |#1|)) (-15 -3799 ((-3 |#5| #1#) |#1|)) (-15 -3802 ((-3 |#5| #1#) |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#1| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 ((-585 |#5|) (-585 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3843 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3692 ((-85) |#1|)) (-15 -3693 ((-85) |#1|)) (-15 -3694 ((-85) |#1|)) (-15 -3691 ((-85) |#1| (-1 (-85) |#5| (-585 |#5|)))) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3696 ((-85) |#1|)) (-15 -3696 ((-85) |#5| |#1|)) (-15 -3697 ((-2 (|:| -3862 (-585 |#5|)) (|:| -1703 (-585 |#5|))) |#1|)) (-15 -3949 ((-696) |#1|)) (-15 -3698 ((-585 |#5|) |#1|)) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-585 |#5|))) #1#) (-585 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3700 ((-85) |#1| |#1|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -3182 (|#4| |#1|)) (-15 -3159 ((-3 |#1| #1#) (-585 |#5|))) (-15 -3947 ((-585 |#5|) |#1|)) (-15 -3531 (|#1| (-585 |#5|))) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3711 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3947 ((-774) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-496) (-719) (-758) (-979 |#2| |#3| |#4|)) (T -1124)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) 90 T ELT)) (-3683 (((-585 $) (-585 |#4|)) 91 T ELT)) (-3083 (((-585 |#3|) $) 37 T ELT)) (-2910 (((-85) $) 30 T ELT)) (-2901 (((-85) $) 21 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3725 (($) 46 T CONST)) (-2906 (((-85) $) 26 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 27 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 22 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-585 |#4|)) 40 T ELT)) (-3158 (($ (-585 |#4|)) 39 T ELT)) (-3800 (((-3 $ "failed") $) 87 T ELT)) (-3686 ((|#4| |#4| $) 94 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3684 ((|#4| |#4| $) 92 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) 110 T ELT)) (-2891 (((-585 |#4|) $) 53 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3182 ((|#3| $) 38 T ELT)) (-2610 (((-585 |#4|) $) 54 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2916 (((-585 |#3|) $) 36 T ELT)) (-2915 (((-85) |#3| $) 35 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3799 (((-3 |#4| "failed") $) 88 T ELT)) (-3698 (((-585 |#4|) $) 112 T ELT)) (-3692 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-3700 (((-85) $ $) 115 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3802 (((-3 |#4| "failed") $) 89 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3680 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3770 (($ $ |#4|) 82 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) 57 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) 42 T ELT)) (-3404 (((-85) $) 45 T ELT)) (-3566 (($) 44 T ELT)) (-3949 (((-696) $) 111 T ELT)) (-1947 (((-696) |#4| $) 55 (-12 (|has| |#4| (-1015)) (|has| $ (-6 -3996))) ELT) (((-696) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 43 T ELT)) (-3973 (((-474) $) 70 (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) 61 T ELT)) (-2912 (($ $ |#3|) 32 T ELT)) (-2914 (($ $ |#3|) 34 T ELT)) (-3685 (($ $) 93 T ELT)) (-2913 (($ $ |#3|) 33 T ELT)) (-3947 (((-774) $) 13 T ELT) (((-585 |#4|) $) 41 T ELT)) (-3679 (((-696) $) 81 (|has| |#3| (-318)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) 103 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) 86 T ELT)) (-3934 (((-85) |#3| $) 85 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3958 (((-696) $) 47 (|has| $ (-6 -3996)) ELT))) +(((-1125 |#1| |#2| |#3| |#4|) (-113) (-496) (-719) (-758) (-979 |t#1| |t#2| |t#3|)) (T -1125)) +((-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3699 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-585 *8)))) (-5 *3 (-585 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-3699 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-585 *9)))) (-5 *3 (-585 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-2 (|:| -3862 (-585 *6)) (|:| -1703 (-585 *6)))))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) (-3843 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *2 (-979 *5 *6 *7)))) (-3690 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| -3862 *1) (|:| -1703 (-585 *7))))) (-5 *3 (-585 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3802 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3799 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3800 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) (-3934 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) (-3711 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) (-3680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-318)) (-5 *2 (-696))))) +(-13 (-891 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3996) (-6 -3997) (-15 -3700 ((-85) $ $)) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3698 ((-585 |t#4|) $)) (-15 -3949 ((-696) $)) (-15 -3697 ((-2 (|:| -3862 (-585 |t#4|)) (|:| -1703 (-585 |t#4|))) $)) (-15 -3696 ((-85) |t#4| $)) (-15 -3696 ((-85) $)) (-15 -3695 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) $ (-1 (-85) |t#4| (-585 |t#4|)))) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) $)) (-15 -3843 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3690 ((-585 |t#4|) (-585 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 ($ $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 ((-585 $) (-585 |t#4|))) (-15 -3682 ((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |t#4|)))) (-585 |t#4|))) (-15 -3802 ((-3 |t#4| "failed") $)) (-15 -3799 ((-3 |t#4| "failed") $)) (-15 -3800 ((-3 $ "failed") $)) (-15 -3681 ((-585 |t#3|) $)) (-15 -3934 ((-85) |t#3| $)) (-15 -3711 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3680 ((-3 $ "failed") $ |t#4|)) (-15 -3770 ($ $ |t#4|)) (IF (|has| |t#3| (-318)) (-15 -3679 ((-696) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-554 (-585 |#4|)) . T) ((-554 (-774)) . T) ((-124 |#4|) . T) ((-555 (-474)) |has| |#4| (-555 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-427 |#4|) . T) ((-454 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ((-13) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1015) . T) ((-1130) . T)) +((-3706 (($ |#1| (-585 (-585 (-856 (-179)))) (-85)) 19 T ELT)) (-3705 (((-85) $ (-85)) 18 T ELT)) (-3704 (((-85) $) 17 T ELT)) (-3702 (((-585 (-585 (-856 (-179)))) $) 13 T ELT)) (-3701 ((|#1| $) 8 T ELT)) (-3703 (((-85) $) 15 T ELT))) +(((-1126 |#1|) (-10 -8 (-15 -3701 (|#1| $)) (-15 -3702 ((-585 (-585 (-856 (-179)))) $)) (-15 -3703 ((-85) $)) (-15 -3704 ((-85) $)) (-15 -3705 ((-85) $ (-85))) (-15 -3706 ($ |#1| (-585 (-585 (-856 (-179)))) (-85)))) (-889)) (T -1126)) +((-3706 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) (-4 *2 (-889)))) (-3705 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-889)))) (-3701 (*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-889))))) +((-3708 (((-856 (-179)) (-856 (-179))) 31 T ELT)) (-3707 (((-856 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3710 (((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179)))) 57 T ELT)) (-3837 (((-179) (-856 (-179)) (-856 (-179))) 27 T ELT)) (-3835 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 28 T ELT)) (-3709 (((-585 (-585 (-179))) (-485)) 45 T ELT)) (-3838 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 26 T ELT)) (-3840 (((-856 (-179)) (-856 (-179)) (-856 (-179))) 24 T ELT)) (* (((-856 (-179)) (-179) (-856 (-179))) 22 T ELT))) +(((-1127) (-10 -7 (-15 -3707 ((-856 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-856 (-179)) (-179) (-856 (-179)))) (-15 -3840 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3838 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3837 ((-179) (-856 (-179)) (-856 (-179)))) (-15 -3835 ((-856 (-179)) (-856 (-179)) (-856 (-179)))) (-15 -3708 ((-856 (-179)) (-856 (-179)))) (-15 -3709 ((-585 (-585 (-179))) (-485))) (-15 -3710 ((-585 (-856 (-179))) (-856 (-179)) (-856 (-179)) (-856 (-179)) (-179) (-585 (-585 (-179))))))) (T -1127)) +((-3710 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) (-5 *1 (-1127)) (-5 *3 (-856 *4)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1127)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) (-3707 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3711 ((|#1| $ (-696)) 18 T ELT)) (-3834 (((-696) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3947 (((-871 |#1|) $) 12 T ELT) (($ (-871 |#1|)) 11 T ELT) (((-774) $) 29 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1015)) ELT))) +(((-1128 |#1|) (-13 (-428 (-871 |#1|)) (-10 -8 (-15 -3711 (|#1| $ (-696))) (-15 -3834 ((-696) $)) (IF (|has| |#1| (-554 (-774))) (-6 (-554 (-774))) |%noBranch|) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|))) (-1130)) (T -1128)) +((-3711 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1128 *3)) (-4 *3 (-1130))))) +((-3714 (((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)) 92 T ELT)) (-3712 (((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 84 T ELT)) (-3713 (((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 68 T ELT))) +(((-1129 |#1|) (-10 -7 (-15 -3712 ((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3713 ((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3714 ((-346 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)))) (-299)) (T -1129)) +((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-346 (-1086 (-1086 *5)))) (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4)))))) +NIL +(((-1130) (-113)) (T -1130)) NIL (-13) (((-13) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 9 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1129) (-995)) (T -1129)) -NIL -((-3714 (((-85)) 18 T ELT)) (-3711 (((-1184) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1184) (-584 |#1|)) 23 T ELT)) (-3716 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3713 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3715 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3712 (((-2 (|:| -3227 (-584 |#1|)) (|:| -3226 (-584 |#1|)))) 20 T ELT))) -(((-1130 |#1|) (-10 -7 (-15 -3711 ((-1184) (-584 |#1|))) (-15 -3711 ((-1184) (-584 |#1|) (-584 |#1|))) (-15 -3712 ((-2 (|:| -3227 (-584 |#1|)) (|:| -3226 (-584 |#1|))))) (-15 -3713 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3713 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3715 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3714 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3715 (|#1| (-584 |#1|))) (-15 -3716 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1130)) -((-3716 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-757)) (-4 *3 (-1013)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-757)) (-5 *1 (-1130 *2)))) (-3714 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) (-4 *2 (-1013)))) (-3713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1130 *3)))) (-3713 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3712 (*1 *2) (-12 (-5 *2 (-2 (|:| -3227 (-584 *3)) (|:| -3226 (-584 *3)))) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))) -((-3717 (((-1184) (-584 (-1089)) (-584 (-1089))) 14 T ELT) (((-1184) (-584 (-1089))) 12 T ELT)) (-3719 (((-1184)) 16 T ELT)) (-3718 (((-2 (|:| -3226 (-584 (-1089))) (|:| -3227 (-584 (-1089))))) 20 T ELT))) -(((-1131) (-10 -7 (-15 -3717 ((-1184) (-584 (-1089)))) (-15 -3717 ((-1184) (-584 (-1089)) (-584 (-1089)))) (-15 -3718 ((-2 (|:| -3226 (-584 (-1089))) (|:| -3227 (-584 (-1089)))))) (-15 -3719 ((-1184))))) (T -1131)) -((-3719 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3718 (*1 *2) (-12 (-5 *2 (-2 (|:| -3226 (-584 (-1089))) (|:| -3227 (-584 (-1089))))) (-5 *1 (-1131)))) (-3717 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))) -((-3772 (($ $) 17 T ELT)) (-3720 (((-85) $) 27 T ELT))) -(((-1132 |#1|) (-10 -7 (-15 -3772 (|#1| |#1|)) (-15 -3720 ((-85) |#1|))) (-1133)) (T -1132)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 64 T ELT)) (-3968 (((-345 $) $) 65 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3720 (((-85) $) 66 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3729 (((-345 $) $) 63 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1133) (-113)) (T -1133)) -((-3720 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133)))) (-3772 (*1 *1 *1) (-4 *1 (-1133))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133))))) -(-13 (-389) (-10 -8 (-15 -3720 ((-85) $)) (-15 -3968 ((-345 $) $)) (-15 -3772 ($ $)) (-15 -3729 ((-345 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1134) (-13 (-753) (-605) (-10 -8 (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949)))) (T -1134)) -((-3723 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3721 (*1 *1) (-5 *1 (-1134)))) -((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1135) (-13 (-753) (-605) (-10 -8 (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949)))) (T -1135)) -((-3723 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3721 (*1 *1) (-5 *1 (-1135)))) -((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949)))) (T -1136)) -((-3723 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3721 (*1 *1) (-5 *1 (-1136)))) -((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3134 (((-695)) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2993 (($) NIL T ELT)) (-2530 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2856 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2009 (((-831) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2399 (($ (-831)) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-3723 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT))) -(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)) (-15 -3721 ($) -3949)))) (T -1137)) -((-3723 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3721 (*1 *1) (-5 *1 (-1137)))) -((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3127 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 10 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2062 (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2060 (((-85) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3768 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3728 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3725 (((-3 (-1168 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3726 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3620 (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-1168 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3154 (((-1168 |#1| |#2| |#3|) $) NIL T ELT) (((-1089) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3727 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-1168 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3724 (((-347 (-858 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2993 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3184 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3769 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2997 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (((-633 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) ELT)) (-3185 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3774 (($ $ (-831)) NIL T ELT)) (-3812 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2530 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2856 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2279 (((-631 (-1168 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-484) (-1168 |#1| |#2| |#3|)) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) 27 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 28 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3126 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3128 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-484)) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1168 |#1| |#2| |#3|)) (-584 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3945 (((-484) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3969 (((-473) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-473))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1168 |#1| |#2| |#3|)) NIL T ELT) (($ (-1175 |#2|)) 24 T ELT) (($ (-1089)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT) (($ (-347 (-484))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3674 ((|#1| $ (-484)) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 11 T ELT)) (-3129 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3380 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2659 (($) 20 T CONST)) (-2665 (($) 15 T CONST)) (-2668 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT) (($ (-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1138 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1168 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3943 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1138)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3955 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23 T ELT))) -(((-1139 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3955 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-962) (-962) (-1089) (-1089) |#1| |#2|) (T -1139)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-484)) 122 T ELT) (($ $ (-484) (-484)) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 128 T ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3036 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 199 T ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-2563 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3724 (((-347 (-858 |#1|)) $ (-484)) 197 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 196 (|has| |#1| (-495)) ELT)) (-2562 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) 92 T ELT)) (-3624 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-484) $) 124 T ELT) (((-484) $ (-484)) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) 125 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 198 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| (-484)) 79 T ELT) (($ $ (-994) (-484)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-484))) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3939 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-484)) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3940 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-484)) 129 T ELT) (($ $ $) 105 (|has| (-484) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3945 (((-484) $) 82 T ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-484)) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-484)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1140 |#1|) (-113) (-962)) (T -1140)) -((-3815 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1140 *3)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-962)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) (-5 *2 (-347 (-858 *4))))) (-3724 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) (-5 *2 (-347 (-858 *4))))) (-3809 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3809 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))) -(-13 (-1157 |t#1| (-484)) (-10 -8 (-15 -3815 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3812 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3724 ((-347 (-858 |t#1|)) $ (-484))) (-15 -3724 ((-347 (-858 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $)) (IF (|has| |t#1| (-15 -3809 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3080 ((-584 (-1089)) |t#1|))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-887 |#1| (-484) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-484)) . T)) -((-3186 (((-85) $) 12 T ELT)) (-3155 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3154 ((|#3| $) 14 T ELT) (((-1089) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT))) -(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -3155 ((-3 (-484) #1="failed") |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3155 ((-3 (-1089) #1#) |#1|)) (-15 -3154 ((-1089) |#1|)) (-15 -3155 ((-3 |#3| #1#) |#1|)) (-15 -3154 (|#3| |#1|)) (-15 -3186 ((-85) |#1|))) (-1142 |#2| |#3|) (-962) (-1171 |#2|)) (T -1141)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3127 ((|#2| $) 264 (-2561 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-484)) 122 T ELT) (($ $ (-484) (-484)) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 128 T ELT)) (-3728 ((|#2| $) 300 T ELT)) (-3725 (((-3 |#2| "failed") $) 296 T ELT)) (-3726 ((|#2| $) 297 T ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 273 (-2561 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3772 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3036 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 270 (-2561 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3620 (((-484) $) 282 (-2561 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 199 T ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#2| #2="failed") $) 303 T ELT) (((-3 (-484) #2#) $) 293 (-2561 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #2#) $) 291 (-2561 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-1089) #2#) $) 275 (-2561 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT)) (-3154 ((|#2| $) 304 T ELT) (((-484) $) 292 (-2561 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) 290 (-2561 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-1089) $) 274 (-2561 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT)) (-3727 (($ $) 299 T ELT) (($ (-484) $) 298 T ELT)) (-2563 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3956 (($ $) 78 T ELT)) (-2278 (((-631 |#2|) (-631 $)) 252 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 251 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 250 (-2561 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) 249 (-2561 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3724 (((-347 (-858 |#1|)) $ (-484)) 197 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 196 (|has| |#1| (-495)) ELT)) (-2993 (($) 266 (-2561 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-2562 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-3184 (((-85) $) 280 (-2561 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2891 (((-85) $) 92 T ELT)) (-3624 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 258 (-2561 (|has| |#2| (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 257 (-2561 (|has| |#2| (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3769 (((-484) $) 124 T ELT) (((-484) $ (-484)) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-2995 (($ $) 262 (|has| |#1| (-311)) ELT)) (-2997 ((|#2| $) 260 (|has| |#1| (-311)) ELT)) (-3010 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (((-633 $) $) 294 (-2561 (|has| |#2| (-1065)) (|has| |#1| (-311))) ELT)) (-3185 (((-85) $) 281 (-2561 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3774 (($ $ (-831)) 125 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 198 T ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| (-484)) 79 T ELT) (($ $ (-994) (-484)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-484))) 94 T ELT)) (-2530 (($ $ $) 289 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2856 (($ $ $) 288 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT) (($ (-1 |#2| |#2|) $) 242 (|has| |#1| (-311)) ELT)) (-3939 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2279 (((-631 |#2|) (-1178 $)) 254 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 253 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 248 (-2561 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) 247 (-2561 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3776 (($ (-484) |#2|) 301 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3443 (($) 295 (-2561 (|has| |#2| (-1065)) (|has| |#1| (-311))) CONST)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3126 (($ $) 265 (-2561 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3128 ((|#2| $) 268 (-2561 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 271 (-2561 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 272 (-2561 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3729 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-484)) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3940 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) 241 (-2561 (|has| |#2| (-453 (-1089) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) 240 (-2561 (|has| |#2| (-453 (-1089) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 |#2|))) 239 (-2561 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-248 |#2|)) 238 (-2561 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ |#2| |#2|) 237 (-2561 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 236 (-2561 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-484)) 129 T ELT) (($ $ $) 105 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 235 (-2561 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-311))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) 244 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 243 (|has| |#1| (-311)) ELT) (($ $) 109 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) 107 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 117 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) 115 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) 114 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2994 (($ $) 263 (|has| |#1| (-311)) ELT)) (-2996 ((|#2| $) 261 (|has| |#1| (-311)) ELT)) (-3945 (((-484) $) 82 T ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3969 (((-179) $) 279 (-2561 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-327) $) 278 (-2561 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-473) $) 277 (-2561 (|has| |#2| (-554 (-473))) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) 256 (-2561 (|has| |#2| (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) 255 (-2561 (|has| |#2| (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 269 (-2561 (-2561 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 302 T ELT) (($ (-1089)) 276 (-2561 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-484)) 77 T ELT)) (-2701 (((-633 $) $) 66 (OR (-2561 (OR (|has| |#2| (-118)) (-2561 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-3129 ((|#2| $) 267 (-2561 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-484)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3380 (($ $) 283 (-2561 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-311)) ELT) (($ $) 108 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) 106 (OR (-2561 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 116 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) 112 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) 111 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (OR (-2561 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2565 (((-85) $ $) 287 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2566 (((-85) $ $) 285 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-2683 (((-85) $ $) 286 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2684 (((-85) $ $) 284 (-2561 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 259 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#2|) 234 (|has| |#1| (-311)) ELT) (($ |#2| $) 233 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1142 |#1| |#2|) (-113) (-962) (-1171 |t#1|)) (T -1142)) -((-3945 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-962)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))) (-3727 (*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1171 *2)))) (-3727 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))) (-3725 (*1 *2 *1) (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3))))) -(-13 (-1140 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3776 ($ (-484) |t#2|)) (-15 -3945 ((-484) $)) (-15 -3728 (|t#2| $)) (-15 -3727 ($ $)) (-15 -3727 ($ (-484) $)) (-15 -3726 (|t#2| $)) (-15 -3725 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-311)) (-6 (-905 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-311)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-311)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 (-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-473)) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-311)) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-311) |has| |#1| (-311)) ((-287 |#2|) |has| |#1| (-311)) ((-326 |#2|) |has| |#1| (-311)) ((-340 |#2|) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-453 (-1089) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ((-453 |#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-311)) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-311)) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-311)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-581 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((-581 |#2|) |has| |#1| (-311)) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-311)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-715) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) (-12 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) (-12 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-807 $ (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-810 (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-812 (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-797 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484)))) ((-795 |#2|) |has| |#1| (-311)) ((-822) -12 (|has| |#1| (-311)) (|has| |#2| (-822))) ((-887 |#1| (-484) (-994)) . T) ((-833) |has| |#1| (-311)) ((-905 |#2|) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-934) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-951 (-347 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ((-951 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ((-951 (-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ((-951 |#2|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-311)) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-311)) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) -12 (|has| |#1| (-311)) (|has| |#2| (-1065))) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1140 |#1|) . T) ((-1157 |#1| (-484)) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 83 T ELT)) (-3127 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 102 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3728 ((|#2| $) 11 T ELT)) (-3725 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3726 ((|#2| $) 36 T ELT)) (-3489 (($ $) 208 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3620 (((-484) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3491 (($ $) 212 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 188 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT)) (-3154 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-1089) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT)) (-3727 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT)) (-3464 (((-3 $ #1#) $) 90 T ELT)) (-3724 (((-347 (-858 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2993 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3184 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2891 (((-85) $) 76 T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484)))) ELT)) (-3769 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2995 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2997 ((|#2| $) 167 (|has| |#1| (-311)) ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (((-633 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1065))) ELT)) (-3185 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3774 (($ $ (-831)) 150 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2530 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2856 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2279 (((-631 |#2|) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-484) |#2|) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 161 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 230 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 235 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT)) (-3443 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1065))) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3126 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3128 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-484)) 140 T ELT)) (-3463 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 155 (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 ((|#2| $) 168 (|has| |#1| (-311)) ELT)) (-3945 (((-484) $) 12 T ELT)) (-3492 (($ $) 214 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 210 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3969 (((-179) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-327) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473)))) ELT) (((-801 (-327)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2890 (($ $) 138 T ELT)) (-3943 (((-773) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT) (($ (-347 (-484))) 171 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-484)) 87 T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) ELT)) (-3124 (((-695)) 157 T CONST)) (-3770 ((|#1| $) 104 T ELT)) (-3129 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 220 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 196 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 216 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 224 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 226 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 222 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 198 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 218 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3380 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2659 (($) 13 T CONST)) (-2665 (($) 18 T CONST)) (-2668 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT)) (-2565 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3055 (((-85) $ $) 74 T ELT)) (-2683 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2684 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 165 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3836 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 174 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-311)) ELT) (($ |#2| $) 163 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1143 |#1| |#2|) (-1142 |#1| |#2|) (-962) (-1171 |#1|)) (T -1143)) -NIL -((-3731 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85)) 13 T ELT)) (-3730 (((-345 |#1|) |#1|) 26 T ELT)) (-3729 (((-345 |#1|) |#1|) 24 T ELT))) -(((-1144 |#1|) (-10 -7 (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3730 ((-345 |#1|) |#1|)) (-15 -3731 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2394 (-484)))))) |#1| (-85)))) (-1154 (-484))) (T -1144)) -((-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) -((-2567 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3733 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3955 (((-1068 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3227 ((|#1| $) 15 T ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3225 (((-484) $) 19 T ELT)) (-3226 ((|#1| $) 18 T ELT)) (-3228 ((|#1| $) 13 T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3732 (((-85) $) 17 T ELT)) (-3960 (((-1068 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1068 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3969 (($ |#1|) 26 T ELT)) (-3943 (($ (-1001 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3734 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3230 (($ $ (-484)) 14 T ELT)) (-3055 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT))) -(((-1145 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3734 ($ |#1|)) (-15 -3733 ($ |#1|)) (-15 -3943 ($ (-1001 |#1|))) (-15 -3732 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1007 |#1| (-1068 |#1|))) |%noBranch|))) (-1128)) (T -1145)) -((-3734 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3733 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128))))) -((-3955 (((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 17 T ELT))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -3955 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) (IF (|has| |#1| (-756)) (-15 -3955 ((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1146)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3764 (((-1178 |#2|) $ (-695)) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3762 (($ (-1084 |#2|)) NIL T ELT)) (-3082 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3752 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3772 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3758 (($ $ (-695)) NIL T ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-389)) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3753 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-2278 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3756 (($ $ $) NIL T ELT)) (-3750 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3749 (((-2 (|:| -3951 |#2|) (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3500 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-994)) NIL (|has| |#2| (-389)) ELT)) (-2817 (((-584 $) $) NIL T ELT)) (-3720 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-695) $) NIL T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-3769 (((-695) $ $) NIL (|has| |#2| (-495)) ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-3442 (((-633 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3083 (($ (-1084 |#2|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3774 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#2| (-695)) 18 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL T ELT)) (-2819 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3763 (((-1084 |#2|) $) NIL T ELT)) (-3081 (((-3 (-994) #1#) $) NIL T ELT)) (-2279 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) NIL T ELT)) (-2822 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-2 (|:| |var| (-994)) (|:| -2400 (-695))) #1#) $) NIL T ELT)) (-3809 (($ $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT)) (-3443 (($) NIL (|has| |#2| (-1065)) CONST)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3735 (($ $ (-695) |#2| $) NIL T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3463 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-3765 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-3797 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-347 $) |#2|) NIL (|has| |#2| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#2| (-495)) ELT)) (-3761 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3754 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3945 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3969 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2816 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-994)) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3751 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#2| (-495)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1175 |#1|)) 20 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2701 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) 14 T CONST)) (-2668 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1147 |#1| |#2|) (-13 (-1154 |#2|) (-556 (-1175 |#1|)) (-10 -8 (-15 -3735 ($ $ (-695) |#2| $)))) (-1089) (-962)) (T -1147)) -((-3735 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-962))))) -((-3955 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15 T ELT))) -(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1089) (-962) (-1089) (-962)) (T -1148)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) (-14 *7 (-1089))))) -((-3738 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3736 ((|#1| |#3|) 13 T ELT)) (-3737 ((|#3| |#3|) 19 T ELT))) -(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -3736 (|#1| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3738 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-905 |#1|) (-1154 |#2|)) (T -1149)) -((-3738 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-1149 *3 *4 *2)) (-4 *2 (-1154 *4)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) (-4 *3 (-1154 *4))))) -((-3740 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3739 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3742 (((-3 (-2 (|:| -3136 |#2|) (|:| -3135 |#2|)) #1#) |#2|) 50 T ELT)) (-3743 (((-584 |#2|) |#2|) 52 T ELT)) (-3741 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3739 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3740 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3741 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3742 ((-3 (-2 (|:| -3136 |#2|) (|:| -3135 |#2|)) #1#) |#2|)) (-15 -3743 ((-584 |#2|) |#2|))) (-13 (-495) (-120)) (-1154 |#1|)) (T -1150)) -((-3743 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3742 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3136 *3) (|:| -3135 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3741 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1154 *3)))) (-3740 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))) (-3739 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) -((-3744 (((-3 (-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -3744 ((-3 (-2 (|:| -1971 |#2|) (|:| -2901 |#2|)) "failed") |#2| |#2|))) (-495) (-1154 |#1|)) (T -1151)) -((-3744 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4))))) -((-3745 ((|#2| |#2| |#2|) 22 T ELT)) (-3746 ((|#2| |#2| |#2|) 36 T ELT)) (-3747 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1154 |#1|)) (T -1152)) -((-3747 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) -((-3764 (((-1178 |#2|) $ (-695)) 129 T ELT)) (-3080 (((-584 (-994)) $) 16 T ELT)) (-3762 (($ (-1084 |#2|)) 80 T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) 21 T ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 217 T ELT)) (-3772 (($ $) 207 T ELT)) (-3968 (((-345 $) $) 205 T ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 95 T ELT)) (-3758 (($ $ (-695)) 84 T ELT)) (-3757 (($ $ (-695)) 86 T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3155 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3154 ((|#2| $) 130 T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3750 (($ $ $) 182 T ELT)) (-3749 (((-2 (|:| -3951 |#2|) (|:| -1971 $) (|:| -2901 $)) $ $) 185 T ELT)) (-3769 (((-695) $ $) 202 T ELT)) (-3442 (((-633 $) $) 149 T ELT)) (-2892 (($ |#2| (-695)) NIL T ELT) (($ $ (-994) (-695)) 59 T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2819 (((-695) $) NIL T ELT) (((-695) $ (-994)) 54 T ELT) (((-584 (-695)) $ (-584 (-994))) 55 T ELT)) (-3763 (((-1084 |#2|) $) 72 T ELT)) (-3081 (((-3 (-994) #1#) $) 52 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) 83 T ELT)) (-3809 (($ $) 232 T ELT)) (-3443 (($) 134 T CONST)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 214 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 101 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 99 T ELT)) (-3729 (((-345 $) $) 120 T ELT)) (-3765 (($ $ (-584 (-248 $))) 51 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-584 (-994)) (-584 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-584 (-994)) (-584 $)) 30 T ELT)) (-1605 (((-695) $) 220 T ELT)) (-3797 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) 176 T ELT) ((|#2| (-347 $) |#2|) 219 T ELT) (((-347 $) $ (-347 $)) 201 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 225 T ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3945 (((-695) $) NIL T ELT) (((-695) $ (-994)) 17 T ELT) (((-584 (-695)) $ (-584 (-994))) 23 T ELT)) (-2816 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3751 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-347 $) #1#) (-347 $) $) 189 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#1|)) (-15 -2707 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3755 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3755 (|#1| |#1| (-1089) (-695))) (-15 -3755 (|#1| |#1| (-584 (-1089)))) (-15 -3755 (|#1| |#1| (-1089))) (-15 -3968 ((-345 |#1|) |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3443 (|#1|) -3949) (-15 -3442 ((-633 |#1|) |#1|)) (-15 -3797 ((-347 |#1|) |#1| (-347 |#1|))) (-15 -1605 ((-695) |#1|)) (-15 -2878 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3797 (|#2| (-347 |#1|) |#2|)) (-15 -3748 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3749 ((-2 (|:| -3951 |#2|) (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| |#1|)) (-15 -3750 (|#1| |#1| |#1|)) (-15 -3751 ((-3 (-347 |#1|) #1="failed") (-347 |#1|) |#1|)) (-15 -3751 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3769 ((-695) |#1| |#1|)) (-15 -3797 ((-347 |#1|) (-347 |#1|) (-347 |#1|))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3757 (|#1| |#1| (-695))) (-15 -3758 (|#1| |#1| (-695))) (-15 -3759 ((-2 (|:| -1971 |#1|) (|:| -2901 |#1|)) |#1| (-695))) (-15 -3762 (|#1| (-1084 |#2|))) (-15 -3763 ((-1084 |#2|) |#1|)) (-15 -3764 ((-1178 |#2|) |#1| (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3755 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3755 (|#1| |#1| (-695))) (-15 -3755 (|#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#2| |#1| |#2|)) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -2706 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2705 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-3 (-584 (-1084 |#1|)) #1#) (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2816 (|#1| |#1| (-994))) (-15 -3080 ((-584 (-994)) |#1|)) (-15 -2818 ((-695) |#1| (-584 (-994)))) (-15 -2818 ((-695) |#1|)) (-15 -2892 (|#1| |#1| (-584 (-994)) (-584 (-695)))) (-15 -2892 (|#1| |#1| (-994) (-695))) (-15 -2819 ((-584 (-695)) |#1| (-584 (-994)))) (-15 -2819 ((-695) |#1| (-994))) (-15 -3081 ((-3 (-994) #1#) |#1|)) (-15 -3945 ((-584 (-695)) |#1| (-584 (-994)))) (-15 -3945 ((-695) |#1| (-994))) (-15 -3943 (|#1| (-994))) (-15 -3155 ((-3 (-994) #1#) |#1|)) (-15 -3154 ((-994) |#1|)) (-15 -3765 (|#1| |#1| (-584 (-994)) (-584 |#1|))) (-15 -3765 (|#1| |#1| (-994) |#1|)) (-15 -3765 (|#1| |#1| (-584 (-994)) (-584 |#2|))) (-15 -3765 (|#1| |#1| (-994) |#2|)) (-15 -3765 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3765 (|#1| |#1| |#1| |#1|)) (-15 -3765 (|#1| |#1| (-248 |#1|))) (-15 -3765 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3945 ((-695) |#1|)) (-15 -2892 (|#1| |#2| (-695))) (-15 -3155 ((-3 (-484) #1#) |#1|)) (-15 -3154 ((-484) |#1|)) (-15 -3155 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-347 (-484)) |#1|)) (-15 -3154 (|#2| |#1|)) (-15 -3155 ((-3 |#2| #1#) |#1|)) (-15 -3943 (|#1| |#2|)) (-15 -2819 ((-695) |#1|)) (-15 -2816 (|#2| |#1|)) (-15 -3755 (|#1| |#1| (-994))) (-15 -3755 (|#1| |#1| (-584 (-994)))) (-15 -3755 (|#1| |#1| (-994) (-695))) (-15 -3755 (|#1| |#1| (-584 (-994)) (-584 (-695)))) (-15 -3943 (|#1| (-484))) (-15 -3943 ((-773) |#1|))) (-1154 |#2|) (-962)) (T -1153)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3764 (((-1178 |#1|) $ (-695)) 269 T ELT)) (-3080 (((-584 (-994)) $) 121 T ELT)) (-3762 (($ (-1084 |#1|)) 267 T ELT)) (-3082 (((-1084 $) $ (-994)) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 123 T ELT) (((-695) $ (-584 (-994))) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3752 (($ $ $) 254 (|has| |#1| (-495)) ELT)) (-2706 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3772 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3968 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2703 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) 239 (|has| |#1| (-311)) ELT)) (-3758 (($ $ (-695)) 262 T ELT)) (-3757 (($ $ (-695)) 261 T ELT)) (-3748 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 249 (|has| |#1| (-389)) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #2#) $) 151 T ELT)) (-3154 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) (((-994) $) 152 T ELT)) (-3753 (($ $ $ (-994)) 119 (|has| |#1| (-146)) ELT) ((|#1| $ $) 257 (|has| |#1| (-146)) ELT)) (-2563 (($ $ $) 243 (|has| |#1| (-311)) ELT)) (-3956 (($ $) 169 T ELT)) (-2278 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 242 (|has| |#1| (-311)) ELT)) (-3756 (($ $ $) 260 T ELT)) (-3750 (($ $ $) 251 (|has| |#1| (-495)) ELT)) (-3749 (((-2 (|:| -3951 |#1|) (|:| -1971 $) (|:| -2901 $)) $ $) 250 (|has| |#1| (-495)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 237 (|has| |#1| (-311)) ELT)) (-3500 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ (-994)) 116 (|has| |#1| (-389)) ELT)) (-2817 (((-584 $) $) 120 T ELT)) (-3720 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) 187 T ELT)) (-2795 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3769 (((-695) $ $) 255 (|has| |#1| (-495)) ELT)) (-2409 (((-85) $) 42 T ELT)) (-2419 (((-695) $) 184 T ELT)) (-3442 (((-633 $) $) 235 (|has| |#1| (-1065)) ELT)) (-3083 (($ (-1084 |#1|) (-994)) 128 T ELT) (($ (-1084 $) (-994)) 127 T ELT)) (-3774 (($ $ (-695)) 266 T ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 246 (|has| |#1| (-311)) ELT)) (-2820 (((-584 $) $) 137 T ELT)) (-3934 (((-85) $) 167 T ELT)) (-2892 (($ |#1| (-695)) 168 T ELT) (($ $ (-994) (-695)) 130 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 129 T ELT)) (-3760 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $ (-994)) 131 T ELT) (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 264 T ELT)) (-2819 (((-695) $) 185 T ELT) (((-695) $ (-994)) 133 T ELT) (((-584 (-695)) $ (-584 (-994))) 132 T ELT)) (-1623 (($ (-1 (-695) (-695)) $) 186 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3763 (((-1084 |#1|) $) 268 T ELT)) (-3081 (((-3 (-994) #4="failed") $) 134 T ELT)) (-2279 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2893 (($ $) 164 T ELT)) (-3172 ((|#1| $) 163 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695)) 263 T ELT)) (-2822 (((-3 (-584 $) #4#) $) 125 T ELT)) (-2821 (((-3 (-584 $) #4#) $) 126 T ELT)) (-2823 (((-3 (-2 (|:| |var| (-994)) (|:| -2400 (-695))) #4#) $) 124 T ELT)) (-3809 (($ $) 247 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3443 (($) 234 (|has| |#1| (-1065)) CONST)) (-3241 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3142 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3729 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 245 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 244 (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 238 (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ (-994) |#1|) 156 T ELT) (($ $ (-584 (-994)) (-584 |#1|)) 155 T ELT) (($ $ (-994) $) 154 T ELT) (($ $ (-584 (-994)) (-584 $)) 153 T ELT)) (-1605 (((-695) $) 240 (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ |#1|) 279 T ELT) (($ $ $) 278 T ELT) (((-347 $) (-347 $) (-347 $)) 256 (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) 248 (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) 236 (|has| |#1| (-495)) ELT)) (-3761 (((-3 $ "failed") $ (-695)) 265 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 241 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-994)) 118 (|has| |#1| (-146)) ELT) ((|#1| $) 258 (|has| |#1| (-146)) ELT)) (-3755 (($ $ (-584 (-994)) (-584 (-695))) 50 T ELT) (($ $ (-994) (-695)) 49 T ELT) (($ $ (-584 (-994))) 48 T ELT) (($ $ (-994)) 46 T ELT) (($ $) 277 T ELT) (($ $ (-695)) 275 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1 |#1| |#1|) $) 259 T ELT) (($ $ (-1089)) 233 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 231 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 230 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 229 (|has| |#1| (-812 (-1089))) ELT)) (-3945 (((-695) $) 165 T ELT) (((-695) $ (-994)) 141 T ELT) (((-584 (-695)) $ (-584 (-994))) 140 T ELT)) (-3969 (((-801 (-327)) $) 93 (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2816 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ (-994)) 117 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2561 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3751 (((-3 $ "failed") $ $) 253 (|has| |#1| (-495)) ELT) (((-3 (-347 $) "failed") (-347 $) $) 252 (|has| |#1| (-495)) ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ (-994)) 150 T ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3814 (((-584 |#1|) $) 183 T ELT)) (-3674 ((|#1| $ (-695)) 170 T ELT) (($ $ (-994) (-695)) 139 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 138 T ELT)) (-2701 (((-633 $) $) 90 (OR (-2561 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-584 (-994)) (-584 (-695))) 53 T ELT) (($ $ (-994) (-695)) 52 T ELT) (($ $ (-584 (-994))) 51 T ELT) (($ $ (-994)) 47 T ELT) (($ $) 276 T ELT) (($ $ (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 271 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 270 T ELT) (($ $ (-1089)) 232 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 228 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 227 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 226 (|has| |#1| (-812 (-1089))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT))) -(((-1154 |#1|) (-113) (-962)) (T -1154)) -((-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-5 *2 (-1084 *3)))) (-3762 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-962)) (-4 *1 (-1154 *3)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3761 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3760 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1154 *3)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1154 *4)))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)))) (-3755 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)))) (-3769 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3751 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3751 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)))) (-3750 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3749 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3951 *3) (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-1154 *3)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))) (-3797 (*1 *2 *3 *2) (-12 (-5 *3 (-347 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3809 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484))))))) -(-13 (-862 |t#1| (-695) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3764 ((-1178 |t#1|) $ (-695))) (-15 -3763 ((-1084 |t#1|) $)) (-15 -3762 ($ (-1084 |t#1|))) (-15 -3774 ($ $ (-695))) (-15 -3761 ((-3 $ "failed") $ (-695))) (-15 -3760 ((-2 (|:| -1971 $) (|:| -2901 $)) $ $)) (-15 -3759 ((-2 (|:| -1971 $) (|:| -2901 $)) $ (-695))) (-15 -3758 ($ $ (-695))) (-15 -3757 ($ $ (-695))) (-15 -3756 ($ $ $)) (-15 -3755 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3754 (|t#1| $)) (-15 -3753 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-347 $) (-347 $))) (-15 -3797 ((-347 $) (-347 $) (-347 $))) (-15 -3769 ((-695) $ $)) (-15 -3752 ($ $ $)) (-15 -3751 ((-3 $ "failed") $ $)) (-15 -3751 ((-3 (-347 $) "failed") (-347 $) $)) (-15 -3750 ($ $ $)) (-15 -3749 ((-2 (|:| -3951 |t#1|) (|:| -1971 $) (|:| -2901 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (-15 -3748 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-257)) (-6 -3988) (-15 -3797 (|t#1| (-347 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (-15 -3809 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 (-994)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| (-994) (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| (-994) (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| (-994) (-554 (-801 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-347 $) (-347 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 $) . T) ((-276 |#1| (-695)) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-453 (-994) |#1|) . T) ((-453 (-994) $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-994)) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-994)) . T) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-994)) . T) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| (-994) (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| (-994) (-797 (-484)))) ((-862 |#1| (-695) (-994)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-311)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-994)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) |has| |#1| (-822))) -((-3955 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1154 |#1|) (-962) (-1154 |#3|)) (T -1155)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1154 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5))))) -((-3080 (((-584 (-994)) $) 34 T ELT)) (-3956 (($ $) 31 T ELT)) (-2892 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-584 (-994)) (-584 |#3|)) 27 T ELT)) (-2893 (($ $) 14 T ELT)) (-3172 ((|#2| $) 12 T ELT)) (-3945 ((|#3| $) 10 T ELT))) -(((-1156 |#1| |#2| |#3|) (-10 -7 (-15 -3080 ((-584 (-994)) |#1|)) (-15 -2892 (|#1| |#1| (-584 (-994)) (-584 |#3|))) (-15 -2892 (|#1| |#1| (-994) |#3|)) (-15 -3956 (|#1| |#1|)) (-15 -2892 (|#1| |#2| |#3|)) (-15 -3945 (|#3| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3172 (|#2| |#1|))) (-1157 |#2| |#3|) (-962) (-717)) (T -1156)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ |#2|) 122 T ELT) (($ $ |#2| |#2|) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 128 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2891 (((-85) $) 92 T ELT)) (-3769 ((|#2| $) 124 T ELT) ((|#2| $ |#2|) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3774 (($ $ (-831)) 125 T ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| |#2|) 79 T ELT) (($ $ (-994) |#2|) 95 T ELT) (($ $ (-584 (-994)) (-584 |#2|)) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3766 (($ $ |#2|) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3797 ((|#1| $ |#2|) 129 T ELT) (($ $ $) 105 (|has| |#2| (-1025)) ELT)) (-3755 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3945 ((|#2| $) 82 T ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3674 ((|#1| $ |#2|) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3767 ((|#1| $ |#2|) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1157 |#1| |#2|) (-113) (-962) (-717)) (T -1157)) -((-3771 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1089)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3769 (*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3768 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3767 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3943 (*2 (-1089)))) (-4 *2 (-962)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3765 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) -(-13 (-887 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3771 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3828 ((-1089) $)) (-15 -3770 (|t#1| $)) (-15 -3774 ($ $ (-831))) (-15 -3769 (|t#2| $)) (-15 -3769 (|t#2| $ |t#2|)) (-15 -3768 ($ $ |t#2|)) (-15 -3768 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3943 (|t#1| (-1089)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3767 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3766 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3765 ((-1068 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-994)) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-3772 ((|#2| |#2|) 12 T ELT)) (-3968 (((-345 |#2|) |#2|) 14 T ELT)) (-3773 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT))) -(((-1158 |#1| |#2|) (-10 -7 (-15 -3968 ((-345 |#2|) |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3773 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1154 |#1|) (-495) (-10 -8 (-15 -3142 ($ $ $))))) (T -1158)) -((-3773 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3142 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1158 *3 *4)))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3142 ($ $ $))))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-1158 *4 *3)) (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3142 ($ $ $)))))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 11 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1168 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3154 (((-1138 |#1| |#2| |#3|) $) NIL T ELT) (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3778 (((-347 (-484)) $) 68 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3779 (($ (-347 (-484)) (-1138 |#1| |#2| |#3|)) NIL T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-347 (-484))) 30 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3777 (((-1138 |#1| |#2| |#3|) $) 71 T ELT)) (-3775 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3776 (((-1138 |#1| |#2| |#3|) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3809 (($ $) 39 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) NIL T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3945 (((-347 (-484)) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3943 (((-773) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1138 |#1| |#2| |#3|)) 16 T ELT) (($ (-1168 |#1| |#2| |#3|)) 17 T ELT) (($ (-1175 |#2|)) 36 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 32 T CONST)) (-2665 (($) 26 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1159 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1138 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-951 (-1168 |#1| |#2| |#3|)) (-556 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1159)) -((-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3955 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24 T ELT))) -(((-1160 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3955 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-962) (-962) (-1089) (-1089) |#1| |#2|) (T -1160)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) 122 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 128 T ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3036 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 197 T ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-2563 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) 92 T ELT)) (-3624 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) 124 T ELT) (((-347 (-484)) $ (-347 (-484))) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) 125 T ELT) (($ $ (-347 (-484))) 196 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| (-347 (-484))) 79 T ELT) (($ $ (-994) (-347 (-484))) 95 T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3939 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3940 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3945 (((-347 (-484)) $) 82 T ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1161 |#1|) (-113) (-962)) (T -1161)) -((-3815 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1161 *4)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-962)))) (-3809 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3809 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))) -(-13 (-1157 |t#1| (-347 (-484))) (-10 -8 (-15 -3815 ($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |t#1|))))) (-15 -3774 ($ $ (-347 (-484)))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $)) (IF (|has| |t#1| (-15 -3809 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3080 ((-584 (-1089)) |t#1|))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-484))) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-347 (-484)) |#1|) . T) ((-241 $ $) |has| (-347 (-484)) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-887 |#1| (-347 (-484)) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-347 (-484))) . T)) -((-3186 (((-85) $) 12 T ELT)) (-3155 (((-3 |#3| "failed") $) 17 T ELT)) (-3154 ((|#3| $) 14 T ELT))) -(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -3155 ((-3 |#3| "failed") |#1|)) (-15 -3154 (|#3| |#1|)) (-15 -3186 ((-85) |#1|))) (-1163 |#2| |#3|) (-962) (-1140 |#2|)) (T -1162)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) 122 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 128 T ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3036 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 197 T ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#2| "failed") $) 210 T ELT)) (-3154 ((|#2| $) 211 T ELT)) (-2563 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3778 (((-347 (-484)) $) 207 T ELT)) (-2562 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-3779 (($ (-347 (-484)) |#2|) 208 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) 92 T ELT)) (-3624 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) 124 T ELT) (((-347 (-484)) $ (-347 (-484))) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) 125 T ELT) (($ $ (-347 (-484))) 196 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| (-347 (-484))) 79 T ELT) (($ $ (-994) (-347 (-484))) 95 T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3939 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3777 ((|#2| $) 206 T ELT)) (-3775 (((-3 |#2| "failed") $) 204 T ELT)) (-3776 ((|#2| $) 205 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3940 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3945 (((-347 (-484)) $) 82 T ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 209 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1163 |#1| |#2|) (-113) (-962) (-1140 |t#1|)) (T -1163)) -((-3945 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) (-5 *2 (-347 (-484))))) (-3779 (*1 *1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-4 *4 (-962)) (-4 *1 (-1163 *4 *3)) (-4 *3 (-1140 *4)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) (-5 *2 (-347 (-484))))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))) (-3775 (*1 *2 *1) (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3))))) -(-13 (-1161 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3779 ($ (-347 (-484)) |t#2|)) (-15 -3778 ((-347 (-484)) $)) (-15 -3777 (|t#2| $)) (-15 -3945 ((-347 (-484)) $)) (-15 -3776 (|t#2| $)) (-15 -3775 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-484))) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-347 (-484)) |#1|) . T) ((-241 $ $) |has| (-347 (-484)) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-887 |#1| (-347 (-484)) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-951 |#2|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-347 (-484))) . T) ((-1161 |#1|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 104 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-347 (-484))) 116 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 118 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3489 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3772 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3968 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3487 (($ $) 188 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3491 (($ $) 196 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 85 T ELT)) (-3778 (((-347 (-484)) $) 13 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3779 (($ (-347 (-484)) |#2|) 11 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3720 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2891 (((-85) $) 74 T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-347 (-484)) $) 113 T ELT) (((-347 (-484)) $ (-347 (-484))) 114 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) 130 T ELT) (($ $ (-347 (-484))) 128 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-347 (-484))) 33 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3939 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3777 ((|#2| $) 12 T ELT)) (-3775 (((-3 |#2| #1#) $) 44 T ELT)) (-3776 ((|#2| $) 45 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-2483 (($ $) 101 (|has| |#1| (-311)) ELT)) (-3809 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 151 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3142 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3729 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3766 (($ $ (-347 (-484))) 122 T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3940 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3797 ((|#1| $ (-347 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-347 (-484)) (-1025)) ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-1089)) 138 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3945 (((-347 (-484)) $) 16 T ELT)) (-3492 (($ $) 198 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 174 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 120 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-347 (-484))) 139 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3674 ((|#1| $ (-347 (-484))) 107 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 127 T CONST)) (-3770 ((|#1| $) 106 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 208 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 210 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 17 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3055 (((-85) $ $) 72 T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 100 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3836 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1164 |#1| |#2|) (-1163 |#1| |#2|) (-962) (-1140 |#1|)) (T -1164)) -NIL -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 37 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-2060 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 (-484) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3154 (((-484) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3956 (($ $) 41 T ELT)) (-3464 (((-3 $ #1#) $) 27 T ELT)) (-3500 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-389)) ELT)) (-1622 (($ $ (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) 11 T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) 25 T ELT)) (-2819 (((-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1623 (($ (-1 (-269 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) $) NIL T ELT)) (-3955 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3781 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2893 (($ $) NIL T ELT)) (-3172 (((-1159 |#2| |#3| |#4|) $) 20 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3463 (((-3 $ #1#) $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3780 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $) 74 T ELT)) (-3945 (((-269 |#2| |#3| |#4|) $) 17 T ELT)) (-2816 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-389)) ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) ELT)) (-3814 (((-584 (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3674 (((-1159 |#2| |#3| |#4|) $ (-269 |#2| |#3| |#4|)) NIL T ELT)) (-2701 (((-633 $) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| (-1159 |#2| |#3| |#4|) (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2061 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) ELT))) -(((-1165 |#1| |#2| |#3| |#4|) (-13 (-276 (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3781 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3780 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $)))) (-13 (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -1165)) -((-3781 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-751 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))) (-3780 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1072)))) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) -((-3399 ((|#2| $) 34 T ELT)) (-3792 ((|#2| $) 18 T ELT)) (-3794 (($ $) 44 T ELT)) (-3782 (($ $ (-484)) 79 T ELT)) (-3024 ((|#2| $ |#2|) 76 T ELT)) (-3783 ((|#2| $ |#2|) 72 T ELT)) (-3785 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3025 (($ $ (-584 $)) 75 T ELT)) (-3793 ((|#2| $) 17 T ELT)) (-3796 (($ $) NIL T ELT) (($ $ (-695)) 52 T ELT)) (-3030 (((-584 $) $) 31 T ELT)) (-3026 (((-85) $ $) 63 T ELT)) (-3524 (((-85) $) 33 T ELT)) (-3795 ((|#2| $) 25 T ELT) (($ $ (-695)) 58 T ELT)) (-3797 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3630 (((-85) $) 23 T ELT)) (-3789 (($ $) 47 T ELT)) (-3787 (($ $) 80 T ELT)) (-3790 (((-695) $) 51 T ELT)) (-3791 (($ $) 50 T ELT)) (-3799 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3519 (((-584 $) $) 32 T ELT)) (-3055 (((-85) $ $) 61 T ELT)) (-3954 (((-695) $) 43 T ELT))) -(((-1166 |#1| |#2|) (-10 -7 (-15 -3055 ((-85) |#1| |#1|)) (-15 -3782 (|#1| |#1| (-484))) (-15 -3785 (|#2| |#1| #1="last" |#2|)) (-15 -3783 (|#2| |#1| |#2|)) (-15 -3785 (|#1| |#1| #2="rest" |#1|)) (-15 -3785 (|#2| |#1| #3="first" |#2|)) (-15 -3787 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3790 ((-695) |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 (|#1| |#1| (-695))) (-15 -3797 (|#2| |#1| #1#)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#1| (-695))) (-15 -3797 (|#1| |#1| #2#)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#2| |#1| #3#)) (-15 -3799 (|#1| |#2| |#1|)) (-15 -3799 (|#1| |#1| |#1|)) (-15 -3024 (|#2| |#1| |#2|)) (-15 -3785 (|#2| |#1| #4="value" |#2|)) (-15 -3025 (|#1| |#1| (-584 |#1|))) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3630 ((-85) |#1|)) (-15 -3797 (|#2| |#1| #4#)) (-15 -3399 (|#2| |#1|)) (-15 -3524 ((-85) |#1|)) (-15 -3030 ((-584 |#1|) |#1|)) (-15 -3519 ((-584 |#1|) |#1|)) (-15 -3954 ((-695) |#1|))) (-1167 |#2|) (-1128)) (T -1166)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3399 ((|#1| $) 52 T ELT)) (-3792 ((|#1| $) 71 T ELT)) (-3794 (($ $) 73 T ELT)) (-3782 (($ $ (-484)) 58 (|has| $ (-6 -3993)) ELT)) (-3024 ((|#1| $ |#1|) 43 (|has| $ (-6 -3993)) ELT)) (-3784 (($ $ $) 62 (|has| $ (-6 -3993)) ELT)) (-3783 ((|#1| $ |#1|) 60 (|has| $ (-6 -3993)) ELT)) (-3786 ((|#1| $ |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3785 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3993)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3993)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3993)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3993)) ELT)) (-3025 (($ $ (-584 $)) 45 (|has| $ (-6 -3993)) ELT)) (-3793 ((|#1| $) 72 T ELT)) (-3721 (($) 7 T CONST)) (-3796 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3030 (((-584 $) $) 54 T ELT)) (-3026 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3029 (((-584 |#1|) $) 49 T ELT)) (-3524 (((-85) $) 53 T ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3795 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3028 (((-484) $ $) 48 T ELT)) (-3630 (((-85) $) 50 T ELT)) (-3789 (($ $) 68 T ELT)) (-3787 (($ $) 65 (|has| $ (-6 -3993)) ELT)) (-3790 (((-695) $) 69 T ELT)) (-3791 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3397 (($ $) 10 T ELT)) (-3788 (($ $ $) 67 (|has| $ (-6 -3993)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3993)) ELT)) (-3799 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3519 (((-584 $) $) 55 T ELT)) (-3027 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1167 |#1|) (-113) (-1128)) (T -1167)) -((-3799 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-3789 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3788 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3788 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3786 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3785 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3783 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3993)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3799 ($ $ $)) (-15 -3799 ($ |t#1| $)) (-15 -3798 (|t#1| $)) (-15 -3797 (|t#1| $ "first")) (-15 -3798 ($ $ (-695))) (-15 -3796 ($ $)) (-15 -3797 ($ $ "rest")) (-15 -3796 ($ $ (-695))) (-15 -3795 (|t#1| $)) (-15 -3797 (|t#1| $ "last")) (-15 -3795 ($ $ (-695))) (-15 -3794 ($ $)) (-15 -3793 (|t#1| $)) (-15 -3792 (|t#1| $)) (-15 -3791 ($ $)) (-15 -3790 ((-695) $)) (-15 -3789 ($ $)) (IF (|has| $ (-6 -3993)) (PROGN (-15 -3788 ($ $ $)) (-15 -3788 ($ $ |t#1|)) (-15 -3787 ($ $)) (-15 -3786 (|t#1| $ |t#1|)) (-15 -3785 (|t#1| $ "first" |t#1|)) (-15 -3784 ($ $ $)) (-15 -3785 ($ $ "rest" $)) (-15 -3783 (|t#1| $ |t#1|)) (-15 -3785 (|t#1| $ "last" |t#1|)) (-15 -3782 ($ $ (-484)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3080 (((-584 (-994)) $) NIL T ELT)) (-3828 (((-1089) $) 87 T ELT)) (-3808 (((-1147 |#2| |#1|) $ (-695)) 70 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2062 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3036 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1068 |#1|)) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) NIL T CONST)) (-3802 (($ $) 131 T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3813 (($ $) 137 T ELT)) (-3811 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2891 (((-85) $) NIL T ELT)) (-3624 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3805 (($ $) 115 T ELT)) (-3010 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3801 (($ (-484) (-484) $) 133 T ELT)) (-3774 (($ $ (-831)) 136 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2892 (($ |#1| (-695)) 16 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3806 (($ $) 113 T ELT)) (-3807 (($ $) 111 T ELT)) (-3800 (($ (-484) (-484) $) 135 T ELT)) (-3809 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 153 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3803 (($ $ (-484) (-484)) 119 T ELT)) (-3766 (($ $ (-695)) 121 T ELT)) (-3463 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3940 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3804 (($ $) 117 T ELT)) (-3765 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3797 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1025)) ELT)) (-3755 (($ $ (-1089)) 106 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) 101 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 123 T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-347 (-484))) 145 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 78 T ELT) (($ (-1175 |#2|)) 22 T ELT)) (-3814 (((-1068 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ (-695)) 92 T ELT)) (-2701 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3770 ((|#1| $) 88 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 18 T CONST)) (-2665 (($) 13 T CONST)) (-2668 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3946 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3836 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1168 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3943 ($ (-1147 |#2| |#1|))) (-15 -3808 ((-1147 |#2| |#1|) $ (-695))) (-15 -3943 ($ (-1175 |#2|))) (-15 -3807 ($ $)) (-15 -3806 ($ $)) (-15 -3805 ($ $)) (-15 -3804 ($ $)) (-15 -3803 ($ $ (-484) (-484))) (-15 -3802 ($ $)) (-15 -3801 ($ (-484) (-484) $)) (-15 -3800 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3809 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1168)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3803 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3801 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3800 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))) -((-3955 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1171 |#1|) (-1171 |#2|)) (T -1169)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5))))) -((-3186 (((-85) $) 17 T ELT)) (-3489 (($ $) 105 T ELT)) (-3636 (($ $) 81 T ELT)) (-3487 (($ $) 101 T ELT)) (-3635 (($ $) 77 T ELT)) (-3491 (($ $) 109 T ELT)) (-3634 (($ $) 85 T ELT)) (-3939 (($ $) 75 T ELT)) (-3940 (($ $) 73 T ELT)) (-3492 (($ $) 111 T ELT)) (-3633 (($ $) 87 T ELT)) (-3490 (($ $) 107 T ELT)) (-3632 (($ $) 83 T ELT)) (-3488 (($ $) 103 T ELT)) (-3631 (($ $) 79 T ELT)) (-3943 (((-773) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3495 (($ $) 117 T ELT)) (-3483 (($ $) 93 T ELT)) (-3493 (($ $) 113 T ELT)) (-3481 (($ $) 89 T ELT)) (-3497 (($ $) 121 T ELT)) (-3485 (($ $) 97 T ELT)) (-3498 (($ $) 123 T ELT)) (-3486 (($ $) 99 T ELT)) (-3496 (($ $) 119 T ELT)) (-3484 (($ $) 95 T ELT)) (-3494 (($ $) 115 T ELT)) (-3482 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-347 (-484))) 71 T ELT))) -(((-1170 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3943 (|#1| |#2|)) (-15 -3943 (|#1| |#1|)) (-15 -3943 (|#1| (-347 (-484)))) (-15 -3943 (|#1| (-484))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3186 ((-85) |#1|)) (-15 -3943 ((-773) |#1|))) (-1171 |#2|) (-962)) (T -1170)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3080 (((-584 (-994)) $) 93 T ELT)) (-3828 (((-1089) $) 127 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2062 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-695)) 122 T ELT) (($ $ (-695) (-695)) 121 T ELT)) (-3771 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 128 T ELT)) (-3489 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3636 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3036 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3815 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 181 T ELT) (($ (-1068 |#1|)) 179 T ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3721 (($) 22 T CONST)) (-3956 (($ $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3813 (($ $) 178 T ELT)) (-3811 (((-858 |#1|) $ (-695)) 176 T ELT) (((-858 |#1|) $ (-695) (-695)) 175 T ELT)) (-2891 (((-85) $) 92 T ELT)) (-3624 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3769 (((-695) $) 124 T ELT) (((-695) $ (-695)) 123 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3010 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3774 (($ $ (-831)) 125 T ELT)) (-3812 (($ (-1 |#1| (-484)) $) 177 T ELT)) (-3934 (((-85) $) 80 T ELT)) (-2892 (($ |#1| (-695)) 79 T ELT) (($ $ (-994) (-695)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 94 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3939 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2893 (($ $) 83 T ELT)) (-3172 ((|#1| $) 84 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3809 (($ $) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 172 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3080 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3809 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3766 (($ $ (-695)) 119 T ELT)) (-3463 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3940 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3797 ((|#1| $ (-695)) 129 T ELT) (($ $ $) 105 (|has| (-695) (-1025)) ELT)) (-3755 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3945 (((-695) $) 82 T ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3488 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2890 (($ $) 91 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3814 (((-1068 |#1|) $) 180 T ELT)) (-3674 ((|#1| $ (-695)) 77 T ELT)) (-2701 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3124 (((-695)) 38 T CONST)) (-3770 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2061 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3767 ((|#1| $ (-695)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3943 (|#1| (-1089))))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3494 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-2668 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ |#1|) 174 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT))) -(((-1171 |#1|) (-113) (-962)) (T -1171)) -((-3815 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1171 *3)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-5 *2 (-1068 *3)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-4 *1 (-1171 *3)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)))) (-3812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-962)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3811 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3809 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3809 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))) -(-13 (-1157 |t#1| (-695)) (-10 -8 (-15 -3815 ($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3814 ((-1068 |t#1|) $)) (-15 -3815 ($ (-1068 |t#1|))) (-15 -3813 ($ $)) (-15 -3812 ($ (-1 |t#1| (-484)) $)) (-15 -3811 ((-858 |t#1|) $ (-695))) (-15 -3811 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-311)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3809 ($ $)) (IF (|has| |t#1| (-15 -3809 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3080 ((-584 (-1089)) |t#1|))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3809 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1025)) ((-245) |has| |#1| (-495)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-994)) . T) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1157 |#1| (-695)) . T)) -((-3818 (((-1 (-1068 |#1|) (-584 (-1068 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3817 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3816 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3821 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3820 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3822 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3823 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3819 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1172 |#1| |#2|) (-10 -7 (-15 -3816 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3817 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3818 ((-1 (-1068 |#1|) (-584 (-1068 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3819 (|#2| |#2| |#2|)) (-15 -3820 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3821 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3822 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3823 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-347 (-484))) (-1171 |#1|)) (T -1172)) -((-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-347 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1172 *5 *6)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-347 (-484)))) (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))) (-3821 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-347 (-484)))))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-347 (-484)))))) (-3819 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-584 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) -((-3825 ((|#2| |#4| (-695)) 31 T ELT)) (-3824 ((|#4| |#2|) 26 T ELT)) (-3827 ((|#4| (-347 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3826 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT))) -(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 (|#4| |#2|)) (-15 -3825 (|#2| |#4| (-695))) (-15 -3826 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3827 (|#4| (-347 |#2|))) |%noBranch|)) (-962) (-1154 |#1|) (-601 |#2|) (-1171 |#1|)) (T -1173)) -((-3827 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-962)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1171 *4)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1171 *5)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) -NIL -(((-1174) (-113)) (T -1174)) -NIL -(-13 (-10 -7 (-6 -2286))) -((-2567 (((-85) $ $) NIL T ELT)) (-3828 (((-1089)) 12 T ELT)) (-3240 (((-1072) $) 18 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 11 T ELT) (((-1089) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 15 T ELT))) -(((-1175 |#1|) (-13 (-1013) (-553 (-1089)) (-10 -8 (-15 -3943 ((-1089) $)) (-15 -3828 ((-1089))))) (-1089)) (T -1175)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) (-3828 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))) -((-3835 (($ (-695)) 19 T ELT)) (-3832 (((-631 |#2|) $ $) 41 T ELT)) (-3829 ((|#2| $) 51 T ELT)) (-3830 ((|#2| $) 50 T ELT)) (-3833 ((|#2| $ $) 36 T ELT)) (-3831 (($ $ $) 47 T ELT)) (-3834 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3836 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1176 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| |#1|)) (-15 -3830 (|#2| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3832 ((-631 |#2|) |#1| |#1|)) (-15 -3833 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3835 (|#1| (-695))) (-15 -3836 (|#1| |#1| |#1|))) (-1177 |#2|) (-1128)) (T -1176)) -NIL -((-2567 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3835 (($ (-695)) 121 (|has| |#1| (-23)) ELT)) (-2197 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3993)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3993))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3992)) ELT)) (-3721 (($) 7 T CONST)) (-2296 (($ $) 99 (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-3403 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) 55 T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) 30 (|has| $ (-6 -3992)) ELT)) (-3832 (((-631 |#1|) $ $) 114 (|has| |#1| (-962)) ELT)) (-3611 (($ (-695) |#1|) 74 T ELT)) (-2199 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-2200 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3829 ((|#1| $) 111 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3830 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3240 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2202 (((-584 (-484)) $) 50 T ELT)) (-2203 (((-85) (-484) $) 51 T ELT)) (-3241 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2198 (($ $ |#1|) 45 (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2201 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) 52 T ELT)) (-3400 (((-85) $) 8 T ELT)) (-3562 (($) 9 T ELT)) (-3797 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3833 ((|#1| $ $) 115 (|has| |#1| (-962)) ELT)) (-2304 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3831 (($ $ $) 113 (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3992))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) 10 T ELT)) (-3969 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 76 T ELT)) (-3799 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3943 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3834 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-664)) ELT) (($ $ |#1|) 116 (|has| |#1| (-664)) ELT)) (-3954 (((-695) $) 6 (|has| $ (-6 -3992)) ELT))) -(((-1177 |#1|) (-113) (-1128)) (T -1177)) -((-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) (-3833 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3836 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3835 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3834 ($ $)) (-15 -3834 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3833 (|t#1| $ $)) (-15 -3832 ((-631 |t#1|) $ $)) (-15 -3831 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3830 (|t#1| $)) (-15 -3829 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T)) -((-2567 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3835 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3837 (($ (-584 |#1|)) 11 T ELT)) (-2197 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3993)) (|has| |#1| (-757))) ELT)) (-2908 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3785 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3707 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3721 (($) NIL T CONST)) (-2296 (($ $) NIL (|has| $ (-6 -3993)) ELT)) (-2297 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-3403 (($ |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3839 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-3111 ((|#1| $ (-484)) NIL T ELT)) (-3416 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2888 (((-584 |#1|) $) 16 (|has| $ (-6 -3992)) ELT)) (-3832 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3611 (($ (-695) |#1|) NIL T ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3515 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2607 (((-584 |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2200 (((-484) $) 12 (|has| (-484) (-757)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3830 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3240 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2303 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2202 (((-584 (-484)) $) NIL T ELT)) (-2203 (((-85) (-484) $) NIL T ELT)) (-3241 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2198 (($ $ |#1|) NIL (|has| $ (-6 -3993)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2201 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-3400 (((-85) $) NIL T ELT)) (-3562 (($) NIL T ELT)) (-3797 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3833 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2304 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3993)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) 20 (|has| |#1| (-554 (-473))) ELT)) (-3527 (($ (-584 |#1|)) 10 T ELT)) (-3799 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3943 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3055 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3834 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1178 |#1|) (-13 (-1177 |#1|) (-10 -8 (-15 -3837 ($ (-584 |#1|))))) (-1128)) (T -1178)) -((-3837 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3))))) -((-3838 (((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 13 T ELT)) (-3839 ((|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 15 T ELT)) (-3955 (((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)) 30 T ELT) (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 18 T ELT))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -3838 ((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3839 (|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3955 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3955 ((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)))) (-1128) (-1128)) (T -1179)) -((-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1179 *5 *2)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5))))) -((-3840 (((-405) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-405) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-405) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3841 (((-1181) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1181) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3943 (((-1181) (-405)) 46 T ELT))) -(((-1180) (-10 -7 (-15 -3840 ((-405) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3840 ((-405) (-584 (-584 (-855 (-179)))))) (-15 -3840 ((-405) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3841 ((-1181) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3841 ((-1181) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3943 ((-1181) (-405))))) (T -1180)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3841 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3840 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3859 (((-1072) $ (-1072)) 107 T ELT) (((-1072) $ (-1072) (-1072)) 105 T ELT) (((-1072) $ (-1072) (-584 (-1072))) 104 T ELT)) (-3855 (($) 69 T ELT)) (-3842 (((-1184) $ (-405) (-831)) 54 T ELT)) (-3848 (((-1184) $ (-831) (-1072)) 89 T ELT) (((-1184) $ (-831) (-784)) 90 T ELT)) (-3870 (((-1184) $ (-831) (-327) (-327)) 57 T ELT)) (-3880 (((-1184) $ (-1072)) 84 T ELT)) (-3843 (((-1184) $ (-831) (-1072)) 94 T ELT)) (-3844 (((-1184) $ (-831) (-327) (-327)) 58 T ELT)) (-3881 (((-1184) $ (-831) (-831)) 55 T ELT)) (-3861 (((-1184) $) 85 T ELT)) (-3846 (((-1184) $ (-831) (-1072)) 93 T ELT)) (-3850 (((-1184) $ (-405) (-831)) 41 T ELT)) (-3847 (((-1184) $ (-831) (-1072)) 92 T ELT)) (-3883 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3882 (((-1184) $ (-695) (-695)) 52 T ELT)) (-3854 (($ $) 70 T ELT) (($ (-405) (-584 (-221))) 71 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3857 (((-484) $) 48 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3851 (((-1178 (-3 (-405) "undefined")) $) 47 T ELT)) (-3852 (((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3847 (-484)) (|:| -3845 (-484)) (|:| |spline| (-484)) (|:| -3876 (-484)) (|:| |axesColor| (-784)) (|:| -3848 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3853 (((-1184) $ (-831) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-784) (-484) (-784) (-484)) 83 T ELT)) (-3856 (((-584 (-855 (-179))) $) NIL T ELT)) (-3849 (((-405) $ (-831)) 43 T ELT)) (-3879 (((-1184) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3877 (((-1184) $ (-1072)) 95 T ELT)) (-3845 (((-1184) $ (-831) (-1072)) 91 T ELT)) (-3943 (((-773) $) 102 T ELT)) (-3858 (((-1184) $) 96 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3876 (((-1184) $ (-831) (-1072)) 87 T ELT) (((-1184) $ (-831) (-784)) 88 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1181) (-13 (-1013) (-10 -8 (-15 -3856 ((-584 (-855 (-179))) $)) (-15 -3855 ($)) (-15 -3854 ($ $)) (-15 -3883 ((-584 (-221)) $)) (-15 -3883 ($ $ (-584 (-221)))) (-15 -3854 ($ (-405) (-584 (-221)))) (-15 -3853 ((-1184) $ (-831) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-784) (-484) (-784) (-484))) (-15 -3852 ((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3847 (-484)) (|:| -3845 (-484)) (|:| |spline| (-484)) (|:| -3876 (-484)) (|:| |axesColor| (-784)) (|:| -3848 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484)))) $)) (-15 -3851 ((-1178 (-3 (-405) "undefined")) $)) (-15 -3880 ((-1184) $ (-1072))) (-15 -3850 ((-1184) $ (-405) (-831))) (-15 -3849 ((-405) $ (-831))) (-15 -3876 ((-1184) $ (-831) (-1072))) (-15 -3876 ((-1184) $ (-831) (-784))) (-15 -3848 ((-1184) $ (-831) (-1072))) (-15 -3848 ((-1184) $ (-831) (-784))) (-15 -3847 ((-1184) $ (-831) (-1072))) (-15 -3846 ((-1184) $ (-831) (-1072))) (-15 -3845 ((-1184) $ (-831) (-1072))) (-15 -3877 ((-1184) $ (-1072))) (-15 -3858 ((-1184) $)) (-15 -3879 ((-1184) $ (-695) (-695) (-831) (-831))) (-15 -3844 ((-1184) $ (-831) (-327) (-327))) (-15 -3870 ((-1184) $ (-831) (-327) (-327))) (-15 -3843 ((-1184) $ (-831) (-1072))) (-15 -3882 ((-1184) $ (-695) (-695))) (-15 -3842 ((-1184) $ (-405) (-831))) (-15 -3881 ((-1184) $ (-831) (-831))) (-15 -3859 ((-1072) $ (-1072))) (-15 -3859 ((-1072) $ (-1072) (-1072))) (-15 -3859 ((-1072) $ (-1072) (-584 (-1072)))) (-15 -3861 ((-1184) $)) (-15 -3857 ((-484) $)) (-15 -3943 ((-773) $))))) (T -1181)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1181)))) (-3855 (*1 *1) (-5 *1 (-1181))) (-3854 (*1 *1 *1) (-5 *1 (-1181))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) (-3854 (*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-584 (-221))) (-5 *1 (-1181)))) (-3853 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3847 (-484)) (|:| -3845 (-484)) (|:| |spline| (-484)) (|:| -3876 (-484)) (|:| |axesColor| (-784)) (|:| -3848 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484))))) (-5 *1 (-1181)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-405) "undefined"))) (-5 *1 (-1181)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3849 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-405)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3844 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3870 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3842 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3871 (((-1184) $ (-327)) 168 T ELT) (((-1184) $ (-327) (-327) (-327)) 169 T ELT)) (-3859 (((-1072) $ (-1072)) 177 T ELT) (((-1072) $ (-1072) (-1072)) 175 T ELT) (((-1072) $ (-1072) (-584 (-1072))) 174 T ELT)) (-3887 (($) 67 T ELT)) (-3878 (((-1184) $ (-327) (-327) (-327) (-327) (-327)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1184) $ (-484) (-484) (-327) (-327) (-327)) 143 T ELT) (((-1184) $ (-327) (-327)) 144 T ELT) (((-1184) $ (-327) (-327) (-327)) 151 T ELT)) (-3890 (((-327)) 121 T ELT) (((-327) (-327)) 122 T ELT)) (-3892 (((-327)) 116 T ELT) (((-327) (-327)) 118 T ELT)) (-3891 (((-327)) 119 T ELT) (((-327) (-327)) 120 T ELT)) (-3888 (((-327)) 125 T ELT) (((-327) (-327)) 126 T ELT)) (-3889 (((-327)) 123 T ELT) (((-327) (-327)) 124 T ELT)) (-3870 (((-1184) $ (-327) (-327)) 170 T ELT)) (-3880 (((-1184) $ (-1072)) 152 T ELT)) (-3885 (((-1046 (-179)) $) 68 T ELT) (($ $ (-1046 (-179))) 69 T ELT)) (-3866 (((-1184) $ (-1072)) 186 T ELT)) (-3865 (((-1184) $ (-1072)) 187 T ELT)) (-3872 (((-1184) $ (-327) (-327)) 150 T ELT) (((-1184) $ (-484) (-484)) 167 T ELT)) (-3881 (((-1184) $ (-831) (-831)) 159 T ELT)) (-3861 (((-1184) $) 136 T ELT)) (-3869 (((-1184) $ (-1072)) 185 T ELT)) (-3874 (((-1184) $ (-1072)) 133 T ELT)) (-3883 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3882 (((-1184) $ (-695) (-695)) 158 T ELT)) (-3884 (((-1184) $ (-695) (-855 (-179))) 192 T ELT)) (-3886 (($ $) 73 T ELT) (($ (-1046 (-179)) (-1072)) 74 T ELT) (($ (-1046 (-179)) (-584 (-221))) 75 T ELT)) (-3863 (((-1184) $ (-327) (-327) (-327)) 130 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3857 (((-484) $) 127 T ELT)) (-3862 (((-1184) $ (-327)) 172 T ELT)) (-3867 (((-1184) $ (-327)) 190 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3868 (((-1184) $ (-327)) 189 T ELT)) (-3873 (((-1184) $ (-1072)) 135 T ELT)) (-3879 (((-1184) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3875 (((-1184) $ (-1072)) 132 T ELT)) (-3877 (((-1184) $ (-1072)) 134 T ELT)) (-3860 (((-1184) $ (-130) (-130)) 156 T ELT)) (-3943 (((-773) $) 165 T ELT)) (-3858 (((-1184) $) 137 T ELT)) (-3864 (((-1184) $ (-1072)) 188 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3876 (((-1184) $ (-1072)) 131 T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1182) (-13 (-1013) (-10 -8 (-15 -3892 ((-327))) (-15 -3892 ((-327) (-327))) (-15 -3891 ((-327))) (-15 -3891 ((-327) (-327))) (-15 -3890 ((-327))) (-15 -3890 ((-327) (-327))) (-15 -3889 ((-327))) (-15 -3889 ((-327) (-327))) (-15 -3888 ((-327))) (-15 -3888 ((-327) (-327))) (-15 -3887 ($)) (-15 -3886 ($ $)) (-15 -3886 ($ (-1046 (-179)) (-1072))) (-15 -3886 ($ (-1046 (-179)) (-584 (-221)))) (-15 -3885 ((-1046 (-179)) $)) (-15 -3885 ($ $ (-1046 (-179)))) (-15 -3884 ((-1184) $ (-695) (-855 (-179)))) (-15 -3883 ((-584 (-221)) $)) (-15 -3883 ($ $ (-584 (-221)))) (-15 -3882 ((-1184) $ (-695) (-695))) (-15 -3881 ((-1184) $ (-831) (-831))) (-15 -3880 ((-1184) $ (-1072))) (-15 -3879 ((-1184) $ (-695) (-695) (-831) (-831))) (-15 -3878 ((-1184) $ (-327) (-327) (-327) (-327) (-327))) (-15 -3878 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3878 ((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3878 ((-1184) $ (-484) (-484) (-327) (-327) (-327))) (-15 -3878 ((-1184) $ (-327) (-327))) (-15 -3878 ((-1184) $ (-327) (-327) (-327))) (-15 -3877 ((-1184) $ (-1072))) (-15 -3876 ((-1184) $ (-1072))) (-15 -3875 ((-1184) $ (-1072))) (-15 -3874 ((-1184) $ (-1072))) (-15 -3873 ((-1184) $ (-1072))) (-15 -3872 ((-1184) $ (-327) (-327))) (-15 -3872 ((-1184) $ (-484) (-484))) (-15 -3871 ((-1184) $ (-327))) (-15 -3871 ((-1184) $ (-327) (-327) (-327))) (-15 -3870 ((-1184) $ (-327) (-327))) (-15 -3869 ((-1184) $ (-1072))) (-15 -3868 ((-1184) $ (-327))) (-15 -3867 ((-1184) $ (-327))) (-15 -3866 ((-1184) $ (-1072))) (-15 -3865 ((-1184) $ (-1072))) (-15 -3864 ((-1184) $ (-1072))) (-15 -3863 ((-1184) $ (-327) (-327) (-327))) (-15 -3862 ((-1184) $ (-327))) (-15 -3861 ((-1184) $)) (-15 -3860 ((-1184) $ (-130) (-130))) (-15 -3859 ((-1072) $ (-1072))) (-15 -3859 ((-1072) $ (-1072) (-1072))) (-15 -3859 ((-1072) $ (-1072) (-584 (-1072)))) (-15 -3858 ((-1184) $)) (-15 -3857 ((-484) $))))) (T -1182)) -((-3892 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3891 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3889 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3888 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3887 (*1 *1) (-5 *1 (-1182))) (-3886 (*1 *1 *1) (-5 *1 (-1182))) (-3886 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) (-3886 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1182)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3885 (*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3870 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))) -((-3901 (((-584 (-1072)) (-584 (-1072))) 103 T ELT) (((-584 (-1072))) 96 T ELT)) (-3902 (((-584 (-1072))) 94 T ELT)) (-3899 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3898 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3900 (((-1184)) 71 T ELT)) (-3904 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3903 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3896 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3906 (((-179)) 91 T ELT) (((-179) (-327)) 93 T ELT)) (-3905 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3897 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3893 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3894 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3895 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT))) -(((-1183) (-10 -7 (-15 -3893 ((-784))) (-15 -3893 ((-784) (-784))) (-15 -3894 ((-784))) (-15 -3894 ((-784) (-784))) (-15 -3895 ((-784))) (-15 -3895 ((-784) (-784))) (-15 -3896 ((-784))) (-15 -3896 ((-784) (-784))) (-15 -3897 ((-831))) (-15 -3897 ((-831) (-831))) (-15 -3898 ((-584 (-695)))) (-15 -3898 ((-584 (-695)) (-584 (-695)))) (-15 -3899 ((-584 (-831)))) (-15 -3899 ((-584 (-831)) (-584 (-831)))) (-15 -3900 ((-1184))) (-15 -3901 ((-584 (-1072)))) (-15 -3901 ((-584 (-1072)) (-584 (-1072)))) (-15 -3902 ((-584 (-1072)))) (-15 -3903 ((-831))) (-15 -3904 ((-831))) (-15 -3903 ((-831) (-831))) (-15 -3904 ((-831) (-831))) (-15 -3905 ((-831) (-831))) (-15 -3905 ((-831))) (-15 -3906 ((-179) (-327))) (-15 -3906 ((-179))))) (T -1183)) -((-3906 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1183)))) (-3905 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3904 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3903 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3902 (*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3901 (*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3900 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))) (-3899 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))) (-3898 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3897 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3896 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3895 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3894 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3893 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))) -((-3907 (($) 6 T ELT)) (-3943 (((-773) $) 9 T ELT))) -(((-1184) (-13 (-553 (-773)) (-10 -8 (-15 -3907 ($))))) (T -1184)) -((-3907 (*1 *1) (-5 *1 (-1184)))) -((-3946 (($ $ |#2|) 10 T ELT))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#1| |#2|))) (-1186 |#2|) (-311)) (T -1185)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3908 (((-107)) 38 T ELT)) (-3943 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ |#1|) 39 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1186 |#1|) (-113) (-311)) (T -1186)) -((-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-311)))) (-3908 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-311)) (-5 *2 (-107))))) -(-13 (-655 |t#1|) (-10 -8 (-15 -3946 ($ $ |t#1|)) (-15 -3908 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T)) -((-3913 (((-584 (-1121 |#1|)) (-1089) (-1121 |#1|)) 83 T ELT)) (-3911 (((-1068 (-1068 (-858 |#1|))) (-1089) (-1068 (-858 |#1|))) 63 T ELT)) (-3914 (((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-695) (-1121 |#1|) (-1068 (-1121 |#1|))) 74 T ELT)) (-3909 (((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695)) 65 T ELT)) (-3912 (((-1 (-1084 (-858 |#1|)) (-858 |#1|)) (-1089)) 32 T ELT)) (-3910 (((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695)) 64 T ELT))) -(((-1187 |#1|) (-10 -7 (-15 -3909 ((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695))) (-15 -3910 ((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695))) (-15 -3911 ((-1068 (-1068 (-858 |#1|))) (-1089) (-1068 (-858 |#1|)))) (-15 -3912 ((-1 (-1084 (-858 |#1|)) (-858 |#1|)) (-1089))) (-15 -3913 ((-584 (-1121 |#1|)) (-1089) (-1121 |#1|))) (-15 -3914 ((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-695) (-1121 |#1|) (-1068 (-1121 |#1|))))) (-311)) (T -1187)) -((-3914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1121 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-584 (-1121 *5))) (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-858 *4)) (-858 *4))) (-5 *1 (-1187 *4)) (-4 *4 (-311)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-1068 (-1068 (-858 *5)))) (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-858 *5))))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-311)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-311))))) -((-3916 (((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3915 (((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT))) -(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3915 ((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3916 ((-2 (|:| -2011 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-298) (-1154 |#1|) (-1154 |#2|) (-350 |#2| |#3|)) (T -1188)) -((-3916 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))) (-3915 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2011 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3917 (((-1048) $) 12 T ELT)) (-3918 (((-1048) $) 10 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1189) (-13 (-995) (-10 -8 (-15 -3918 ((-1048) $)) (-15 -3917 ((-1048) $))))) (T -1189)) -((-3918 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3919 (((-1048) $) 11 T ELT)) (-3943 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT))) -(((-1190) (-13 (-995) (-10 -8 (-15 -3919 ((-1048) $))))) (T -1190)) -((-3919 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3124 (((-695)) NIL T CONST)) (-3920 (((-1184) (-695)) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 36 T CONST)) (-2665 (($) 85 T CONST)) (-3055 (((-85) $ $) 88 T ELT)) (-3946 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3834 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-427 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3946 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3920 ((-1184) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1191)) -((-3946 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) -((-2567 (((-85) $ $) NIL T ELT)) (-3678 (((-584 (-2 (|:| -3858 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3679 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3080 (((-584 |#3|) $) NIL T ELT)) (-2907 (((-85) $) NIL T ELT)) (-2898 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-2908 (((-2 (|:| |under| $) (|:| -3128 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3707 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3721 (($) NIL T CONST)) (-2903 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3686 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2900 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3155 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3154 (($ (-584 |#4|)) NIL T ELT)) (-3796 (((-3 $ #1#) $) 77 T ELT)) (-3682 ((|#4| |#4| $) 82 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3403 (($ |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2901 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3691 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3839 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3992)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3693 (((-2 (|:| -3858 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-2888 (((-584 |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3178 ((|#3| $) 83 T ELT)) (-2607 (((-584 |#4|) $) 32 (|has| $ (-6 -3992)) ELT)) (-3243 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT)) (-3923 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3993)) ELT)) (-3955 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2913 (((-584 |#3|) $) NIL T ELT)) (-2912 (((-85) |#3| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) NIL T ELT)) (-3694 (((-584 |#4|) $) 53 T ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) 81 T ELT)) (-3696 (((-85) $ $) 92 T ELT)) (-2902 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 76 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3676 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3766 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3400 (((-85) $) 74 T ELT)) (-3562 (($) 45 T ELT)) (-3945 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3397 (($ $) NIL T ELT)) (-3969 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3527 (($ (-584 |#4|)) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3681 (($ $) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3675 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-3922 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3921 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3695 (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3321 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3687 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3677 (((-584 |#3|) $) NIL T ELT)) (-3930 (((-85) |#3| $) NIL T ELT)) (-3055 (((-85) $ $) NIL T ELT)) (-3954 (((-695) $) NIL (|has| $ (-6 -3992)) ELT))) -(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1123 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3923 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3923 ((-3 $ #1#) (-584 |#4|))) (-15 -3922 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3922 ((-3 $ #1#) (-584 |#4|))) (-15 -3921 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3921 ((-584 $) (-584 |#4|))))) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -1192)) -((-3923 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3923 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3922 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3922 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3721 (($) 22 T CONST)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 51 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) -(((-1193 |#1|) (-113) (-962)) (T -1193)) -NIL -(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T)) -((-2567 (((-85) $ $) 69 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3931 (((-584 |#1|) $) 54 T ELT)) (-3944 (($ $ (-695)) 47 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3932 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3721 (($) NIL T CONST)) (-3936 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3155 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3154 (((-740 |#1|) $) NIL T ELT)) (-3956 (($ $) 40 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3948 (((-85) $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3933 (($ $) 41 T ELT)) (-3938 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3952 (((-740 |#1|) $) NIL T ELT)) (-3953 (((-740 |#1|) $) 42 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3937 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1747 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-740 |#1|) $) 36 T ELT)) (-3172 ((|#2| $) 38 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3945 (((-695) $) 44 T ELT)) (-3950 (((-85) $) 48 T ELT)) (-3949 ((|#2| $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3951 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 14 T CONST)) (-2665 (($) 20 T CONST)) (-2664 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3055 (((-85) $ $) 45 T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1194 |#1| |#2|) (-13 (-332 |#2| (-740 |#1|)) (-1201 |#1| |#2|)) (-757) (-962)) (T -1194)) -NIL -((-3939 ((|#3| |#3| (-695)) 28 T ELT)) (-3940 ((|#3| |#3| (-695)) 34 T ELT)) (-3924 ((|#3| |#3| |#3| (-695)) 35 T ELT))) -(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#3| |#3| (-695))) (-15 -3939 (|#3| |#3| (-695))) (-15 -3924 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-347 (-484)))) (-757) (-1201 |#2| |#1|)) (T -1195)) -((-3924 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3939 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))) -((-3929 (((-85) $) 15 T ELT)) (-3930 (((-85) $) 14 T ELT)) (-3925 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -3925 (|#1| |#1| (-695))) (-15 -3925 (|#1| |#1|)) (-15 -3929 ((-85) |#1|)) (-15 -3930 ((-85) |#1|))) (-1197 |#2|) (-311)) (T -1196)) -NIL -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-2063 (((-2 (|:| -1770 $) (|:| -3979 $) (|:| |associate| $)) $) 53 T ELT)) (-2062 (($ $) 52 T ELT)) (-2060 (((-85) $) 50 T ELT)) (-3929 (((-85) $) 112 T ELT)) (-3926 (((-695)) 108 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3772 (($ $) 89 T ELT)) (-3968 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3721 (($) 22 T CONST)) (-3155 (((-3 |#1| "failed") $) 119 T ELT)) (-3154 ((|#1| $) 120 T ELT)) (-2563 (($ $ $) 69 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-2562 (($ $ $) 70 T ELT)) (-2740 (((-2 (|:| -3951 (-584 $)) (|:| -2408 $)) (-584 $)) 64 T ELT)) (-1762 (($ $ (-695)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3720 (((-85) $) 87 T ELT)) (-3769 (((-744 (-831)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2409 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-2483 (($ $) 86 T ELT)) (-3928 (((-85) $) 111 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-2707 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3142 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3729 (((-345 $) $) 90 T ELT)) (-3927 (((-744 (-831))) 109 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2408 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3463 (((-3 $ "failed") $ $) 54 T ELT)) (-2739 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2878 (((-2 (|:| -1971 $) (|:| -2901 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3908 (((-107)) 117 T ELT)) (-3945 (((-744 (-831)) $) 110 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2701 (((-633 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2061 (((-85) $ $) 51 T ELT)) (-3930 (((-85) $) 113 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3925 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-695)) 106 (|has| |#1| (-317)) ELT)) (-3055 (((-85) $ $) 8 T ELT)) (-3946 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT))) -(((-1197 |#1|) (-113) (-311)) (T -1197)) -((-3930 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3927 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3926 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-695)))) (-3925 (*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-311)) (-4 *2 (-317)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-4 *3 (-317))))) -(-13 (-311) (-951 |t#1|) (-1186 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-342)) |%noBranch|) (-15 -3930 ((-85) $)) (-15 -3929 ((-85) $)) (-15 -3928 ((-85) $)) (-15 -3945 ((-744 (-831)) $)) (-15 -3927 ((-744 (-831)))) (-15 -3926 ((-695))) (IF (|has| |t#1| (-317)) (PROGN (-6 (-342)) (-15 -3925 ($ $)) (-15 -3925 ($ $ (-695)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T)) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3931 (((-584 |#1|) $) 53 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3932 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-695)) 55 (|has| |#2| (-146)) ELT)) (-3721 (($) 22 T CONST)) (-3936 (($ $ |#1|) 67 T ELT) (($ $ (-740 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3155 (((-3 (-740 |#1|) "failed") $) 77 T ELT)) (-3154 (((-740 |#1|) $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3948 (((-85) $) 58 T ELT)) (-3947 (($ $) 57 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3934 (((-85) $) 63 T ELT)) (-3935 (($ (-740 |#1|) |#2|) 64 T ELT)) (-3933 (($ $) 62 T ELT)) (-3938 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3952 (((-740 |#1|) $) 74 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3937 (($ $ |#1|) 70 T ELT) (($ $ (-740 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 ((|#2| $) 59 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-740 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3951 ((|#2| $ (-740 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) -(((-1198 |#1| |#2|) (-113) (-757) (-962)) (T -1198)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3951 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3951 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3937 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3936 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3935 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-962)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3933 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3943 (*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3947 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3932 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3932 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) -(-13 (-962) (-1193 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3952 ((-740 |t#1|) $)) (-15 -3938 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3951 (|t#2| $ (-740 |t#1|))) (-15 -3951 (|t#2| $ $)) (-15 -3937 ($ $ |t#1|)) (-15 -3937 ($ $ (-740 |t#1|))) (-15 -3937 ($ $ $)) (-15 -3936 ($ $ |t#1|)) (-15 -3936 ($ $ (-740 |t#1|))) (-15 -3936 ($ $ $)) (-15 -3935 ($ (-740 |t#1|) |t#2|)) (-15 -3934 ((-85) $)) (-15 -3933 ($ $)) (-15 -3943 ($ |t#1|)) (-15 -3950 ((-85) $)) (-15 -3949 (|t#2| $)) (-15 -3948 ((-85) $)) (-15 -3947 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3932 ($ $ $)) (-15 -3932 ($ $ (-695)))) |%noBranch|) (-15 -3955 ($ (-1 |t#2| |t#2|) $)) (-15 -3931 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3985)) (-6 -3985) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3931 (((-584 |#1|) $) 99 T ELT)) (-3944 (($ $ (-695)) 103 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3932 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3721 (($) NIL T CONST)) (-3936 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3155 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3154 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3956 (($ $) 102 T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3948 (((-85) $) 90 T ELT)) (-3947 (($ $) 93 T ELT)) (-3941 (($ $ $ (-695)) 104 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3933 (($ $) 120 T ELT)) (-3938 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3952 (((-740 |#1|) $) NIL T ELT)) (-3953 (((-740 |#1|) $) NIL T ELT)) (-3955 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3937 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3939 (($ $ (-695)) 113 (|has| |#2| (-655 (-347 (-484)))) ELT)) (-1747 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2893 (((-804 |#1|) $) 84 T ELT)) (-3172 ((|#2| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3940 (($ $ (-695)) 110 (|has| |#2| (-655 (-347 (-484)))) ELT)) (-3945 (((-695) $) 100 T ELT)) (-3950 (((-85) $) 85 T ELT)) (-3949 ((|#2| $) 88 T ELT)) (-3943 (((-773) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1194 |#1| |#2|) $) 77 T ELT) (((-1203 |#1| |#2|) $) 82 T ELT)) (-3814 (((-584 |#2|) $) NIL T ELT)) (-3674 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3951 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 21 T CONST)) (-2665 (($) 27 T CONST)) (-2664 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3942 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3055 (((-85) $ $) 78 T ELT)) (-3834 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3836 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT))) -(((-1199 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-332 |#2| (-804 |#1|)) (-10 -8 (-15 -3943 ($ (-607 |#1| |#2|))) (-15 -3943 ((-1194 |#1| |#2|) $)) (-15 -3943 ((-1203 |#1| |#2|) $)) (-15 -3942 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3941 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-347 (-484)))) (PROGN (-15 -3940 ($ $ (-695))) (-15 -3939 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1199)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1199 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3942 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3941 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) (-4 *3 (-757)) (-4 *4 (-146))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3931 (((-584 (-1089)) $) NIL T ELT)) (-3959 (($ (-1194 (-1089) |#1|)) NIL T ELT)) (-3944 (($ $ (-695)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3932 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3721 (($) NIL T CONST)) (-3936 (($ $ (-1089)) NIL T ELT) (($ $ (-740 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3155 (((-3 (-740 (-1089)) #1#) $) NIL T ELT)) (-3154 (((-740 (-1089)) $) NIL T ELT)) (-3464 (((-3 $ #1#) $) NIL T ELT)) (-3948 (((-85) $) NIL T ELT)) (-3947 (($ $) NIL T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ (-740 (-1089)) |#1|) NIL T ELT)) (-3933 (($ $) NIL T ELT)) (-3938 (((-2 (|:| |k| (-740 (-1089))) (|:| |c| |#1|)) $) NIL T ELT)) (-3952 (((-740 (-1089)) $) NIL T ELT)) (-3953 (((-740 (-1089)) $) NIL T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3937 (($ $ (-1089)) NIL T ELT) (($ $ (-740 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3960 (((-1194 (-1089) |#1|) $) NIL T ELT)) (-3945 (((-695) $) NIL T ELT)) (-3950 (((-85) $) NIL T ELT)) (-3949 ((|#1| $) NIL T ELT)) (-3943 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT)) (-3951 ((|#1| $ (-740 (-1089))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3124 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) NIL T CONST)) (-3958 (((-584 (-2 (|:| |k| (-1089)) (|:| |c| $))) $) NIL T ELT)) (-2665 (($) NIL T CONST)) (-3055 (((-85) $ $) NIL T ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1089) $) NIL T ELT))) -(((-1200 |#1|) (-13 (-1201 (-1089) |#1|) (-10 -8 (-15 -3960 ((-1194 (-1089) |#1|) $)) (-15 -3959 ($ (-1194 (-1089) |#1|))) (-15 -3958 ((-584 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) (-962)) (T -1200)) -((-3960 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-962)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-962)) (-5 *1 (-1200 *3)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) (-5 *1 (-1200 *3)) (-4 *3 (-962))))) -((-2567 (((-85) $ $) 7 T ELT)) (-3186 (((-85) $) 21 T ELT)) (-3931 (((-584 |#1|) $) 53 T ELT)) (-3944 (($ $ (-695)) 87 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3932 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-695)) 55 (|has| |#2| (-146)) ELT)) (-3721 (($) 22 T CONST)) (-3936 (($ $ |#1|) 67 T ELT) (($ $ (-740 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3155 (((-3 (-740 |#1|) "failed") $) 77 T ELT)) (-3154 (((-740 |#1|) $) 78 T ELT)) (-3464 (((-3 $ "failed") $) 40 T ELT)) (-3948 (((-85) $) 58 T ELT)) (-3947 (($ $) 57 T ELT)) (-2409 (((-85) $) 42 T ELT)) (-3934 (((-85) $) 63 T ELT)) (-3935 (($ (-740 |#1|) |#2|) 64 T ELT)) (-3933 (($ $) 62 T ELT)) (-3938 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3952 (((-740 |#1|) $) 74 T ELT)) (-3953 (((-740 |#1|) $) 89 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3937 (($ $ |#1|) 70 T ELT) (($ $ (-740 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3240 (((-1072) $) 11 T ELT)) (-3241 (((-1033) $) 12 T ELT)) (-3945 (((-695) $) 88 T ELT)) (-3950 (((-85) $) 60 T ELT)) (-3949 ((|#2| $) 59 T ELT)) (-3943 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-740 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3951 ((|#2| $ (-740 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3124 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 43 T CONST)) (-3055 (((-85) $ $) 8 T ELT)) (-3834 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3836 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT))) -(((-1201 |#1| |#2|) (-113) (-757) (-962)) (T -1201)) -((-3953 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -(-13 (-1198 |t#1| |t#2|) (-10 -8 (-15 -3953 ((-740 |t#1|) $)) (-15 -3945 ((-695) $)) (-15 -3944 ($ $ (-695))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T) ((-1198 |#1| |#2|) . T)) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3721 (($) NIL T CONST)) (-3155 (((-3 |#2| #1#) $) NIL T ELT)) (-3154 ((|#2| $) NIL T ELT)) (-3956 (($ $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 43 T ELT)) (-3948 (((-85) $) 37 T ELT)) (-3947 (($ $) 38 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-2419 (((-695) $) NIL T ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ |#2| |#1|) NIL T ELT)) (-3952 ((|#2| $) 25 T ELT)) (-3953 ((|#2| $) 23 T ELT)) (-3955 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2893 ((|#2| $) NIL T ELT)) (-3172 ((|#1| $) NIL T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3950 (((-85) $) 33 T ELT)) (-3949 ((|#1| $) 34 T ELT)) (-3943 (((-773) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3814 (((-584 |#1|) $) NIL T ELT)) (-3674 ((|#1| $ |#2|) NIL T ELT)) (-3951 ((|#1| $ |#2|) 29 T ELT)) (-3124 (((-695)) 14 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 30 T CONST)) (-2665 (($) 11 T CONST)) (-2664 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3055 (((-85) $ $) 31 T ELT)) (-3946 (($ $ |#1|) 68 (|has| |#1| (-311)) ELT)) (-3834 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3836 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3954 (((-695) $) 18 T ELT))) -(((-1202 |#1| |#2|) (-13 (-962) (-1193 |#1|) (-332 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3954 ((-695) $)) (-15 -3953 (|#2| $)) (-15 -3952 (|#2| $)) (-15 -3956 ($ $)) (-15 -3951 (|#1| $ |#2|)) (-15 -3950 ((-85) $)) (-15 -3949 (|#1| $)) (-15 -3948 ((-85) $)) (-15 -3947 ($ $)) (-15 -3955 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-311)) (-15 -3946 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3985)) (-6 -3985) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|))) (-962) (-755)) (T -1202)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-755)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))) (-3951 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3947 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755))))) -((-2567 (((-85) $ $) 27 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-3931 (((-584 |#1|) $) 132 T ELT)) (-3959 (($ (-1194 |#1| |#2|)) 50 T ELT)) (-3944 (($ $ (-695)) 38 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3932 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3721 (($) NIL T CONST)) (-3936 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3155 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3154 (((-740 |#1|) $) NIL T ELT)) (-3464 (((-3 $ #1#) $) 122 T ELT)) (-3948 (((-85) $) 117 T ELT)) (-3947 (($ $) 118 T ELT)) (-2409 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3935 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3933 (($ $) NIL T ELT)) (-3938 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3952 (((-740 |#1|) $) 123 T ELT)) (-3953 (((-740 |#1|) $) 126 T ELT)) (-3955 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3937 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3960 (((-1194 |#1| |#2|) $) 94 T ELT)) (-3945 (((-695) $) 129 T ELT)) (-3950 (((-85) $) 81 T ELT)) (-3949 ((|#2| $) 32 T ELT)) (-3943 (((-773) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3951 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3124 (((-695)) 120 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2659 (($) 15 T CONST)) (-3958 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2665 (($) 33 T CONST)) (-3055 (((-85) $ $) 14 T ELT)) (-3834 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3836 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1203 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -8 (-15 -3960 ((-1194 |#1| |#2|) $)) (-15 -3959 ($ (-1194 |#1| |#2|))) (-15 -3958 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1203)) -((-3960 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1203 *3 *4)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3962 (($ (-584 (-831))) 11 T ELT)) (-3961 (((-885) $) 12 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3943 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3055 (((-85) $ $) 17 T ELT))) -(((-1204) (-13 (-1013) (-427 (-885)) (-10 -8 (-15 -3962 ($ (-584 (-831)))) (-15 -3961 ((-885) $))))) (T -1204)) -((-3962 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1204)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1204))))) -((-3963 (((-584 (-1068 |#1|)) (-1 (-584 (-1068 |#1|)) (-584 (-1068 |#1|))) (-484)) 16 T ELT) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 13 T ELT))) -(((-1205 |#1|) (-10 -7 (-15 -3963 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -3963 ((-584 (-1068 |#1|)) (-1 (-584 (-1068 |#1|)) (-584 (-1068 |#1|))) (-484)))) (-1128)) (T -1205)) -((-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1068 *5)) (-584 (-1068 *5)))) (-5 *4 (-484)) (-5 *2 (-584 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) (-4 *4 (-1128))))) -((-3965 (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3964 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3968 (((-584 (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3966 (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3967 (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3969 (((-584 (-704 |#1| (-774 |#3|))) (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1084 (-938 (-347 |#1|))) (-1084 |#1|)) 102 T ELT) (((-858 (-938 (-347 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-347 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT))) -(((-1206 |#1| |#2| |#3|) (-10 -7 (-15 -3964 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3964 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3964 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3965 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3965 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3965 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3965 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3965 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3222 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)))) (-15 -3967 ((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|))) (-15 -3967 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3967 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3967 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)))) (-15 -3968 ((-584 (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3969 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3969 ((-858 (-938 (-347 |#1|))) (-858 |#1|))) (-15 -3969 ((-858 (-938 (-347 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3969 ((-1084 (-938 (-347 |#1|))) (-1084 |#1|))) (-15 -3969 ((-584 (-704 |#1| (-774 |#3|))) (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-257) (-120) (-934)) (-584 (-1089)) (-584 (-1089))) (T -1206)) -((-3969 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-1084 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089))) (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3966 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3966 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))) -((-3972 (((-3 (-1178 (-347 (-484))) #1="failed") (-1178 |#1|) |#1|) 21 T ELT)) (-3970 (((-85) (-1178 |#1|)) 12 T ELT)) (-3971 (((-3 (-1178 (-484)) #1#) (-1178 |#1|)) 16 T ELT))) -(((-1207 |#1|) (-10 -7 (-15 -3970 ((-85) (-1178 |#1|))) (-15 -3971 ((-3 (-1178 (-484)) #1="failed") (-1178 |#1|))) (-15 -3972 ((-3 (-1178 (-347 (-484))) #1#) (-1178 |#1|) |#1|))) (-13 (-962) (-581 (-484)))) (T -1207)) -((-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-1178 (-347 (-484)))) (-5 *1 (-1207 *4)))) (-3971 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-1207 *4))))) -((-2567 (((-85) $ $) NIL T ELT)) (-3186 (((-85) $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3134 (((-695)) 9 T ELT)) (-3721 (($) NIL T CONST)) (-3464 (((-3 $ #1#) $) 57 T ELT)) (-2993 (($) 46 T ELT)) (-2409 (((-85) $) 38 T ELT)) (-3442 (((-633 $) $) 36 T ELT)) (-2009 (((-831) $) 14 T ELT)) (-3240 (((-1072) $) NIL T ELT)) (-3443 (($) 26 T CONST)) (-2399 (($ (-831)) 47 T ELT)) (-3241 (((-1033) $) NIL T ELT)) (-3969 (((-484) $) 16 T ELT)) (-3943 (((-773) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3124 (((-695)) 10 T CONST)) (-1263 (((-85) $ $) 59 T ELT)) (-2659 (($) 23 T CONST)) (-2665 (($) 25 T CONST)) (-3055 (((-85) $ $) 31 T ELT)) (-3834 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3836 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1208 |#1|) (-13 (-146) (-317) (-554 (-484)) (-1065)) (-831)) (T -1208)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2806295 2806300 2806305 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2806280 2806285 2806290 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2806265 2806270 2806275 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2806250 2806255 2806260 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1208 2805293 2806168 2806245 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1207 2804508 2804687 2804906 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1206 2795667 2797536 2799470 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1205 2795055 2795208 2795397 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1204 2794517 2794820 2794933 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1203 2792141 2793979 2794182 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1202 2788969 2790558 2791129 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1201 2786288 2787956 2788010 "XPOLYC" 2788295 XPOLYC (NIL T T) -9 NIL 2788408 NIL) (-1200 2783871 2785792 2785995 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1199 2780183 2782730 2783118 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1198 2775092 2776663 2776717 "XFALG" 2778862 XFALG (NIL T T) -9 NIL 2779646 NIL) (-1197 2770310 2772981 2773023 "XF" 2773641 XF (NIL T) -9 NIL 2774037 NIL) (-1196 2770028 2770138 2770305 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1195 2769255 2769377 2769581 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1194 2767061 2769155 2769250 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1193 2765704 2766437 2766479 "XALG" 2766484 XALG (NIL T) -9 NIL 2766593 NIL) (-1192 2759261 2764114 2764592 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1191 2757568 2758506 2758827 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1190 2757167 2757439 2757508 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1189 2756654 2756957 2757050 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1188 2755731 2755941 2756236 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1187 2754027 2754490 2754952 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1186 2752947 2753501 2753543 "VSPACE" 2753679 VSPACE (NIL T) -9 NIL 2753753 NIL) (-1185 2752818 2752851 2752942 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1184 2752661 2752715 2752783 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1183 2749644 2750439 2751176 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1182 2740742 2743343 2745516 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1181 2734319 2736210 2737789 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1180 2732803 2733198 2733604 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1179 2731630 2731911 2732227 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1178 2726744 2731457 2731549 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1177 2719846 2724454 2724497 "VECTCAT" 2725485 VECTCAT (NIL T) -9 NIL 2726069 NIL) (-1176 2719125 2719451 2719841 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1175 2718619 2718861 2718981 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1174 2718552 2718557 2718587 "UTYPE" 2718592 UTYPE (NIL) -9 NIL NIL NIL) (-1173 2717539 2717715 2717976 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1172 2715390 2715898 2716422 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1171 2705334 2711242 2711284 "UTSCAT" 2712382 UTSCAT (NIL T) -9 NIL 2713139 NIL) (-1170 2703399 2704342 2705329 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1169 2703073 2703122 2703253 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1168 2694848 2701269 2701748 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2688843 2691656 2691699 "URAGG" 2693769 URAGG (NIL T) -9 NIL 2694491 NIL) (-1166 2686858 2687820 2688838 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1165 2682629 2685834 2686296 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1164 2675122 2682553 2682624 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1163 2663835 2671260 2671321 "UPXSCCA" 2671889 UPXSCCA (NIL T T) -9 NIL 2672121 NIL) (-1162 2663556 2663658 2663830 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1161 2652170 2659320 2659362 "UPXSCAT" 2660002 UPXSCAT (NIL T) -9 NIL 2660610 NIL) (-1160 2651683 2651768 2651945 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1159 2643433 2651274 2651536 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2642328 2642598 2642948 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1157 2635093 2638516 2638570 "UPSCAT" 2639639 UPSCAT (NIL T T) -9 NIL 2640403 NIL) (-1156 2634513 2634765 2635088 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1155 2634187 2634236 2634367 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1154 2618381 2627271 2627313 "UPOLYC" 2629391 UPOLYC (NIL T) -9 NIL 2630611 NIL) (-1153 2612436 2615284 2618376 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1152 2611872 2611997 2612160 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1151 2611506 2611593 2611732 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1150 2610319 2610586 2610890 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1149 2609652 2609782 2609967 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1148 2609244 2609319 2609466 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1147 2600072 2609010 2609138 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1146 2599434 2599571 2599776 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1145 2598035 2598882 2599158 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1144 2597264 2597461 2597686 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1143 2584138 2597188 2597259 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1142 2564052 2577225 2577286 "ULSCCAT" 2577917 ULSCCAT (NIL T T) -9 NIL 2578204 NIL) (-1141 2563387 2563673 2564047 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1140 2551821 2558893 2558935 "ULSCAT" 2559788 ULSCAT (NIL T) -9 NIL 2560518 NIL) (-1139 2551334 2551419 2551596 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1138 2533515 2550833 2551074 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1137 2532549 2533242 2533356 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2533467) (-1136 2531582 2532275 2532389 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2532500) (-1135 2530615 2531308 2531422 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2531533) (-1134 2529648 2530341 2530455 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2530566) (-1133 2527717 2528876 2528906 "UFD" 2529117 UFD (NIL) -9 NIL 2529230 NIL) (-1132 2527561 2527618 2527712 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1131 2526813 2527020 2527236 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1130 2525033 2525486 2525951 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1129 2524758 2524998 2525028 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1128 2524696 2524701 2524731 "TYPE" 2524736 TYPE (NIL) -9 NIL 2524743 NIL) (-1127 2523855 2524075 2524315 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1126 2523033 2523464 2523699 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1125 2521187 2521760 2522299 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1124 2520221 2520457 2520693 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1123 2508575 2513043 2513139 "TSETCAT" 2518354 TSETCAT (NIL T T T T) -9 NIL 2519866 NIL) (-1122 2504912 2506728 2508570 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1121 2499368 2504138 2504420 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1120 2494705 2495718 2496647 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1119 2494202 2494277 2494440 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1118 2492278 2492568 2492923 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1117 2491762 2491911 2491941 "TRIGCAT" 2492154 TRIGCAT (NIL) -9 NIL NIL NIL) (-1116 2491513 2491616 2491757 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1115 2488509 2490622 2490900 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1114 2487615 2488311 2488341 "TRANFUN" 2488376 TRANFUN (NIL) -9 NIL 2488442 NIL) (-1113 2487079 2487330 2487610 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1112 2486916 2486954 2487015 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1111 2486373 2486504 2486655 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1110 2485114 2485771 2486007 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1109 2484926 2484963 2485035 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1108 2483140 2483786 2484215 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1107 2481520 2481857 2482179 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1106 2472578 2479321 2479377 "TBAGG" 2479779 TBAGG (NIL T T) -9 NIL 2479992 NIL) (-1105 2469109 2470801 2472573 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1104 2468586 2468711 2468856 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1103 2468096 2468416 2468506 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1102 2467593 2467710 2467848 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1101 2460680 2467495 2467588 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1100 2456433 2457728 2458973 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1099 2455802 2455961 2456142 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1098 2452956 2453709 2454492 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1097 2452730 2452920 2452951 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1096 2451684 2452369 2452495 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2452681) (-1095 2450948 2451496 2451575 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2451635) (-1094 2447771 2448930 2449630 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1093 2445454 2446137 2446771 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1092 2441532 2442578 2443555 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1091 2438695 2441187 2441416 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1090 2438291 2438378 2438500 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1089 2434915 2436389 2437208 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1088 2427939 2434112 2434405 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2419689 2427530 2427792 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2418968 2419107 2419324 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1085 2418652 2418717 2418828 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1084 2409439 2418364 2418489 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1083 2408169 2408467 2408822 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1082 2407574 2407652 2407843 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1081 2389790 2407073 2407314 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1080 2389389 2389661 2389730 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1079 2388725 2389006 2389146 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1078 2383327 2384586 2385539 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1077 2382859 2382959 2383123 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1076 2377970 2379252 2380399 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1075 2372428 2373899 2375210 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1074 2365343 2367407 2369198 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1073 2358173 2365255 2365338 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1072 2352867 2357887 2358002 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1071 2352454 2352537 2352681 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1070 2351605 2351806 2352041 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1069 2351345 2351403 2351496 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1068 2344083 2349550 2350156 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1067 2343259 2343464 2343695 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1066 2342504 2342875 2343022 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1065 2341992 2342234 2342264 "STEP" 2342358 STEP (NIL) -9 NIL 2342429 NIL) (-1064 2335095 2341910 2341987 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1063 2329310 2333893 2333936 "STAGG" 2334363 STAGG (NIL T) -9 NIL 2334537 NIL) (-1062 2327689 2328437 2329305 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1061 2325846 2327516 2327608 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1060 2325157 2325665 2325695 "SRING" 2325700 SRING (NIL) -9 NIL 2325720 NIL) (-1059 2317779 2323695 2324134 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1058 2311553 2312992 2314496 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1057 2303978 2308889 2308919 "SRAGG" 2310218 SRAGG (NIL) -9 NIL 2310822 NIL) (-1056 2303275 2303595 2303973 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1055 2297394 2302597 2303020 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1054 2291607 2294776 2295498 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1053 2288036 2288855 2289492 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1052 2287011 2287316 2287346 "SPFCAT" 2287790 SPFCAT (NIL) -9 NIL NIL NIL) (-1051 2285948 2286200 2286464 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1050 2276706 2278980 2279010 "SPADXPT" 2283647 SPADXPT (NIL) -9 NIL 2285771 NIL) (-1049 2276508 2276554 2276623 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1048 2274164 2276472 2276503 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1047 2265838 2267927 2267969 "SPACEC" 2272284 SPACEC (NIL T) -9 NIL 2274089 NIL) (-1046 2263667 2265785 2265833 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1045 2262600 2262789 2263078 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1044 2261004 2261337 2261748 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1043 2260269 2260503 2260764 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1042 2256449 2257409 2258404 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1041 2252807 2253506 2254235 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1040 2246593 2252147 2252243 "SNTSCAT" 2252248 SNTSCAT (NIL T T T T) -9 NIL 2252318 NIL) (-1039 2240478 2245234 2245624 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1038 2234314 2240397 2240473 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1037 2232746 2233077 2233475 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1036 2224415 2229330 2229432 "SMATCAT" 2230775 SMATCAT (NIL NIL T T T) -9 NIL 2231323 NIL) (-1035 2222256 2223240 2224410 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1034 2219848 2221462 2221505 "SKAGG" 2221766 SKAGG (NIL T) -9 NIL 2221900 NIL) (-1033 2215958 2219668 2219779 "SINT" NIL SINT (NIL) -8 NIL NIL 2219820) (-1032 2215768 2215812 2215878 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2214843 2215075 2215343 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2213847 2214009 2214285 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2213193 2213533 2213656 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2212539 2212846 2212986 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2210650 2211142 2211648 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2204189 2210569 2210645 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2203692 2203929 2203959 "SGROUP" 2204052 SGROUP (NIL) -9 NIL 2204114 NIL) (-1024 2203582 2203614 2203687 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2203220 2203260 2203301 "SGPOPC" 2203306 SGPOPC (NIL T) -9 NIL 2203507 NIL) (-1022 2202754 2203031 2203137 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2200177 2200946 2201668 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2194062 2199616 2199712 "SFRTCAT" 2199717 SFRTCAT (NIL T T T T) -9 NIL 2199755 NIL) (-1019 2188454 2189567 2190694 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2182630 2183791 2184955 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2181602 2182504 2182625 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2177210 2178105 2178200 "SEXCAT" 2180813 SEXCAT (NIL T T T T T) -9 NIL 2181364 NIL) (-1015 2176183 2177137 2177205 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2174574 2175159 2175461 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2174097 2174282 2174312 "SETCAT" 2174429 SETCAT (NIL) -9 NIL 2174513 NIL) (-1012 2173929 2173993 2174092 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2170152 2172383 2172426 "SETAGG" 2173294 SETAGG (NIL T) -9 NIL 2173632 NIL) (-1010 2169758 2169910 2170147 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2166712 2169705 2169753 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2166178 2166488 2166588 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2165305 2165671 2165732 "SEGXCAT" 2166018 SEGXCAT (NIL T T) -9 NIL 2166138 NIL) (-1006 2164230 2164498 2164541 "SEGCAT" 2165063 SEGCAT (NIL T) -9 NIL 2165284 NIL) (-1005 2163910 2163975 2164088 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2162976 2163446 2163654 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2162554 2162833 2162909 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2161919 2162055 2162259 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2160985 2161732 2161914 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2160238 2160933 2160980 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2151789 2160107 2160233 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2150649 2150939 2151256 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2149955 2150167 2150355 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2149305 2149462 2149638 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2148878 2149109 2149137 "SASTCAT" 2149142 SASTCAT (NIL) -9 NIL 2149155 NIL) (-994 2148345 2148770 2148844 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2147948 2147989 2148160 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2147579 2147620 2147777 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2140724 2147496 2147574 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2139374 2139703 2140099 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2138135 2138496 2138796 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2137759 2137980 2138061 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2135219 2135853 2136306 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2135058 2135091 2135159 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2134549 2134852 2134943 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2130177 2131045 2131956 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2118996 2124550 2124644 "RSETCAT" 2128700 RSETCAT (NIL T T T T) -9 NIL 2129788 NIL) (-982 2117534 2118176 2118991 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2111308 2112753 2114260 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2109190 2109747 2109819 "RRCC" 2110892 RRCC (NIL T T) -9 NIL 2111233 NIL) (-979 2108715 2108914 2109185 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2108185 2108495 2108593 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2080801 2091450 2091514 "RPOLCAT" 2101988 RPOLCAT (NIL T T T) -9 NIL 2105133 NIL) (-976 2074900 2077723 2080796 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2071131 2074648 2074786 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2069459 2070198 2070454 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2065164 2067914 2067942 "RNS" 2068204 RNS (NIL) -9 NIL 2068456 NIL) (-972 2064067 2064554 2065091 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2063185 2063586 2063786 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2062473 2062973 2063001 "RNG" 2063006 RNG (NIL) -9 NIL 2063027 NIL) (-969 2061766 2062240 2062280 "RMODULE" 2062285 RMODULE (NIL T) -9 NIL 2062311 NIL) (-968 2060705 2060811 2061141 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2057583 2060295 2060588 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2050263 2052724 2052836 "RMATCAT" 2056141 RMATCAT (NIL NIL NIL T T T) -9 NIL 2057118 NIL) (-965 2049780 2049959 2050258 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2049348 2049559 2049600 "RLINSET" 2049661 RLINSET (NIL T) -9 NIL 2049705 NIL) (-963 2048993 2049074 2049200 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2047901 2048570 2048598 "RING" 2048653 RING (NIL) -9 NIL 2048745 NIL) (-961 2047746 2047802 2047896 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2046800 2047067 2047323 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2037787 2046428 2046629 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2037043 2037523 2037562 "RGBCSPC" 2037619 RGBCSPC (NIL T) -9 NIL 2037670 NIL) (-957 2036108 2036563 2036602 "RGBCMDL" 2036830 RGBCMDL (NIL T) -9 NIL 2036944 NIL) (-956 2035820 2035889 2035990 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2035583 2035624 2035719 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2034007 2034437 2034817 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2031594 2032262 2032930 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2031144 2031242 2031402 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2030766 2030864 2030905 "RETRACT" 2031036 RETRACT (NIL T) -9 NIL 2031123 NIL) (-950 2030646 2030677 2030761 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2030248 2030520 2030587 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2028792 2029619 2029816 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2028483 2028544 2028640 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2028226 2028267 2028372 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2027961 2028002 2028111 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2023032 2024483 2025698 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2020131 2020889 2021697 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2018100 2018722 2019322 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2010735 2016651 2017087 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2010047 2010327 2010476 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2009532 2009647 2009812 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2005189 2008935 2009156 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2004421 2004620 2004833 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2001711 2002549 2003431 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 1998293 1999329 2000388 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 1998129 1998182 1998210 "REAL" 1998215 REAL (NIL) -9 NIL 1998250 NIL) (-933 1997619 1997923 1998014 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 1997099 1997177 1997382 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 1996332 1996524 1996735 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1995220 1995517 1995884 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1993487 1993957 1994490 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1992409 1992686 1993073 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1991236 1991545 1991964 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1984648 1988096 1988124 "RCFIELD" 1989401 RCFIELD (NIL) -9 NIL 1990131 NIL) (-925 1983266 1983878 1984575 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1979466 1981358 1981399 "RCAGG" 1982466 RCAGG (NIL T) -9 NIL 1982927 NIL) (-923 1979193 1979303 1979461 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1978638 1978767 1978928 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1978255 1978334 1978453 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1977670 1977820 1977970 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1977452 1977502 1977573 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1969958 1976570 1976878 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1959724 1969825 1969953 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1959358 1959451 1959479 "RADCAT" 1959636 RADCAT (NIL) -9 NIL NIL NIL) (-915 1959196 1959256 1959353 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1957296 1959027 1959116 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1956977 1957026 1957153 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1949328 1953348 1953388 "QUATCAT" 1954166 QUATCAT (NIL T) -9 NIL 1954930 NIL) (-911 1946578 1947858 1949234 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1942482 1946528 1946573 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1939869 1941536 1941577 "QUAGG" 1941952 QUAGG (NIL T) -9 NIL 1942126 NIL) (-908 1939471 1939743 1939810 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1938509 1939107 1939270 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1938190 1938239 1938366 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1927877 1933984 1934024 "QFCAT" 1934682 QFCAT (NIL T) -9 NIL 1935675 NIL) (-904 1924761 1926200 1927783 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1924307 1924441 1924571 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1918503 1919664 1920826 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1917922 1918102 1918334 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1915744 1916272 1916695 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1914643 1914885 1915202 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1913004 1913202 1913555 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1908760 1909976 1910017 "PTRANFN" 1911901 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1907407 1907752 1908073 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1907100 1907163 1907270 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1901173 1905896 1905936 "PTCAT" 1906228 PTCAT (NIL T) -9 NIL 1906381 NIL) (-893 1900866 1900907 1901031 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1899745 1900061 1900395 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1888624 1891185 1893494 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1881531 1884427 1884521 "PSETCAT" 1887495 PSETCAT (NIL T T T T) -9 NIL 1888302 NIL) (-889 1879981 1880715 1881526 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1879300 1879495 1879523 "PSCURVE" 1879791 PSCURVE (NIL) -9 NIL 1879958 NIL) (-887 1874964 1876722 1876786 "PSCAT" 1877621 PSCAT (NIL T T T) -9 NIL 1877860 NIL) (-886 1874278 1874560 1874959 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1872707 1873590 1873853 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1872198 1872501 1872592 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1863218 1865640 1867828 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1860961 1862538 1862578 "PRQAGG" 1862761 PRQAGG (NIL T) -9 NIL 1862862 NIL) (-881 1860134 1860580 1860608 "PROPLOG" 1860747 PROPLOG (NIL) -9 NIL 1860861 NIL) (-880 1859809 1859872 1859995 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1859245 1859384 1859556 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1857493 1858256 1858553 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1857045 1857177 1857305 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1851701 1855985 1856805 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1851530 1851568 1851627 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1850969 1851109 1851260 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1849437 1849856 1850322 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1849154 1849215 1849243 "PRIMCAT" 1849367 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1848325 1848521 1848749 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1844203 1848275 1848320 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1843902 1843964 1844075 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1841102 1843551 1843784 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1840553 1840710 1840738 "PPCURVE" 1840943 PPCURVE (NIL) -9 NIL 1841079 NIL) (-866 1840166 1840411 1840494 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1837922 1838343 1838935 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1837365 1837429 1837662 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1834085 1834571 1835182 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1819740 1825805 1825869 "POLYCAT" 1829354 POLYCAT (NIL T T T) -9 NIL 1831231 NIL) (-861 1815250 1817397 1819735 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1814907 1814981 1815100 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1814600 1814663 1814770 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1808027 1814333 1814492 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1806914 1807177 1807453 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1805518 1805831 1806161 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1800680 1805468 1805513 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1799168 1799579 1799954 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1797925 1798234 1798630 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1797596 1797680 1797797 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1797175 1797250 1797424 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1796661 1796757 1796917 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1796133 1796253 1796407 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1795028 1795246 1795623 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1794639 1794724 1794876 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1794190 1794272 1794453 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1793882 1793963 1794076 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1793395 1793470 1793678 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1792743 1792871 1793073 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1792105 1792239 1792402 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1791409 1791591 1791772 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1791132 1791206 1791300 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1787700 1788889 1789805 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1786784 1786985 1787220 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1782349 1783733 1784875 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1762270 1767157 1772004 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1762010 1762063 1762166 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1761451 1761585 1761765 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1759522 1760681 1760709 "PID" 1760906 PID (NIL) -9 NIL 1761033 NIL) (-832 1759310 1759353 1759428 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1758497 1759157 1759244 "PI" NIL PI (NIL) -8 NIL NIL 1759284) (-830 1757949 1758100 1758276 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1754277 1755235 1756140 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1752641 1752930 1753296 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1752083 1752198 1752359 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1748688 1750952 1751305 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1747294 1747574 1747899 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1746059 1746313 1746661 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1744769 1744996 1745348 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1741841 1743339 1743367 "PFECAT" 1743960 PFECAT (NIL) -9 NIL 1744337 NIL) (-821 1741464 1741629 1741836 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1740288 1740570 1740871 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1738470 1738857 1739287 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1734504 1738396 1738465 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1730407 1731554 1732421 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1728339 1729428 1729469 "PERMCAT" 1729868 PERMCAT (NIL T) -9 NIL 1730165 NIL) (-815 1728035 1728082 1728205 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1724484 1726165 1726810 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1721949 1724239 1724360 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1720818 1721081 1721122 "PDSPC" 1721655 PDSPC (NIL T) -9 NIL 1721900 NIL) (-811 1720185 1720451 1720813 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1718882 1719813 1719854 "PDRING" 1719859 PDRING (NIL T) -9 NIL 1719886 NIL) (-809 1717623 1718381 1718434 "PDMOD" 1718439 PDMOD (NIL T T) -9 NIL 1718542 NIL) (-808 1716716 1716928 1717177 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1716321 1716388 1716442 "PDDOM" 1716607 PDDOM (NIL T T) -9 NIL 1716687 NIL) (-806 1716173 1716209 1716316 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1715959 1715998 1716087 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1714276 1715030 1715329 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1713965 1714028 1714137 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1712103 1712533 1712984 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1705723 1707552 1708844 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1705354 1705427 1705559 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1703056 1703736 1704217 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1701260 1701688 1702091 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1700706 1700954 1700995 "PATMAB" 1701102 PATMAB (NIL T) -9 NIL 1701185 NIL) (-796 1699353 1699757 1700014 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1698891 1699022 1699063 "PATAB" 1699068 PATAB (NIL T) -9 NIL 1699240 NIL) (-794 1697434 1697871 1698294 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1697112 1697187 1697289 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1696801 1696864 1696973 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1696606 1696652 1696719 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1696284 1696359 1696461 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1695973 1696036 1696145 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1695664 1695734 1695831 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1695353 1695416 1695525 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1694514 1694893 1695072 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1694121 1694219 1694338 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1693089 1693514 1693733 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1691754 1692408 1692768 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1684908 1691158 1691352 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1677393 1684406 1684590 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1674180 1676033 1676073 "PADICCT" 1676654 PADICCT (NIL NIL) -9 NIL 1676936 NIL) (-779 1672234 1674130 1674175 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1671396 1671606 1671872 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1670738 1670881 1671085 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1669183 1670146 1670424 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1668707 1668966 1669063 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1667766 1668444 1668616 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1658188 1661057 1663256 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1657580 1657894 1658020 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1656857 1657052 1657080 "OUTBCON" 1657398 OUTBCON (NIL) -9 NIL 1657564 NIL) (-770 1656565 1656695 1656852 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1655946 1656091 1656252 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1655317 1655744 1655833 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1654732 1655147 1655175 "OSGROUP" 1655180 OSGROUP (NIL) -9 NIL 1655202 NIL) (-766 1653696 1653957 1654242 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1651029 1653571 1653691 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1648234 1650780 1650906 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1646252 1646780 1647340 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1639656 1642134 1642174 "OREPCAT" 1644495 OREPCAT (NIL T) -9 NIL 1645597 NIL) (-761 1637682 1638616 1639651 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1636879 1637150 1637178 "ORDTYPE" 1637483 ORDTYPE (NIL) -9 NIL 1637641 NIL) (-759 1636413 1636624 1636874 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1635875 1636251 1636408 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1635369 1635732 1635760 "ORDSET" 1635765 ORDSET (NIL) -9 NIL 1635787 NIL) (-756 1634009 1634969 1634997 "ORDRING" 1635002 ORDRING (NIL) -9 NIL 1635030 NIL) (-755 1633257 1633814 1633842 "ORDMON" 1633847 ORDMON (NIL) -9 NIL 1633868 NIL) (-754 1632561 1632723 1632915 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1631772 1632280 1632308 "ORDFIN" 1632373 ORDFIN (NIL) -9 NIL 1632447 NIL) (-752 1631166 1631305 1631491 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1627940 1630134 1630540 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1627347 1627702 1627807 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1627155 1627200 1627266 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1626456 1626732 1626773 "OPERCAT" 1626984 OPERCAT (NIL T) -9 NIL 1627080 NIL) (-747 1626268 1626335 1626451 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1623698 1625070 1625566 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1623119 1623246 1623420 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1620119 1622258 1622624 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1616750 1619549 1619589 "OMSAGG" 1619650 OMSAGG (NIL T) -9 NIL 1619714 NIL) (-742 1615226 1616421 1616589 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1613497 1614676 1614704 "OINTDOM" 1614709 OINTDOM (NIL) -9 NIL 1614730 NIL) (-740 1610927 1612499 1612828 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1610181 1610877 1610922 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1607447 1610022 1610176 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1599048 1607318 1607442 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1592558 1598939 1599043 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1591530 1591767 1592040 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1589164 1589834 1590538 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1584941 1585901 1586924 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1584449 1584537 1584731 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1581898 1582480 1583153 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1579293 1579801 1580397 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1576290 1576829 1577475 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1575645 1575753 1576011 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1574803 1574928 1575149 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1571087 1571883 1572796 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1570527 1570622 1570844 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1570208 1570257 1570384 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1566875 1570007 1570126 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1566066 1566657 1566685 "OCAMON" 1566690 OCAMON (NIL) -9 NIL 1566711 NIL) (-721 1560342 1563092 1563132 "OC" 1564227 OC (NIL T) -9 NIL 1565083 NIL) (-720 1558342 1559268 1560248 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1557758 1558176 1558204 "OASGP" 1558209 OASGP (NIL) -9 NIL 1558229 NIL) (-718 1556852 1557470 1557498 "OAMONS" 1557538 OAMONS (NIL) -9 NIL 1557581 NIL) (-717 1556028 1556578 1556606 "OAMON" 1556663 OAMON (NIL) -9 NIL 1556714 NIL) (-716 1555924 1555956 1556023 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1554706 1555449 1555477 "OAGROUP" 1555623 OAGROUP (NIL) -9 NIL 1555715 NIL) (-714 1554497 1554584 1554701 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1554237 1554293 1554381 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1549299 1550862 1552389 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1545994 1547028 1548063 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1545104 1545337 1545555 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1533965 1536993 1539441 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1527852 1533406 1533500 "NTSCAT" 1533505 NTSCAT (NIL T T T T) -9 NIL 1533543 NIL) (-707 1527193 1527372 1527565 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1526886 1526949 1527056 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1514617 1524506 1525316 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1503690 1514482 1514612 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1502410 1502735 1503092 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1501246 1501510 1501868 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1500413 1500546 1500762 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1498731 1499050 1499456 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1498444 1498478 1498602 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1498263 1498298 1498367 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1498039 1498229 1498258 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1497603 1497670 1497847 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1495921 1496966 1497221 "NNI" NIL NNI (NIL) -8 NIL NIL 1497568) (-694 1494649 1494986 1495350 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1493626 1493878 1494180 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1492713 1493278 1493319 "NETCLT" 1493490 NETCLT (NIL T) -9 NIL 1493571 NIL) (-691 1491617 1491884 1492165 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1491416 1491459 1491534 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1489947 1490335 1490755 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1488611 1489546 1489574 "NASRING" 1489684 NASRING (NIL) -9 NIL 1489764 NIL) (-687 1488456 1488512 1488606 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1487416 1488063 1488091 "NARNG" 1488208 NARNG (NIL) -9 NIL 1488299 NIL) (-685 1487192 1487277 1487411 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1485989 1486712 1486752 "NAALG" 1486831 NAALG (NIL T) -9 NIL 1486892 NIL) (-683 1485859 1485894 1485984 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1480838 1482023 1483209 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1480233 1480320 1480504 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1472307 1476737 1476789 "MTSCAT" 1477849 MTSCAT (NIL T T) -9 NIL 1478363 NIL) (-679 1472073 1472133 1472225 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1471899 1471938 1471998 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1468761 1471450 1471491 "MSETAGG" 1471496 MSETAGG (NIL T) -9 NIL 1471530 NIL) (-676 1464898 1467807 1468125 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1461236 1462995 1463735 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1460873 1460946 1461075 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1460526 1460567 1460711 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1458391 1458728 1459159 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1451853 1458290 1458386 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1451378 1451419 1451627 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1450937 1450986 1451169 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1450211 1450304 1450523 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1448828 1449189 1449579 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1448349 1448416 1448455 "MONOPC" 1448515 MONOPC (NIL T) -9 NIL 1448734 NIL) (-665 1447800 1448136 1448264 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1446942 1447321 1447349 "MONOID" 1447567 MONOID (NIL) -9 NIL 1447711 NIL) (-663 1446601 1446751 1446937 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1435601 1442409 1442468 "MONOGEN" 1443142 MONOGEN (NIL T T) -9 NIL 1443598 NIL) (-661 1433613 1434499 1435482 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1432327 1432871 1432899 "MONADWU" 1433290 MONADWU (NIL) -9 NIL 1433525 NIL) (-659 1431875 1432075 1432322 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1431152 1431453 1431481 "MONAD" 1431688 MONAD (NIL) -9 NIL 1431800 NIL) (-657 1430919 1431015 1431147 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1429309 1430079 1430358 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1428474 1428970 1429010 "MODULE" 1429015 MODULE (NIL T) -9 NIL 1429053 NIL) (-654 1428153 1428279 1428469 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1425928 1426750 1427064 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1423171 1424524 1425037 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1421805 1422379 1422655 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1411088 1420470 1420883 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1408108 1410088 1410357 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1407192 1407559 1407749 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1406761 1406810 1406989 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1404648 1405582 1405622 "MLO" 1406039 MLO (NIL T) -9 NIL 1406279 NIL) (-645 1402529 1403056 1403651 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1401997 1402093 1402247 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1401667 1401743 1401866 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1400879 1401065 1401293 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1400372 1400488 1400644 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1399744 1399858 1400043 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1398771 1399044 1399321 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1398204 1398292 1398463 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1395362 1396241 1397120 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1394029 1394377 1394730 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1390686 1393153 1393194 "MDAGG" 1393451 MDAGG (NIL T) -9 NIL 1393596 NIL) (-634 1389960 1390124 1390324 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1389038 1389324 1389554 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1387135 1387712 1388273 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1382906 1386725 1386972 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1379255 1380024 1380758 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1378008 1378177 1378506 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1367521 1371110 1371186 "MATCAT" 1376174 MATCAT (NIL T T T) -9 NIL 1377642 NIL) (-627 1364802 1366108 1367516 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1363203 1363563 1363947 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1362336 1362533 1362755 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1361087 1361413 1361740 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1360249 1360651 1360827 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1359918 1359982 1360105 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1359566 1359639 1359753 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1359101 1359216 1359358 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1357310 1358078 1358379 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1356804 1357106 1357196 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1350313 1355119 1355160 "LZSTAGG" 1355937 LZSTAGG (NIL T) -9 NIL 1356227 NIL) (-616 1347432 1348866 1350308 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1344819 1345785 1346268 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1344400 1344679 1344753 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1336628 1344261 1344395 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1335991 1336136 1336364 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1333475 1334173 1334885 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1331587 1331910 1332358 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1324756 1330674 1330715 "LSAGG" 1330777 LSAGG (NIL T) -9 NIL 1330855 NIL) (-608 1322450 1323549 1324751 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1319962 1321799 1322048 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1319629 1319720 1319843 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1319300 1319379 1319407 "LOGIC" 1319518 LOGIC (NIL) -9 NIL 1319600 NIL) (-604 1319195 1319224 1319295 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1318514 1318672 1318865 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1317299 1317548 1317899 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1313185 1315920 1315960 "LODOCAT" 1316392 LODOCAT (NIL T) -9 NIL 1316603 NIL) (-600 1312978 1313054 1313180 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1310042 1312855 1312973 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1307204 1309992 1310037 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1304355 1307134 1307199 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1303408 1303583 1303885 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1301572 1302670 1302923 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1296667 1299731 1299772 "LNAGG" 1300634 LNAGG (NIL T) -9 NIL 1301069 NIL) (-593 1296054 1296321 1296662 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1292626 1293567 1294204 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1291919 1292393 1292433 "LMODULE" 1292438 LMODULE (NIL T) -9 NIL 1292464 NIL) (-590 1289098 1291656 1291778 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1288666 1288877 1288918 "LLINSET" 1288979 LLINSET (NIL T) -9 NIL 1289023 NIL) (-588 1288342 1288602 1288661 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1287941 1288021 1288160 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1286392 1286740 1287139 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1285563 1285759 1285987 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1278609 1284819 1285073 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1278186 1278419 1278460 "LINSET" 1278465 LINSET (NIL T) -9 NIL 1278498 NIL) (-582 1277119 1277809 1277976 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1275416 1276140 1276180 "LINEXP" 1276666 LINEXP (NIL T) -9 NIL 1276939 NIL) (-580 1274070 1275025 1275206 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1272897 1273169 1273471 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1272110 1272699 1272809 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1269660 1270382 1271132 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1268290 1268587 1268978 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1267114 1267685 1267725 "LIECAT" 1267865 LIECAT (NIL T) -9 NIL 1268016 NIL) (-574 1266988 1267021 1267109 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1261276 1266678 1266906 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1253625 1260952 1261108 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1250077 1251026 1251961 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1248701 1249609 1249637 "LFCAT" 1249844 LFCAT (NIL) -9 NIL 1249983 NIL) (-569 1246940 1247270 1247615 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1244457 1245122 1245803 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1241469 1242447 1242950 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1240960 1241263 1241354 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1239667 1239991 1240391 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1238933 1239018 1239244 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1234000 1237501 1238037 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1233625 1233675 1233835 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1232458 1233169 1233209 "LALG" 1233270 LALG (NIL T) -9 NIL 1233328 NIL) (-560 1232241 1232318 1232453 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1230158 1231509 1231760 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1229987 1230017 1230058 "KVTFROM" 1230120 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1228803 1229518 1229707 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1228632 1228662 1228703 "KRCFROM" 1228765 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1227734 1227931 1228226 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1227563 1227593 1227634 "KONVERT" 1227696 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1227392 1227422 1227463 "KOERCE" 1227525 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1226962 1227055 1227187 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1225015 1225909 1226281 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1218192 1223207 1223261 "KDAGG" 1223637 KDAGG (NIL T T) -9 NIL 1223844 NIL) (-549 1217840 1217982 1218187 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1210670 1217621 1217778 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1210320 1210602 1210665 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1209290 1209789 1210038 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1208416 1208865 1209070 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1207280 1207772 1208072 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1206562 1206961 1207122 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1206272 1206508 1206557 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1200559 1205962 1206190 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1199977 1200310 1200430 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1196139 1198154 1198208 "IXAGG" 1199135 IXAGG (NIL T T) -9 NIL 1199592 NIL) (-538 1195345 1195716 1196134 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1190599 1195281 1195340 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-536 1189566 1189841 1190104 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1188228 1188435 1188728 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1187179 1187401 1187684 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1186854 1186917 1187040 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1186116 1186488 1186662 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1184156 1185392 1185666 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1173768 1179473 1180630 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1173013 1173165 1173401 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1172504 1172807 1172898 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1171797 1171888 1172101 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1170929 1171154 1171394 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1169342 1169723 1170151 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1169127 1169171 1169247 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1167977 1168274 1168569 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1167250 1167601 1167752 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1166453 1166584 1166797 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1164608 1165105 1165649 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1161721 1162957 1163646 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1161546 1161586 1161646 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1157608 1161472 1161541 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1155675 1157547 1157603 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1155046 1155345 1155475 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1154499 1154787 1154919 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1153580 1154205 1154331 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1152990 1153484 1153512 "IOBCON" 1153517 IOBCON (NIL) -9 NIL 1153538 NIL) (-511 1152561 1152625 1152807 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1144605 1146976 1149301 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1141716 1142499 1143363 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1141393 1141490 1141607 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1138899 1141329 1141388 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1137011 1137540 1138107 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1136513 1136627 1136767 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1134897 1135303 1135765 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1132676 1133270 1133881 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1130049 1130659 1131379 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1129453 1129611 1129819 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1128972 1129058 1129246 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1127177 1127698 1128155 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1120259 1121912 1123641 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1119625 1119787 1119960 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1117498 1117962 1118506 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1115686 1116574 1116602 "INTDOM" 1116901 INTDOM (NIL) -9 NIL 1117106 NIL) (-494 1115239 1115441 1115681 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1111110 1113518 1113572 "INTCAT" 1114368 INTCAT (NIL T) -9 NIL 1114684 NIL) (-492 1110675 1110795 1110922 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1109515 1109687 1109993 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1109088 1109184 1109341 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1102128 1108943 1109083 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1101426 1101981 1102046 "INT8" NIL INT8 (NIL) -8 NIL NIL 1102080) (-487 1100723 1101278 1101343 "INT64" NIL INT64 (NIL) -8 NIL NIL 1101377) (-486 1100020 1100575 1100640 "INT32" NIL INT32 (NIL) -8 NIL NIL 1100674) (-485 1099317 1099872 1099937 "INT16" NIL INT16 (NIL) -8 NIL NIL 1099971) (-484 1095844 1099236 1099312 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1089965 1093384 1093412 "INS" 1094342 INS (NIL) -9 NIL 1095001 NIL) (-482 1088027 1088945 1089892 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1087086 1087309 1087584 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1086300 1086441 1086638 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1085290 1085431 1085668 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1084442 1084606 1084866 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1083722 1083837 1084025 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1082461 1082730 1083054 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1081741 1081882 1082065 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1081404 1081476 1081574 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1078482 1079968 1080491 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1078081 1078188 1078302 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1077237 1077882 1077983 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1076087 1076355 1076676 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1075109 1076017 1076082 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1074734 1074814 1074931 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1073648 1074193 1074397 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1069743 1070798 1071741 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1068597 1068920 1068948 "INBCON" 1069461 INBCON (NIL) -9 NIL 1069727 NIL) (-464 1068051 1068316 1068592 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1067545 1067847 1067937 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1067002 1067311 1067416 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1063102 1066894 1066997 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-460 1061942 1062081 1062396 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-459 1060366 1060633 1060970 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-458 1058182 1060248 1060361 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-457 1053089 1058113 1058177 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-456 1052469 1052803 1052918 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-455 1047276 1051907 1052093 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-454 1046338 1047198 1047271 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-453 1045910 1045987 1046041 "IEVALAB" 1046248 IEVALAB (NIL T T) -9 NIL NIL NIL) (-452 1045665 1045745 1045905 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-451 1045050 1045277 1045434 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-450 1044075 1044970 1045045 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-449 1043169 1043995 1044070 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-448 1042251 1042898 1043035 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-447 1040614 1041185 1041236 "IDPC" 1041742 IDPC (NIL T T) -9 NIL 1042055 NIL) (-446 1039933 1040536 1040609 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-445 1039135 1039855 1039928 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-444 1038828 1039041 1039101 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-443 1038532 1038572 1038611 "IDEMOPC" 1038616 IDEMOPC (NIL T) -9 NIL 1038753 NIL) (-442 1035603 1036484 1037376 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-441 1029229 1030506 1031545 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-440 1028491 1028621 1028820 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-439 1027664 1028163 1028301 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-438 1026053 1026384 1026775 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-437 1021822 1026009 1026048 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-436 1019080 1019704 1020399 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-435 1017306 1017786 1018319 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-434 1015070 1017198 1017301 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-433 1010939 1015008 1015065 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-432 1004582 1009903 1010371 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-431 1004150 1004213 1004386 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-430 1003642 1003791 1003819 "HYPCAT" 1004026 HYPCAT (NIL) -9 NIL NIL NIL) (-429 1003298 1003451 1003637 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-428 1002911 1003156 1003239 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-427 1002744 1002793 1002834 "HOMOTOP" 1002839 HOMOTOP (NIL T) -9 NIL 1002872 NIL) (-426 999312 1000686 1000727 "HOAGG" 1001702 HOAGG (NIL T) -9 NIL 1002423 NIL) (-425 998318 998788 999307 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-424 991582 998043 998191 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-423 990517 990775 991038 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-422 989484 990382 990512 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-421 987678 989317 989405 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-420 986993 987345 987478 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-419 980546 986926 986988 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-418 973749 980282 980433 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-417 973202 973359 973522 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-416 966285 973093 973197 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-415 965776 966079 966170 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-414 963390 965563 965742 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-413 958783 963273 963385 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-412 951869 958680 958778 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-411 943870 951238 951493 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-410 942894 943403 943431 "GROUP" 943634 GROUP (NIL) -9 NIL 943768 NIL) (-409 942437 942638 942889 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-408 941109 941448 941835 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-407 939931 940288 940339 "GRMOD" 940868 GRMOD (NIL T T) -9 NIL 941034 NIL) (-406 939750 939798 939926 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-405 935873 937084 938084 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-404 934595 934919 935234 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-403 934148 934276 934417 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-402 933221 933720 933771 "GRALG" 933924 GRALG (NIL T T) -9 NIL 934014 NIL) (-401 932940 933041 933216 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-400 929657 932622 932798 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-399 929070 929133 929390 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-398 924956 925820 926345 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-397 924131 924333 924571 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-396 919134 920061 921080 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-395 918882 918939 919028 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-394 918364 918453 918618 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-393 917873 917914 918127 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-392 916674 916957 917261 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-391 910013 916364 916525 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-390 899828 904803 905907 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-389 897942 898983 899011 "GCDDOM" 899266 GCDDOM (NIL) -9 NIL 899423 NIL) (-388 897565 897722 897937 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-387 888358 890828 893216 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-386 886493 886818 887236 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-385 885434 885623 885890 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-384 884305 884512 884816 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-383 883768 883910 884058 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-382 882380 882728 883041 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-381 880925 881246 881568 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-380 878551 878907 879312 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-379 871803 873464 875042 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-378 871455 871676 871744 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-377 871079 871300 871381 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-376 869176 869859 870319 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-375 867769 868076 868468 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-374 866424 866783 867107 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-373 865727 865851 866038 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-372 864701 864967 865314 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-371 862359 862889 863371 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-370 861942 862002 862171 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-369 860306 861156 861459 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-368 859454 859588 859811 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-367 858625 858786 859013 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-366 854608 857559 857600 "FSAGG" 857970 FSAGG (NIL T) -9 NIL 858229 NIL) (-365 852962 853721 854513 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-364 850918 851214 851758 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-363 849965 850147 850447 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-362 849646 849695 849822 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-361 829901 839303 839344 "FS" 843214 FS (NIL T) -9 NIL 845492 NIL) (-360 822132 825625 829604 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-359 821666 821793 821945 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-358 816220 819347 819387 "FRNAALG" 820707 FRNAALG (NIL T) -9 NIL 821305 NIL) (-357 812961 814212 815470 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-356 812642 812691 812818 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-355 811129 811686 811980 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-354 810415 810508 810795 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-353 808249 809015 809331 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-352 807358 807801 807842 "FRETRCT" 807847 FRETRCT (NIL T) -9 NIL 808018 NIL) (-351 806731 807009 807353 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-350 803537 804995 805054 "FRAMALG" 805936 FRAMALG (NIL T T) -9 NIL 806228 NIL) (-349 802133 802684 803314 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-348 801826 801889 801996 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-347 795531 801631 801821 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-346 795224 795287 795394 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-345 787596 792103 793431 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-344 781436 784877 784905 "FPS" 786024 FPS (NIL) -9 NIL 786580 NIL) (-343 780993 781126 781290 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-342 777866 779846 779874 "FPC" 780099 FPC (NIL) -9 NIL 780241 NIL) (-341 777712 777764 777861 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-340 776489 777198 777239 "FPATMAB" 777244 FPATMAB (NIL T) -9 NIL 777396 NIL) (-339 774919 775515 775862 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-338 774494 774552 774725 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-337 773029 773892 774066 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-336 771644 772149 772177 "FNCAT" 772634 FNCAT (NIL) -9 NIL 772891 NIL) (-335 771101 771611 771639 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-334 769688 771050 771096 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-333 766276 767634 767675 "FMONCAT" 768892 FMONCAT (NIL T) -9 NIL 769496 NIL) (-332 763165 764212 764265 "FMCAT" 765446 FMCAT (NIL T T) -9 NIL 765938 NIL) (-331 761897 762988 763087 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-330 760977 761745 761892 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-329 759164 759616 760110 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-328 757099 757635 758213 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-327 750549 755436 756050 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-326 749061 750131 750171 "FLINEXP" 750176 FLINEXP (NIL T) -9 NIL 750269 NIL) (-325 748470 748729 749056 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-324 747685 747844 748065 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-323 744599 745647 745699 "FLALG" 746926 FLALG (NIL T T) -9 NIL 747393 NIL) (-322 743770 743931 744158 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-321 737179 741189 741230 "FLAGG" 742485 FLAGG (NIL T) -9 NIL 743130 NIL) (-320 736287 736691 737174 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-319 732910 734112 734171 "FINRALG" 735299 FINRALG (NIL T T) -9 NIL 735807 NIL) (-318 732301 732566 732905 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-317 731599 731895 731923 "FINITE" 732119 FINITE (NIL) -9 NIL 732226 NIL) (-316 731507 731533 731594 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-315 723499 726059 726099 "FINAALG" 729751 FINAALG (NIL T) -9 NIL 731189 NIL) (-314 719766 721011 722134 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-313 718318 718737 718791 "FILECAT" 719475 FILECAT (NIL T T) -9 NIL 719691 NIL) (-312 717669 718143 718246 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-311 714979 716795 716823 "FIELD" 716863 FIELD (NIL) -9 NIL 716943 NIL) (-310 714004 714465 714974 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-309 712008 712954 713300 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-308 711251 711432 711651 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-307 706585 711189 711246 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-306 706247 706314 706449 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-305 705787 705829 706038 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-304 702467 703344 704121 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-303 697815 702399 702462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-302 692558 697304 697494 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-301 687103 691839 692097 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-300 681374 686554 686765 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-299 680397 680607 680922 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-298 675900 678542 678570 "FFIELDC" 679189 FFIELDC (NIL) -9 NIL 679564 NIL) (-297 674969 675409 675895 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-296 674584 674642 674766 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-295 672728 673251 673768 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-294 667886 672527 672628 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-293 663050 667675 667782 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-292 657780 662841 662949 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-291 657234 657283 657518 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-290 635871 646843 646929 "FFCAT" 652079 FFCAT (NIL T T T) -9 NIL 653515 NIL) (-289 632111 633337 634643 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-288 627018 632042 632106 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-287 625910 626379 626420 "FEVALAB" 626504 FEVALAB (NIL T) -9 NIL 626765 NIL) (-286 625315 625567 625905 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-285 622173 623053 623168 "FDIVCAT" 624735 FDIVCAT (NIL T T T T) -9 NIL 625171 NIL) (-284 621967 621999 622168 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-283 621274 621367 621644 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-282 619792 620758 620961 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-281 618885 619269 619471 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-280 618007 618496 618636 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-279 609656 614237 614277 "FAXF" 616078 FAXF (NIL T) -9 NIL 616768 NIL) (-278 607572 608376 609191 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-277 602436 607094 607268 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-276 596958 599317 599369 "FAMR" 600380 FAMR (NIL T T) -9 NIL 600839 NIL) (-275 596157 596522 596953 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-274 595210 596099 596152 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-273 592835 593683 593736 "FAMONC" 594677 FAMONC (NIL T T) -9 NIL 595062 NIL) (-272 591423 592693 592830 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-271 589503 589864 590266 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-270 588780 588977 589199 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-269 580704 588227 588426 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-268 578723 579293 579879 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-267 575625 576267 576987 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-266 570782 571489 572294 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-265 570471 570534 570643 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-264 555421 569520 569946 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-263 546012 554741 555029 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-262 545506 545808 545898 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-261 545282 545472 545501 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-260 544971 545039 545152 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-259 544488 544630 544671 "EVALAB" 544841 EVALAB (NIL T) -9 NIL 544945 NIL) (-258 544116 544262 544483 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-257 541221 542754 542782 "EUCDOM" 543336 EUCDOM (NIL) -9 NIL 543685 NIL) (-256 540148 540641 541216 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-255 539873 539929 540029 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-254 539561 539625 539734 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-253 533332 535232 535260 "ES" 538002 ES (NIL) -9 NIL 539386 NIL) (-252 529847 531379 533171 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-251 529195 529348 529524 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-250 522284 529099 529190 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-249 521973 522036 522145 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-248 515699 518725 520158 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-247 512002 513098 514191 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-246 510831 511181 511486 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-245 509778 510447 510475 "ENTIRER" 510480 ENTIRER (NIL) -9 NIL 510524 NIL) (-244 506475 508208 508557 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505567 505778 505832 "ELTAGG" 506212 ELTAGG (NIL T T) -9 NIL 506423 NIL) (-242 505347 505421 505562 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505093 505128 505182 "ELTAB" 505266 ELTAB (NIL T T) -9 NIL 505318 NIL) (-240 504344 504514 504713 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504068 504142 504170 "ELEMFUN" 504275 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 503968 503995 504063 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498514 502009 502050 "ELAGG" 502987 ELAGG (NIL T) -9 NIL 503447 NIL) (-236 497312 497850 498509 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 496730 496897 497053 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495643 495962 496241 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489036 491034 491861 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483015 485011 485821 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 480829 481235 481706 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 471829 473742 475283 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 470942 471443 471592 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469640 470314 470354 "DVARCAT" 470637 DVARCAT (NIL T) -9 NIL 470777 NIL) (-227 469059 469323 469635 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461190 468927 469054 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459528 460319 460360 "DSEXT" 460723 DSEXT (NIL T) -9 NIL 461017 NIL) (-224 458333 458857 459523 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458057 458122 458220 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454208 455424 456555 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 449854 451209 452273 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448529 448890 449276 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448215 448274 448392 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447190 447488 447778 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 446775 446850 447000 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439188 441300 443415 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434705 435724 436803 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431300 433369 433410 "DQAGG" 434039 DQAGG (NIL T) -9 NIL 434312 NIL) (-213 417907 425483 425565 "DPOLCAT" 427402 DPOLCAT (NIL T T T T) -9 NIL 427945 NIL) (-212 414315 415963 417902 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407402 414213 414310 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400398 407231 407397 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 399991 400251 400340 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399405 399853 399933 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398691 399016 399167 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391894 398427 398578 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389674 390960 391000 "DMEXT" 391005 DMEXT (NIL T) -9 NIL 391180 NIL) (-204 389330 389392 389536 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 382655 388815 389005 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379321 381478 381519 "DLAGG" 382069 DLAGG (NIL T) -9 NIL 382298 NIL) (-201 377734 378543 378571 "DIVRING" 378663 DIVRING (NIL) -9 NIL 378746 NIL) (-200 377185 377429 377729 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375613 376030 376436 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 374650 374871 375136 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368223 374582 374645 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356642 363003 363056 "DIRPCAT" 363312 DIRPCAT (NIL NIL T) -9 NIL 364185 NIL) (-195 354648 355418 356305 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354095 354261 354447 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 350641 352981 353022 "DIOPS" 353454 DIOPS (NIL T) -9 NIL 353680 NIL) (-192 350301 350445 350636 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349339 350054 350082 "DIOID" 350087 DIOID (NIL) -9 NIL 350109 NIL) (-190 348229 348996 349024 "DIFRING" 349029 DIFRING (NIL) -9 NIL 349050 NIL) (-189 347865 347963 347991 "DIFFSPC" 348110 DIFFSPC (NIL) -9 NIL 348185 NIL) (-188 347606 347708 347860 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346540 347134 347174 "DIFFMOD" 347179 DIFFMOD (NIL T) -9 NIL 347276 NIL) (-186 346224 346281 346322 "DIFFDOM" 346443 DIFFDOM (NIL T) -9 NIL 346511 NIL) (-185 346105 346135 346219 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 343840 345299 345339 "DIFEXT" 345344 DIFEXT (NIL T) -9 NIL 345496 NIL) (-183 341001 343341 343382 "DIAGG" 343387 DIAGG (NIL T) -9 NIL 343407 NIL) (-182 340557 340747 340996 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 335769 339747 340024 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332227 333280 334290 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 326841 331381 331708 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 325407 325699 326074 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 322591 323779 324175 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320311 322422 322511 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 319694 319839 320021 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317012 317736 318536 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315121 315579 316141 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 314504 314837 314951 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 307768 314229 314377 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 305688 306198 306702 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305327 305376 305527 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 304586 305148 305239 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 302610 303052 303412 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 301902 302191 302337 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301353 301499 301651 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 298715 299508 300235 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298154 298300 298471 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296226 296537 296904 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 295783 296038 296139 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 294984 295367 295395 "CTORCAT" 295576 CTORCAT (NIL) -9 NIL 295688 NIL) (-159 294687 294821 294979 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294180 294437 294545 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 293596 294027 294100 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293055 293172 293325 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289449 290205 290960 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 288940 289243 289334 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288159 288368 288596 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 287663 287768 287972 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287416 287450 287556 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284355 285117 285835 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 283874 284016 284155 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 279831 282337 282829 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 279705 279732 279760 "CONDUIT" 279797 CONDUIT (NIL) -9 NIL NIL NIL) (-146 278646 279315 279343 "COMRING" 279348 COMRING (NIL) -9 NIL 279398 NIL) (-145 277811 278178 278356 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277507 277548 277676 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277200 277263 277370 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266106 277150 277195 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265567 265706 265866 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265320 265361 265459 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 246813 259001 259041 "COMPCAT" 260042 COMPCAT (NIL T) -9 NIL 261384 NIL) (-138 239351 242864 246457 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239110 239144 239246 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 238940 238979 239037 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238521 238800 238874 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238098 238339 238426 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237293 237541 237569 "COMBOPC" 237907 COMBOPC (NIL) -9 NIL 238082 NIL) (-132 236357 236609 236851 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233289 233973 234596 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232169 232620 232855 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231660 231963 232054 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231347 231400 231525 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 230817 231127 231225 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227337 228407 229487 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225696 226617 226855 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221808 223816 223857 "CLAGG" 224783 CLAGG (NIL T) -9 NIL 225316 NIL) (-123 220701 221228 221803 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220330 220421 220561 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218267 218774 219322 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217290 217959 217987 "CHARZ" 217992 CHARZ (NIL) -9 NIL 218006 NIL) (-119 217084 217130 217208 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215985 216686 216714 "CHARNZ" 216775 CHARNZ (NIL) -9 NIL 216823 NIL) (-117 213463 214560 215083 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213171 213250 213278 "CFCAT" 213389 CFCAT (NIL) -9 NIL NIL NIL) (-115 212514 212643 212825 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208503 211927 212207 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207881 208068 208245 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207409 207828 207876 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206882 207191 207288 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206373 206676 206767 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205622 205782 206003 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201722 202979 203687 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200120 201119 201370 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199701 199980 200054 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199135 199388 199416 "CACHSET" 199548 CACHSET (NIL) -9 NIL 199626 NIL) (-104 198518 198902 198930 "CABMON" 198980 CABMON (NIL) -9 NIL 199036 NIL) (-103 198048 198312 198422 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193271 197705 197877 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192241 192945 193080 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193243) (-100 189712 192008 192114 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187143 189455 189574 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184383 186587 186626 "BTCAT" 186693 BTCAT (NIL T) -9 NIL 186769 NIL) (-97 184134 184232 184378 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179244 183365 183391 "BTAGG" 183502 BTAGG (NIL) -9 NIL 183610 NIL) (-95 178875 179036 179239 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 175937 178345 178557 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175207 175359 175537 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171740 173913 173952 "BRAGG" 174593 BRAGG (NIL T) -9 NIL 174850 NIL) (-91 170695 171190 171735 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163293 170200 170381 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161349 163245 163288 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161082 161118 161229 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159321 159754 160202 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155287 156703 157593 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154163 155054 155176 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153749 153906 153932 "BOOLE" 154040 BOOLE (NIL) -9 NIL 154121 NIL) (-83 153542 153623 153744 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152711 153207 153257 "BMODULE" 153262 BMODULE (NIL T T) -9 NIL 153326 NIL) (-81 148328 152568 152637 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148141 148181 148220 "BINOPC" 148225 BINOPC (NIL T) -9 NIL 148270 NIL) (-79 147683 147956 148058 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147204 147348 147486 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140474 146934 147079 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138208 139703 139742 "BGAGG" 139998 BGAGG (NIL T) -9 NIL 140135 NIL) (-75 138077 138115 138203 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136928 137129 137414 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133566 136086 136413 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133151 133244 133270 "BASTYPE" 133441 BASTYPE (NIL) -9 NIL 133537 NIL) (-71 132921 133017 133146 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132436 132524 132674 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131335 132010 132195 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131061 131066 131092 "ATTREG" 131097 ATTREG (NIL) -9 NIL NIL NIL) (-67 130666 130938 131003 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130166 130315 130341 "ATRIG" 130542 ATRIG (NIL) -9 NIL NIL NIL) (-65 130021 130074 130161 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129591 129822 129848 "ASTCAT" 129853 ASTCAT (NIL) -9 NIL 129883 NIL) (-63 129390 129467 129586 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127549 129223 129311 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126356 126669 127034 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124156 126260 126351 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123347 123538 123759 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118934 123078 123192 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113100 115132 115207 "ARR2CAT" 117837 ARR2CAT (NIL T T T) -9 NIL 118595 NIL) (-56 111477 112247 113095 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110845 111216 111338 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109777 109945 110241 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109478 109532 109650 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108861 109007 109163 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108266 108556 108676 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105898 106995 107318 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105423 105683 105779 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99182 104485 104927 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94778 96379 96429 "AMR" 97167 AMR (NIL T T) -9 NIL 97764 NIL) (-46 94132 94412 94773 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77312 94066 94127 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73747 76988 77157 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70757 71417 72024 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70136 70249 70433 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66548 67173 67765 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56101 66241 66391 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55418 55572 55750 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54193 54926 54964 "ALGEBRA" 54969 ALGEBRA (NIL T) -9 NIL 55009 NIL) (-37 53979 54056 54188 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33976 51185 51237 "ALAGG" 51375 ALAGG (NIL T T) -9 NIL 51540 NIL) (-35 33476 33625 33651 "AHYP" 33852 AHYP (NIL) -9 NIL NIL NIL) (-34 32772 32953 32979 "AGG" 33260 AGG (NIL) -9 NIL 33447 NIL) (-33 32561 32648 32767 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30700 31160 31560 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30195 30498 30587 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29565 29860 30016 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17187 26402 26440 "ACFS" 27047 ACFS (NIL T) -9 NIL 27286 NIL) (-28 15810 16420 17182 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11426 13741 13767 "ACF" 14646 ACF (NIL) -9 NIL 15058 NIL) (-26 10522 10928 11421 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10024 10264 10290 "ABELSG" 10382 ABELSG (NIL) -9 NIL 10447 NIL) (-24 9922 9953 10019 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9188 9531 9557 "ABELMON" 9726 ABELMON (NIL) -9 NIL 9835 NIL) (-22 8931 9040 9183 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8626 8652 "ABELGRP" 8724 ABELGRP (NIL) -9 NIL 8799 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 9 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1131) (-997)) (T -1131)) +NIL +((-3718 (((-85)) 18 T ELT)) (-3715 (((-1186) (-585 |#1|) (-585 |#1|)) 22 T ELT) (((-1186) (-585 |#1|)) 23 T ELT)) (-3720 (((-85) |#1| |#1|) 37 (|has| |#1| (-758)) ELT)) (-3717 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3719 ((|#1| (-585 |#1|)) 38 (|has| |#1| (-758)) ELT) ((|#1| (-585 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3716 (((-2 (|:| -3231 (-585 |#1|)) (|:| -3230 (-585 |#1|)))) 20 T ELT))) +(((-1132 |#1|) (-10 -7 (-15 -3715 ((-1186) (-585 |#1|))) (-15 -3715 ((-1186) (-585 |#1|) (-585 |#1|))) (-15 -3716 ((-2 (|:| -3231 (-585 |#1|)) (|:| -3230 (-585 |#1|))))) (-15 -3717 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3717 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3719 (|#1| (-585 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3718 ((-85))) (IF (|has| |#1| (-758)) (PROGN (-15 -3719 (|#1| (-585 |#1|))) (-15 -3720 ((-85) |#1| |#1|))) |%noBranch|)) (-1015)) (T -1132)) +((-3720 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-758)) (-4 *3 (-1015)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1132 *2)))) (-3718 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1015)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1015)))) (-3717 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) (-5 *1 (-1132 *3)))) (-3717 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1015)))) (-3716 (*1 *2) (-12 (-5 *2 (-2 (|:| -3231 (-585 *3)) (|:| -3230 (-585 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1015)))) (-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) +((-3721 (((-1186) (-585 (-1091)) (-585 (-1091))) 14 T ELT) (((-1186) (-585 (-1091))) 12 T ELT)) (-3723 (((-1186)) 16 T ELT)) (-3722 (((-2 (|:| -3230 (-585 (-1091))) (|:| -3231 (-585 (-1091))))) 20 T ELT))) +(((-1133) (-10 -7 (-15 -3721 ((-1186) (-585 (-1091)))) (-15 -3721 ((-1186) (-585 (-1091)) (-585 (-1091)))) (-15 -3722 ((-2 (|:| -3230 (-585 (-1091))) (|:| -3231 (-585 (-1091)))))) (-15 -3723 ((-1186))))) (T -1133)) +((-3723 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3722 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-585 (-1091))) (|:| -3231 (-585 (-1091))))) (-5 *1 (-1133)))) (-3721 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) +((-3776 (($ $) 17 T ELT)) (-3724 (((-85) $) 27 T ELT))) +(((-1134 |#1|) (-10 -7 (-15 -3776 (|#1| |#1|)) (-15 -3724 ((-85) |#1|))) (-1135)) (T -1134)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-346 $) $) 67 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3733 (((-346 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-1135) (-113)) (T -1135)) +((-3724 (*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1135)))) (-3776 (*1 *1 *1) (-4 *1 (-1135))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1135))))) +(-13 (-390) (-10 -8 (-15 -3724 ((-85) $)) (-15 -3972 ((-346 $) $)) (-15 -3776 ($ $)) (-15 -3733 ((-346 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-246) . T) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 $) . T) ((-592 $) . T) ((-584 $) . T) ((-656 $) . T) ((-665) . T) ((-965 $) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1136) (-13 (-754) (-606) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1136)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3725 (*1 *1) (-5 *1 (-1136)))) +((-696) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1137) (-13 (-754) (-606) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1137)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3725 (*1 *1) (-5 *1 (-1137)))) +((-696) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1138) (-13 (-754) (-606) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1138)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3725 (*1 *1) (-5 *1 (-1138)))) +((-696) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-2315 (($ $) NIL T ELT)) (-3138 (((-696)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2012 (((-832) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2402 (($ (-832)) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2314 (($ $ $) NIL T ELT))) +(((-1139) (-13 (-754) (-606) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1139)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3725 (*1 *1) (-5 *1 (-1139)))) +((-696) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 10 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2065 (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2063 (((-85) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3772 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3729 (((-3 (-1170 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3730 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-1170 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1170 |#1| |#2| |#3|) $) NIL T ELT) (((-1091) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (((-348 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-1170 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-632 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3728 (((-348 (-859 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-348 (-859 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-798 (-328))) (|has| |#1| (-312))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-798 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3446 (((-634 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-832)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 18 T ELT) (($ $ (-996) (-485)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2282 (((-632 (-1170 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-582 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) (-1170 |#1| |#2| |#3|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 27 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 28 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-454 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091)) (-585 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-454 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 (-1170 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1170 |#1| |#2| |#3|)) (-585 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1027)) ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3973 (((-474) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-555 (-474))) (|has| |#1| (-312))) ELT) (((-328) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-935)) (|has| |#1| (-312))) ELT) (((-802 (-328)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-555 (-802 (-328)))) (|has| |#1| (-312))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-555 (-802 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1170 |#1| |#2| |#3|)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT) (($ (-1091)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-348 (-485))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-952 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-348 (-485))))) ELT)) (-3678 ((|#1| $ (-485)) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 11 T ELT)) (-3133 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-823)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) ELT)) (-2662 (($) 20 T CONST)) (-2668 (($) 15 T CONST)) (-2671 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-811 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-742)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-758)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1140 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1170 |#1| |#2| |#3|)) (-808 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1140)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3959 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23 T ELT))) +(((-1141 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-963) (-963) (-1091) (-1091) |#1| |#2|) (T -1141)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-348 (-859 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-348 (-859 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-996) (-485)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-485))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1892 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-348 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-348 (-485)))))) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-1608 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091))) 117 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-696)) 116 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3949 (((-485) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091))) 114 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-696)) 113 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1142 |#1|) (-113) (-963)) (T -1142)) +((-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1142 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-963)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-963)) (-4 *4 (-496)) (-5 *2 (-348 (-859 *4))))) (-3728 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-963)) (-4 *4 (-496)) (-5 *2 (-348 (-859 *4))))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) (-4 *3 (-38 (-348 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485))))))))) +(-13 (-1159 |t#1| (-485)) (-10 -8 (-15 -3819 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-15 -3816 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -3728 ((-348 (-859 |t#1|)) $ (-485))) (-15 -3728 ((-348 (-859 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-585 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-241 (-485) |#1|) . T) ((-241 $ $) |has| (-485) (-1027)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-656 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-811 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-813 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-888 |#1| (-485) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-965 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-485)) . T)) +((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3158 ((|#3| $) 14 T ELT) (((-1091) $) NIL T ELT) (((-348 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT))) +(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3159 ((-3 |#3| #1#) |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1144 |#2| |#3|) (-963) (-1173 |#2|)) (T -1143)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#2| $) 266 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3732 ((|#2| $) 302 T ELT)) (-3729 (((-3 |#2| "failed") $) 298 T ELT)) (-3730 ((|#2| $) 299 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 275 (-2564 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 272 (-2564 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3624 (((-485) $) 284 (-2564 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-485) #2#) $) 295 (-2564 (|has| |#2| (-952 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-348 (-485)) #2#) $) 293 (-2564 (|has| |#2| (-952 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-1091) #2#) $) 277 (-2564 (|has| |#2| (-952 (-1091))) (|has| |#1| (-312))) ELT)) (-3158 ((|#2| $) 306 T ELT) (((-485) $) 294 (-2564 (|has| |#2| (-952 (-485))) (|has| |#1| (-312))) ELT) (((-348 (-485)) $) 292 (-2564 (|has| |#2| (-952 (-485))) (|has| |#1| (-312))) ELT) (((-1091) $) 276 (-2564 (|has| |#2| (-952 (-1091))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 301 T ELT) (($ (-485) $) 300 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-2281 (((-632 |#2|) (-632 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 252 (-2564 (|has| |#2| (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-632 $)) 251 (-2564 (|has| |#2| (-582 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-348 (-859 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-348 (-859 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2996 (($) 268 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) 282 (-2564 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 260 (-2564 (|has| |#2| (-798 (-328))) (|has| |#1| (-312))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 259 (-2564 (|has| |#2| (-798 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2998 (($ $) 264 (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3446 (((-634 $) $) 296 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) 283 (-2564 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-832)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-996) (-485)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-485))) 96 T ELT)) (-2533 (($ $ $) 291 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2859 (($ $ $) 290 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2282 (((-632 |#2|) (-1180 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 250 (-2564 (|has| |#2| (-582 (-485))) (|has| |#1| (-312))) ELT) (((-632 (-485)) (-1180 $)) 249 (-2564 (|has| |#2| (-582 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1892 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) |#2|) 303 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-348 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-348 (-485)))))) ELT)) (-3447 (($) 297 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3130 (($ $) 267 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3132 ((|#2| $) 270 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 273 (-2564 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 274 (-2564 (|has| |#2| (-823)) (|has| |#1| (-312))) ELT)) (-3733 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) 243 (-2564 (|has| |#2| (-454 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-1091)) (-585 |#2|)) 242 (-2564 (|has| |#2| (-454 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 (-249 |#2|))) 241 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) 238 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1608 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1027)) ELT) (($ $ |#2|) 237 (-2564 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) 109 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 119 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) 117 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) 116 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3973 (((-179) $) 281 (-2564 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-328) $) 280 (-2564 (|has| |#2| (-935)) (|has| |#1| (-312))) ELT) (((-474) $) 279 (-2564 (|has| |#2| (-555 (-474))) (|has| |#1| (-312))) ELT) (((-802 (-328)) $) 258 (-2564 (|has| |#2| (-555 (-802 (-328)))) (|has| |#1| (-312))) ELT) (((-802 (-485)) $) 257 (-2564 (|has| |#2| (-555 (-802 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 271 (-2564 (-2564 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1091)) 278 (-2564 (|has| |#2| (-952 (-1091))) (|has| |#1| (-312))) ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-634 $) $) 68 (OR (-2564 (OR (|has| |#2| (-118)) (-2564 (|has| $ (-118)) (|has| |#2| (-823)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-3133 ((|#2| $) 269 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3384 (($ $) 285 (-2564 (|has| |#2| (-742)) (|has| |#1| (-312))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) 108 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 118 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091))) 114 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-696)) 113 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (OR (-2564 (|has| |#2| (-813 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) 289 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2569 (((-85) $ $) 287 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 288 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-2687 (((-85) $ $) 286 (-2564 (|has| |#2| (-758)) (|has| |#1| (-312))) ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1144 |#1| |#2|) (-113) (-963) (-1173 |t#1|)) (T -1144)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *4 (-963)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3)))) (-3731 (*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1173 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1173 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3)))) (-3729 (*1 *2 *1) (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3))))) +(-13 (-1142 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3780 ($ (-485) |t#2|)) (-15 -3949 ((-485) $)) (-15 -3732 (|t#2| $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)) (-15 -3730 (|t#2| $)) (-15 -3729 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-906 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-557 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-555 (-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-474)))) ((-555 (-802 (-328))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-328))))) ((-555 (-802 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-485))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-241 (-485) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-485) (-1027)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-327 |#2|) |has| |#1| (-312)) ((-341 |#2|) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-454 (-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1091) |#2|))) ((-454 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-592 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ((-592 |#1|) . T) ((-592 |#2|) |has| |#1| (-312)) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 |#2|) |has| |#1| (-312)) ((-584 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-582 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ((-582 |#2|) |has| |#1| (-312)) ((-656 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 |#2|) |has| |#1| (-312)) ((-656 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-665) . T) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-720) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-723) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-742) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-757) -12 (|has| |#1| (-312)) (|has| |#2| (-742))) ((-758) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-761) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) (-12 (|has| |#1| (-312)) (|has| |#2| (-742)))) ((-808 $ (-1091)) OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091))))) ((-811 (-1091)) OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091))))) ((-813 (-1091)) OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1091))))) ((-798 (-328)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-328)))) ((-798 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-798 (-485)))) ((-796 |#2|) |has| |#1| (-312)) ((-823) -12 (|has| |#1| (-312)) (|has| |#2| (-823))) ((-888 |#1| (-485) (-996)) . T) ((-834) |has| |#1| (-312)) ((-906 |#2|) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-935) -12 (|has| |#1| (-312)) (|has| |#2| (-935))) ((-952 (-348 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ((-952 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ((-952 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) ((-952 |#2|) . T) ((-965 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-965 |#1|) . T) ((-965 |#2|) |has| |#1| (-312)) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-970 |#1|) . T) ((-970 |#2|) |has| |#1| (-312)) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) -12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1142 |#1|) . T) ((-1159 |#1| (-485)) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 83 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 102 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3732 ((|#2| $) 11 T ELT)) (-3729 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3730 ((|#2| $) 36 T ELT)) (-3493 (($ $) 208 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 184 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 204 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 180 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3495 (($ $) 212 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 188 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) ELT)) (-3158 ((|#2| $) 158 T ELT) (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ELT) (((-348 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-485)))) ELT) (((-1091) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) ELT)) (-3731 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ELT) (((-632 (-485)) (-632 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3728 (((-348 (-859 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-348 (-859 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2894 (((-85) $) 76 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-798 (-485)))) ELT)) (-3773 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3446 (((-634 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-3778 (($ $ (-832)) 150 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 20 T ELT) (($ $ (-996) (-485)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2859 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 178 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2282 (((-632 |#2|) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ELT) (((-632 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-582 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) |#2|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 230 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 235 (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT)) (-3447 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 140 T ELT)) (-3467 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 176 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1091) |#2|))) ELT) (($ $ (-585 (-1091)) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-454 (-1091) |#2|))) ELT) (($ $ (-585 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1027)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 155 (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 12 T ELT)) (-3496 (($ $) 214 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 190 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 210 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 186 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 206 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 182 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3973 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-328) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-935))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-474)))) ELT) (((-802 (-328)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-555 (-802 (-485))))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) ELT)) (-2893 (($ $) 138 T ELT)) (-3947 (((-774) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-952 (-1091)))) ELT) (($ (-348 (-485))) 171 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 87 T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-823))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3128 (((-696)) 157 T CONST)) (-3774 ((|#1| $) 104 T ELT)) (-3133 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 220 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 196 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 216 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 192 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 224 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 200 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 226 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 202 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 222 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 198 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 218 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 194 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-742))) ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) 18 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-696)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-696)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-585 (-1091))) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-1091) (-696)) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (OR (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-813 (-1091))))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3058 (((-85) $ $) 74 T ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-758))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3840 (($ $ $) 78 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 174 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1145 |#1| |#2|) (-1144 |#1| |#2|) (-963) (-1173 |#1|)) (T -1145)) +NIL +((-3735 (((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85)) 13 T ELT)) (-3734 (((-346 |#1|) |#1|) 26 T ELT)) (-3733 (((-346 |#1|) |#1|) 24 T ELT))) +(((-1146 |#1|) (-10 -7 (-15 -3733 ((-346 |#1|) |#1|)) (-15 -3734 ((-346 |#1|) |#1|)) (-15 -3735 ((-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| |#1|) (|:| -2397 (-485)))))) |#1| (-85)))) (-1156 (-485))) (T -1146)) +((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) +((-2570 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3737 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3959 (((-1070 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-757)) ELT)) (-3231 ((|#1| $) 15 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-3229 (((-485) $) 19 T ELT)) (-3230 ((|#1| $) 18 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3736 (((-85) $) 17 T ELT)) (-3964 (((-1070 |#1|) $) 41 (|has| |#1| (-757)) ELT) (((-1070 |#1|) (-585 $)) 40 (|has| |#1| (-757)) ELT)) (-3973 (($ |#1|) 26 T ELT)) (-3947 (($ (-1003 |#1|)) 25 T ELT) (((-774) $) 37 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1015)) ELT)) (-3738 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3234 (($ $ (-485)) 14 T ELT)) (-3058 (((-85) $ $) 30 (|has| |#1| (-1015)) ELT))) +(((-1147 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -3738 ($ |#1|)) (-15 -3737 ($ |#1|)) (-15 -3947 ($ (-1003 |#1|))) (-15 -3736 ((-85) $)) (IF (|has| |#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |#1| (-757)) (-6 (-1009 |#1| (-1070 |#1|))) |%noBranch|))) (-1130)) (T -1147)) +((-3738 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3737 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) +((-3959 (((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 23 (|has| |#1| (-757)) ELT) (((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 17 T ELT))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -3959 ((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) (IF (|has| |#1| (-757)) (-15 -3959 ((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1148)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-757)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3768 (((-1180 |#2|) $ (-696)) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3766 (($ (-1086 |#2|)) NIL T ELT)) (-3085 (((-1086 $) $ (-996)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-390)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#2| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1#) (-585 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3762 (($ $ (-696)) NIL T ELT)) (-3761 (($ $ (-696)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-390)) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-348 (-485)) $) NIL (|has| |#2| (-952 (-348 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-952 (-485))) ELT) (((-996) $) NIL T ELT)) (-3757 (($ $ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2281 (((-632 (-485)) (-632 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-632 $) (-1180 $)) NIL T ELT) (((-632 |#2|) (-632 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#2| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#2| (-390)) ELT) (($ $ (-996)) NIL (|has| |#2| (-390)) ELT)) (-2820 (((-585 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-823)) ELT)) (-1625 (($ $ |#2| (-696) $) NIL T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) NIL (-12 (|has| (-996) (-798 (-328))) (|has| |#2| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) NIL (-12 (|has| (-996) (-798 (-485))) (|has| |#2| (-798 (-485)))) ELT)) (-3773 (((-696) $ $) NIL (|has| |#2| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-3446 (((-634 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3086 (($ (-1086 |#2|) (-996)) NIL T ELT) (($ (-1086 $) (-996)) NIL T ELT)) (-3778 (($ $ (-696)) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-696)) 18 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-996)) NIL T ELT) (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-1626 (($ (-1 (-696) (-696)) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3767 (((-1086 |#2|) $) NIL T ELT)) (-3084 (((-3 (-996) #1#) $) NIL T ELT)) (-2282 (((-632 (-485)) (-1180 $)) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-632 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) NIL T ELT)) (-2825 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-585 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT)) (-3447 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-390)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#2| (-390)) ELT) (($ $ $) NIL (|has| |#2| (-390)) ELT)) (-3739 (($ $ (-696) |#2| $) NIL T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-823)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#2| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#2| (-312)) ELT)) (-3769 (($ $ (-585 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) NIL T ELT) (($ $ (-585 (-996)) (-585 |#2|)) NIL T ELT) (($ $ (-996) $) NIL T ELT) (($ $ (-585 (-996)) (-585 $)) NIL T ELT)) (-1608 (((-696) $) NIL (|has| |#2| (-312)) ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-348 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-348 $) $ (-348 $)) NIL (|has| |#2| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-696)) NIL T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-996)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3949 (((-696) $) NIL T ELT) (((-696) $ (-996)) NIL T ELT) (((-585 (-696)) $ (-585 (-996))) NIL T ELT)) (-3973 (((-802 (-328)) $) NIL (-12 (|has| (-996) (-555 (-802 (-328)))) (|has| |#2| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) NIL (-12 (|has| (-996) (-555 (-802 (-485)))) (|has| |#2| (-555 (-802 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-996) (-555 (-474))) (|has| |#2| (-555 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-390)) ELT) (($ $ (-996)) NIL (|has| |#2| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-823))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-348 $) #1#) (-348 $) $) NIL (|has| |#2| (-496)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) NIL T ELT) (($ (-1177 |#1|)) 20 T ELT) (($ (-348 (-485))) NIL (OR (|has| |#2| (-38 (-348 (-485)))) (|has| |#2| (-952 (-348 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-696)) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2704 (((-634 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-823))) (|has| |#2| (-118))) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) NIL (|has| |#2| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (|has| |#2| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-348 (-485))) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) NIL (|has| |#2| (-38 (-348 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1149 |#1| |#2|) (-13 (-1156 |#2|) (-557 (-1177 |#1|)) (-10 -8 (-15 -3739 ($ $ (-696) |#2| $)))) (-1091) (-963)) (T -1149)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-963))))) +((-3959 (((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)) 15 T ELT))) +(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)))) (-1091) (-963) (-1091) (-963)) (T -1150)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-963)) (-4 *8 (-963)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) (-14 *7 (-1091))))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3740 ((|#1| |#3|) 13 T ELT)) (-3741 ((|#3| |#3|) 19 T ELT))) +(((-1151 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-906 |#1|) (-1156 |#2|)) (T -1151)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-906 *3)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-1156 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) (-4 *3 (-1156 *4))))) +((-3744 (((-3 |#2| #1="failed") |#2| (-696) |#1|) 35 T ELT)) (-3743 (((-3 |#2| #1#) |#2| (-696)) 36 T ELT)) (-3746 (((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|) 50 T ELT)) (-3747 (((-585 |#2|) |#2|) 52 T ELT)) (-3745 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 |#2| #1="failed") |#2| (-696))) (-15 -3744 ((-3 |#2| #1#) |#2| (-696) |#1|)) (-15 -3745 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3746 ((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|)) (-15 -3747 ((-585 |#2|) |#2|))) (-13 (-496) (-120)) (-1156 |#1|)) (T -1152)) +((-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3746 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3745 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1156 *3)))) (-3744 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))) (-3743 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) +((-3748 (((-3 (-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -3748 ((-3 (-2 (|:| -1974 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|))) (-496) (-1156 |#1|)) (T -1153)) +((-3748 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) +((-3749 ((|#2| |#2| |#2|) 22 T ELT)) (-3750 ((|#2| |#2| |#2|) 36 T ELT)) (-3751 ((|#2| |#2| |#2| (-696) (-696)) 44 T ELT))) +(((-1154 |#1| |#2|) (-10 -7 (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| (-696) (-696)))) (-963) (-1156 |#1|)) (T -1154)) +((-3751 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) +((-3768 (((-1180 |#2|) $ (-696)) 129 T ELT)) (-3083 (((-585 (-996)) $) 16 T ELT)) (-3766 (($ (-1086 |#2|)) 80 T ELT)) (-2821 (((-696) $) NIL T ELT) (((-696) $ (-585 (-996))) 21 T ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 217 T ELT)) (-3776 (($ $) 207 T ELT)) (-3972 (((-346 $) $) 205 T ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 95 T ELT)) (-3762 (($ $ (-696)) 84 T ELT)) (-3761 (($ $ (-696)) 86 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3159 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-348 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-996) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 130 T ELT) (((-348 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-996) $) NIL T ELT)) (-3754 (($ $ $) 182 T ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1974 $) (|:| -2904 $)) $ $) 185 T ELT)) (-3773 (((-696) $ $) 202 T ELT)) (-3446 (((-634 $) $) 149 T ELT)) (-2895 (($ |#2| (-696)) NIL T ELT) (($ $ (-996) (-696)) 59 T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-2822 (((-696) $) NIL T ELT) (((-696) $ (-996)) 54 T ELT) (((-585 (-696)) $ (-585 (-996))) 55 T ELT)) (-3767 (((-1086 |#2|) $) 72 T ELT)) (-3084 (((-3 (-996) #1#) $) 52 T ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) 83 T ELT)) (-3813 (($ $) 232 T ELT)) (-3447 (($) 134 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 214 T ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 101 T ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 99 T ELT)) (-3733 (((-346 $) $) 120 T ELT)) (-3769 (($ $ (-585 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-585 $) (-585 $)) NIL T ELT) (($ $ (-996) |#2|) 39 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 36 T ELT) (($ $ (-996) $) 32 T ELT) (($ $ (-585 (-996)) (-585 $)) 30 T ELT)) (-1608 (((-696) $) 220 T ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-348 $) (-348 $) (-348 $)) 176 T ELT) ((|#2| (-348 $) |#2|) 219 T ELT) (((-348 $) $ (-348 $)) 201 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 225 T ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996))) NIL T ELT) (($ $ (-996)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-696)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-585 (-1091))) NIL T ELT) (($ $ (-1091) (-696)) NIL T ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL T ELT)) (-3949 (((-696) $) NIL T ELT) (((-696) $ (-996)) 17 T ELT) (((-585 (-696)) $ (-585 (-996))) 23 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ (-996)) 151 T ELT)) (-3755 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-348 $) #1#) (-348 $) $) 189 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-996)) 64 T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT))) +(((-1155 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3759 (|#1| |#1| (-585 (-1091)) (-585 (-696)))) (-15 -3759 (|#1| |#1| (-1091) (-696))) (-15 -3759 (|#1| |#1| (-585 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3972 ((-346 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-634 |#1|) |#1|)) (-15 -3801 ((-348 |#1|) |#1| (-348 |#1|))) (-15 -1608 ((-696) |#1|)) (-15 -2881 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3801 (|#2| (-348 |#1|) |#2|)) (-15 -3752 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3753 ((-2 (|:| -3955 |#2|) (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3754 (|#1| |#1| |#1|)) (-15 -3755 ((-3 (-348 |#1|) #1="failed") (-348 |#1|) |#1|)) (-15 -3755 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3773 ((-696) |#1| |#1|)) (-15 -3801 ((-348 |#1|) (-348 |#1|) (-348 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-696))) (-15 -3762 (|#1| |#1| (-696))) (-15 -3763 ((-2 (|:| -1974 |#1|) (|:| -2904 |#1|)) |#1| (-696))) (-15 -3766 (|#1| (-1086 |#2|))) (-15 -3767 ((-1086 |#2|) |#1|)) (-15 -3768 ((-1180 |#2|) |#1| (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-696))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-696))) (-15 -3759 (|#1| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| |#2|)) (-15 -3733 ((-346 |#1|) |#1|)) (-15 -2709 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2708 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-346 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-585 (-1086 |#1|)) #1#) (-585 (-1086 |#1|)) (-1086 |#1|))) (-15 -2819 (|#1| |#1| (-996))) (-15 -3083 ((-585 (-996)) |#1|)) (-15 -2821 ((-696) |#1| (-585 (-996)))) (-15 -2821 ((-696) |#1|)) (-15 -2895 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -2895 (|#1| |#1| (-996) (-696))) (-15 -2822 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -2822 ((-696) |#1| (-996))) (-15 -3084 ((-3 (-996) #1#) |#1|)) (-15 -3949 ((-585 (-696)) |#1| (-585 (-996)))) (-15 -3949 ((-696) |#1| (-996))) (-15 -3947 (|#1| (-996))) (-15 -3159 ((-3 (-996) #1#) |#1|)) (-15 -3158 ((-996) |#1|)) (-15 -3769 (|#1| |#1| (-585 (-996)) (-585 |#1|))) (-15 -3769 (|#1| |#1| (-996) |#1|)) (-15 -3769 (|#1| |#1| (-585 (-996)) (-585 |#2|))) (-15 -3769 (|#1| |#1| (-996) |#2|)) (-15 -3769 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-585 (-249 |#1|)))) (-15 -3949 ((-696) |#1|)) (-15 -2895 (|#1| |#2| (-696))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-348 (-485)) #1#) |#1|)) (-15 -3158 ((-348 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -2822 ((-696) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3759 (|#1| |#1| (-996))) (-15 -3759 (|#1| |#1| (-585 (-996)))) (-15 -3759 (|#1| |#1| (-996) (-696))) (-15 -3759 (|#1| |#1| (-585 (-996)) (-585 (-696)))) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-774) |#1|))) (-1156 |#2|) (-963)) (T -1155)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3768 (((-1180 |#1|) $ (-696)) 271 T ELT)) (-3083 (((-585 (-996)) $) 123 T ELT)) (-3766 (($ (-1086 |#1|)) 269 T ELT)) (-3085 (((-1086 $) $ (-996)) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-696) $) 125 T ELT) (((-696) $ (-585 (-996))) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 256 (|has| |#1| (-496)) ELT)) (-2709 (((-346 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-823)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-390)) ELT)) (-3972 (((-346 $) $) 110 (|has| |#1| (-390)) ELT)) (-2706 (((-3 (-585 (-1086 $)) #1="failed") (-585 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-823)) ELT)) (-1609 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-696)) 264 T ELT)) (-3761 (($ $ (-696)) 263 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-390)) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-348 (-485)) #2#) $) 178 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-952 (-485))) ELT) (((-3 (-996) #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-348 (-485)) $) 179 (|has| |#1| (-952 (-348 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-952 (-485))) ELT) (((-996) $) 154 T ELT)) (-3757 (($ $ $ (-996)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 171 T ELT)) (-2281 (((-632 (-485)) (-632 $)) 149 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-632 $) (-1180 $)) 148 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-632 $) (-1180 $)) 147 T ELT) (((-632 |#1|) (-632 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 262 T ELT)) (-3754 (($ $ $) 253 (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1974 $) (|:| -2904 $)) $ $) 252 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 239 (|has| |#1| (-312)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-390)) ELT) (($ $ (-996)) 118 (|has| |#1| (-390)) ELT)) (-2820 (((-585 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-823)) ELT)) (-1625 (($ $ |#1| (-696) $) 189 T ELT)) (-2798 (((-800 (-328) $) $ (-802 (-328)) (-800 (-328) $)) 97 (-12 (|has| (-996) (-798 (-328))) (|has| |#1| (-798 (-328)))) ELT) (((-800 (-485) $) $ (-802 (-485)) (-800 (-485) $)) 96 (-12 (|has| (-996) (-798 (-485))) (|has| |#1| (-798 (-485)))) ELT)) (-3773 (((-696) $ $) 257 (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-2422 (((-696) $) 186 T ELT)) (-3446 (((-634 $) $) 237 (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-996)) 130 T ELT) (($ (-1086 $) (-996)) 129 T ELT)) (-3778 (($ $ (-696)) 268 T ELT)) (-1606 (((-3 (-585 $) #3="failed") (-585 $) $) 248 (|has| |#1| (-312)) ELT)) (-2823 (((-585 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2895 (($ |#1| (-696)) 170 T ELT) (($ $ (-996) (-696)) 132 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 131 T ELT)) (-3764 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $ (-996)) 133 T ELT) (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 266 T ELT)) (-2822 (((-696) $) 187 T ELT) (((-696) $ (-996)) 135 T ELT) (((-585 (-696)) $ (-585 (-996))) 134 T ELT)) (-1626 (($ (-1 (-696) (-696)) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3767 (((-1086 |#1|) $) 270 T ELT)) (-3084 (((-3 (-996) #4="failed") $) 136 T ELT)) (-2282 (((-632 (-485)) (-1180 $)) 151 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-582 (-485))) ELT) (((-2 (|:| |mat| (-632 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-632 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1892 (($ (-585 $)) 107 (|has| |#1| (-390)) ELT) (($ $ $) 106 (|has| |#1| (-390)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3763 (((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696)) 265 T ELT)) (-2825 (((-3 (-585 $) #4#) $) 127 T ELT)) (-2824 (((-3 (-585 $) #4#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-996)) (|:| -2403 (-696))) #4#) $) 126 T ELT)) (-3813 (($ $) 249 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3447 (($) 236 (|has| |#1| (-1067)) CONST)) (-3245 (((-1035) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-390)) ELT)) (-3146 (($ (-585 $)) 105 (|has| |#1| (-390)) ELT) (($ $ $) 104 (|has| |#1| (-390)) ELT)) (-2707 (((-346 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-823)) ELT)) (-2708 (((-346 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-823)) ELT)) (-3733 (((-346 $) $) 112 (|has| |#1| (-823)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 240 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-585 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-585 $) (-585 $)) 159 T ELT) (($ $ (-996) |#1|) 158 T ELT) (($ $ (-585 (-996)) (-585 |#1|)) 157 T ELT) (($ $ (-996) $) 156 T ELT) (($ $ (-585 (-996)) (-585 $)) 155 T ELT)) (-1608 (((-696) $) 242 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-348 $) (-348 $) (-348 $)) 258 (|has| |#1| (-496)) ELT) ((|#1| (-348 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-348 $) $ (-348 $)) 238 (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ "failed") $ (-696)) 267 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-996)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-585 (-996)) (-585 (-696))) 52 T ELT) (($ $ (-996) (-696)) 51 T ELT) (($ $ (-585 (-996))) 50 T ELT) (($ $ (-996)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-696)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1091)) 235 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 233 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 232 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 231 (|has| |#1| (-813 (-1091))) ELT)) (-3949 (((-696) $) 167 T ELT) (((-696) $ (-996)) 143 T ELT) (((-585 (-696)) $ (-585 (-996))) 142 T ELT)) (-3973 (((-802 (-328)) $) 95 (-12 (|has| (-996) (-555 (-802 (-328)))) (|has| |#1| (-555 (-802 (-328))))) ELT) (((-802 (-485)) $) 94 (-12 (|has| (-996) (-555 (-802 (-485)))) (|has| |#1| (-555 (-802 (-485))))) ELT) (((-474) $) 93 (-12 (|has| (-996) (-555 (-474))) (|has| |#1| (-555 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-390)) ELT) (($ $ (-996)) 119 (|has| |#1| (-390)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-632 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-823))) ELT)) (-3755 (((-3 $ "failed") $ $) 255 (|has| |#1| (-496)) ELT) (((-3 (-348 $) "failed") (-348 $) $) 254 (|has| |#1| (-496)) ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-996)) 152 T ELT) (($ (-348 (-485))) 91 (OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-585 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ (-696)) 172 T ELT) (($ $ (-996) (-696)) 141 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 140 T ELT)) (-2704 (((-634 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-823))) (|has| |#1| (-118))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1624 (($ $ $ (-696)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-585 (-996)) (-585 (-696))) 55 T ELT) (($ $ (-996) (-696)) 54 T ELT) (($ $ (-585 (-996))) 53 T ELT) (($ $ (-996)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-696)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-696)) 272 T ELT) (($ $ (-1091)) 234 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091))) 230 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-1091) (-696)) 229 (|has| |#1| (-813 (-1091))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 228 (|has| |#1| (-813 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 175 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ (-348 (-485)) $) 174 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-1156 |#1|) (-113) (-963)) (T -1156)) +((-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1156 *4)) (-4 *4 (-963)) (-5 *2 (-1180 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-5 *2 (-1086 *3)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-963)) (-4 *1 (-1156 *3)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) (-3765 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-1156 *4)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) (-3760 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)))) (-3759 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-146)))) (-3801 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-4 *3 (-496)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-4 *3 (-496)) (-5 *2 (-696)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496)))) (-3755 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496)))) (-3755 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-348 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-4 *3 (-496)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -3955 *3) (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-390)) (-4 *3 (-963)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))) (-3801 (*1 *2 *3 *2) (-12 (-5 *3 (-348 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485))))))) +(-13 (-863 |t#1| (-696) (-996)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3768 ((-1180 |t#1|) $ (-696))) (-15 -3767 ((-1086 |t#1|) $)) (-15 -3766 ($ (-1086 |t#1|))) (-15 -3778 ($ $ (-696))) (-15 -3765 ((-3 $ "failed") $ (-696))) (-15 -3764 ((-2 (|:| -1974 $) (|:| -2904 $)) $ $)) (-15 -3763 ((-2 (|:| -1974 $) (|:| -2904 $)) $ (-696))) (-15 -3762 ($ $ (-696))) (-15 -3761 ($ $ (-696))) (-15 -3760 ($ $ $)) (-15 -3759 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3758 (|t#1| $)) (-15 -3757 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-241 (-348 $) (-348 $))) (-15 -3801 ((-348 $) (-348 $) (-348 $))) (-15 -3773 ((-696) $ $)) (-15 -3756 ($ $ $)) (-15 -3755 ((-3 $ "failed") $ $)) (-15 -3755 ((-3 (-348 $) "failed") (-348 $) $)) (-15 -3754 ($ $ $)) (-15 -3753 ((-2 (|:| -3955 |t#1|) (|:| -1974 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-390)) (-15 -3752 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3992) (-15 -3801 (|t#1| (-348 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-485)))) (-15 -3813 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-952 (-348 (-485)))) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 (-996)) . T) ((-557 |#1|) . T) ((-557 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-555 (-474)) -12 (|has| |#1| (-555 (-474))) (|has| (-996) (-555 (-474)))) ((-555 (-802 (-328))) -12 (|has| |#1| (-555 (-802 (-328)))) (|has| (-996) (-555 (-802 (-328))))) ((-555 (-802 (-485))) -12 (|has| |#1| (-555 (-802 (-485)))) (|has| (-996) (-555 (-802 (-485))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-348 $) (-348 $)) |has| |#1| (-496)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-696)) . T) ((-327 |#1|) . T) ((-353 |#1|) . T) ((-390) OR (|has| |#1| (-823)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-454 (-996) |#1|) . T) ((-454 (-996) $) . T) ((-454 $ $) . T) ((-496) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 (-485)) |has| |#1| (-582 (-485))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-582 (-485)) |has| |#1| (-582 (-485))) ((-582 |#1|) . T) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-996)) . T) ((-808 $ (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-811 (-996)) . T) ((-811 (-1091)) |has| |#1| (-811 (-1091))) ((-813 (-996)) . T) ((-813 (-1091)) OR (|has| |#1| (-813 (-1091))) (|has| |#1| (-811 (-1091)))) ((-798 (-328)) -12 (|has| |#1| (-798 (-328))) (|has| (-996) (-798 (-328)))) ((-798 (-485)) -12 (|has| |#1| (-798 (-485))) (|has| (-996) (-798 (-485)))) ((-863 |#1| (-696) (-996)) . T) ((-823) |has| |#1| (-823)) ((-834) |has| |#1| (-312)) ((-952 (-348 (-485))) |has| |#1| (-952 (-348 (-485)))) ((-952 (-485)) |has| |#1| (-952 (-485))) ((-952 (-996)) . T) ((-952 |#1|) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-823)) (|has| |#1| (-496)) (|has| |#1| (-390)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) |has| |#1| (-823))) +((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-963) (-1156 |#1|) (-963) (-1156 |#3|)) (T -1157)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1156 *6)) (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5))))) +((-3083 (((-585 (-996)) $) 34 T ELT)) (-3960 (($ $) 31 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ (-996) |#3|) 28 T ELT) (($ $ (-585 (-996)) (-585 |#3|)) 27 T ELT)) (-2896 (($ $) 14 T ELT)) (-3176 ((|#2| $) 12 T ELT)) (-3949 ((|#3| $) 10 T ELT))) +(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -3083 ((-585 (-996)) |#1|)) (-15 -2895 (|#1| |#1| (-585 (-996)) (-585 |#3|))) (-15 -2895 (|#1| |#1| (-996) |#3|)) (-15 -3960 (|#1| |#1|)) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3949 (|#3| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -3176 (|#2| |#1|))) (-1159 |#2| |#3|) (-963) (-718)) (T -1158)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3773 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3778 (($ $ (-832)) 127 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ (-996) |#2|) 97 T ELT) (($ $ (-585 (-996)) (-585 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3770 (($ $ |#2|) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3801 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1027)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1091))) 117 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-696)) 116 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3771 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1091))) 114 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-696)) 113 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1159 |#1| |#2|) (-113) (-963) (-718)) (T -1159)) +((-3775 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1091)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3773 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3772 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3947 (*2 (-1091)))) (-4 *2 (-963)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) +(-13 (-888 |t#1| |t#2| (-996)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3775 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3832 ((-1091) $)) (-15 -3774 (|t#1| $)) (-15 -3778 ($ $ (-832))) (-15 -3773 (|t#2| $)) (-15 -3773 (|t#2| $ |t#2|)) (-15 -3772 ($ $ |t#2|)) (-15 -3772 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3947 (|t#1| (-1091)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3771 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3770 ($ $ |t#2|)) (IF (|has| |t#2| (-1027)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-811 (-1091))) (-6 (-811 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3769 ((-1070 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1027)) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-808 $ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-813 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-888 |#1| |#2| (-996)) . T) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-3776 ((|#2| |#2|) 12 T ELT)) (-3972 (((-346 |#2|) |#2|) 14 T ELT)) (-3777 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT))) +(((-1160 |#1| |#2|) (-10 -7 (-15 -3972 ((-346 |#2|) |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3777 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-13 (-1156 |#1|) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (T -1160)) +((-3777 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1160 *3 *4)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-346 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $)))))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) NIL T ELT) (($ $ (-348 (-485)) (-348 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1170 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3158 (((-1140 |#1| |#2| |#3|) $) NIL T ELT) (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-348 (-485)) $) 68 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-348 (-485)) (-1140 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) NIL T ELT) (((-348 (-485)) $ (-348 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) NIL T ELT) (($ $ (-348 (-485))) NIL T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-348 (-485))) 30 T ELT) (($ $ (-996) (-348 (-485))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1140 |#1| |#2| |#3|) $) 71 T ELT)) (-3779 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1140 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3949 (((-348 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3947 (((-774) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1140 |#1| |#2| |#3|)) 16 T ELT) (($ (-1170 |#1| |#2| |#3|)) 17 T ELT) (($ (-1177 |#2|)) 36 T ELT) (($ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 26 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1161 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1140 |#1| |#2| |#3|)) (-808 $ (-1177 |#2|)) (-952 (-1170 |#1| |#2| |#3|)) (-557 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1161)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3959 (((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)) 24 T ELT))) +(((-1162 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)))) (-963) (-963) (-1091) (-1091) |#1| |#2|) (T -1162)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-963)) (-4 *6 (-963)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) 124 T ELT) (($ $ (-348 (-485)) (-348 (-485))) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) 126 T ELT) (((-348 (-485)) $ (-348 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) 127 T ELT) (($ $ (-348 (-485))) 198 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-348 (-485))) 81 T ELT) (($ $ (-996) (-348 (-485))) 97 T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1892 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-348 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-348 (-485)))))) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) 117 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) 116 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3949 (((-348 (-485)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) 114 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) 113 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1163 |#1|) (-113) (-963)) (T -1163)) +((-3819 (*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| *4)))) (-4 *4 (-963)) (-4 *1 (-1163 *4)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-963)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) (-4 *3 (-38 (-348 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485))))))))) +(-13 (-1159 |t#1| (-348 (-485))) (-10 -8 (-15 -3819 ($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |t#1|))))) (-15 -3778 ($ $ (-348 (-485)))) (IF (|has| |t#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-585 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-348 (-485))) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-241 (-348 (-485)) |#1|) . T) ((-241 $ $) |has| (-348 (-485)) (-1027)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-656 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-811 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-813 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-888 |#1| (-348 (-485)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-965 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-348 (-485))) . T)) +((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| "failed") $) 17 T ELT)) (-3158 ((|#3| $) 14 T ELT))) +(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 |#3| "failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1165 |#2| |#3|) (-963) (-1142 |#2|)) (T -1164)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) 124 T ELT) (($ $ (-348 (-485)) (-348 (-485))) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 212 T ELT)) (-3158 ((|#2| $) 213 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3782 (((-348 (-485)) $) 209 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3783 (($ (-348 (-485)) |#2|) 210 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) 126 T ELT) (((-348 (-485)) $ (-348 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) 127 T ELT) (($ $ (-348 (-485))) 198 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-348 (-485))) 81 T ELT) (($ $ (-996) (-348 (-485))) 97 T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1892 (($ (-585 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 208 T ELT)) (-3779 (((-3 |#2| "failed") $) 206 T ELT)) (-3780 ((|#2| $) 207 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-348 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-348 (-485)))))) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) 117 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) 116 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3949 (((-348 (-485)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) 114 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) 113 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1165 |#1| |#2|) (-113) (-963) (-1142 |t#1|)) (T -1165)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1142 *3)) (-5 *2 (-348 (-485))))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-4 *4 (-963)) (-4 *1 (-1165 *4 *3)) (-4 *3 (-1142 *4)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1142 *3)) (-5 *2 (-348 (-485))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3)))) (-3779 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3))))) +(-13 (-1163 |t#1|) (-952 |t#2|) (-557 |t#2|) (-10 -8 (-15 -3783 ($ (-348 (-485)) |t#2|)) (-15 -3782 ((-348 (-485)) $)) (-15 -3781 (|t#2| $)) (-15 -3949 ((-348 (-485)) $)) (-15 -3780 (|t#2| $)) (-15 -3779 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-348 (-485))) . T) ((-25) . T) ((-38 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 |#2|) . T) ((-557 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-241 (-348 (-485)) |#1|) . T) ((-241 $ $) |has| (-348 (-485)) (-1027)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-390) |has| |#1| (-312)) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-590 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-656 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-665) . T) ((-808 $ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-811 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-813 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ((-888 |#1| (-348 (-485)) (-996)) . T) ((-834) |has| |#1| (-312)) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-952 |#2|) . T) ((-965 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-970 (-348 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-348 (-485))))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-348 (-485))) . T) ((-1163 |#1|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 104 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-348 (-485))) 116 T ELT) (($ $ (-348 (-485)) (-348 (-485))) 118 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3493 (($ $) 192 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 188 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-696) (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3495 (($ $) 196 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 85 T ELT)) (-3782 (((-348 (-485)) $) 13 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-348 (-485)) |#2|) 11 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 74 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-348 (-485)) $) 113 T ELT) (((-348 (-485)) $ (-348 (-485))) 114 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) 130 T ELT) (($ $ (-348 (-485))) 128 T ELT)) (-1606 (((-3 (-585 $) #1#) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-348 (-485))) 33 T ELT) (($ $ (-996) (-348 (-485))) NIL T ELT) (($ $ (-585 (-996)) (-585 (-348 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3943 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1892 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 12 T ELT)) (-3779 (((-3 |#2| #1#) $) 44 T ELT)) (-3780 ((|#2| $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 151 (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-585 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-346 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-348 (-485))) 122 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) ELT)) (-1608 (((-696) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-348 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-348 (-485)) (-1027)) ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 138 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3949 (((-348 (-485)) $) 16 T ELT)) (-3496 (($ $) 198 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 174 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 194 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 190 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 120 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-348 (-485))) 139 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-348 (-485))) 107 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 127 T CONST)) (-3774 ((|#1| $) 106 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 204 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 180 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 200 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 176 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 208 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 184 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-348 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-348 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 210 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 186 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 206 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 182 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 202 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 178 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-348 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 72 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3840 (($ $ $) 76 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1166 |#1| |#2|) (-1165 |#1| |#2|) (-963) (-1142 |#1|)) (T -1166)) +NIL +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2065 (($ $) NIL T ELT)) (-2063 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-952 (-485))) ELT) (((-3 (-348 (-485)) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-952 (-348 (-485)))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3158 (((-485) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-952 (-485))) ELT) (((-348 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-952 (-348 (-485)))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) 27 T ELT)) (-3504 (($ $) NIL (|has| (-1161 |#2| |#3| |#4|) (-390)) ELT)) (-1625 (($ $ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) 11 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2822 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3959 (($ (-1 (-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-752 |#2|) #1#) $) 91 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 (((-1161 |#2| |#3| |#4|) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3784 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $) 74 T ELT)) (-3949 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2819 (((-1161 |#2| |#3| |#4|) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-390)) ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-348 (-485))) NIL (OR (|has| (-1161 |#2| |#3| |#4|) (-952 (-348 (-485)))) (|has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485))))) ELT)) (-3818 (((-585 (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3678 (((-1161 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2704 (((-634 $) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-1624 (($ $ $ (-696)) NIL (|has| (-1161 |#2| |#3| |#4|) (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2064 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|) $) NIL T ELT) (($ (-348 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-348 (-485)))) ELT))) +(((-1167 |#1| |#2| |#3| |#4|) (-13 (-277 (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-496) (-10 -8 (-15 -3785 ((-3 (-752 |#2|) #1="failed") $)) (-15 -3784 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-348 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $)))) (-13 (-952 (-485)) (-582 (-485)) (-390)) (-13 (-27) (-1116) (-362 |#1|)) (-1091) |#2|) (T -1167)) +((-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) (-5 *2 (-752 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-348 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) +((-3403 ((|#2| $) 34 T ELT)) (-3796 ((|#2| $) 18 T ELT)) (-3798 (($ $) 44 T ELT)) (-3786 (($ $ (-485)) 79 T ELT)) (-3027 ((|#2| $ |#2|) 76 T ELT)) (-3787 ((|#2| $ |#2|) 72 T ELT)) (-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3028 (($ $ (-585 $)) 75 T ELT)) (-3797 ((|#2| $) 17 T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-696)) 52 T ELT)) (-3033 (((-585 $) $) 31 T ELT)) (-3029 (((-85) $ $) 63 T ELT)) (-3528 (((-85) $) 33 T ELT)) (-3799 ((|#2| $) 25 T ELT) (($ $ (-696)) 58 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3634 (((-85) $) 23 T ELT)) (-3793 (($ $) 47 T ELT)) (-3791 (($ $) 80 T ELT)) (-3794 (((-696) $) 51 T ELT)) (-3795 (($ $) 50 T ELT)) (-3803 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3523 (((-585 $) $) 32 T ELT)) (-3058 (((-85) $ $) 61 T ELT)) (-3958 (((-696) $) 43 T ELT))) +(((-1168 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3786 (|#1| |#1| (-485))) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3787 (|#2| |#1| |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3791 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-696) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-696))) (-15 -3801 (|#2| |#1| #1#)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-696))) (-15 -3801 (|#1| |#1| #2#)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3027 (|#2| |#1| |#2|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3028 (|#1| |#1| (-585 |#1|))) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3033 ((-585 |#1|) |#1|)) (-15 -3523 ((-585 |#1|) |#1|)) (-15 -3958 ((-696) |#1|))) (-1169 |#2|) (-1130)) (T -1168)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3027 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3997)) ELT)) (-3028 (($ $ (-585 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-3800 (($ $) 79 T ELT) (($ $ (-696)) 77 T ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3033 (((-585 $) $) 54 T ELT)) (-3029 (((-85) $ $) 46 (|has| |#1| (-1015)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3032 (((-585 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-696)) 74 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-696)) 80 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-696) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-3523 (((-585 $) $) 55 T ELT)) (-3030 (((-85) $ $) 47 (|has| |#1| (-1015)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1169 |#1|) (-113) (-1130)) (T -1169)) +((-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3788 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3787 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))) +(-13 (-925 |t#1|) (-10 -8 (-15 -3803 ($ $ $)) (-15 -3803 ($ |t#1| $)) (-15 -3802 (|t#1| $)) (-15 -3801 (|t#1| $ "first")) (-15 -3802 ($ $ (-696))) (-15 -3800 ($ $)) (-15 -3801 ($ $ "rest")) (-15 -3800 ($ $ (-696))) (-15 -3799 (|t#1| $)) (-15 -3801 (|t#1| $ "last")) (-15 -3799 ($ $ (-696))) (-15 -3798 ($ $)) (-15 -3797 (|t#1| $)) (-15 -3796 (|t#1| $)) (-15 -3795 ($ $)) (-15 -3794 ((-696) $)) (-15 -3793 ($ $)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3792 ($ $ $)) (-15 -3792 ($ $ |t#1|)) (-15 -3791 ($ $)) (-15 -3790 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "first" |t#1|)) (-15 -3788 ($ $ $)) (-15 -3789 ($ $ "rest" $)) (-15 -3787 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "last" |t#1|)) (-15 -3786 ($ $ (-485)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-554 (-774)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-427 |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-925 |#1|) . T) ((-1015) |has| |#1| (-1015)) ((-1130) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-585 (-996)) $) NIL T ELT)) (-3832 (((-1091) $) 87 T ELT)) (-3812 (((-1149 |#2| |#1|) $ (-696)) 70 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2065 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 139 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-696)) 125 T ELT) (($ $ (-696) (-696)) 127 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 42 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1070 |#1|)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3806 (($ $) 131 T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3817 (($ $) 137 T ELT)) (-3815 (((-859 |#1|) $ (-696)) 60 T ELT) (((-859 |#1|) $ (-696) (-696)) 62 T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $) NIL T ELT) (((-696) $ (-696)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3809 (($ $) 115 T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3805 (($ (-485) (-485) $) 133 T ELT)) (-3778 (($ $ (-832)) 136 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-696)) 16 T ELT) (($ $ (-996) (-696)) NIL T ELT) (($ $ (-585 (-996)) (-585 (-696))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3810 (($ $) 113 T ELT)) (-3811 (($ $) 111 T ELT)) (-3804 (($ (-485) (-485) $) 135 T ELT)) (-3813 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 153 (OR (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-348 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3807 (($ $ (-485) (-485)) 119 T ELT)) (-3770 (($ $ (-696)) 121 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3808 (($ $) 117 T ELT)) (-3769 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3801 ((|#1| $ (-696)) 93 T ELT) (($ $ $) 129 (|has| (-696) (-1027)) ELT)) (-3759 (($ $ (-1091)) 106 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1177 |#2|)) 101 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 123 T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-348 (-485))) 145 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 78 T ELT) (($ (-1177 |#2|)) 22 T ELT)) (-3818 (((-1070 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-696)) 92 T ELT)) (-2704 (((-634 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3774 ((|#1| $) 88 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-696)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 13 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) NIL (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) NIL (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-348 (-485)) $) NIL (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) NIL (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1170 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-808 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1149 |#2| |#1|))) (-15 -3812 ((-1149 |#2| |#1|) $ (-696))) (-15 -3947 ($ (-1177 |#2|))) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $ (-485) (-485))) (-15 -3806 ($ $)) (-15 -3805 ($ (-485) (-485) $)) (-15 -3804 ($ (-485) (-485) $)) (IF (|has| |#1| (-38 (-348 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-963) (-1091) |#1|) (T -1170)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1170 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) (-4 *4 (-963)) (-14 *5 (-1091)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *5 *3))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2))) (-3807 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2))) (-3805 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3)))) +((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-963) (-963) (-1173 |#1|) (-1173 |#2|)) (T -1171)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5))))) +((-3190 (((-85) $) 17 T ELT)) (-3493 (($ $) 105 T ELT)) (-3640 (($ $) 81 T ELT)) (-3491 (($ $) 101 T ELT)) (-3639 (($ $) 77 T ELT)) (-3495 (($ $) 109 T ELT)) (-3638 (($ $) 85 T ELT)) (-3943 (($ $) 75 T ELT)) (-3944 (($ $) 73 T ELT)) (-3496 (($ $) 111 T ELT)) (-3637 (($ $) 87 T ELT)) (-3494 (($ $) 107 T ELT)) (-3636 (($ $) 83 T ELT)) (-3492 (($ $) 103 T ELT)) (-3635 (($ $) 79 T ELT)) (-3947 (((-774) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-348 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3499 (($ $) 117 T ELT)) (-3487 (($ $) 93 T ELT)) (-3497 (($ $) 113 T ELT)) (-3485 (($ $) 89 T ELT)) (-3501 (($ $) 121 T ELT)) (-3489 (($ $) 97 T ELT)) (-3502 (($ $) 123 T ELT)) (-3490 (($ $) 99 T ELT)) (-3500 (($ $) 119 T ELT)) (-3488 (($ $) 95 T ELT)) (-3498 (($ $) 115 T ELT)) (-3486 (($ $) 91 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-348 (-485))) 71 T ELT))) +(((-1172 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-348 (-485)))) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-348 (-485)))) (-15 -3947 (|#1| (-485))) (-15 ** (|#1| |#1| (-696))) (-15 ** (|#1| |#1| (-832))) (-15 -3190 ((-85) |#1|)) (-15 -3947 ((-774) |#1|))) (-1173 |#2|) (-963)) (T -1172)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-585 (-996)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2065 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-696)) 124 T ELT) (($ $ (-696) (-696)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-696)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1070 |#1|)) 181 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3817 (($ $) 180 T ELT)) (-3815 (((-859 |#1|) $ (-696)) 178 T ELT) (((-859 |#1|) $ (-696) (-696)) 177 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3773 (((-696) $) 126 T ELT) (((-696) $ (-696)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3778 (($ $ (-832)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 179 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-696)) 81 T ELT) (($ $ (-996) (-696)) 97 T ELT) (($ $ (-585 (-996)) (-585 (-696))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3813 (($ $) 175 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-1091)) 174 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-873)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-348 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-585 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-348 (-485)))))) ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3770 (($ $ (-696)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) ELT)) (-3801 ((|#1| $ (-696)) 131 T ELT) (($ $ $) 107 (|has| (-696) (-1027)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) 117 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) 116 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 115 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 109 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3949 (((-696) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-348 (-485))) 77 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3818 (((-1070 |#1|) $) 182 T ELT)) (-3678 ((|#1| $ (-696)) 79 T ELT)) (-2704 (((-634 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-696)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2064 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3771 ((|#1| $ (-696)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-696)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-348 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091))) 114 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-1091) (-696)) 113 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $ (-585 (-1091)) (-585 (-696))) 112 (-12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT) (($ $ (-696)) 108 (|has| |#1| (-15 * (|#1| (-696) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 143 (|has| |#1| (-38 (-348 (-485)))) ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-348 (-485)) $) 76 (|has| |#1| (-38 (-348 (-485)))) ELT) (($ $ (-348 (-485))) 75 (|has| |#1| (-38 (-348 (-485)))) ELT))) +(((-1173 |#1|) (-113) (-963)) (T -1173)) +((-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) (-4 *1 (-1173 *3)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-963)) (-5 *2 (-1070 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-4 *1 (-1173 *3)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-963)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1173 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-4 *1 (-1173 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-963)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) (-4 *3 (-38 (-348 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-963)) (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485))))))))) +(-13 (-1159 |t#1| (-696)) (-10 -8 (-15 -3819 ($ (-1070 (-2 (|:| |k| (-696)) (|:| |c| |t#1|))))) (-15 -3818 ((-1070 |t#1|) $)) (-15 -3819 ($ (-1070 |t#1|))) (-15 -3817 ($ $)) (-15 -3816 ($ (-1 |t#1| (-485)) $)) (-15 -3815 ((-859 |t#1|) $ (-696))) (-15 -3815 ((-859 |t#1|) $ (-696) (-696))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-348 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-585 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-873)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-917)) (-6 (-1116))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-696)) . T) ((-25) . T) ((-38 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-348 (-485)))) ((-66) |has| |#1| (-38 (-348 (-485)))) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-557 (-485)) . T) ((-557 |#1|) |has| |#1| (-146)) ((-557 $) |has| |#1| (-496)) ((-554 (-774)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-696) |#1|))) ((-239) |has| |#1| (-38 (-348 (-485)))) ((-241 (-696) |#1|) . T) ((-241 $ $) |has| (-696) (-1027)) ((-246) |has| |#1| (-496)) ((-431) |has| |#1| (-38 (-348 (-485)))) ((-496) |has| |#1| (-496)) ((-13) . T) ((-590 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-584 |#1|) |has| |#1| (-146)) ((-584 $) |has| |#1| (-496)) ((-656 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-656 |#1|) |has| |#1| (-146)) ((-656 $) |has| |#1| (-496)) ((-665) . T) ((-808 $ (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-811 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-813 (-1091)) -12 (|has| |#1| (-811 (-1091))) (|has| |#1| (-15 * (|#1| (-696) |#1|)))) ((-888 |#1| (-696) (-996)) . T) ((-917) |has| |#1| (-38 (-348 (-485)))) ((-965 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-965 |#1|) . T) ((-965 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-970 (-348 (-485))) |has| |#1| (-38 (-348 (-485)))) ((-970 |#1|) . T) ((-970 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1116) |has| |#1| (-38 (-348 (-485)))) ((-1119) |has| |#1| (-38 (-348 (-485)))) ((-1130) . T) ((-1159 |#1| (-696)) . T)) +((-3822 (((-1 (-1070 |#1|) (-585 (-1070 |#1|))) (-1 |#2| (-585 |#2|))) 24 T ELT)) (-3821 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3820 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3824 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3826 ((|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|)) 60 T ELT)) (-3827 (((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))) 66 T ELT)) (-3823 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1174 |#1| |#2|) (-10 -7 (-15 -3820 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -3821 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3822 ((-1 (-1070 |#1|) (-585 (-1070 |#1|))) (-1 |#2| (-585 |#2|)))) (-15 -3823 (|#2| |#2| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3826 (|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|))) (-15 -3827 ((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))))) (-38 (-348 (-485))) (-1173 |#1|)) (T -1174)) +((-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) (-4 *5 (-38 (-348 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-585 *6)) (-5 *1 (-1174 *5 *6)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-348 (-485)))) (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))) (-3825 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-348 (-485)))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-348 (-485)))))) (-3823 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) (-5 *2 (-1 (-1070 *4) (-585 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) +((-3829 ((|#2| |#4| (-696)) 31 T ELT)) (-3828 ((|#4| |#2|) 26 T ELT)) (-3831 ((|#4| (-348 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3830 (((-1 |#4| (-585 |#4|)) |#3|) 43 T ELT))) +(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3828 (|#4| |#2|)) (-15 -3829 (|#2| |#4| (-696))) (-15 -3830 ((-1 |#4| (-585 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-15 -3831 (|#4| (-348 |#2|))) |%noBranch|)) (-963) (-1156 |#1|) (-602 |#2|) (-1173 |#1|)) (T -1175)) +((-3831 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-963)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-585 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1173 *4)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1156 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1173 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-963)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) +NIL +(((-1176) (-113)) (T -1176)) +NIL +(-13 (-10 -7 (-6 -2289))) +((-2570 (((-85) $ $) NIL T ELT)) (-3832 (((-1091)) 12 T ELT)) (-3244 (((-1074) $) 18 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 11 T ELT) (((-1091) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT))) +(((-1177 |#1|) (-13 (-1015) (-554 (-1091)) (-10 -8 (-15 -3947 ((-1091) $)) (-15 -3832 ((-1091))))) (-1091)) (T -1177)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-3832 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) +((-3839 (($ (-696)) 19 T ELT)) (-3836 (((-632 |#2|) $ $) 41 T ELT)) (-3833 ((|#2| $) 51 T ELT)) (-3834 ((|#2| $) 50 T ELT)) (-3837 ((|#2| $ $) 36 T ELT)) (-3835 (($ $ $) 47 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -3833 (|#2| |#1|)) (-15 -3834 (|#2| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3836 ((-632 |#2|) |#1| |#1|)) (-15 -3837 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3839 (|#1| (-696))) (-15 -3840 (|#1| |#1| |#1|))) (-1179 |#2|) (-1130)) (T -1178)) +NIL +((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-696)) 121 (|has| |#1| (-23)) ELT)) (-2200 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3997)) ELT) (($ $) 97 (-12 (|has| |#1| (-758)) (|has| $ (-6 -3997))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2299 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) 109 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 106 T ELT) (((-485) |#1| $) 105 (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) 104 (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3836 (((-632 |#1|) $ $) 114 (|has| |#1| (-963)) ELT)) (-3615 (($ (-696) |#1|) 74 T ELT)) (-2202 (((-485) $) 47 (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) 91 (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-2203 (((-485) $) 48 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) 92 (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3833 ((|#1| $) 111 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-963)) (|has| |#1| (-917))) ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2205 (((-585 (-485)) $) 50 T ELT)) (-2206 (((-85) (-485) $) 51 T ELT)) (-3245 (((-1035) $) 21 (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2201 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2204 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-3837 ((|#1| $ $) 115 (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-3835 (($ $ $) 113 (|has| |#1| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) 28 (-12 (|has| |#1| (-1015)) (|has| $ (-6 -3996))) ELT)) (-1732 (($ $ $ (-485)) 100 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-585 $)) 70 T ELT)) (-3947 (((-774) $) 17 (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) 93 (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) 95 (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 94 (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) 96 (|has| |#1| (-758)) ELT)) (-3838 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-665)) ELT) (($ $ |#1|) 116 (|has| |#1| (-665)) ELT)) (-3958 (((-696) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1179 |#1|) (-113) (-1130)) (T -1179)) +((-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-665)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-665)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-963)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-963)) (-5 *2 (-632 *3)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-963)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-917)) (-4 *2 (-963)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-917)) (-4 *2 (-963))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3840 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3839 ($ (-696))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3838 ($ $)) (-15 -3838 ($ $ $)) (-15 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-665)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-963)) (PROGN (-15 -3837 (|t#1| $ $)) (-15 -3836 ((-632 |t#1|) $ $)) (-15 -3835 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-917)) (IF (|has| |t#1| (-963)) (PROGN (-15 -3834 (|t#1| $)) (-15 -3833 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-72))) ((-554 (-774)) OR (|has| |#1| (-1015)) (|has| |#1| (-758)) (|has| |#1| (-554 (-774)))) ((-124 |#1|) . T) ((-555 (-474)) |has| |#1| (-555 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-322 |#1|) . T) ((-427 |#1|) . T) ((-540 (-485) |#1|) . T) ((-454 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ((-13) . T) ((-595 |#1|) . T) ((-19 |#1|) . T) ((-758) |has| |#1| (-758)) ((-761) |has| |#1| (-758)) ((-1015) OR (|has| |#1| (-1015)) (|has| |#1| (-758))) ((-1130) . T)) +((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-696)) NIL (|has| |#1| (-23)) ELT)) (-3841 (($ (-585 |#1|)) 11 T ELT)) (-2200 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-758)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-758))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-758)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2299 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2300 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1015)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1015)) ELT)) (-2891 (((-585 |#1|) $) 16 (|has| $ (-6 -3996)) ELT)) (-3836 (((-632 |#1|) $ $) NIL (|has| |#1| (-963)) ELT)) (-3615 (($ (-696) |#1|) NIL T ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-758)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-2610 (((-585 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2203 (((-485) $) 12 (|has| (-485) (-758)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-758)) ELT)) (-1950 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-917)) (|has| |#1| (-963))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1015)) ELT)) (-2306 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2205 (((-585 (-485)) $) NIL T ELT)) (-2206 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1035) $) NIL (|has| |#1| (-1015)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-758)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2201 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-2207 (((-585 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-963)) ELT)) (-2307 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-963)) ELT)) (-1947 (((-696) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-696) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1015))) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 20 (|has| |#1| (-555 (-474))) ELT)) (-3531 (($ (-585 |#1|)) 10 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-585 $)) NIL T ELT)) (-3947 (((-774) $) NIL (|has| |#1| (-554 (-774))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-758)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-665)) ELT) (($ $ |#1|) NIL (|has| |#1| (-665)) ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1180 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3841 ($ (-585 |#1|))))) (-1130)) (T -1180)) +((-3841 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) +((-3842 (((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 13 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 15 T ELT)) (-3959 (((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)) 30 T ELT) (((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|)) 18 T ELT))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3842 ((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3959 ((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|))) (-15 -3959 ((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)))) (-1130) (-1130)) (T -1181)) +((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1181 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) +((-3844 (((-406) (-585 (-585 (-856 (-179)))) (-585 (-221))) 22 T ELT) (((-406) (-585 (-585 (-856 (-179))))) 21 T ELT) (((-406) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 20 T ELT)) (-3845 (((-1183) (-585 (-585 (-856 (-179)))) (-585 (-221))) 30 T ELT) (((-1183) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221))) 29 T ELT)) (-3947 (((-1183) (-406)) 46 T ELT))) +(((-1182) (-10 -7 (-15 -3844 ((-406) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3844 ((-406) (-585 (-585 (-856 (-179)))))) (-15 -3844 ((-406) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3845 ((-1183) (-585 (-585 (-856 (-179)))) (-785) (-785) (-832) (-585 (-221)))) (-15 -3845 ((-1183) (-585 (-585 (-856 (-179)))) (-585 (-221)))) (-15 -3947 ((-1183) (-406))))) (T -1182)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-406)) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-406)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-406)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *6 (-585 (-221))) (-5 *2 (-406)) (-5 *1 (-1182))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3863 (((-1074) $ (-1074)) 107 T ELT) (((-1074) $ (-1074) (-1074)) 105 T ELT) (((-1074) $ (-1074) (-585 (-1074))) 104 T ELT)) (-3859 (($) 69 T ELT)) (-3846 (((-1186) $ (-406) (-832)) 54 T ELT)) (-3852 (((-1186) $ (-832) (-1074)) 89 T ELT) (((-1186) $ (-832) (-785)) 90 T ELT)) (-3874 (((-1186) $ (-832) (-328) (-328)) 57 T ELT)) (-3884 (((-1186) $ (-1074)) 84 T ELT)) (-3847 (((-1186) $ (-832) (-1074)) 94 T ELT)) (-3848 (((-1186) $ (-832) (-328) (-328)) 58 T ELT)) (-3885 (((-1186) $ (-832) (-832)) 55 T ELT)) (-3865 (((-1186) $) 85 T ELT)) (-3850 (((-1186) $ (-832) (-1074)) 93 T ELT)) (-3854 (((-1186) $ (-406) (-832)) 41 T ELT)) (-3851 (((-1186) $ (-832) (-1074)) 92 T ELT)) (-3887 (((-585 (-221)) $) 29 T ELT) (($ $ (-585 (-221))) 30 T ELT)) (-3886 (((-1186) $ (-696) (-696)) 52 T ELT)) (-3858 (($ $) 70 T ELT) (($ (-406) (-585 (-221))) 71 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 48 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3855 (((-1180 (-3 (-406) "undefined")) $) 47 T ELT)) (-3856 (((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-785)) (|:| -3852 (-485)) (|:| |unitsColor| (-785)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3857 (((-1186) $ (-832) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-785) (-485) (-785) (-485)) 83 T ELT)) (-3860 (((-585 (-856 (-179))) $) NIL T ELT)) (-3853 (((-406) $ (-832)) 43 T ELT)) (-3883 (((-1186) $ (-696) (-696) (-832) (-832)) 50 T ELT)) (-3881 (((-1186) $ (-1074)) 95 T ELT)) (-3849 (((-1186) $ (-832) (-1074)) 91 T ELT)) (-3947 (((-774) $) 102 T ELT)) (-3862 (((-1186) $) 96 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3880 (((-1186) $ (-832) (-1074)) 87 T ELT) (((-1186) $ (-832) (-785)) 88 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1183) (-13 (-1015) (-10 -8 (-15 -3860 ((-585 (-856 (-179))) $)) (-15 -3859 ($)) (-15 -3858 ($ $)) (-15 -3887 ((-585 (-221)) $)) (-15 -3887 ($ $ (-585 (-221)))) (-15 -3858 ($ (-406) (-585 (-221)))) (-15 -3857 ((-1186) $ (-832) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-785) (-485) (-785) (-485))) (-15 -3856 ((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-785)) (|:| -3852 (-485)) (|:| |unitsColor| (-785)) (|:| |showing| (-485)))) $)) (-15 -3855 ((-1180 (-3 (-406) "undefined")) $)) (-15 -3884 ((-1186) $ (-1074))) (-15 -3854 ((-1186) $ (-406) (-832))) (-15 -3853 ((-406) $ (-832))) (-15 -3880 ((-1186) $ (-832) (-1074))) (-15 -3880 ((-1186) $ (-832) (-785))) (-15 -3852 ((-1186) $ (-832) (-1074))) (-15 -3852 ((-1186) $ (-832) (-785))) (-15 -3851 ((-1186) $ (-832) (-1074))) (-15 -3850 ((-1186) $ (-832) (-1074))) (-15 -3849 ((-1186) $ (-832) (-1074))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3862 ((-1186) $)) (-15 -3883 ((-1186) $ (-696) (-696) (-832) (-832))) (-15 -3848 ((-1186) $ (-832) (-328) (-328))) (-15 -3874 ((-1186) $ (-832) (-328) (-328))) (-15 -3847 ((-1186) $ (-832) (-1074))) (-15 -3886 ((-1186) $ (-696) (-696))) (-15 -3846 ((-1186) $ (-406) (-832))) (-15 -3885 ((-1186) $ (-832) (-832))) (-15 -3863 ((-1074) $ (-1074))) (-15 -3863 ((-1074) $ (-1074) (-1074))) (-15 -3863 ((-1074) $ (-1074) (-585 (-1074)))) (-15 -3865 ((-1186) $)) (-15 -3861 ((-485) $)) (-15 -3947 ((-774) $))))) (T -1183)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1183)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1183)))) (-3859 (*1 *1) (-5 *1 (-1183))) (-3858 (*1 *1 *1) (-5 *1 (-1183))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1183)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1183)))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-406)) (-5 *3 (-585 (-221))) (-5 *1 (-1183)))) (-3857 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-785)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-785)) (|:| -3852 (-485)) (|:| |unitsColor| (-785)) (|:| |showing| (-485))))) (-5 *1 (-1183)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-406) "undefined"))) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-406)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-406)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3848 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-832)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-406)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3875 (((-1186) $ (-328)) 168 T ELT) (((-1186) $ (-328) (-328) (-328)) 169 T ELT)) (-3863 (((-1074) $ (-1074)) 177 T ELT) (((-1074) $ (-1074) (-1074)) 175 T ELT) (((-1074) $ (-1074) (-585 (-1074))) 174 T ELT)) (-3891 (($) 67 T ELT)) (-3882 (((-1186) $ (-328) (-328) (-328) (-328) (-328)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1186) $ (-485) (-485) (-328) (-328) (-328)) 143 T ELT) (((-1186) $ (-328) (-328)) 144 T ELT) (((-1186) $ (-328) (-328) (-328)) 151 T ELT)) (-3894 (((-328)) 121 T ELT) (((-328) (-328)) 122 T ELT)) (-3896 (((-328)) 116 T ELT) (((-328) (-328)) 118 T ELT)) (-3895 (((-328)) 119 T ELT) (((-328) (-328)) 120 T ELT)) (-3892 (((-328)) 125 T ELT) (((-328) (-328)) 126 T ELT)) (-3893 (((-328)) 123 T ELT) (((-328) (-328)) 124 T ELT)) (-3874 (((-1186) $ (-328) (-328)) 170 T ELT)) (-3884 (((-1186) $ (-1074)) 152 T ELT)) (-3889 (((-1048 (-179)) $) 68 T ELT) (($ $ (-1048 (-179))) 69 T ELT)) (-3870 (((-1186) $ (-1074)) 186 T ELT)) (-3869 (((-1186) $ (-1074)) 187 T ELT)) (-3876 (((-1186) $ (-328) (-328)) 150 T ELT) (((-1186) $ (-485) (-485)) 167 T ELT)) (-3885 (((-1186) $ (-832) (-832)) 159 T ELT)) (-3865 (((-1186) $) 136 T ELT)) (-3873 (((-1186) $ (-1074)) 185 T ELT)) (-3878 (((-1186) $ (-1074)) 133 T ELT)) (-3887 (((-585 (-221)) $) 70 T ELT) (($ $ (-585 (-221))) 71 T ELT)) (-3886 (((-1186) $ (-696) (-696)) 158 T ELT)) (-3888 (((-1186) $ (-696) (-856 (-179))) 192 T ELT)) (-3890 (($ $) 73 T ELT) (($ (-1048 (-179)) (-1074)) 74 T ELT) (($ (-1048 (-179)) (-585 (-221))) 75 T ELT)) (-3867 (((-1186) $ (-328) (-328) (-328)) 130 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 127 T ELT)) (-3866 (((-1186) $ (-328)) 172 T ELT)) (-3871 (((-1186) $ (-328)) 190 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3872 (((-1186) $ (-328)) 189 T ELT)) (-3877 (((-1186) $ (-1074)) 135 T ELT)) (-3883 (((-1186) $ (-696) (-696) (-832) (-832)) 157 T ELT)) (-3879 (((-1186) $ (-1074)) 132 T ELT)) (-3881 (((-1186) $ (-1074)) 134 T ELT)) (-3864 (((-1186) $ (-130) (-130)) 156 T ELT)) (-3947 (((-774) $) 165 T ELT)) (-3862 (((-1186) $) 137 T ELT)) (-3868 (((-1186) $ (-1074)) 188 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3880 (((-1186) $ (-1074)) 131 T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1184) (-13 (-1015) (-10 -8 (-15 -3896 ((-328))) (-15 -3896 ((-328) (-328))) (-15 -3895 ((-328))) (-15 -3895 ((-328) (-328))) (-15 -3894 ((-328))) (-15 -3894 ((-328) (-328))) (-15 -3893 ((-328))) (-15 -3893 ((-328) (-328))) (-15 -3892 ((-328))) (-15 -3892 ((-328) (-328))) (-15 -3891 ($)) (-15 -3890 ($ $)) (-15 -3890 ($ (-1048 (-179)) (-1074))) (-15 -3890 ($ (-1048 (-179)) (-585 (-221)))) (-15 -3889 ((-1048 (-179)) $)) (-15 -3889 ($ $ (-1048 (-179)))) (-15 -3888 ((-1186) $ (-696) (-856 (-179)))) (-15 -3887 ((-585 (-221)) $)) (-15 -3887 ($ $ (-585 (-221)))) (-15 -3886 ((-1186) $ (-696) (-696))) (-15 -3885 ((-1186) $ (-832) (-832))) (-15 -3884 ((-1186) $ (-1074))) (-15 -3883 ((-1186) $ (-696) (-696) (-832) (-832))) (-15 -3882 ((-1186) $ (-328) (-328) (-328) (-328) (-328))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3882 ((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ((-1186) $ (-485) (-485) (-328) (-328) (-328))) (-15 -3882 ((-1186) $ (-328) (-328))) (-15 -3882 ((-1186) $ (-328) (-328) (-328))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3880 ((-1186) $ (-1074))) (-15 -3879 ((-1186) $ (-1074))) (-15 -3878 ((-1186) $ (-1074))) (-15 -3877 ((-1186) $ (-1074))) (-15 -3876 ((-1186) $ (-328) (-328))) (-15 -3876 ((-1186) $ (-485) (-485))) (-15 -3875 ((-1186) $ (-328))) (-15 -3875 ((-1186) $ (-328) (-328) (-328))) (-15 -3874 ((-1186) $ (-328) (-328))) (-15 -3873 ((-1186) $ (-1074))) (-15 -3872 ((-1186) $ (-328))) (-15 -3871 ((-1186) $ (-328))) (-15 -3870 ((-1186) $ (-1074))) (-15 -3869 ((-1186) $ (-1074))) (-15 -3868 ((-1186) $ (-1074))) (-15 -3867 ((-1186) $ (-328) (-328) (-328))) (-15 -3866 ((-1186) $ (-328))) (-15 -3865 ((-1186) $)) (-15 -3864 ((-1186) $ (-130) (-130))) (-15 -3863 ((-1074) $ (-1074))) (-15 -3863 ((-1074) $ (-1074) (-1074))) (-15 -3863 ((-1074) $ (-1074) (-585 (-1074)))) (-15 -3862 ((-1186) $)) (-15 -3861 ((-485) $))))) (T -1184)) +((-3896 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3895 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3894 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3893 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3892 (*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) (-3891 (*1 *1) (-5 *1 (-1184))) (-3890 (*1 *1 *1) (-5 *1 (-1184))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3888 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-485)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) +((-3905 (((-585 (-1074)) (-585 (-1074))) 103 T ELT) (((-585 (-1074))) 96 T ELT)) (-3906 (((-585 (-1074))) 94 T ELT)) (-3903 (((-585 (-832)) (-585 (-832))) 69 T ELT) (((-585 (-832))) 64 T ELT)) (-3902 (((-585 (-696)) (-585 (-696))) 61 T ELT) (((-585 (-696))) 55 T ELT)) (-3904 (((-1186)) 71 T ELT)) (-3908 (((-832) (-832)) 87 T ELT) (((-832)) 86 T ELT)) (-3907 (((-832) (-832)) 85 T ELT) (((-832)) 84 T ELT)) (-3900 (((-785) (-785)) 81 T ELT) (((-785)) 80 T ELT)) (-3910 (((-179)) 91 T ELT) (((-179) (-328)) 93 T ELT)) (-3909 (((-832)) 88 T ELT) (((-832) (-832)) 89 T ELT)) (-3901 (((-832) (-832)) 83 T ELT) (((-832)) 82 T ELT)) (-3897 (((-785) (-785)) 75 T ELT) (((-785)) 73 T ELT)) (-3898 (((-785) (-785)) 77 T ELT) (((-785)) 76 T ELT)) (-3899 (((-785) (-785)) 79 T ELT) (((-785)) 78 T ELT))) +(((-1185) (-10 -7 (-15 -3897 ((-785))) (-15 -3897 ((-785) (-785))) (-15 -3898 ((-785))) (-15 -3898 ((-785) (-785))) (-15 -3899 ((-785))) (-15 -3899 ((-785) (-785))) (-15 -3900 ((-785))) (-15 -3900 ((-785) (-785))) (-15 -3901 ((-832))) (-15 -3901 ((-832) (-832))) (-15 -3902 ((-585 (-696)))) (-15 -3902 ((-585 (-696)) (-585 (-696)))) (-15 -3903 ((-585 (-832)))) (-15 -3903 ((-585 (-832)) (-585 (-832)))) (-15 -3904 ((-1186))) (-15 -3905 ((-585 (-1074)))) (-15 -3905 ((-585 (-1074)) (-585 (-1074)))) (-15 -3906 ((-585 (-1074)))) (-15 -3907 ((-832))) (-15 -3908 ((-832))) (-15 -3907 ((-832) (-832))) (-15 -3908 ((-832) (-832))) (-15 -3909 ((-832) (-832))) (-15 -3909 ((-832))) (-15 -3910 ((-179) (-328))) (-15 -3910 ((-179))))) (T -1185)) +((-3910 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-328)) (-5 *2 (-179)) (-5 *1 (-1185)))) (-3909 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3908 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3907 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3906 (*1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185)))) (-3904 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1185)))) (-3903 (*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1185)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1185)))) (-3902 (*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1185)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3901 (*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3900 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3899 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3898 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) (-3897 (*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185))))) +((-3911 (($) 6 T ELT)) (-3947 (((-774) $) 9 T ELT))) +(((-1186) (-13 (-554 (-774)) (-10 -8 (-15 -3911 ($))))) (T -1186)) +((-3911 (*1 *1) (-5 *1 (-1186)))) +((-3950 (($ $ |#2|) 10 T ELT))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-1188 |#2|) (-312)) (T -1187)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3912 (((-107)) 39 T ELT)) (-3947 (((-774) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 40 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-1188 |#1|) (-113) (-312)) (T -1188)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) (-3912 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(-13 (-656 |t#1|) (-10 -8 (-15 -3950 ($ $ |t#1|)) (-15 -3912 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-592 |#1|) . T) ((-584 |#1|) . T) ((-656 |#1|) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-1015) . T) ((-1130) . T)) +((-3917 (((-585 (-1123 |#1|)) (-1091) (-1123 |#1|)) 83 T ELT)) (-3915 (((-1070 (-1070 (-859 |#1|))) (-1091) (-1070 (-859 |#1|))) 63 T ELT)) (-3918 (((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-696) (-1123 |#1|) (-1070 (-1123 |#1|))) 74 T ELT)) (-3913 (((-1 (-1070 (-859 |#1|)) (-1070 (-859 |#1|))) (-696)) 65 T ELT)) (-3916 (((-1 (-1086 (-859 |#1|)) (-859 |#1|)) (-1091)) 32 T ELT)) (-3914 (((-1 (-1070 (-859 |#1|)) (-1070 (-859 |#1|))) (-696)) 64 T ELT))) +(((-1189 |#1|) (-10 -7 (-15 -3913 ((-1 (-1070 (-859 |#1|)) (-1070 (-859 |#1|))) (-696))) (-15 -3914 ((-1 (-1070 (-859 |#1|)) (-1070 (-859 |#1|))) (-696))) (-15 -3915 ((-1070 (-1070 (-859 |#1|))) (-1091) (-1070 (-859 |#1|)))) (-15 -3916 ((-1 (-1086 (-859 |#1|)) (-859 |#1|)) (-1091))) (-15 -3917 ((-585 (-1123 |#1|)) (-1091) (-1123 |#1|))) (-15 -3918 ((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-696) (-1123 |#1|) (-1070 (-1123 |#1|))))) (-312)) (T -1189)) +((-3918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-585 (-1123 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-859 *4)) (-859 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-859 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-859 *5))))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1070 (-859 *4)) (-1070 (-859 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1070 (-859 *4)) (-1070 (-859 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312))))) +((-3920 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 80 T ELT)) (-3919 (((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 79 T ELT))) +(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -3920 ((-2 (|:| -2014 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-299) (-1156 |#1|) (-1156 |#2|) (-351 |#2| |#3|)) (T -1190)) +((-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-351 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-351 *4 *5))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3921 (((-1050) $) 12 T ELT)) (-3922 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1191) (-13 (-997) (-10 -8 (-15 -3922 ((-1050) $)) (-15 -3921 ((-1050) $))))) (T -1191)) +((-3922 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3923 (((-1050) $) 11 T ELT)) (-3947 (((-774) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT))) +(((-1192) (-13 (-997) (-10 -8 (-15 -3923 ((-1050) $))))) (T -1192)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-696)) NIL T CONST)) (-3924 (((-1186) (-696)) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-2668 (($) 85 T CONST)) (-3058 (((-85) $ $) 88 T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 64 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1193 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-963) (-428 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1186) (-696))))) (-963) (-758) (-719) (-863 |#1| |#3| |#2|) (-585 |#2|) (-585 (-696)) (-696)) (T -1193)) +((-3950 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) (-14 *6 (-585 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) (-14 *8 (-585 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) +((-2570 (((-85) $ $) NIL T ELT)) (-3682 (((-585 (-2 (|:| -3862 $) (|:| -1703 (-585 |#4|)))) (-585 |#4|)) NIL T ELT)) (-3683 (((-585 $) (-585 |#4|)) 95 T ELT)) (-3083 (((-585 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2902 (((-585 |#4|) (-585 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2903 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-585 |#4|)) NIL T ELT)) (-3158 (($ (-585 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 77 T ELT)) (-3686 ((|#4| |#4| $) 82 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-585 |#4|)) (|:| -1703 (-585 |#4|))) $) NIL T ELT)) (-2891 (((-585 |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 83 T ELT)) (-2610 (((-585 |#4|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3247 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT)) (-3927 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-585 |#4|)) 38 T ELT)) (-1950 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2916 (((-585 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) NIL T ELT)) (-3698 (((-585 |#4|) $) 53 T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) 81 T ELT)) (-3700 (((-85) $ $) 92 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 76 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT) (($ $ (-585 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1015))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 74 T ELT)) (-3566 (($) 45 T ELT)) (-3949 (((-696) $) NIL T ELT)) (-1947 (((-696) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1015))) ELT) (((-696) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-555 (-474))) ELT)) (-3531 (($ (-585 |#4|)) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (((-585 |#4|) $) 62 T ELT)) (-3679 (((-696) $) NIL (|has| |#3| (-318)) ELT)) (-3926 (((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-585 |#4|)) 44 T ELT)) (-3925 (((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-585 $) (-585 |#4|)) 73 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-585 |#4|))) #1#) (-585 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-585 |#4|))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3681 (((-585 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3958 (((-696) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1194 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3927 ((-3 $ #1="failed") (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-3 $ #1#) (-585 |#4|))) (-15 -3926 ((-3 $ #1#) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-3 $ #1#) (-585 |#4|))) (-15 -3925 ((-585 $) (-585 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-585 $) (-585 |#4|))))) (-496) (-719) (-758) (-979 |#1| |#2| |#3|)) (T -1194)) +((-3927 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3926 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3926 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-585 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 (-1194 *4 *5 *6 *7))) (-5 *1 (-1194 *4 *5 *6 *7))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) +(((-1195 |#1|) (-113) (-963)) (T -1195)) +NIL +(-13 (-963) (-82 |t#1| |t#1|) (-557 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 |#1|) |has| |#1| (-146)) ((-656 |#1|) |has| |#1| (-146)) ((-665) . T) ((-965 |#1|) . T) ((-970 |#1|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T)) +((-2570 (((-85) $ $) 69 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3935 (((-585 |#1|) $) 54 T ELT)) (-3948 (($ $ (-696)) 47 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ (-696)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ $) 72 T ELT) (($ $ (-741 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3159 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3158 (((-741 |#1|) $) NIL T ELT)) (-3960 (($ $) 40 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-741 |#1|) |#2|) 39 T ELT)) (-3937 (($ $) 41 T ELT)) (-3942 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3956 (((-741 |#1|) $) NIL T ELT)) (-3957 (((-741 |#1|) $) 42 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ $) 71 T ELT) (($ $ (-741 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1750 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-741 |#1|) $) 36 T ELT)) (-3176 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3949 (((-696) $) 44 T ELT)) (-3954 (((-85) $) 48 T ELT)) (-3953 ((|#2| $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-741 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3955 ((|#2| $ $) 78 T ELT) ((|#2| $ (-741 |#1|)) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 20 T CONST)) (-2667 (((-585 (-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) 45 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-696)) NIL T ELT) (($ $ (-832)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-741 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1196 |#1| |#2|) (-13 (-333 |#2| (-741 |#1|)) (-1203 |#1| |#2|)) (-758) (-963)) (T -1196)) +NIL +((-3943 ((|#3| |#3| (-696)) 28 T ELT)) (-3944 ((|#3| |#3| (-696)) 34 T ELT)) (-3928 ((|#3| |#3| |#3| (-696)) 35 T ELT))) +(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#3| |#3| (-696))) (-15 -3943 (|#3| |#3| (-696))) (-15 -3928 (|#3| |#3| |#3| (-696)))) (-13 (-963) (-656 (-348 (-485)))) (-758) (-1203 |#2| |#1|)) (T -1197)) +((-3928 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) +((-3933 (((-85) $) 15 T ELT)) (-3934 (((-85) $) 14 T ELT)) (-3929 (($ $) 19 T ELT) (($ $ (-696)) 21 T ELT))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#1| (-696))) (-15 -3929 (|#1| |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|))) (-1199 |#2|) (-312)) (T -1198)) +NIL +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2066 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2065 (($ $) 54 T ELT)) (-2063 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-696)) 110 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-346 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3955 (-585 $)) (|:| -2411 $)) (-585 $)) 66 T ELT)) (-1765 (($ $ (-696)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-745 (-832)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-1606 (((-3 (-585 $) #1="failed") (-585 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-585 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3932 (((-85) $) 113 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-585 $)) 61 T ELT)) (-3733 (((-346 $) $) 92 T ELT)) (-3931 (((-745 (-832))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2411 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-634 (-585 $)) (-585 $) $) 65 T ELT)) (-1608 (((-696) $) 74 T ELT)) (-2881 (((-2 (|:| -1974 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1766 (((-3 (-696) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3949 (((-745 (-832)) $) 112 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-348 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (((-634 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-318))) ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2064 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-318)) ELT) (($ $ (-696)) 108 (|has| |#1| (-318)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-348 (-485))) 86 T ELT) (($ (-348 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-1199 |#1|) (-113) (-312)) (T -1199)) +((-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3931 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) (-3930 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-696)))) (-3929 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-318)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-318))))) +(-13 (-312) (-952 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-343)) |%noBranch|) (-15 -3934 ((-85) $)) (-15 -3933 ((-85) $)) (-15 -3932 ((-85) $)) (-15 -3949 ((-745 (-832)) $)) (-15 -3931 ((-745 (-832)))) (-15 -3930 ((-696))) (IF (|has| |t#1| (-318)) (PROGN (-6 (-343)) (-15 -3929 ($ $)) (-15 -3929 ($ $ (-696)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-348 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-348 (-485)) (-348 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-557 (-348 (-485))) . T) ((-557 (-485)) . T) ((-557 |#1|) . T) ((-557 $) . T) ((-554 (-774)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-343) OR (|has| |#1| (-318)) (|has| |#1| (-118))) ((-390) . T) ((-496) . T) ((-13) . T) ((-590 (-348 (-485))) . T) ((-590 (-485)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-592 (-348 (-485))) . T) ((-592 |#1|) . T) ((-592 $) . T) ((-584 (-348 (-485))) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-656 (-348 (-485))) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-665) . T) ((-834) . T) ((-952 |#1|) . T) ((-965 (-348 (-485))) . T) ((-965 |#1|) . T) ((-965 $) . T) ((-970 (-348 (-485))) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3935 (((-585 |#1|) $) 55 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3158 (((-741 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-741 |#1|) $) 76 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1200 |#1| |#2|) (-113) (-758) (-963)) (T -1200)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4))))) (-3955 (*1 *2 *1 *3) (-12 (-5 *3 (-741 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-963)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) (-3951 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-4 *4 (-146)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) +(-13 (-963) (-1195 |t#2|) (-952 (-741 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3956 ((-741 |t#1|) $)) (-15 -3942 ((-2 (|:| |k| (-741 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3955 (|t#2| $ (-741 |t#1|))) (-15 -3955 (|t#2| $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ (-741 |t#1|))) (-15 -3941 ($ $ $)) (-15 -3940 ($ $ |t#1|)) (-15 -3940 ($ $ (-741 |t#1|))) (-15 -3940 ($ $ $)) (-15 -3939 ($ (-741 |t#1|) |t#2|)) (-15 -3938 ((-85) $)) (-15 -3937 ($ $)) (-15 -3947 ($ |t#1|)) (-15 -3954 ((-85) $)) (-15 -3953 (|t#2| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3936 ($ $ $)) (-15 -3936 ($ $ (-696)))) |%noBranch|) (-15 -3959 ($ (-1 |t#2| |t#2|) $)) (-15 -3935 ((-585 |t#1|) $)) (IF (|has| |t#2| (-6 -3989)) (-6 -3989) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1195 |#2|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3935 (((-585 |#1|) $) 99 T ELT)) (-3948 (($ $ (-696)) 103 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-696)) NIL (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-741 |#1|) #1#) $) NIL T ELT) (((-3 (-805 |#1|) #1#) $) NIL T ELT)) (-3158 (((-741 |#1|) $) NIL T ELT) (((-805 |#1|) $) NIL T ELT)) (-3960 (($ $) 102 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) 90 T ELT)) (-3951 (($ $) 93 T ELT)) (-3945 (($ $ $ (-696)) 104 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-741 |#1|) |#2|) NIL T ELT) (($ (-805 |#1|) |#2|) 28 T ELT)) (-3937 (($ $) 120 T ELT)) (-3942 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-741 |#1|) $) NIL T ELT)) (-3957 (((-741 |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ |#1|) NIL T ELT) (($ $ (-741 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3943 (($ $ (-696)) 113 (|has| |#2| (-656 (-348 (-485)))) ELT)) (-1750 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-805 |#1|) $) 84 T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3944 (($ $ (-696)) 110 (|has| |#2| (-656 (-348 (-485)))) ELT)) (-3949 (((-696) $) 100 T ELT)) (-3954 (((-85) $) 85 T ELT)) (-3953 ((|#2| $) 88 T ELT)) (-3947 (((-774) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-741 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-805 |#1|)) NIL T ELT) (($ (-608 |#1| |#2|)) 47 T ELT) (((-1196 |#1| |#2|) $) 77 T ELT) (((-1205 |#1| |#2|) $) 82 T ELT)) (-3818 (((-585 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-805 |#1|)) NIL T ELT)) (-3955 ((|#2| $ (-741 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 27 T CONST)) (-2667 (((-585 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 (-608 |#1| |#2|) #1#) $) 119 T ELT)) (-3058 (((-85) $ $) 78 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-805 |#1|)) NIL T ELT))) +(((-1201 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-333 |#2| (-805 |#1|)) (-10 -8 (-15 -3947 ($ (-608 |#1| |#2|))) (-15 -3947 ((-1196 |#1| |#2|) $)) (-15 -3947 ((-1205 |#1| |#2|) $)) (-15 -3946 ((-3 (-608 |#1| |#2|) "failed") $)) (-15 -3945 ($ $ $ (-696))) (IF (|has| |#2| (-656 (-348 (-485)))) (PROGN (-15 -3944 ($ $ (-696))) (-15 -3943 ($ $ (-696)))) |%noBranch|))) (-758) (-146)) (T -1201)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *1 (-1201 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3946 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-656 (-348 (-485)))) (-4 *3 (-758)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-656 (-348 (-485)))) (-4 *3 (-758)) (-4 *4 (-146))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3935 (((-585 (-1091)) $) NIL T ELT)) (-3963 (($ (-1196 (-1091) |#1|)) NIL T ELT)) (-3948 (($ $ (-696)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-696)) NIL (|has| |#1| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ (-1091)) NIL T ELT) (($ $ (-741 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-741 (-1091)) #1#) $) NIL T ELT)) (-3158 (((-741 (-1091)) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-741 (-1091)) |#1|) NIL T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-741 (-1091))) (|:| |c| |#1|)) $) NIL T ELT)) (-3956 (((-741 (-1091)) $) NIL T ELT)) (-3957 (((-741 (-1091)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $ (-1091)) NIL T ELT) (($ $ (-741 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3964 (((-1196 (-1091) |#1|) $) NIL T ELT)) (-3949 (((-696) $) NIL T ELT)) (-3954 (((-85) $) NIL T ELT)) (-3953 ((|#1| $) NIL T ELT)) (-3947 (((-774) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-741 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT)) (-3955 ((|#1| $ (-741 (-1091))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3128 (((-696)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3962 (((-585 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) NIL T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1091) $) NIL T ELT))) +(((-1202 |#1|) (-13 (-1203 (-1091) |#1|) (-10 -8 (-15 -3964 ((-1196 (-1091) |#1|) $)) (-15 -3963 ($ (-1196 (-1091) |#1|))) (-15 -3962 ((-585 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-963)) (T -1202)) +((-3964 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-963)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-963)) (-5 *1 (-1202 *3)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) (-5 *1 (-1202 *3)) (-4 *3 (-963))))) +((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3935 (((-585 |#1|) $) 55 T ELT)) (-3948 (($ $ (-696)) 89 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-696)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-741 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-741 |#1|) "failed") $) 79 T ELT)) (-3158 (((-741 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2412 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-741 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-741 |#1|) $) 76 T ELT)) (-3957 (((-741 |#1|) $) 91 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-741 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1035) $) 12 T ELT)) (-3949 (((-696) $) 90 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-774) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-741 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-741 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-696)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-832)) 35 T ELT) (($ $ (-696)) 43 T ELT)) (* (($ (-832) $) 17 T ELT) (($ (-696) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1203 |#1| |#2|) (-113) (-758) (-963)) (T -1203)) +((-3957 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +(-13 (-1200 |t#1| |t#2|) (-10 -8 (-15 -3957 ((-741 |t#1|) $)) (-15 -3949 ((-696) $)) (-15 -3948 ($ $ (-696))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-557 (-485)) . T) ((-557 (-741 |#1|)) . T) ((-557 |#2|) . T) ((-554 (-774)) . T) ((-13) . T) ((-590 (-485)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-592 |#2|) . T) ((-592 $) . T) ((-584 |#2|) |has| |#2| (-146)) ((-656 |#2|) |has| |#2| (-146)) ((-665) . T) ((-952 (-741 |#1|)) . T) ((-965 |#2|) . T) ((-970 |#2|) . T) ((-963) . T) ((-972) . T) ((-1027) . T) ((-1062) . T) ((-1015) . T) ((-1130) . T) ((-1195 |#2|) . T) ((-1200 |#1| |#2|) . T)) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3952 (((-85) $) 37 T ELT)) (-3951 (($ $) 38 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-2422 (((-696) $) NIL T ELT)) (-2823 (((-585 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) NIL T ELT)) (-3956 ((|#2| $) 25 T ELT)) (-3957 ((|#2| $) 23 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2896 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3954 (((-85) $) 33 T ELT)) (-3953 ((|#1| $) 34 T ELT)) (-3947 (((-774) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3818 (((-585 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) NIL T ELT)) (-3955 ((|#1| $ |#2|) 29 T ELT)) (-3128 (((-696)) 14 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 11 T CONST)) (-2667 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-3950 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 53 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3958 (((-696) $) 18 T ELT))) +(((-1204 |#1| |#2|) (-13 (-963) (-1195 |#1|) (-333 |#1| |#2|) (-557 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3958 ((-696) $)) (-15 -3957 (|#2| $)) (-15 -3956 (|#2| $)) (-15 -3960 ($ $)) (-15 -3955 (|#1| $ |#2|)) (-15 -3954 ((-85) $)) (-15 -3953 (|#1| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3950 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-963) (-756)) (T -1204)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-756)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3957 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-963)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-963)))) (-3955 (*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-756)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-756)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) +((-2570 (((-85) $ $) 27 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3935 (((-585 |#1|) $) 132 T ELT)) (-3963 (($ (-1196 |#1| |#2|)) 50 T ELT)) (-3948 (($ $ (-696)) 38 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-696)) 52 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) 114 T ELT) (($ $ (-741 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3159 (((-3 (-741 |#1|) #1#) $) NIL T ELT)) (-3158 (((-741 |#1|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 122 T ELT)) (-3952 (((-85) $) 117 T ELT)) (-3951 (($ $) 118 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-741 |#1|) |#2|) 20 T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-741 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-741 |#1|) $) 123 T ELT)) (-3957 (((-741 |#1|) $) 126 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3941 (($ $ |#1|) 112 T ELT) (($ $ (-741 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3964 (((-1196 |#1| |#2|) $) 94 T ELT)) (-3949 (((-696) $) 129 T ELT)) (-3954 (((-85) $) 81 T ELT)) (-3953 ((|#2| $) 32 T ELT)) (-3947 (((-774) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-741 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3955 ((|#2| $ (-741 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3128 (((-696)) 120 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3962 (((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2668 (($) 33 T CONST)) (-3058 (((-85) $ $) 14 T ELT)) (-3838 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3840 (($ $ $) 61 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 55 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1205 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -3964 ((-1196 |#1| |#2|) $)) (-15 -3963 ($ (-1196 |#1| |#2|))) (-15 -3962 ((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-758) (-963)) (T -1205)) +((-3964 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *1 (-1205 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) (-5 *1 (-1205 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3966 (($ (-585 (-832))) 11 T ELT)) (-3965 (((-886) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3947 (((-774) $) 25 T ELT) (($ (-886)) 14 T ELT) (((-886) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT))) +(((-1206) (-13 (-1015) (-428 (-886)) (-10 -8 (-15 -3966 ($ (-585 (-832)))) (-15 -3965 ((-886) $))))) (T -1206)) +((-3966 (*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1206)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1206))))) +((-3967 (((-585 (-1070 |#1|)) (-1 (-585 (-1070 |#1|)) (-585 (-1070 |#1|))) (-485)) 16 T ELT) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 13 T ELT))) +(((-1207 |#1|) (-10 -7 (-15 -3967 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -3967 ((-585 (-1070 |#1|)) (-1 (-585 (-1070 |#1|)) (-585 (-1070 |#1|))) (-485)))) (-1130)) (T -1207)) +((-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 (-1070 *5)) (-585 (-1070 *5)))) (-5 *4 (-485)) (-5 *2 (-585 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1130))))) +((-3969 (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|))) 174 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85)) 173 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85)) 172 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-960 |#1| |#2|)) 156 T ELT)) (-3968 (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|))) 85 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85)) 84 T ELT) (((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85)) 83 T ELT)) (-3972 (((-585 (-1061 |#1| (-470 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|)) 73 T ELT)) (-3970 (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|))) 140 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85)) 139 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 138 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-960 |#1| |#2|)) 132 T ELT)) (-3971 (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|))) 145 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85)) 144 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85)) 143 T ELT) (((-585 (-585 (-939 (-348 |#1|)))) (-960 |#1| |#2|)) 142 T ELT)) (-3973 (((-585 (-705 |#1| (-775 |#3|))) (-1061 |#1| (-470 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) 111 T ELT) (((-1086 (-939 (-348 |#1|))) (-1086 |#1|)) 102 T ELT) (((-859 (-939 (-348 |#1|))) (-705 |#1| (-775 |#3|))) 109 T ELT) (((-859 (-939 (-348 |#1|))) (-859 |#1|)) 107 T ELT) (((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|))) 33 T ELT))) +(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -3968 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3968 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)) (-85))) (-15 -3968 ((-585 (-960 |#1| |#2|)) (-585 (-859 |#1|)))) (-15 -3969 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-960 |#1| |#2|))) (-15 -3969 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3969 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3969 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)) (-85))) (-15 -3969 ((-585 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3226 (-585 (-859 |#1|))))) (-585 (-859 |#1|)))) (-15 -3970 ((-585 (-585 (-939 (-348 |#1|)))) (-960 |#1| |#2|))) (-15 -3970 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85) (-85))) (-15 -3970 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3970 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3970 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)))) (-15 -3971 ((-585 (-585 (-939 (-348 |#1|)))) (-960 |#1| |#2|))) (-15 -3971 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85) (-85))) (-15 -3971 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)) (-85))) (-15 -3971 ((-585 (-585 (-939 (-348 |#1|)))) (-585 (-859 |#1|)))) (-15 -3972 ((-585 (-1061 |#1| (-470 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))) (-960 |#1| |#2|))) (-15 -3973 ((-705 |#1| (-775 |#3|)) (-705 |#1| (-775 |#2|)))) (-15 -3973 ((-859 (-939 (-348 |#1|))) (-859 |#1|))) (-15 -3973 ((-859 (-939 (-348 |#1|))) (-705 |#1| (-775 |#3|)))) (-15 -3973 ((-1086 (-939 (-348 |#1|))) (-1086 |#1|))) (-15 -3973 ((-585 (-705 |#1| (-775 |#3|))) (-1061 |#1| (-470 (-775 |#3|)) (-775 |#3|) (-705 |#1| (-775 |#3|)))))) (-13 (-757) (-258) (-120) (-935)) (-585 (-1091)) (-585 (-1091))) (T -1208)) +((-3973 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-470 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-1086 (-939 (-348 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1091))) (-5 *2 (-859 (-939 (-348 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-859 (-939 (-348 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1091))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-1061 *4 (-470 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3970 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3969 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091)))))) +((-3976 (((-3 (-1180 (-348 (-485))) #1="failed") (-1180 |#1|) |#1|) 21 T ELT)) (-3974 (((-85) (-1180 |#1|)) 12 T ELT)) (-3975 (((-3 (-1180 (-485)) #1#) (-1180 |#1|)) 16 T ELT))) +(((-1209 |#1|) (-10 -7 (-15 -3974 ((-85) (-1180 |#1|))) (-15 -3975 ((-3 (-1180 (-485)) #1="failed") (-1180 |#1|))) (-15 -3976 ((-3 (-1180 (-348 (-485))) #1#) (-1180 |#1|) |#1|))) (-13 (-963) (-582 (-485)))) (T -1209)) +((-3976 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) (-5 *2 (-1180 (-348 (-485)))) (-5 *1 (-1209 *4)))) (-3975 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) (-5 *2 (-85)) (-5 *1 (-1209 *4))))) +((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-696)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 57 T ELT)) (-2996 (($) 46 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2412 (((-85) $) 38 T ELT)) (-3446 (((-634 $) $) 36 T ELT)) (-2012 (((-832) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3447 (($) 26 T CONST)) (-2402 (($ (-832)) 47 T ELT)) (-3245 (((-1035) $) NIL T ELT)) (-3973 (((-485) $) 16 T ELT)) (-3947 (((-774) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3128 (((-696)) 10 T CONST)) (-1266 (((-85) $ $) 59 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2668 (($) 25 T CONST)) (-3058 (((-85) $ $) 31 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-832)) NIL T ELT) (($ $ (-696)) 52 T ELT)) (* (($ (-832) $) NIL T ELT) (($ (-696) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1210 |#1|) (-13 (-146) (-318) (-555 (-485)) (-1067)) (-832)) (T -1210)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2820662 2820667 2820672 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2820647 2820652 2820657 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2820632 2820637 2820642 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2820617 2820622 2820627 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2819596 2820535 2820612 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2818811 2818990 2819209 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2809970 2811839 2813773 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2809358 2809511 2809700 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2808820 2809123 2809236 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2806380 2808282 2808485 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2803144 2804797 2805368 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2800401 2802131 2802185 "XPOLYC" 2802470 XPOLYC (NIL T T) -9 NIL 2802583 NIL) (-1202 2797920 2799905 2800108 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2794168 2796779 2797167 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2789015 2790648 2790702 "XFALG" 2792847 XFALG (NIL T T) -9 NIL 2793631 NIL) (-1199 2784171 2786904 2786946 "XF" 2787564 XF (NIL T) -9 NIL 2787960 NIL) (-1198 2783889 2783999 2784166 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2783116 2783238 2783442 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2780858 2783016 2783111 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2779439 2780234 2780276 "XALG" 2780281 XALG (NIL T) -9 NIL 2780390 NIL) (-1194 2772996 2777849 2778327 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2771239 2772241 2772562 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2770838 2771110 2771179 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2770325 2770628 2770721 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2769402 2769612 2769907 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2767698 2768161 2768623 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2766587 2767172 2767214 "VSPACE" 2767350 VSPACE (NIL T) -9 NIL 2767424 NIL) (-1187 2766458 2766491 2766582 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2766301 2766355 2766423 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2763284 2764079 2764816 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2754382 2756983 2759156 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2747959 2749850 2751429 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2746443 2746838 2747244 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2745270 2745551 2745867 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2740384 2745097 2745189 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2733486 2738094 2738137 "VECTCAT" 2739125 VECTCAT (NIL T) -9 NIL 2739709 NIL) (-1178 2732765 2733091 2733481 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2732259 2732501 2732621 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2732192 2732197 2732227 "UTYPE" 2732232 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2731179 2731355 2731616 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2729030 2729538 2730062 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2718912 2724882 2724924 "UTSCAT" 2726022 UTSCAT (NIL T) -9 NIL 2726779 NIL) (-1172 2716977 2717920 2718907 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2716651 2716700 2716831 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2708362 2714847 2715326 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2702357 2705170 2705213 "URAGG" 2707283 URAGG (NIL T) -9 NIL 2708005 NIL) (-1168 2700372 2701334 2702352 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2696079 2699348 2699810 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2688508 2696003 2696074 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2677159 2684646 2684707 "UPXSCCA" 2685275 UPXSCCA (NIL T T) -9 NIL 2685507 NIL) (-1164 2676880 2676982 2677154 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2665432 2672644 2672686 "UPXSCAT" 2673326 UPXSCAT (NIL T) -9 NIL 2673934 NIL) (-1162 2664945 2665030 2665207 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2656631 2664536 2664798 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2655526 2655796 2656146 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2648229 2651714 2651768 "UPSCAT" 2652837 UPSCAT (NIL T T) -9 NIL 2653601 NIL) (-1158 2647649 2647901 2648224 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2647323 2647372 2647503 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2631453 2640407 2640449 "UPOLYC" 2642527 UPOLYC (NIL T) -9 NIL 2643747 NIL) (-1155 2625508 2628356 2631448 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2624944 2625069 2625232 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2624578 2624665 2624804 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2623391 2623658 2623962 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2622724 2622854 2623039 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2622316 2622391 2622538 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2613080 2622082 2622210 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2612442 2612579 2612784 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2611043 2611890 2612166 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2610272 2610469 2610694 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2597082 2610196 2610267 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2576934 2590169 2590230 "ULSCCAT" 2590861 ULSCCAT (NIL T T) -9 NIL 2591148 NIL) (-1143 2576269 2576555 2576929 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2564641 2571775 2571817 "ULSCAT" 2572670 ULSCAT (NIL T) -9 NIL 2573400 NIL) (-1141 2564154 2564239 2564416 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2546271 2563653 2563894 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2545305 2545998 2546112 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2546223) (-1138 2544338 2545031 2545145 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2545256) (-1137 2543371 2544064 2544178 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2544289) (-1136 2542404 2543097 2543211 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2543322) (-1135 2540411 2541632 2541662 "UFD" 2541873 UFD (NIL) -9 NIL 2541986 NIL) (-1134 2540255 2540312 2540406 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2539507 2539714 2539930 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2537727 2538180 2538645 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2537452 2537692 2537722 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2537390 2537395 2537425 "TYPE" 2537430 TYPE (NIL) -9 NIL 2537437 NIL) (-1129 2536549 2536769 2537009 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2535727 2536158 2536393 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2533881 2534454 2534993 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2532915 2533151 2533387 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2521269 2525737 2525833 "TSETCAT" 2531048 TSETCAT (NIL T T T T) -9 NIL 2532560 NIL) (-1124 2517606 2519422 2521264 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2511998 2516832 2517114 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2507335 2508348 2509277 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2506832 2506907 2507070 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2504908 2505198 2505553 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2504392 2504541 2504571 "TRIGCAT" 2504784 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2504143 2504246 2504387 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2501139 2503252 2503530 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2500245 2500941 2500971 "TRANFUN" 2501006 TRANFUN (NIL) -9 NIL 2501072 NIL) (-1115 2499709 2499960 2500240 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2499546 2499584 2499645 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2499003 2499134 2499285 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2497744 2498401 2498637 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2497556 2497593 2497665 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2495770 2496416 2496845 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2494150 2494487 2494809 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2485208 2491951 2492007 "TBAGG" 2492409 TBAGG (NIL T T) -9 NIL 2492622 NIL) (-1107 2481739 2483431 2485203 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2481216 2481341 2481486 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2480726 2481046 2481136 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2480223 2480340 2480478 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2473310 2480125 2480218 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2469063 2470358 2471603 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2468432 2468591 2468772 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2465586 2466339 2467122 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2465360 2465550 2465581 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2464314 2464999 2465125 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2465311) (-1097 2463578 2464126 2464205 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2464265) (-1096 2460401 2461560 2462260 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2458084 2458767 2459401 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2454162 2455208 2456185 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2451261 2453817 2454046 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2450857 2450944 2451066 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2447481 2448955 2449774 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2440441 2446678 2446971 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2432127 2440032 2440294 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2431406 2431545 2431762 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2431090 2431155 2431266 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2421813 2430802 2430927 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2420543 2420841 2421196 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2419948 2420026 2420217 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2402100 2419447 2419688 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2401699 2401971 2402040 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2401035 2401316 2401456 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2395637 2396896 2397849 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2395169 2395269 2395433 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2390280 2391562 2392709 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2384738 2386209 2387520 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2377653 2379717 2381508 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2370483 2377565 2377648 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2365177 2370197 2370312 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2364764 2364847 2364991 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2363915 2364116 2364351 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2363655 2363713 2363806 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2356393 2361860 2362466 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2355569 2355774 2356005 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2354814 2355185 2355332 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2354302 2354544 2354574 "STEP" 2354668 STEP (NIL) -9 NIL 2354739 NIL) (-1066 2347405 2354220 2354297 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2341620 2346203 2346246 "STAGG" 2346673 STAGG (NIL T) -9 NIL 2346847 NIL) (-1064 2339999 2340747 2341615 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2338156 2339826 2339918 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2337436 2337975 2338005 "SRING" 2338010 SRING (NIL) -9 NIL 2338030 NIL) (-1061 2330058 2335974 2336413 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2323832 2325271 2326775 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2316257 2321168 2321198 "SRAGG" 2322497 SRAGG (NIL) -9 NIL 2323101 NIL) (-1058 2315554 2315874 2316252 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2309609 2314876 2315299 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2303822 2306991 2307713 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2300251 2301070 2301707 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2299226 2299531 2299561 "SPFCAT" 2300005 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2298163 2298415 2298679 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2288921 2291195 2291225 "SPADXPT" 2295862 SPADXPT (NIL) -9 NIL 2297986 NIL) (-1051 2288723 2288769 2288838 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2286379 2288687 2288718 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2278053 2280142 2280184 "SPACEC" 2284499 SPACEC (NIL T) -9 NIL 2286304 NIL) (-1048 2275882 2278000 2278048 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2274815 2275004 2275293 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2273219 2273552 2273963 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2272484 2272718 2272979 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2268664 2269624 2270619 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2265022 2265721 2266450 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2258808 2264362 2264458 "SNTSCAT" 2264463 SNTSCAT (NIL T T T T) -9 NIL 2264533 NIL) (-1041 2252629 2257449 2257839 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2246401 2252548 2252624 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2244833 2245164 2245562 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2236438 2241417 2241519 "SMATCAT" 2242862 SMATCAT (NIL NIL T T T) -9 NIL 2243410 NIL) (-1037 2234279 2235263 2236433 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2231871 2233485 2233528 "SKAGG" 2233789 SKAGG (NIL T) -9 NIL 2233923 NIL) (-1035 2227917 2231691 2231802 "SINT" NIL SINT (NIL) -8 NIL NIL 2231843) (-1034 2227727 2227771 2227837 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1033 2226802 2227034 2227302 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1032 2225806 2225968 2226244 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1031 2225152 2225492 2225615 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1030 2224498 2224805 2224945 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1029 2222609 2223101 2223607 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1028 2216049 2222528 2222604 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1027 2215552 2215789 2215819 "SGROUP" 2215912 SGROUP (NIL) -9 NIL 2215974 NIL) (-1026 2215442 2215474 2215547 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1025 2215080 2215120 2215161 "SGPOPC" 2215166 SGPOPC (NIL T) -9 NIL 2215367 NIL) (-1024 2214614 2214891 2214997 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1023 2212037 2212806 2213528 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1022 2205922 2211476 2211572 "SFRTCAT" 2211577 SFRTCAT (NIL T T T T) -9 NIL 2211615 NIL) (-1021 2200314 2201427 2202554 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1020 2194490 2195651 2196815 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1019 2193462 2194364 2194485 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1018 2189070 2189965 2190060 "SEXCAT" 2192673 SEXCAT (NIL T T T T T) -9 NIL 2193224 NIL) (-1017 2188043 2188997 2189065 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1016 2186434 2187019 2187321 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1015 2185957 2186142 2186172 "SETCAT" 2186289 SETCAT (NIL) -9 NIL 2186373 NIL) (-1014 2185789 2185853 2185952 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1013 2182012 2184243 2184286 "SETAGG" 2185154 SETAGG (NIL T) -9 NIL 2185492 NIL) (-1012 2181618 2181770 2182007 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1011 2178572 2181565 2181613 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1010 2178038 2178348 2178448 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1009 2177165 2177531 2177592 "SEGXCAT" 2177878 SEGXCAT (NIL T T) -9 NIL 2177998 NIL) (-1008 2176090 2176358 2176401 "SEGCAT" 2176923 SEGCAT (NIL T) -9 NIL 2177144 NIL) (-1007 2175770 2175835 2175948 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1006 2174836 2175306 2175514 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1005 2174414 2174693 2174769 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1004 2173779 2173915 2174119 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1003 2172845 2173592 2173774 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1002 2172098 2172793 2172840 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1001 2163583 2171965 2172093 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1000 2162437 2162727 2163046 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-999 2161743 2161955 2162143 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-998 2161093 2161250 2161426 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-997 2160666 2160897 2160925 "SASTCAT" 2160930 SASTCAT (NIL) -9 NIL 2160943 NIL) (-996 2160133 2160558 2160632 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-995 2159736 2159777 2159948 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-994 2159367 2159408 2159565 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-993 2152448 2159284 2159362 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-992 2151098 2151427 2151823 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-991 2149859 2150220 2150520 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-990 2149483 2149704 2149785 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-989 2146943 2147577 2148030 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-988 2146782 2146815 2146883 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-987 2146273 2146576 2146667 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-986 2141901 2142769 2143680 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-985 2130720 2136274 2136368 "RSETCAT" 2140424 RSETCAT (NIL T T T T) -9 NIL 2141512 NIL) (-984 2129258 2129900 2130715 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-983 2123032 2124477 2125984 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-982 2120914 2121471 2121543 "RRCC" 2122616 RRCC (NIL T T) -9 NIL 2122957 NIL) (-981 2120439 2120638 2120909 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-980 2119909 2120219 2120317 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-979 2092461 2103174 2103238 "RPOLCAT" 2113712 RPOLCAT (NIL T T T) -9 NIL 2116857 NIL) (-978 2086560 2089383 2092456 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-977 2082727 2086308 2086446 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-976 2081055 2081794 2082050 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-975 2076698 2079510 2079538 "RNS" 2079800 RNS (NIL) -9 NIL 2080052 NIL) (-974 2075601 2076088 2076625 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-973 2074719 2075120 2075320 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-972 2073857 2074419 2074447 "RNG" 2074507 RNG (NIL) -9 NIL 2074561 NIL) (-971 2073746 2073780 2073852 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-970 2073008 2073513 2073553 "RMODULE" 2073558 RMODULE (NIL T) -9 NIL 2073584 NIL) (-969 2071947 2072053 2072383 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-968 2068793 2071537 2071830 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-967 2061442 2063934 2064046 "RMATCAT" 2067351 RMATCAT (NIL NIL NIL T T T) -9 NIL 2068328 NIL) (-966 2060959 2061138 2061437 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-965 2060527 2060738 2060779 "RLINSET" 2060840 RLINSET (NIL T) -9 NIL 2060884 NIL) (-964 2060172 2060253 2060379 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-963 2059018 2059749 2059777 "RING" 2059832 RING (NIL) -9 NIL 2059924 NIL) (-962 2058863 2058919 2059013 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-961 2057917 2058184 2058440 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-960 2048904 2057545 2057746 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-959 2048129 2048640 2048679 "RGBCSPC" 2048736 RGBCSPC (NIL T) -9 NIL 2048787 NIL) (-958 2047163 2047649 2047688 "RGBCMDL" 2047916 RGBCMDL (NIL T) -9 NIL 2048030 NIL) (-957 2046875 2046944 2047045 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-956 2046638 2046679 2046774 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-955 2045062 2045492 2045872 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-954 2042649 2043317 2043985 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-953 2042199 2042297 2042457 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-952 2041821 2041919 2041960 "RETRACT" 2042091 RETRACT (NIL T) -9 NIL 2042178 NIL) (-951 2041701 2041732 2041816 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-950 2041303 2041575 2041642 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-949 2039783 2040674 2040871 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-948 2039474 2039535 2039631 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-947 2039217 2039258 2039363 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-946 2038952 2038993 2039102 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-945 2034023 2035474 2036689 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-944 2031122 2031880 2032688 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-943 2029091 2029713 2030313 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-942 2021726 2027642 2028078 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-941 2021038 2021318 2021467 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-940 2020523 2020638 2020803 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-939 2016116 2019926 2020147 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-938 2015348 2015547 2015760 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-937 2012638 2013476 2014358 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-936 2009220 2010256 2011315 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-935 2009056 2009109 2009137 "REAL" 2009142 REAL (NIL) -9 NIL 2009177 NIL) (-934 2008546 2008850 2008941 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-933 2008026 2008104 2008309 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-932 2007259 2007451 2007662 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-931 2006147 2006444 2006811 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-930 2004414 2004884 2005417 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-929 2003336 2003613 2004000 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-928 2002163 2002472 2002891 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-927 1995511 1999023 1999051 "RCFIELD" 2000328 RCFIELD (NIL) -9 NIL 2001058 NIL) (-926 1994129 1994741 1995438 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-925 1990329 1992221 1992262 "RCAGG" 1993329 RCAGG (NIL T) -9 NIL 1993790 NIL) (-924 1990056 1990166 1990324 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-923 1989501 1989630 1989791 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-922 1989118 1989197 1989316 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-921 1988533 1988683 1988833 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-920 1988315 1988365 1988436 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-919 1980757 1987433 1987741 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-918 1970459 1980624 1980752 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-917 1970093 1970186 1970214 "RADCAT" 1970371 RADCAT (NIL) -9 NIL NIL NIL) (-916 1969931 1969991 1970088 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-915 1968031 1969762 1969851 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-914 1967712 1967761 1967888 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-913 1959999 1964083 1964123 "QUATCAT" 1964901 QUATCAT (NIL T) -9 NIL 1965665 NIL) (-912 1957249 1958529 1959905 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-911 1953089 1957199 1957244 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-910 1950476 1952143 1952184 "QUAGG" 1952559 QUAGG (NIL T) -9 NIL 1952733 NIL) (-909 1950078 1950350 1950417 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-908 1949084 1949714 1949877 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-907 1948765 1948814 1948941 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-906 1938390 1944559 1944599 "QFCAT" 1945257 QFCAT (NIL T) -9 NIL 1946250 NIL) (-905 1935274 1936713 1938296 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-904 1934820 1934954 1935084 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-903 1929016 1930177 1931339 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-902 1928435 1928615 1928847 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-901 1926257 1926785 1927208 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-900 1925156 1925398 1925715 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-899 1923517 1923715 1924068 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-898 1919273 1920489 1920530 "PTRANFN" 1922414 PTRANFN (NIL T) -9 NIL NIL NIL) (-897 1917920 1918265 1918586 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-896 1917613 1917676 1917783 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-895 1911686 1916409 1916449 "PTCAT" 1916741 PTCAT (NIL T) -9 NIL 1916894 NIL) (-894 1911379 1911420 1911544 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-893 1910258 1910574 1910908 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-892 1899137 1901698 1904007 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-891 1892044 1894940 1895034 "PSETCAT" 1898008 PSETCAT (NIL T T T T) -9 NIL 1898815 NIL) (-890 1890494 1891228 1892039 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-889 1889813 1890008 1890036 "PSCURVE" 1890304 PSCURVE (NIL) -9 NIL 1890471 NIL) (-888 1885415 1887235 1887299 "PSCAT" 1888134 PSCAT (NIL T T T) -9 NIL 1888373 NIL) (-887 1884729 1885011 1885410 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-886 1883126 1884041 1884304 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-885 1882617 1882920 1883011 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-884 1873637 1876059 1878247 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-883 1871380 1872957 1872997 "PRQAGG" 1873180 PRQAGG (NIL T) -9 NIL 1873281 NIL) (-882 1870553 1870999 1871027 "PROPLOG" 1871166 PROPLOG (NIL) -9 NIL 1871280 NIL) (-881 1870228 1870291 1870414 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-880 1869664 1869803 1869975 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-879 1867912 1868675 1868972 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-878 1867464 1867596 1867724 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-877 1861905 1866404 1867224 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-876 1861734 1861772 1861831 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-875 1861173 1861313 1861464 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-874 1859641 1860060 1860526 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-873 1859358 1859419 1859447 "PRIMCAT" 1859571 PRIMCAT (NIL) -9 NIL NIL NIL) (-872 1858529 1858725 1858953 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-871 1854407 1858479 1858524 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-870 1854106 1854168 1854279 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-869 1851242 1853755 1853988 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-868 1850693 1850850 1850878 "PPCURVE" 1851083 PPCURVE (NIL) -9 NIL 1851219 NIL) (-867 1850306 1850551 1850634 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-866 1848062 1848483 1849075 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-865 1847505 1847569 1847802 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-864 1844225 1844711 1845322 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-863 1829816 1835945 1836009 "POLYCAT" 1839494 POLYCAT (NIL T T T) -9 NIL 1841371 NIL) (-862 1825326 1827473 1829811 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-861 1824983 1825057 1825176 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-860 1824676 1824739 1824846 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-859 1818039 1824409 1824568 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-858 1816926 1817189 1817465 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-857 1815530 1815843 1816173 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-856 1810692 1815480 1815525 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-855 1809180 1809591 1809966 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-854 1807937 1808246 1808642 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-853 1807608 1807692 1807809 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-852 1807187 1807262 1807436 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-851 1806673 1806769 1806929 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-850 1806145 1806265 1806419 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-849 1805040 1805258 1805635 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-848 1804651 1804736 1804888 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-847 1804202 1804284 1804465 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-846 1803894 1803975 1804088 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-845 1803407 1803482 1803690 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-844 1802755 1802883 1803085 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-843 1802117 1802251 1802414 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-842 1801421 1801603 1801784 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-841 1801144 1801218 1801312 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-840 1797712 1798901 1799817 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-839 1796796 1796997 1797232 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-838 1792361 1793745 1794887 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-837 1772282 1777169 1782016 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-836 1772022 1772075 1772178 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-835 1771463 1771597 1771777 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-834 1769472 1770693 1770721 "PID" 1770918 PID (NIL) -9 NIL 1771045 NIL) (-833 1769260 1769303 1769378 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-832 1768447 1769107 1769194 "PI" NIL PI (NIL) -8 NIL NIL 1769234) (-831 1767899 1768050 1768226 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-830 1764227 1765185 1766090 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-829 1762591 1762880 1763246 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-828 1762033 1762148 1762309 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-827 1758574 1760902 1761255 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-826 1757180 1757460 1757785 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-825 1755945 1756199 1756547 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-824 1754655 1754882 1755234 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-823 1751665 1753225 1753253 "PFECAT" 1753846 PFECAT (NIL) -9 NIL 1754223 NIL) (-822 1751288 1751453 1751660 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-821 1750112 1750394 1750695 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-820 1748294 1748681 1749111 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-819 1744264 1748220 1748289 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-818 1740167 1741314 1742181 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-817 1738099 1739188 1739229 "PERMCAT" 1739628 PERMCAT (NIL T) -9 NIL 1739925 NIL) (-816 1737795 1737842 1737965 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-815 1734244 1735925 1736570 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-814 1731709 1733999 1734120 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-813 1730578 1730841 1730882 "PDSPC" 1731415 PDSPC (NIL T) -9 NIL 1731660 NIL) (-812 1729945 1730211 1730573 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-811 1728580 1729573 1729614 "PDRING" 1729619 PDRING (NIL T) -9 NIL 1729646 NIL) (-810 1727290 1728079 1728132 "PDMOD" 1728137 PDMOD (NIL T T) -9 NIL 1728240 NIL) (-809 1726383 1726595 1726844 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-808 1725988 1726055 1726109 "PDDOM" 1726274 PDDOM (NIL T T) -9 NIL 1726354 NIL) (-807 1725840 1725876 1725983 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-806 1725626 1725665 1725754 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-805 1723943 1724697 1724996 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-804 1723632 1723695 1723804 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-803 1721770 1722200 1722651 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-802 1715390 1717219 1718511 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-801 1715021 1715094 1715226 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-800 1712723 1713403 1713884 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-799 1710927 1711355 1711758 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-798 1710373 1710621 1710662 "PATMAB" 1710769 PATMAB (NIL T) -9 NIL 1710852 NIL) (-797 1709020 1709424 1709681 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-796 1708558 1708689 1708730 "PATAB" 1708735 PATAB (NIL T) -9 NIL 1708907 NIL) (-795 1707101 1707538 1707961 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-794 1706779 1706854 1706956 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-793 1706468 1706531 1706640 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-792 1706273 1706319 1706386 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-791 1705951 1706026 1706128 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-790 1705640 1705703 1705812 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-789 1705331 1705401 1705498 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-788 1705020 1705083 1705192 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-787 1704181 1704560 1704739 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-786 1703788 1703886 1704005 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-785 1702756 1703181 1703400 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-784 1701421 1702075 1702435 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-783 1694511 1700825 1701019 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-782 1686932 1694009 1694193 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-781 1683657 1685572 1685612 "PADICCT" 1686193 PADICCT (NIL NIL) -9 NIL 1686475 NIL) (-780 1681647 1683607 1683652 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-779 1680809 1681019 1681285 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-778 1680151 1680294 1680498 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-777 1678532 1679559 1679837 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-776 1678056 1678315 1678412 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-775 1677115 1677793 1677965 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-774 1667537 1670406 1672605 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-773 1666929 1667243 1667369 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-772 1666206 1666401 1666429 "OUTBCON" 1666747 OUTBCON (NIL) -9 NIL 1666913 NIL) (-771 1665914 1666044 1666201 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-770 1665295 1665440 1665601 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-769 1664666 1665093 1665182 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-768 1664081 1664496 1664524 "OSGROUP" 1664529 OSGROUP (NIL) -9 NIL 1664551 NIL) (-767 1663045 1663306 1663591 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-766 1660314 1662920 1663040 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-765 1657455 1660065 1660191 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-764 1655473 1656001 1656561 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-763 1648815 1651355 1651395 "OREPCAT" 1653716 OREPCAT (NIL T) -9 NIL 1654818 NIL) (-762 1646841 1647775 1648810 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-761 1646038 1646309 1646337 "ORDTYPE" 1646642 ORDTYPE (NIL) -9 NIL 1646800 NIL) (-760 1645572 1645783 1646033 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-759 1645034 1645410 1645567 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-758 1644528 1644891 1644919 "ORDSET" 1644924 ORDSET (NIL) -9 NIL 1644946 NIL) (-757 1643106 1644128 1644156 "ORDRING" 1644161 ORDRING (NIL) -9 NIL 1644189 NIL) (-756 1642354 1642911 1642939 "ORDMON" 1642944 ORDMON (NIL) -9 NIL 1642965 NIL) (-755 1641658 1641820 1642012 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-754 1640869 1641377 1641405 "ORDFIN" 1641470 ORDFIN (NIL) -9 NIL 1641544 NIL) (-753 1640263 1640402 1640588 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-752 1636938 1639231 1639637 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-751 1636345 1636700 1636805 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-750 1636153 1636198 1636264 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-749 1635454 1635730 1635771 "OPERCAT" 1635982 OPERCAT (NIL T) -9 NIL 1636078 NIL) (-748 1635266 1635333 1635449 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-747 1632632 1634068 1634564 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-746 1632053 1632180 1632354 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-745 1628954 1631192 1631558 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-744 1625585 1628384 1628424 "OMSAGG" 1628485 OMSAGG (NIL T) -9 NIL 1628549 NIL) (-743 1623997 1625256 1625424 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-742 1622206 1623447 1623475 "OINTDOM" 1623480 OINTDOM (NIL) -9 NIL 1623501 NIL) (-741 1619636 1621208 1621537 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-740 1618890 1619586 1619631 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-739 1616092 1618731 1618885 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-738 1607629 1615963 1616087 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-737 1601040 1607520 1607624 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-736 1600012 1600249 1600522 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-735 1597646 1598316 1599020 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-734 1593423 1594383 1595406 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-733 1592931 1593019 1593213 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-732 1590380 1590962 1591635 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-731 1587775 1588283 1588879 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-730 1584772 1585311 1585957 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-729 1584127 1584235 1584493 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-728 1583285 1583410 1583631 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-727 1579569 1580365 1581278 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-726 1579009 1579104 1579326 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-725 1578690 1578739 1578866 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-724 1575293 1578489 1578608 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-723 1574453 1575075 1575103 "OCAMON" 1575108 OCAMON (NIL) -9 NIL 1575129 NIL) (-722 1568665 1571479 1571519 "OC" 1572614 OC (NIL T) -9 NIL 1573470 NIL) (-721 1566665 1567591 1568571 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-720 1566081 1566499 1566527 "OASGP" 1566532 OASGP (NIL) -9 NIL 1566552 NIL) (-719 1565144 1565793 1565821 "OAMONS" 1565861 OAMONS (NIL) -9 NIL 1565904 NIL) (-718 1564289 1564870 1564898 "OAMON" 1564955 OAMON (NIL) -9 NIL 1565006 NIL) (-717 1564185 1564217 1564284 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-716 1562936 1563710 1563738 "OAGROUP" 1563884 OAGROUP (NIL) -9 NIL 1563976 NIL) (-715 1562666 1562784 1562931 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-714 1562406 1562462 1562550 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-713 1557468 1559031 1560558 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-712 1554163 1555197 1556232 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-711 1553273 1553506 1553724 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-710 1542134 1545162 1547610 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-709 1536021 1541575 1541669 "NTSCAT" 1541674 NTSCAT (NIL T T T T) -9 NIL 1541712 NIL) (-708 1535362 1535541 1535734 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-707 1535055 1535118 1535225 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-706 1522722 1532675 1533485 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-705 1511731 1522587 1522717 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-704 1510451 1510776 1511133 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-703 1509287 1509551 1509909 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-702 1508454 1508587 1508803 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-701 1506772 1507091 1507497 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-700 1506485 1506519 1506643 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-699 1506304 1506339 1506408 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-698 1506080 1506270 1506299 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-697 1505644 1505711 1505888 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-696 1503930 1505007 1505262 "NNI" NIL NNI (NIL) -8 NIL NIL 1505609) (-695 1502658 1502995 1503359 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-694 1501635 1501887 1502189 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-693 1500722 1501287 1501328 "NETCLT" 1501499 NETCLT (NIL T) -9 NIL 1501580 NIL) (-692 1499626 1499893 1500174 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-691 1499425 1499468 1499543 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-690 1497956 1498344 1498764 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-689 1496589 1497555 1497583 "NASRING" 1497693 NASRING (NIL) -9 NIL 1497773 NIL) (-688 1496434 1496490 1496584 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-687 1495363 1496041 1496069 "NARNG" 1496186 NARNG (NIL) -9 NIL 1496277 NIL) (-686 1495139 1495224 1495358 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-685 1493905 1494659 1494699 "NAALG" 1494778 NAALG (NIL T) -9 NIL 1494839 NIL) (-684 1493775 1493810 1493900 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-683 1488754 1489939 1491125 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-682 1488149 1488236 1488420 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-681 1480159 1484653 1484705 "MTSCAT" 1485765 MTSCAT (NIL T T) -9 NIL 1486279 NIL) (-680 1479925 1479985 1480077 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-679 1479751 1479790 1479850 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-678 1476613 1479302 1479343 "MSETAGG" 1479348 MSETAGG (NIL T) -9 NIL 1479382 NIL) (-677 1472750 1475659 1475977 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-676 1469024 1470847 1471587 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-675 1468661 1468734 1468863 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-674 1468314 1468355 1468499 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-673 1466179 1466516 1466947 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-672 1459577 1466078 1466174 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-671 1459102 1459143 1459351 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-670 1458661 1458710 1458893 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-669 1457935 1458028 1458247 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1456552 1456913 1457303 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-667 1456073 1456140 1456179 "MONOPC" 1456239 MONOPC (NIL T) -9 NIL 1456458 NIL) (-666 1455524 1455860 1455988 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-665 1454666 1455045 1455073 "MONOID" 1455291 MONOID (NIL) -9 NIL 1455435 NIL) (-664 1454325 1454475 1454661 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-663 1443263 1450133 1450192 "MONOGEN" 1450866 MONOGEN (NIL T T) -9 NIL 1451322 NIL) (-662 1441275 1442161 1443144 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-661 1439989 1440533 1440561 "MONADWU" 1440952 MONADWU (NIL) -9 NIL 1441187 NIL) (-660 1439537 1439737 1439984 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-659 1438814 1439115 1439143 "MONAD" 1439350 MONAD (NIL) -9 NIL 1439462 NIL) (-658 1438581 1438677 1438809 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-657 1436971 1437741 1438020 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-656 1436105 1436632 1436672 "MODULE" 1436677 MODULE (NIL T) -9 NIL 1436715 NIL) (-655 1435784 1435910 1436100 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-654 1433495 1434381 1434695 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-653 1430674 1432091 1432604 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-652 1429308 1429882 1430158 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-651 1418527 1427973 1428386 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-650 1415483 1417527 1417796 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-649 1414567 1414934 1415124 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-648 1414136 1414185 1414364 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-647 1411961 1412957 1412997 "MLO" 1413414 MLO (NIL T) -9 NIL 1413654 NIL) (-646 1409842 1410369 1410964 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-645 1409310 1409406 1409560 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-644 1408980 1409056 1409179 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-643 1408192 1408378 1408606 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-642 1407685 1407801 1407957 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-641 1407057 1407171 1407356 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-640 1406084 1406357 1406634 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-639 1405517 1405605 1405776 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-638 1402675 1403554 1404433 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-637 1401342 1401690 1402043 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-636 1397999 1400466 1400507 "MDAGG" 1400764 MDAGG (NIL T) -9 NIL 1400909 NIL) (-635 1397273 1397437 1397637 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-634 1396351 1396637 1396867 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-633 1394448 1395025 1395586 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-632 1390219 1394038 1394285 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-631 1386568 1387337 1388071 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-630 1385321 1385490 1385819 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-629 1374834 1378423 1378499 "MATCAT" 1383487 MATCAT (NIL T T T) -9 NIL 1384955 NIL) (-628 1372115 1373421 1374829 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-627 1370516 1370876 1371260 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-626 1369649 1369846 1370068 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-625 1368400 1368726 1369053 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-624 1367562 1367964 1368140 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-623 1367231 1367295 1367418 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-622 1366879 1366952 1367066 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-621 1366414 1366529 1366671 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-620 1364623 1365391 1365692 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-619 1364117 1364419 1364509 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-618 1357626 1362432 1362473 "LZSTAGG" 1363250 LZSTAGG (NIL T) -9 NIL 1363540 NIL) (-617 1354745 1356179 1357621 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-616 1352132 1353098 1353581 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-615 1351713 1351992 1352066 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-614 1343877 1351574 1351708 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-613 1343240 1343385 1343613 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-612 1340724 1341422 1342134 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-611 1338836 1339159 1339607 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-610 1332005 1337923 1337964 "LSAGG" 1338026 LSAGG (NIL T) -9 NIL 1338104 NIL) (-609 1329699 1330798 1332000 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-608 1327179 1329048 1329297 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-607 1326846 1326937 1327060 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-606 1326517 1326596 1326624 "LOGIC" 1326735 LOGIC (NIL) -9 NIL 1326817 NIL) (-605 1326412 1326441 1326512 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-604 1325731 1325889 1326082 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-603 1324516 1324765 1325116 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-602 1320338 1323137 1323177 "LODOCAT" 1323609 LODOCAT (NIL T) -9 NIL 1323820 NIL) (-601 1320131 1320207 1320333 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-600 1317131 1320008 1320126 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-599 1314229 1317081 1317126 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-598 1311316 1314159 1314224 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-597 1310369 1310544 1310846 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-596 1308501 1309631 1309884 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-595 1303596 1306660 1306701 "LNAGG" 1307563 LNAGG (NIL T) -9 NIL 1307998 NIL) (-594 1302983 1303250 1303591 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-593 1299555 1300496 1301133 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-592 1298817 1299322 1299362 "LMODULE" 1299367 LMODULE (NIL T) -9 NIL 1299393 NIL) (-591 1295996 1298554 1298676 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-590 1295564 1295775 1295816 "LLINSET" 1295877 LLINSET (NIL T) -9 NIL 1295921 NIL) (-589 1295240 1295500 1295559 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-588 1294839 1294919 1295058 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-587 1293290 1293638 1294037 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-586 1292461 1292657 1292885 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-585 1285507 1291717 1291971 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-584 1285084 1285317 1285358 "LINSET" 1285363 LINSET (NIL T) -9 NIL 1285396 NIL) (-583 1283985 1284707 1284874 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-582 1282251 1283006 1283046 "LINEXP" 1283532 LINEXP (NIL T) -9 NIL 1283805 NIL) (-581 1280873 1281860 1282041 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-580 1279700 1279972 1280274 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-579 1278913 1279502 1279612 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-578 1276463 1277185 1277935 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-577 1275093 1275390 1275781 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-576 1273886 1274488 1274528 "LIECAT" 1274668 LIECAT (NIL T) -9 NIL 1274819 NIL) (-575 1273760 1273793 1273881 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-574 1268016 1273450 1273678 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-573 1260365 1267692 1267848 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-572 1256817 1257766 1258701 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-571 1255441 1256349 1256377 "LFCAT" 1256584 LFCAT (NIL) -9 NIL 1256723 NIL) (-570 1253680 1254010 1254355 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-569 1251197 1251862 1252543 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-568 1248209 1249187 1249690 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-567 1247700 1248003 1248094 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-566 1246407 1246731 1247131 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-565 1245673 1245758 1245984 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-564 1240676 1244241 1244777 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-563 1240301 1240351 1240511 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-562 1239072 1239845 1239885 "LALG" 1239946 LALG (NIL T) -9 NIL 1240004 NIL) (-561 1238855 1238932 1239067 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-560 1236708 1238123 1238374 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-559 1236537 1236567 1236608 "KVTFROM" 1236670 KVTFROM (NIL T) -9 NIL NIL NIL) (-558 1235353 1236068 1236257 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-557 1235182 1235212 1235253 "KRCFROM" 1235315 KRCFROM (NIL T) -9 NIL NIL NIL) (-556 1234284 1234481 1234776 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-555 1234113 1234143 1234184 "KONVERT" 1234246 KONVERT (NIL T) -9 NIL NIL NIL) (-554 1233942 1233972 1234013 "KOERCE" 1234075 KOERCE (NIL T) -9 NIL NIL NIL) (-553 1233512 1233605 1233737 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-552 1231565 1232459 1232831 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-551 1224742 1229757 1229811 "KDAGG" 1230187 KDAGG (NIL T T) -9 NIL 1230394 NIL) (-550 1224390 1224532 1224737 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-549 1217220 1224171 1224328 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-548 1216870 1217152 1217215 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-547 1215840 1216339 1216588 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-546 1214966 1215415 1215620 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-545 1213830 1214322 1214622 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-544 1213112 1213511 1213672 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-543 1212822 1213058 1213107 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-542 1207077 1212512 1212740 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-541 1206495 1206828 1206948 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-540 1202657 1204672 1204726 "IXAGG" 1205653 IXAGG (NIL T T) -9 NIL 1206110 NIL) (-539 1201863 1202234 1202652 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-538 1197117 1201799 1201858 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-537 1196084 1196359 1196622 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1194746 1194953 1195246 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1193697 1193919 1194202 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1193372 1193435 1193558 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1192634 1193006 1193180 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1190610 1191910 1192184 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1180158 1185927 1187084 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1179403 1179555 1179791 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1178894 1179197 1179288 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1178187 1178278 1178491 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1177319 1177544 1177784 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1175732 1176113 1176541 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1175517 1175561 1175637 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1174367 1174664 1174959 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1173640 1173991 1174142 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1172843 1172974 1173187 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1170998 1171495 1172039 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1168079 1169347 1170036 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1167904 1167944 1168004 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1163902 1167830 1167899 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1161905 1163841 1163897 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1161276 1161575 1161705 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1160729 1161017 1161149 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1159810 1160435 1160561 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1159220 1159714 1159742 "IOBCON" 1159747 IOBCON (NIL) -9 NIL 1159768 NIL) (-512 1158791 1158855 1159037 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1150835 1153206 1155531 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1147946 1148729 1149593 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1147623 1147720 1147837 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1145065 1147559 1147618 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1143177 1143706 1144273 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1142679 1142793 1142933 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1141063 1141469 1141931 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1138842 1139436 1140047 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1136215 1136825 1137545 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1135619 1135777 1135985 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1135138 1135224 1135412 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1133343 1133864 1134321 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1126425 1128078 1129807 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1125791 1125953 1126126 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1123664 1124128 1124672 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1121790 1122740 1122768 "INTDOM" 1123067 INTDOM (NIL) -9 NIL 1123272 NIL) (-495 1121343 1121545 1121785 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1117150 1119622 1119676 "INTCAT" 1120472 INTCAT (NIL T) -9 NIL 1120788 NIL) (-493 1116715 1116835 1116962 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1115555 1115727 1116033 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1115128 1115224 1115381 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1108168 1114983 1115123 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1107466 1108021 1108086 "INT8" NIL INT8 (NIL) -8 NIL NIL 1108120) (-488 1106763 1107318 1107383 "INT64" NIL INT64 (NIL) -8 NIL NIL 1107417) (-487 1106060 1106615 1106680 "INT32" NIL INT32 (NIL) -8 NIL NIL 1106714) (-486 1105357 1105912 1105977 "INT16" NIL INT16 (NIL) -8 NIL NIL 1106011) (-485 1101820 1105276 1105352 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1095877 1099360 1099388 "INS" 1100318 INS (NIL) -9 NIL 1100977 NIL) (-483 1093939 1094857 1095804 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1092998 1093221 1093496 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1092212 1092353 1092550 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1091202 1091343 1091580 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1090354 1090518 1090778 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1089634 1089749 1089937 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1088373 1088642 1088966 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1087653 1087794 1087977 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1087316 1087388 1087486 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1084394 1085880 1086403 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1083993 1084100 1084214 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1083149 1083794 1083895 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1081999 1082267 1082588 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1080989 1081929 1081994 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1080614 1080694 1080811 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1079528 1080073 1080277 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1075623 1076678 1077621 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1074477 1074800 1074828 "INBCON" 1075341 INBCON (NIL) -9 NIL 1075607 NIL) (-465 1073931 1074196 1074472 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1073425 1073727 1073817 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1072882 1073191 1073296 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1068982 1072774 1072877 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-461 1067822 1067961 1068276 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-460 1066246 1066513 1066850 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-459 1064062 1066128 1066241 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-458 1058905 1063993 1064057 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-457 1058285 1058619 1058734 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-456 1053092 1057723 1057909 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-455 1052122 1053014 1053087 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-454 1051694 1051771 1051825 "IEVALAB" 1052032 IEVALAB (NIL T T) -9 NIL NIL NIL) (-453 1051449 1051529 1051689 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-452 1050834 1051061 1051218 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-451 1049827 1050754 1050829 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-450 1048889 1049747 1049822 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-449 1047971 1048618 1048755 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-448 1046334 1046905 1046956 "IDPC" 1047462 IDPC (NIL T T) -9 NIL 1047775 NIL) (-447 1045621 1046256 1046329 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-446 1044791 1045543 1045616 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-445 1044484 1044697 1044757 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-444 1044188 1044228 1044267 "IDEMOPC" 1044272 IDEMOPC (NIL T) -9 NIL 1044409 NIL) (-443 1041259 1042140 1043032 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-442 1034885 1036162 1037201 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-441 1034147 1034277 1034476 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-440 1033320 1033819 1033957 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-439 1031709 1032040 1032431 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-438 1027478 1031665 1031704 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-437 1024736 1025360 1026055 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-436 1022962 1023442 1023975 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-435 1020726 1022854 1022957 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-434 1016595 1020664 1020721 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-433 1010174 1015559 1016027 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-432 1009742 1009805 1009978 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-431 1009234 1009383 1009411 "HYPCAT" 1009618 HYPCAT (NIL) -9 NIL NIL NIL) (-430 1008890 1009043 1009229 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-429 1008503 1008748 1008831 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-428 1008336 1008385 1008426 "HOMOTOP" 1008431 HOMOTOP (NIL T) -9 NIL 1008464 NIL) (-427 1004904 1006278 1006319 "HOAGG" 1007294 HOAGG (NIL T) -9 NIL 1008015 NIL) (-426 1003910 1004380 1004899 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-425 997110 1003635 1003783 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-424 996045 996303 996566 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-423 994980 995910 996040 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-422 993174 994813 994901 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-421 992489 992841 992974 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-420 985943 992422 992484 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-419 979082 985679 985830 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-418 978535 978692 978855 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-417 971618 978426 978530 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-416 971109 971412 971503 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-415 968659 970896 971075 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-414 964052 968542 968654 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-413 957138 963949 964047 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-412 949075 956507 956762 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-411 948099 948608 948636 "GROUP" 948839 GROUP (NIL) -9 NIL 948973 NIL) (-410 947642 947843 948094 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-409 946314 946653 947040 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-408 945136 945493 945544 "GRMOD" 946073 GRMOD (NIL T T) -9 NIL 946239 NIL) (-407 944955 945003 945131 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-406 941078 942289 943289 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-405 939800 940124 940439 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-404 939353 939481 939622 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-403 938426 938925 938976 "GRALG" 939129 GRALG (NIL T T) -9 NIL 939219 NIL) (-402 938145 938246 938421 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-401 934862 937827 938003 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-400 934275 934338 934595 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-399 930129 931025 931550 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-398 929304 929506 929744 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-397 924307 925234 926253 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-396 924055 924112 924201 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-395 923537 923626 923791 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-394 923046 923087 923300 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-393 921847 922130 922434 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-392 915122 921537 921698 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-391 904905 909912 911016 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-390 902957 904060 904088 "GCDDOM" 904343 GCDDOM (NIL) -9 NIL 904500 NIL) (-389 902580 902737 902952 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-388 893373 895843 898231 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-387 891508 891833 892251 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-386 890449 890638 890905 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-385 889320 889527 889831 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-384 888783 888925 889073 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-383 887395 887743 888056 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-382 885940 886261 886583 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-381 883566 883922 884327 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-380 876818 878479 880057 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-379 876470 876691 876759 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-378 876094 876315 876396 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-377 874191 874874 875334 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-376 872784 873091 873483 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-375 871439 871798 872122 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-374 870742 870866 871053 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-373 869716 869982 870329 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-372 867374 867904 868386 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-371 866957 867017 867186 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-370 865257 866171 866474 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-369 864405 864539 864762 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-368 863576 863737 863964 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-367 859559 862510 862551 "FSAGG" 862921 FSAGG (NIL T) -9 NIL 863180 NIL) (-366 857913 858672 859464 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-365 855869 856165 856709 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-364 854916 855098 855398 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-363 854597 854646 854773 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-362 834753 844254 844295 "FS" 848165 FS (NIL T) -9 NIL 850443 NIL) (-361 826984 830477 834456 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-360 826518 826645 826797 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-359 821041 824199 824239 "FRNAALG" 825559 FRNAALG (NIL T) -9 NIL 826157 NIL) (-358 817782 819033 820291 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-357 817463 817512 817639 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-356 815950 816507 816801 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-355 815236 815329 815616 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-354 813070 813836 814152 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-353 812179 812622 812663 "FRETRCT" 812668 FRETRCT (NIL T) -9 NIL 812839 NIL) (-352 811552 811830 812174 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-351 808296 809816 809875 "FRAMALG" 810757 FRAMALG (NIL T T) -9 NIL 811049 NIL) (-350 806892 807443 808073 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-349 806585 806648 806755 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-348 800226 806390 806580 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-347 799919 799982 800089 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-346 792227 796798 798126 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-345 786005 789508 789536 "FPS" 790655 FPS (NIL) -9 NIL 791211 NIL) (-344 785562 785695 785859 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-343 782372 784415 784443 "FPC" 784668 FPC (NIL) -9 NIL 784810 NIL) (-342 782218 782270 782367 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-341 780995 781704 781745 "FPATMAB" 781750 FPATMAB (NIL T) -9 NIL 781902 NIL) (-340 779425 780021 780368 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-339 779000 779058 779231 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-338 777503 778398 778572 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-337 776118 776623 776651 "FNCAT" 777108 FNCAT (NIL) -9 NIL 777365 NIL) (-336 775575 776085 776113 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-335 774162 775524 775570 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-334 770750 772108 772149 "FMONCAT" 773366 FMONCAT (NIL T) -9 NIL 773970 NIL) (-333 767608 768686 768739 "FMCAT" 769920 FMCAT (NIL T T) -9 NIL 770412 NIL) (-332 766308 767431 767530 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-331 765356 766156 766303 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-330 763543 763995 764489 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-329 761478 762014 762592 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-328 754864 759815 760429 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-327 753345 754446 754486 "FLINEXP" 754491 FLINEXP (NIL T) -9 NIL 754584 NIL) (-326 752754 753013 753340 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-325 751969 752128 752349 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-324 748852 749931 749983 "FLALG" 751210 FLALG (NIL T T) -9 NIL 751677 NIL) (-323 748023 748184 748411 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-322 741432 745442 745483 "FLAGG" 746738 FLAGG (NIL T) -9 NIL 747383 NIL) (-321 740540 740944 741427 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-320 737101 738365 738424 "FINRALG" 739552 FINRALG (NIL T T) -9 NIL 740060 NIL) (-319 736492 736757 737096 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-318 735790 736086 736114 "FINITE" 736310 FINITE (NIL) -9 NIL 736417 NIL) (-317 735698 735724 735785 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-316 727659 730250 730290 "FINAALG" 733942 FINAALG (NIL T) -9 NIL 735380 NIL) (-315 723926 725171 726294 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 722478 722897 722951 "FILECAT" 723635 FILECAT (NIL T T) -9 NIL 723851 NIL) (-313 721829 722303 722406 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 719077 720955 720983 "FIELD" 721023 FIELD (NIL) -9 NIL 721103 NIL) (-311 718102 718563 719072 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 716106 717052 717398 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 715349 715530 715749 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 710619 715287 715344 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 710281 710348 710483 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 709821 709863 710072 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 706501 707378 708155 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 701785 706433 706496 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 696464 701274 701464 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 690945 695745 696003 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 685152 690396 690607 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 684175 684385 684700 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 679615 682320 682348 "FFIELDC" 682967 FFIELDC (NIL) -9 NIL 683342 NIL) (-298 678684 679124 679610 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 678299 678357 678481 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 676443 676966 677483 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 671537 676242 676343 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 666637 671326 671433 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 661303 666428 666536 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 660757 660806 661041 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 639332 650366 650452 "FFCAT" 655602 FFCAT (NIL T T T) -9 NIL 657038 NIL) (-290 635572 636798 638104 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 630415 635503 635567 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 629307 629776 629817 "FEVALAB" 629901 FEVALAB (NIL T) -9 NIL 630162 NIL) (-287 628712 628964 629302 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 625539 626450 626565 "FDIVCAT" 628132 FDIVCAT (NIL T T T T) -9 NIL 628568 NIL) (-285 625333 625365 625534 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 624640 624733 625010 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 623126 624124 624327 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 622219 622603 622805 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 621341 621830 621970 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 612928 617571 617611 "FAXF" 619412 FAXF (NIL T) -9 NIL 620102 NIL) (-279 610844 611648 612463 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 605708 610366 610540 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 600166 602589 602641 "FAMR" 603652 FAMR (NIL T T) -9 NIL 604111 NIL) (-276 599365 599730 600161 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 598386 599307 599360 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 595980 596859 596912 "FAMONC" 597853 FAMONC (NIL T T) -9 NIL 598238 NIL) (-273 594536 595838 595975 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 592616 592977 593379 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 591893 592090 592312 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 583753 591340 591539 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 581772 582342 582928 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 578674 579316 580036 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 573831 574538 575343 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 573520 573583 573692 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 558313 572569 572995 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 548840 557633 557921 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 548334 548636 548726 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 548110 548300 548329 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 547799 547867 547980 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 547316 547458 547499 "EVALAB" 547669 EVALAB (NIL T) -9 NIL 547773 NIL) (-259 546944 547090 547311 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 543987 545582 545610 "EUCDOM" 546164 EUCDOM (NIL) -9 NIL 546513 NIL) (-257 542914 543407 543982 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 542639 542695 542795 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 542327 542391 542500 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 536098 537998 538026 "ES" 540768 ES (NIL) -9 NIL 542152 NIL) (-253 532613 534145 535937 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 531961 532114 532290 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 525050 531865 531956 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524739 524802 524911 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 518366 521491 522924 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514669 515765 516858 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 513498 513848 514153 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 512383 513114 513142 "ENTIRER" 513147 ENTIRER (NIL) -9 NIL 513191 NIL) (-245 512272 512306 512378 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508905 510702 511051 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507997 508208 508262 "ELTAGG" 508642 ELTAGG (NIL T T) -9 NIL 508853 NIL) (-242 507777 507851 507992 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 507523 507558 507612 "ELTAB" 507696 ELTAB (NIL T T) -9 NIL 507748 NIL) (-240 506774 506944 507143 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 506498 506572 506600 "ELEMFUN" 506705 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 506398 506425 506493 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500944 504439 504480 "ELAGG" 505417 ELAGG (NIL T) -9 NIL 505877 NIL) (-236 499742 500280 500939 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 499160 499327 499483 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 498073 498392 498671 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 491466 493464 494291 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 485445 487441 488251 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 483259 483665 484136 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 474259 476172 477713 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 473372 473873 474022 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 472070 472744 472784 "DVARCAT" 473067 DVARCAT (NIL T) -9 NIL 473207 NIL) (-227 471489 471753 472065 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 463556 471357 471484 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461894 462685 462726 "DSEXT" 463089 DSEXT (NIL T) -9 NIL 463383 NIL) (-224 460699 461223 461889 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 460423 460488 460586 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 456574 457790 458921 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 452220 453575 454639 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450895 451256 451642 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 450581 450640 450758 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 449556 449854 450144 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 449141 449216 449366 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 441554 443666 445781 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 437071 438090 439169 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433666 435735 435776 "DQAGG" 436405 DQAGG (NIL T) -9 NIL 436678 NIL) (-213 420209 427849 427931 "DPOLCAT" 429768 DPOLCAT (NIL T T T T) -9 NIL 430311 NIL) (-212 416617 418265 420204 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 409622 416515 416612 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 402536 409451 409617 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 402129 402389 402478 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 401543 401991 402071 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 400829 401154 401305 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 393968 400565 400716 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391717 393034 393074 "DMEXT" 393079 DMEXT (NIL T) -9 NIL 393254 NIL) (-204 391373 391435 391579 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 384698 390858 391048 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 381364 383521 383562 "DLAGG" 384112 DLAGG (NIL T) -9 NIL 384341 NIL) (-201 379715 380586 380614 "DIVRING" 380706 DIVRING (NIL) -9 NIL 380789 NIL) (-200 379166 379410 379710 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 377594 378011 378417 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 376631 376852 377117 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 370105 376563 376626 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 358425 364885 364938 "DIRPCAT" 365194 DIRPCAT (NIL NIL T) -9 NIL 366067 NIL) (-195 356431 357201 358088 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 355878 356044 356230 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 352424 354764 354805 "DIOPS" 355237 DIOPS (NIL T) -9 NIL 355463 NIL) (-192 352084 352228 352419 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 351091 351837 351865 "DIOID" 351870 DIOID (NIL) -9 NIL 351892 NIL) (-190 349919 350748 350776 "DIFRING" 350781 DIFRING (NIL) -9 NIL 350802 NIL) (-189 349555 349653 349681 "DIFFSPC" 349800 DIFFSPC (NIL) -9 NIL 349875 NIL) (-188 349296 349398 349550 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348199 348824 348864 "DIFFMOD" 348869 DIFFMOD (NIL T) -9 NIL 348966 NIL) (-186 347883 347940 347981 "DIFFDOM" 348102 DIFFDOM (NIL T) -9 NIL 348170 NIL) (-185 347764 347794 347878 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 345437 346958 346998 "DIFEXT" 347003 DIFEXT (NIL T) -9 NIL 347155 NIL) (-183 342598 344938 344979 "DIAGG" 344984 DIAGG (NIL T) -9 NIL 345004 NIL) (-182 342154 342344 342593 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 337366 341344 341621 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 333824 334877 335887 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 328374 332978 333305 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326940 327232 327607 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324060 325312 325708 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 321780 323891 323980 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 321163 321308 321490 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 318481 319205 320005 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 316590 317048 317610 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 315973 316306 316420 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 309173 315698 315846 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 307093 307603 308107 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 306732 306781 306932 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 305991 306553 306644 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304015 304457 304817 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 303307 303596 303742 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 302758 302904 303056 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 300120 300913 301640 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 299559 299705 299876 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 297631 297942 298309 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 297188 297443 297544 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 296389 296772 296800 "CTORCAT" 296981 CTORCAT (NIL) -9 NIL 297093 NIL) (-159 296092 296226 296384 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 295585 295842 295950 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295001 295432 295505 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 294460 294577 294730 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 290854 291610 292365 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 290345 290648 290739 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 289564 289773 290001 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 289068 289173 289377 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 288821 288855 288961 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 285760 286522 287240 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 285279 285421 285560 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 281172 283742 284234 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281046 281073 281101 "CONDUIT" 281138 CONDUIT (NIL) -9 NIL NIL NIL) (-146 279925 280656 280684 "COMRING" 280689 COMRING (NIL) -9 NIL 280739 NIL) (-145 279090 279457 279635 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 278786 278827 278955 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 278479 278542 278649 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 267321 278429 278474 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 266782 266921 267081 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 266535 266576 266674 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 247966 260216 260256 "COMPCAT" 261257 COMPCAT (NIL T) -9 NIL 262599 NIL) (-138 240504 244017 247610 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 240263 240297 240399 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 240093 240132 240190 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 239674 239953 240027 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 239251 239492 239579 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 238446 238694 238722 "COMBOPC" 239060 COMBOPC (NIL) -9 NIL 239235 NIL) (-132 237510 237762 238004 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 234442 235126 235749 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 233322 233773 234008 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 232813 233116 233207 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 232500 232553 232678 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 231970 232280 232378 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 228490 229560 230640 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 226785 227770 228008 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 222897 224905 224946 "CLAGG" 225872 CLAGG (NIL T) -9 NIL 226405 NIL) (-123 221790 222317 222892 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 221419 221510 221650 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 219356 219863 220411 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218317 219048 219076 "CHARZ" 219081 CHARZ (NIL) -9 NIL 219095 NIL) (-119 218111 218157 218235 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 216950 217713 217741 "CHARNZ" 217802 CHARNZ (NIL) -9 NIL 217850 NIL) (-117 214428 215525 216048 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214136 214215 214243 "CFCAT" 214354 CFCAT (NIL) -9 NIL NIL NIL) (-115 213479 213608 213790 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 209468 212892 213172 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208846 209033 209210 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 208374 208793 208841 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207847 208156 208253 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 207338 207641 207732 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 206587 206747 206968 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 202687 203944 204652 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201053 202084 202335 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 200634 200913 200987 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200068 200321 200349 "CACHSET" 200481 CACHSET (NIL) -9 NIL 200559 NIL) (-104 199420 199835 199863 "CABMON" 199913 CABMON (NIL) -9 NIL 199969 NIL) (-103 198950 199214 199324 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 194173 198607 198779 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 193143 193847 193982 "BYTE" NIL BYTE (NIL) -8 NIL NIL 194145) (-100 190614 192910 193016 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 188045 190357 190476 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 185285 187489 187528 "BTCAT" 187595 BTCAT (NIL T) -9 NIL 187671 NIL) (-97 185036 185134 185280 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 180146 184267 184293 "BTAGG" 184404 BTAGG (NIL) -9 NIL 184512 NIL) (-95 179777 179938 180141 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176839 179247 179459 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 176109 176261 176439 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 172642 174815 174854 "BRAGG" 175495 BRAGG (NIL T) -9 NIL 175752 NIL) (-91 171597 172092 172637 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164131 171102 171283 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162123 164083 164126 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161856 161892 162003 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160095 160528 160976 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156061 157477 158367 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154937 155828 155950 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 154523 154680 154706 "BOOLE" 154814 BOOLE (NIL) -9 NIL 154895 NIL) (-83 154316 154397 154518 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153454 153981 154031 "BMODULE" 154036 BMODULE (NIL T T) -9 NIL 154100 NIL) (-81 149071 153311 153380 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148884 148924 148963 "BINOPC" 148968 BINOPC (NIL T) -9 NIL 149013 NIL) (-79 148426 148699 148801 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147947 148091 148229 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141153 147677 147822 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138887 140382 140421 "BGAGG" 140677 BGAGG (NIL T) -9 NIL 140814 NIL) (-75 138756 138794 138882 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 137607 137808 138093 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 134245 136765 137092 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133830 133923 133949 "BASTYPE" 134120 BASTYPE (NIL) -9 NIL 134216 NIL) (-71 133600 133696 133825 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 133115 133203 133353 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 132014 132689 132874 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131740 131745 131771 "ATTREG" 131776 ATTREG (NIL) -9 NIL NIL NIL) (-67 131345 131617 131682 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130845 130994 131020 "ATRIG" 131221 ATRIG (NIL) -9 NIL NIL NIL) (-65 130700 130753 130840 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 130270 130501 130527 "ASTCAT" 130532 ASTCAT (NIL) -9 NIL 130562 NIL) (-63 130069 130146 130265 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 128228 129902 129990 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 127035 127348 127713 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124835 126939 127030 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 124026 124217 124438 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 119613 123757 123871 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113779 115811 115886 "ARR2CAT" 118516 ARR2CAT (NIL T T T) -9 NIL 119274 NIL) (-56 112156 112926 113774 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 111524 111895 112017 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 110456 110624 110920 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 110157 110211 110329 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 109540 109686 109842 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108945 109235 109355 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 106513 107674 107997 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 106038 106298 106394 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99733 105100 105542 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 95267 96930 96980 "AMR" 97718 AMR (NIL T T) -9 NIL 98315 NIL) (-46 94621 94901 95262 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77801 94555 94616 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 74204 77477 77646 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 71214 71874 72481 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70593 70706 70890 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 67005 67630 68222 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56494 66698 66848 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55811 55965 56143 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54524 55319 55357 "ALGEBRA" 55362 ALGEBRA (NIL T) -9 NIL 55402 NIL) (-37 54310 54387 54519 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34307 51516 51568 "ALAGG" 51706 ALAGG (NIL T T) -9 NIL 51871 NIL) (-35 33807 33956 33982 "AHYP" 34183 AHYP (NIL) -9 NIL NIL NIL) (-34 33103 33284 33310 "AGG" 33591 AGG (NIL) -9 NIL 33778 NIL) (-33 32892 32979 33098 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 31031 31491 31891 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30526 30829 30918 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29896 30191 30347 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17454 26733 26771 "ACFS" 27378 ACFS (NIL T) -9 NIL 27617 NIL) (-28 16077 16687 17449 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11629 14008 14034 "ACF" 14913 ACF (NIL) -9 NIL 15325 NIL) (-26 10725 11131 11624 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10227 10467 10493 "ABELSG" 10585 ABELSG (NIL) -9 NIL 10650 NIL) (-24 10125 10156 10222 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9280 9654 9680 "ABELMON" 9905 ABELMON (NIL) -9 NIL 10038 NIL) (-22 8962 9102 9275 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8657 8683 "ABELGRP" 8755 ABELGRP (NIL) -9 NIL 8830 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 26687276..710ed06e 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,13161 +1,13162 @@ -(630951 . 3577105536) +(631062 . 3577141753) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) - (-5 *2 (-1178 (-347 (-484)))) (-5 *1 (-1207 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) + (-5 *2 (-1180 (-348 (-485)))) (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) - (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) + (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-85)) - (-5 *1 (-1207 *4))))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 (-485)))) (-5 *2 (-85)) + (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1013)) (-4 *3 (-139 *5)))) + (-12 (-4 *5 (-13 (-555 *2) (-146))) (-5 *2 (-802 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1015)) (-4 *3 (-139 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) - (-4 *4 (-1154 *3)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) + (-4 *4 (-1156 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) - (-5 *2 (-1178 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) + (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-1180 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-346 *1)) (-4 *1 (-362 *3)) (-4 *3 (-496)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-400 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-401 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) - (-4 *5 (-554 (-1089))) (-4 *4 (-718)) (-4 *5 (-757)))) + (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) + (-4 *5 (-555 (-1091))) (-4 *4 (-719)) (-4 *5 (-758)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) - (-5 *1 (-981 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) - (-5 *1 (-1058 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *5 (-584 (-1089))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *6 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *6 (-584 (-1089))) (-5 *2 (-858 (-938 (-347 *4)))) - (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-1084 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) - (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089))) - (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *5 (-584 (-1089)))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-345 (-1084 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-345 *1)) (-4 *1 (-862 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-389)) (-5 *2 (-345 *3)) - (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) - (-5 *3 (-1084 (-347 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-1158 *4 *3)) - (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3142 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *5 (-584 (-1089))) - (-5 *2 (-584 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) - (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) - (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) + (-12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1074)) + (-5 *1 (-983 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1074)) + (-5 *1 (-1060 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1096)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-774)) (-5 *3 (-485)) (-5 *1 (-1110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-485)) (-5 *1 (-1110)))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *4 (-775 *5))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1091))) (-5 *2 (-705 *4 (-775 *6))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *6 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-859 (-939 (-348 *4)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *4 (-775 *6))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *6 (-585 (-1091))) (-5 *2 (-859 (-939 (-348 *4)))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-1086 (-939 (-348 *4)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1061 *4 (-470 (-775 *6)) (-775 *6) (-705 *4 (-775 *6)))) + (-4 *4 (-13 (-757) (-258) (-120) (-935))) (-14 *6 (-585 (-1091))) + (-5 *2 (-585 (-705 *4 (-775 *6)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-585 (-1091)))))) +(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) + (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-346 (-1086 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-390)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-346 *1)) (-4 *1 (-863 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-390)) (-5 *2 (-346 *3)) + (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-390)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-346 (-1086 (-348 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) + (-5 *3 (-1086 (-348 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1135)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-346 *3)) (-5 *1 (-1160 *4 *3)) + (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1091))) + (-5 *2 (-585 (-1061 *4 (-470 (-775 *6)) (-775 *6) (-705 *4 (-775 *6))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) - (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) - (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089)))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-584 (-1089))) - (-5 *2 (-584 (-584 (-327)))) (-5 *1 (-937)) (-5 *5 (-327)))) + (-12 (-5 *3 (-585 (-859 (-485)))) (-5 *4 (-585 (-1091))) + (-5 *2 (-585 (-585 (-328)))) (-5 *1 (-938)) (-5 *5 (-328)))) ((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) - (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1091))) (-5 *2 (-585 (-585 (-939 (-348 *4))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) - (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) - (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) - (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) - (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-14 *5 (-584 (-1089))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) - (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-585 (-939 (-348 *4))))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-585 (-1091))) (-14 *6 (-585 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *4 *5)) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-14 *5 (-585 (-1091))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-585 (-1091))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) - (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) - (-14 *7 (-584 (-1089))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) + (-14 *7 (-585 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) - (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) - (-14 *7 (-584 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) - (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) - (-14 *7 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) - (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))) - (-14 *6 (-584 (-1089)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) + (-14 *7 (-585 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))) + (-14 *7 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) + (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1091))) + (-14 *6 (-585 (-1091)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) - (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) + (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) - (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-757) (-258) (-120) (-935))) (-5 *2 (-585 (-960 *5 *6))) + (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-585 (-1091))) (-14 *7 (-585 (-1091))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) - (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) - (-14 *6 (-584 (-1089)))))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-757) (-258) (-120) (-935))) + (-5 *2 (-585 (-960 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-585 (-1091))) + (-14 *6 (-585 (-1091)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) - (-4 *4 (-1128)))) + (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) + (-4 *4 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-584 (-1068 *5)) (-584 (-1068 *5)))) (-5 *4 (-484)) - (-5 *2 (-584 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1204))))) + (-12 (-5 *3 (-1 (-585 (-1070 *5)) (-585 (-1070 *5)))) (-5 *4 (-485)) + (-5 *2 (-585 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1206))))) +(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1206))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *6 (-495)) (-5 *2 (-584 (-264 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962)))) - ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) + (-12 (-5 *4 (-832)) (-4 *6 (-496)) (-5 *2 (-585 (-265 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-963)))) + ((*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496)))) ((*1 *2 *3) - (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) - (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 *5)) - (-5 *1 (-521 *4 *5)))) + (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) + (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-585 *5)) + (-5 *1 (-522 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-519 (-347 (-858 *4)))) - (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 (-264 *4))) - (-5 *1 (-525 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1063 *3)))) + (-12 (-5 *3 (-520 (-348 (-859 *4)))) + (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-585 (-265 *4))) + (-5 *1 (-526 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-757)) (-4 *2 (-1065 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) - (-4 *2 (-1063 *4)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) + (-4 *2 (-1065 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116))))) ((*1 *2 *1) - (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-758)) + (-4 *4 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-962)) (-5 *1 (-1200 *3)))) + (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-963)) (-5 *1 (-1202 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) - (-5 *1 (-1203 *3 *4))))) + (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) + (-5 *1 (-1205 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) - (-5 *1 (-1200 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) + (-5 *1 (-1202 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) - (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))) + (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) + (-5 *1 (-1205 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-696)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-832)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1027)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-332 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3954 *3) (-695))) + (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) - (-4 *2 (-862 *4 *6 (-774 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-5 *1 (-399 *3 *4 *5 *6 *7 *2)) (-4 *5 (-758)) + (-4 *2 (-863 *4 *6 (-775 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-321 *3)) - (-4 *4 (-321 *3)))) + (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-963)) (-4 *2 (-322 *3)) + (-4 *4 (-322 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *2 (-321 *3)))) + (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *2 (-322 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-659))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) - (-5 *1 (-883 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-4 *1 (-1025))) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) + (-5 *1 (-884 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1027)))) + ((*1 *1 *1 *1) (-4 *1 (-1027))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) - (-4 *2 (-862 *3 (-469 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) + (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1041 *3 *4 *2)) + (-4 *2 (-863 *3 (-470 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-856 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-665)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-665)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) + (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1091))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1089))))) - ((*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1091))))) + ((*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1015)))) ((*1 *1 *1) - (-12 (-14 *2 (-584 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3954 *2) (-695))) + (-12 (-14 *2 (-585 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) - (-2 (|:| -2399 *4) (|:| -2400 *5)))) - (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) - (-4 *7 (-862 *3 *5 (-774 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) - ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) + (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) + (-2 (|:| -2402 *4) (|:| -2403 *5)))) + (-5 *1 (-399 *2 *3 *4 *5 *6 *7)) (-4 *4 (-758)) + (-4 *7 (-863 *3 *5 (-775 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) + ((*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) ((*1 *1 *1) - (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))) - ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *2 (-963)) (-4 *3 (-665)))) + ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-585 (-1091))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) - (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) + (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-962) (-757))) - (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-963) (-758))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-585 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128)) - (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-248 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) (-4 *6 (-1130)) + (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-552 *1)) (-4 *1 (-254)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-551 *6)) (-4 *6 (-253)) - (-4 *2 (-1128)) (-5 *1 (-254 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-552 *6)) (-4 *6 (-254)) + (-4 *2 (-1130)) (-5 *1 (-255 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253)) - (-5 *1 (-255 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-552 *5)) (-4 *5 (-254)) (-4 *2 (-254)) + (-5 *1 (-256 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) - (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) - (-4 *9 (-311)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-347 *10))) - (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-290 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-348 *10))) + (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-291 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) - (-4 *7 (-1154 (-347 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-290 *8 *9 *10)) - (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) - (-4 *10 (-1154 (-347 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-348 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) + (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) + (-4 *10 (-1156 (-348 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-321 *6)) - (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-322 *6)) + (-5 *1 (-323 *5 *4 *6 *2)) (-4 *4 (-322 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-345 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-346 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-495)) (-4 *6 (-495)) - (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-346 *5)) (-4 *5 (-496)) (-4 *6 (-496)) + (-5 *2 (-346 *6)) (-5 *1 (-347 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) - (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) + (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) - (-4 *6 (-905 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-350 *6 *7) (-951 *6))) - (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1154 *10)) - (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-350 *10 *11) (-951 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-354 *5 *6 *7 *8)) (-4 *5 (-258)) + (-4 *6 (-906 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-351 *6 *7) (-952 *6))) + (-4 *9 (-258)) (-4 *10 (-906 *9)) (-4 *11 (-1156 *10)) + (-5 *2 (-354 *9 *10 *11 *12)) (-5 *1 (-355 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-351 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) - (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-359 *6)) + (-5 *1 (-357 *4 *5 *2 *6)) (-4 *4 (-359 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-361 *6)) - (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-362 *6)) + (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-366 *6)) - (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1128)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-367 *6)) + (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-427 *3)) (-4 *3 (-1130)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-311)) (-4 *6 (-311)) - (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) + (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2135 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) - (-4 *6 (-311)) (-5 *2 (-2 (|:| -2135 *6) (|:| |coeff| *6))) - (-5 *1 (-520 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2138 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) + (-4 *6 (-312)) (-5 *2 (-2 (|:| -2138 *6) (|:| |coeff| *6))) + (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) - (-4 *2 (-311)) (-5 *1 (-520 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) + (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-311)) (-4 *6 (-311)) + (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-520 *5 *6)))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) - (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) - (-5 *1 (-534 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) + (-5 *1 (-535 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) - (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) - (-5 *1 (-534 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-535 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) - (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) - (-5 *1 (-534 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-535 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-585 *6)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) - (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-584 *8)) - (-5 *1 (-587 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-585 *8)) + (-5 *1 (-588 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5)) - (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) - (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) - (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-322 *5)) + (-4 *7 (-322 *5)) (-4 *2 (-629 *8 *9 *10)) + (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) + (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) - (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) - (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) - (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-963)) (-4 *8 (-963)) + (-4 *6 (-322 *5)) (-4 *7 (-322 *5)) (-4 *2 (-629 *8 *9 *10)) + (-5 *1 (-630 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) + (-4 *9 (-322 *8)) (-4 *10 (-322 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) - (-4 *2 (-1154 (-347 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1154 (-347 *6))) (-4 *8 (-1154 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) + (-4 *2 (-1156 (-348 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1156 (-348 *6))) (-4 *8 (-1156 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) - (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-963)) (-4 *9 (-963)) (-4 *5 (-758)) + (-4 *6 (-719)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) - (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-758)) (-4 *6 (-758)) (-4 *7 (-719)) + (-4 *9 (-963)) (-4 *2 (-863 *9 *8 *6)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-719)) (-4 *4 (-863 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) - (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-676 *5 *7)) (-4 *5 (-963)) (-4 *6 (-963)) + (-4 *7 (-665)) (-5 *2 (-676 *6 *7)) (-5 *1 (-675 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-676 *3 *4)) (-4 *4 (-665)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-706 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-706 *6)) (-5 *1 (-707 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) - (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-722 *6)) + (-5 *1 (-725 *4 *5 *2 *6)) (-4 *4 (-722 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-745 *6)) (-5 *1 (-746 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) - (-4 *6 (-1013)) (-5 *1 (-745 *5 *6)))) + (-12 (-5 *2 (-745 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5)) (-4 *5 (-1015)) + (-4 *6 (-1015)) (-5 *1 (-746 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-752 *6)) (-5 *1 (-753 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) - (-4 *6 (-1013)) (-5 *1 (-752 *5 *6)))) + (-12 (-5 *2 (-752 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-752 *5)) (-4 *5 (-1015)) + (-4 *6 (-1015)) (-5 *1 (-753 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-800 *5 *6)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-800 *5 *7)) (-5 *1 (-801 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-802 *6)) (-5 *1 (-804 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-859 *6)) (-5 *1 (-860 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) - (-4 *6 (-718)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-758)) (-4 *8 (-963)) + (-4 *6 (-719)) (-4 *2 - (-13 (-1013) - (-10 -8 (-15 -3836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) - (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))) + (-13 (-1015) + (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-696)))))) + (-5 *1 (-865 *6 *7 *8 *5 *2)) (-4 *5 (-863 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-871 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-879 *6)) (-5 *1 (-881 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-856 *6)) (-5 *1 (-896 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) - (-4 *5 (-718)) + (-12 (-5 *3 (-1 *2 (-859 *4))) (-4 *4 (-963)) (-4 *2 (-863 (-859 *4) *5 *6)) + (-4 *5 (-719)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089)))))) - (-5 *1 (-898 *4 *5 *6 *2)))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-5 *1 (-899 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-905 *6)) - (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-906 *6)) + (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) - (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-913 *6)) + (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) - (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *2 (-966 *5 *6 *10 *11 *12)) - (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-963)) (-4 *10 (-963)) (-14 *5 (-696)) + (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *2 (-967 *5 *6 *10 *11 *12)) + (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) - (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-1002 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-757)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-585 *6)) (-5 *1 (-1004 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1006 *6)) (-5 *1 (-1007 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) - (-4 *2 (-1063 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-757)) + (-4 *2 (-1065 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) - (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) - (-5 *1 (-1071 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-1073 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-962)) (-4 *6 (-962)) - (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-963)) (-4 *6 (-963)) + (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1015)) + (-4 *4 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-962)) - (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1089)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-963)) + (-4 *6 (-963)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) - (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-757)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-962)) - (-4 *8 (-962)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) - (-14 *7 (-1089)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-963)) + (-4 *8 (-963)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) + (-14 *7 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1154 *6)) - (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1156 *6)) + (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-962)) - (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1089)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-963)) + (-4 *6 (-963)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1171 *6)) - (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-963)) (-4 *6 (-963)) (-4 *2 (-1173 *6)) + (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) - (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) - (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-755))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-34)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-756))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-34)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-963))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-757)) + (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-324 *4 *2)) (-4 *4 (-758)) (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-740 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755))))) + (-12 (-5 *3 (-741 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-758)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-756))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) - (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) + (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-758)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-963)) (-4 *4 (-756))))) +(((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-963)) (-4 *3 (-756))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) - (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128))))) - ((*1 *1 *1 *1) (-4 *1 (-311))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1130))))) + ((*1 *1 *1 *1) (-4 *1 (-312))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-328)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) - (-4 *1 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-410))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) + (-12 (-5 *2 (-1040 *3 (-552 *1))) (-4 *3 (-496)) (-4 *3 (-1015)) + (-4 *1 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-411))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-560 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-311)))) + (-12 (-4 *4 (-146)) (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-665) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) - (-4 *3 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-596 *2 *4 *3)) (-4 *2 (-656 *4)) + (-4 *3 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) - (-4 *2 (|SubsetCategory| (-664) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)) + (-4 *2 (|SubsetCategory| (-665) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)) (-4 *2 (-311)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962)) - (-14 *3 (-584 (-1089))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) + (|partial| -12 (-5 *1 (-777 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-963)) + (-14 *3 (-585 (-1091))) (-14 *4 (-585 (-696))) (-14 *5 (-696)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) - (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-311)))) + (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) (-4 *5 (-196 *4 *2)) + (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) - (-14 *6 (-584 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) + (|partial| -12 (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-758)) (-4 *4 (-719)) + (-14 *6 (-585 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-863 *2 *4 *3)) (-14 *7 (-585 (-696))) (-14 *8 (-696)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) + (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-963)) (-4 *3 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) - (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) - (-5 *1 (-271 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) - ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-229)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *8)) (-5 *4 (-585 *6)) (-4 *6 (-758)) + (-4 *8 (-863 *7 *5 *6)) (-4 *5 (-719)) (-4 *7 (-963)) (-5 *2 (-585 (-696))) + (-5 *1 (-272 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) + ((*1 *2 *1) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-695))))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-696))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-695)))) + (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) + (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *2 (-718)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-695)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) - (-5 *2 (-347 (-484))))) - ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) + (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1142 *3)) + (-5 *2 (-348 (-485))))) + ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832))))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-696))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) + (-12 (-5 *2 (-696)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-14 *6 (-1178 (-631 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-632 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) - (-5 *2 (-1178 (-631 (-347 (-858 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1180 (-632 *4))) (-4 *4 (-146)) + (-5 *2 (-1180 (-632 (-348 (-859 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1004 (-264 *4))) (-4 *4 (-13 (-757) (-495) (-554 (-327)))) - (-5 *2 (-1004 (-327))) (-5 *1 (-219 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))) + (-12 (-5 *3 (-1006 (-265 *4))) (-4 *4 (-13 (-758) (-496) (-555 (-328)))) + (-5 *2 (-1006 (-328))) (-5 *1 (-219 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-229)))) ((*1 *2 *1) - (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) - (-14 *5 (-1089)) (-14 *6 *4) - (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) - (-5 *1 (-263 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) + (-14 *5 (-1091)) (-14 *6 *4) + (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) + (-5 *1 (-264 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) - (-4 *3 (-279 *4)))) + (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) + (-4 *3 (-280 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) - (-4 *3 (-279 *4)))) + (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) + (-4 *3 (-280 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *2 (-1203 *3 *4)))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *2 (-1205 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *2 (-1194 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *2 (-1196 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 (-858 (-347 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) - (-4 *1 (-361 *3)))) + (-12 (-5 *2 (-348 (-859 (-348 *3)))) (-4 *3 (-496)) (-4 *3 (-1015)) + (-4 *1 (-362 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-347 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) - (-4 *1 (-361 *3)))) + (-12 (-5 *2 (-859 (-348 *3))) (-4 *3 (-496)) (-4 *3 (-1015)) + (-4 *1 (-362 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) + (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-4 *3 (-1015)) (-4 *1 (-362 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1013)) - (-4 *1 (-361 *3)))) + (-12 (-5 *2 (-1040 *3 (-552 *1))) (-4 *3 (-963)) (-4 *3 (-1015)) + (-4 *1 (-362 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-369 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-347 (-484))))))) + (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-758) (-21))) (-5 *1 (-370 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-348 (-485))))))) ((*1 *1 *2) - (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-484))))) - (-4 *3 (-13 (-757) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-374)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) + (-12 (-5 *1 (-370 *2 *3)) (-4 *2 (-13 (-146) (-38 (-348 (-485))))) + (-4 *3 (-13 (-758) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-375)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-377)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-347 (-858 *3)))) (-4 *3 (-146)) - (-14 *6 (-1178 (-631 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-831)) - (-14 *5 (-584 (-1089))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-405)))) + (-12 (-5 *2 (-1180 (-348 (-859 *3)))) (-4 *3 (-146)) + (-14 *6 (-1180 (-632 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *4 (-832)) + (-14 *5 (-585 (-1091))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-406)))) ((*1 *1 *2) - (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) - (-5 *1 (-411 *3 *4 *5)))) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-412 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-412 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-623)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-463)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-542 *3 *2)) (-4 *2 (-685 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-574 *3 *2)) (-4 *2 (-685 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-624)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-321 *3)) - (-4 *2 (-321 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) + (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-322 *3)) + (-4 *2 (-322 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3951 *3) (|:| -3935 *4)))) (-4 *3 (-962)) - (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-688)))) - ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-768)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-264 (-484))) (-5 *1 (-785)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 (-48)))) (-5 *2 (-264 (-484))) (-5 *1 (-785)))) - ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) - ((*1 *2 *3) - (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-495)))) - ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-947 *3)) (-4 *3 (-1128)))) - ((*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1128)))) + (-12 (-5 *2 (-585 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-963)) + (-4 *4 (-665)) (-5 *1 (-676 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-689)))) + ((*1 *2 *3) (-12 (-5 *2 (-698)) (-5 *1 (-699 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-769)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-786)))) + ((*1 *2 *3) + (-12 (-5 *3 (-348 (-859 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-786)))) + ((*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-741 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-348 (-346 *3))) (-4 *3 (-258)) (-5 *1 (-827 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-415)) (-5 *2 (-265 *4)) (-5 *1 (-833 *4)) (-4 *4 (-496)))) + ((*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-948 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-948 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-495)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-954 *3)) (-4 *3 (-496)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) - (-4 *2 (-862 *3 (-469 *4) *4)))) + (-12 (-4 *3 (-963)) (-4 *4 (-758)) (-5 *1 (-1041 *3 *4 *2)) + (-4 *2 (-863 *3 (-470 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4)) - (-4 *4 (-862 *3 (-469 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) - ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) + (-12 (-4 *3 (-963)) (-4 *2 (-758)) (-5 *1 (-1041 *3 *2 *4)) + (-4 *4 (-863 *3 (-470 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) + ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) - (-5 *1 (-1088 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-376))) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) - ((*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1121 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-1090 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-377))) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1104 *3)) (-4 *3 (-1015)))) + ((*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *3)) (-4 *3 (-963)) (-5 *1 (-1123 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1003 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) + (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) - (-5 *1 (-1168 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1181)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1181)))) - ((*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-1170 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-406)) (-5 *2 (-1183)) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-1183)))) + ((*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *2 *1) - (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *1 (-1199 *3 *4))))) + (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *1 (-1201 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) - (-5 *1 (-607 *3 *4)))) + (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) + (-5 *1 (-608 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) + (|partial| -12 (-5 *2 (-608 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-585 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *2) - (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-5 *1 (-567 *3 *4 *5)) - (-14 *5 (-831)))) + (-12 (-5 *2 (-608 *3 *4)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-5 *1 (-568 *3 *4 *5)) + (-14 *5 (-832)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) - (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) - (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-656 (-348 (-485)))) + (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *2 *3) - (-12 (-5 *3 (-345 *4)) (-4 *4 (-495)) - (-5 *2 (-584 (-2 (|:| -3951 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) + (-12 (-5 *3 (-346 *4)) (-4 *4 (-496)) + (-5 *2 (-585 (-2 (|:| -3955 (-696)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) + (-12 (-5 *2 (-608 *3 *4)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) - (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) - (-4 *3 (-757)) (-4 *4 (-146))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-656 (-348 (-485)))) + (-4 *3 (-758)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) - (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) + (-5 *2 (-2 (|:| |k| (-741 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) + (-12 (-5 *2 (-741 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) + (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-334 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-741 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) + (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-741 *4)) (-4 *4 (-758)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) + (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) + (-12 (-5 *2 (-85)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) - (-4 *3 (-13 (-146) (-655 (-347 (-484))))) (-14 *4 (-831)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) + (-12 (-5 *1 (-568 *2 *3 *4)) (-4 *2 (-758)) + (-4 *3 (-13 (-146) (-656 (-348 (-485))))) (-14 *4 (-832)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) + (-12 (-5 *2 (-696)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-758)) (-4 *3 (-963)) (-4 *3 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-758)) (-4 *4 (-146)) (-5 *2 (-585 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) ((*1 *2 *1) - (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-758)) (-4 *4 (-963)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757)) - (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *3 (-758)) + (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-832)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4)) - (-4 *3 (-279 *4)))) - ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) - ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831)))))) + (-12 (-4 *4 (-312)) (-5 *2 (-745 (-832))) (-5 *1 (-279 *3 *4)) + (-4 *3 (-280 *4)))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-832)))) + ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-745 (-832)))))) (((*1 *2) - (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) - ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-695))))) + (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-696))))) (((*1 *2 *2) - (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1154 *4)) - (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-831)))) + (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) + (-5 *1 (-702 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) - ((*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-311)) (-4 *2 (-317))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) + ((*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-318))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) - (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-13 (-963) (-656 (-348 (-485))))) (-4 *5 (-758)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1194 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *1 (-1194 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1194 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *1 (-1194 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-1192 *4 *5 *6 *7))) - (-5 *1 (-1192 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-1194 *4 *5 *6 *7))) + (-5 *1 (-1194 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) - (-5 *2 (-584 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) (-4 *8 (-758)) + (-5 *2 (-585 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) - (-14 *5 (-584 (-1089))) (-14 *6 (-584 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-777 *4 *5 *6 *7)) (-4 *4 (-963)) + (-14 *5 (-585 (-1091))) (-14 *6 (-585 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) - (-14 *8 (-584 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) + (-14 *8 (-585 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-863 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) - (-4 *3 (-13 (-1013) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189))))) + (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1055 *3 *2)) + (-4 *3 (-13 (-1015) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) + (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-693 *4 *5)) (-4 *5 (-350 *3 *4)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-694 *4 *5)) (-4 *5 (-351 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-663 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5))))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-351 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))) + (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1154 (-484))) + (-12 (-4 *3 (-1156 (-485))) (-5 *2 - (-2 (|:| -2011 (-631 (-484))) (|:| |basisDen| (-484)) - (|:| |basisInv| (-631 (-484))))) - (-5 *1 (-693 *3 *4)) (-4 *4 (-350 (-484) *3)))) + (-2 (|:| -2014 (-632 (-485))) (|:| |basisDen| (-485)) + (|:| |basisInv| (-632 (-485))))) + (-5 *1 (-694 *3 *4)) (-4 *4 (-351 (-485) *3)))) ((*1 *2) - (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 - (-2 (|:| -2011 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))) + (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-663 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 - (-2 (|:| -2011 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) - (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5))))) + (-2 (|:| -2014 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) + (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-351 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1121 *6)) - (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4))))) + (-12 (-5 *3 (-696)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) + (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-584 (-1121 *5))) - (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5))))) + (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-585 (-1123 *5))) + (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-858 *4)) (-858 *4))) - (-5 *1 (-1187 *4)) (-4 *4 (-311))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-859 *4)) (-859 *4))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-1068 (-1068 (-858 *5)))) - (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-858 *5)))))) + (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-859 *5)))) + (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-859 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) - (-5 *1 (-1187 *4)) (-4 *4 (-311))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1070 (-859 *4)) (-1070 (-859 *4)))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) - (-5 *1 (-1187 *4)) (-4 *4 (-311))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1 (-1070 (-859 *4)) (-1070 (-859 *4)))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2) - (-12 (-14 *4 (-695)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 (-696)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-485)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) - (-5 *2 (-484)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) - ((*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-311)) (-5 *2 (-107))))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *2 (-485)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-963)) (-5 *2 (-832)))) + ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1186)))) +(((*1 *2 *3) (-12 (-5 *3 (-328)) (-5 *2 (-179)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-785)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-1184))))) (((*1 *1) (-5 *1 (-1184)))) -(((*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))) -(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))) -(((*1 *1) (-5 *1 (-1182)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1182)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) - ((*1 *1 *1) (-5 *1 (-1182)))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-1078 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182))))) + (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-585 (-221))) (-5 *1 (-1184)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) + ((*1 *1 *1) (-5 *1 (-1184)))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-1080 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) + (-12 (-5 *2 (-696)) (-5 *3 (-856 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-963)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-696)) (-5 *4 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-221))) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-696)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) + (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-485)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1184)) (-5 *1 (-1182)))) + (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3844 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1182)))) + (-5 *1 (-1184)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-832)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-328)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-405)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1181))))) -(((*1 *1) (-5 *1 (-1181)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-584 (-221))) (-5 *1 (-1181)))) - ((*1 *1 *1) (-5 *1 (-1181)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-856 (-179)))) (-5 *1 (-1183))))) +(((*1 *1) (-5 *1 (-1183)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-406)) (-5 *3 (-585 (-221))) (-5 *1 (-1183)))) + ((*1 *1 *1) (-5 *1 (-1183)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-784)) - (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-785)) + (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1) (-12 (-5 *2 - (-1178 + (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -3847 (-484)) (|:| -3845 (-484)) - (|:| |spline| (-484)) (|:| -3876 (-484)) (|:| |axesColor| (-784)) - (|:| -3848 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484))))) - (-5 *1 (-1181))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-405) "undefined"))) (-5 *1 (-1181))))) + (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) + (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-785)) + (|:| -3852 (-485)) (|:| |unitsColor| (-785)) (|:| |showing| (-485))))) + (-5 *1 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-406) "undefined"))) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-405)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-406)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-406)) (-5 *1 (-1183))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-327))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) + (-12 (-5 *2 (-585 (-328))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-406)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-832)) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-328)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-832)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-406)) (-5 *4 (-832)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *6 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *6 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) - (-5 *2 (-1181)) (-5 *1 (-1180))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) + (-5 *2 (-1183)) (-5 *1 (-1182))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *6 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *6 (-585 (-221))) (-5 *2 (-406)) (-5 *1 (-1182)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-405)) (-5 *1 (-1180)))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-406)) (-5 *1 (-1182)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-405)) - (-5 *1 (-1180))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-585 (-221))) (-5 *2 (-406)) + (-5 *1 (-1182))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3992)) - (-4 *1 (-124 *2)) (-4 *2 (-1128)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (|has| *1 (-6 -3996)) + (-4 *1 (-124 *2)) (-4 *2 (-1130)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) - (-4 *2 (-1128)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) + (-4 *2 (-1130)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) - (-4 *2 (-1128)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) + (-4 *2 (-1130)))) ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2003 (-1084 *4)) (|:| |deg| (-831)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495)))) + (-12 (-4 *4 (-963)) (-5 *2 (-2 (|:| -2006 (-1086 *4)) (|:| |deg| (-832)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) - (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-696)) + (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1015)))) ((*1 *1 *1) - (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1154 *2)) - (-4 *4 (-1154 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) + (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-348 *3))) (-4 *5 (-291 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) - (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-323 *5 *4 *2 *6)) (-4 *4 (-322 *5)) (-4 *6 (-322 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) - (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) - ((*1 *1 *1) (-5 *1 (-432))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1015)) (-4 *2 (-1015)) + (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) + ((*1 *1 *1) (-5 *1 (-433))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) - (-5 *1 (-585 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-586 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-321 *5)) - (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) - (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) - (-4 *10 (-628 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-963)) (-4 *2 (-963)) (-4 *6 (-322 *5)) + (-4 *7 (-322 *5)) (-4 *8 (-322 *2)) (-4 *9 (-322 *2)) + (-5 *1 (-630 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) + (-4 *10 (-629 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-311)) - (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) + (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) + (-4 *3 (-146)) (-4 *1 (-663 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-663 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) - (-5 *1 (-871 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-871 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-872 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-863 *3 *4 *5)) (-14 *6 (-585 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) - (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-963)) (-4 *2 (-963)) (-14 *5 (-696)) + (-14 *6 (-696)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) - (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) + (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) - (-5 *1 (-1070 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-1072 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *2 (-977 *5 *6 *7)))) + (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *2 (-979 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) - (-5 *1 (-1179 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-1181 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) - (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-696)) + (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-321 *5)) - (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-322 *5)) + (-5 *1 (-323 *6 *4 *5 *2)) (-4 *4 (-322 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-366 *5)) - (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1015)) (-4 *5 (-1015)) (-4 *2 (-367 *5)) + (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) - (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-585 *5)) (-5 *1 (-586 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) - (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-871 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-871 *5)) (-5 *1 (-872 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) - (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) + (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) - (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) - (-15 -1962 ((-1184) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1965 ((-1186) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1154 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25))))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-696)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) - (-15 -1962 ((-1184) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1965 ((-1186) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) - ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962))))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) + ((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-963))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-962)) (-5 *2 (-631 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962))))) -(((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) - (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) + (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-963)) (-5 *2 (-632 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-963)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-963))))) +(((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) + (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1128 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-917)) (-4 *2 (-963))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-917)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-758)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-903)))) + (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-775 *3)) (-14 *3 (-585 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-904)))) ((*1 *2 *1) - (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) - (-4 *3 (-1006 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) + (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-973 *3 *4)) + (-4 *3 (-1008 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1006 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1089)))) - ((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-1091)))) + ((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-962)) - (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-601 *5))))) + (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-963)) + (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-602 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-584 *6))) - (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1171 *4))))) + (-12 (-4 *4 (-963)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-585 *6))) + (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1173 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1154 *5)) - (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1171 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-4 *2 (-1156 *5)) + (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1173 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) - (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) + (-12 (-4 *4 (-963)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) + (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) - (-4 *5 (-38 (-347 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-584 *6)) - (-5 *1 (-1172 *5 *6))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) + (-4 *5 (-38 (-348 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-585 *6)) + (-5 *1 (-1174 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-347 (-484)))) - (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-38 (-348 (-485)))) + (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) - (-4 *4 (-38 (-347 (-484))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) + (-4 *4 (-38 (-348 (-485))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) - (-4 *4 (-38 (-347 (-484))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) + (-4 *4 (-38 (-348 (-485))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3))))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) - (-5 *2 (-1 (-1068 *4) (-584 (-1068 *4)))) (-5 *1 (-1172 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) + (-5 *2 (-1 (-1070 *4) (-585 (-1070 *4)))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) - (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) + (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) - (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-348 (-485)))) + (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (-12 (-5 *4 (-348 (-485))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *5 *3)))) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) - (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) - (-4 *6 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *5 *6)))) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-485))) + (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *6 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) - (-4 *7 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) + (-4 *7 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) - (-4 *3 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *7 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) + (-4 *3 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) - (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) - (-4 *8 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-348 (-485)))) (-5 *4 (-249 *8)) + (-5 *5 (-1147 (-348 (-485)))) (-5 *6 (-348 (-485))) + (-4 *8 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) - (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) - (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *8 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-348 (-485)))) + (-5 *7 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *8))) + (-4 *8 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) - (-5 *1 (-530 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-531 *3)))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-963)) + (-5 *1 (-531 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-532 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) - (-4 *1 (-1140 *3)))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-963)) + (-4 *1 (-1142 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))) - (-4 *4 (-962)) (-4 *1 (-1161 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-4 *1 (-1171 *3)))) + (-12 (-5 *2 (-696)) (-5 *3 (-1070 (-2 (|:| |k| (-348 (-485))) (|:| |c| *4)))) + (-4 *4 (-963)) (-4 *1 (-1163 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-4 *1 (-1173 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) - (-4 *1 (-1171 *3))))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-696)) (|:| |c| *3)))) (-4 *3 (-963)) + (-4 *1 (-1173 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-585 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-5 *2 (-1068 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-962)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-963)) (-5 *2 (-1070 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-963)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-963)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-963))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) - (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) + (-5 *2 (-859 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) - (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *5)) (-4 *4 (-963)) (-4 *5 (-758)) + (-5 *2 (-859 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1173 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1173 *4)) (-4 *4 (-963)) (-5 *2 (-859 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-347 (-484))) (-4 *4 (-951 (-484))) (-4 *4 (-495)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) + (-12 (-5 *3 (-348 (-485))) (-4 *4 (-952 (-485))) (-4 *4 (-496)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-362 *4)))) ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) - (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) + (-12 (-5 *3 (-348 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) + (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) - (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-897 *5)))) + (-12 (-5 *3 (-348 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) + (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-898 *5)))) ((*1 *1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-5 *1 (-327))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-5 *1 (-328))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-334 *2)) (-4 *2 (-1015)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-484)))) + (-12 (-5 *2 (-696)) (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-4 *3 (-1027)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-485)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-5 *2 (-696)) (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-473)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-474)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1013)) (-5 *1 (-624 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *4 (-1015)) (-5 *1 (-625 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-4 *3 (-311)))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-4 *3 (-312)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-696)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) + (-12 (-5 *2 (-485)) (-4 *3 (-963)) (-5 *1 (-653 *3 *4)) (-4 *4 (-592 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) - (-4 *5 (-591 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-653 *4 *5)) + (-4 *5 (-592 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-696)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-747 *3)) (-4 *3 (-963)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-347 (-484))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-831)))) + (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-747 *4)) (-4 *4 (-963)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-348 (-485))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-832)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-962)) - (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311)))) + (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-963)) + (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-751 *3))) (-4 *3 (-13 (-1114) (-872) (-29 *5))) - (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-1006 (-752 *3))) (-4 *3 (-13 (-1116) (-873) (-29 *5))) + (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-751 *3))) (-5 *5 (-1072)) - (-4 *3 (-13 (-1114) (-872) (-29 *6))) - (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-1006 (-752 *3))) (-5 *5 (-1074)) + (-4 *3 (-13 (-1116) (-873) (-29 *6))) + (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1004 (-751 (-264 *5)))) - (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1006 (-752 (-265 *5)))) + (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) + (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1004 (-751 (-264 *6)))) - (-5 *5 (-1072)) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *3 (-348 (-859 *6))) (-5 *4 (-1006 (-752 (-265 *6)))) + (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) + (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-751 (-347 (-858 *5))))) (-5 *3 (-347 (-858 *5))) - (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-1006 (-752 (-348 (-859 *5))))) (-5 *3 (-348 (-859 *5))) + (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) + (-3 (|:| |f1| (-752 (-265 *5))) (|:| |f2| (-585 (-752 (-265 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-751 (-347 (-858 *6))))) (-5 *5 (-1072)) - (-5 *3 (-347 (-858 *6))) - (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-1006 (-752 (-348 (-859 *6))))) (-5 *5 (-1074)) + (-5 *3 (-348 (-859 *6))) + (-4 *6 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) + (-3 (|:| |f1| (-752 (-265 *6))) (|:| |f2| (-585 (-752 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-370 *5 *3)) - (-4 *3 (-13 (-1114) (-872) (-29 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-371 *5 *3)) + (-4 *3 (-13 (-1116) (-873) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-412 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) - (-5 *2 (-519 (-347 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5)))) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-520 (-348 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-348 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-525 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-3 (-265 *5) (-585 (-265 *5)))) (-5 *1 (-526 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) - (-4 *3 (-38 (-347 (-484)))))) + (-12 (-4 *1 (-681 *3 *2)) (-4 *3 (-963)) (-4 *2 (-758)) + (-4 *3 (-38 (-348 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-347 (-484)))) - (-4 *3 (-962)))) + (-12 (-5 *2 (-1091)) (-5 *1 (-859 *3)) (-4 *3 (-38 (-348 (-485)))) + (-4 *3 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-4 *2 (-757)) - (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-4 *2 (-758)) + (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-863 *3 (-470 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) - (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) + (-5 *1 (-1076 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-347 (-484)))) - (-4 *3 (-962)))) + (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-348 (-485)))) + (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) - (-4 *3 (-38 (-347 (-484)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) - (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) + (-4 *3 (-38 (-348 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1140 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) + (-12 (-4 *1 (-1142 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) + (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) - (-4 *3 (-38 (-347 (-484)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) - (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) + (-4 *3 (-38 (-348 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1161 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) + (-12 (-4 *1 (-1163 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) - (-4 *3 (-38 (-347 (-484)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) - (-12 (|has| *3 (-15 -3080 ((-584 *2) *3))) - (|has| *3 (-15 -3809 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-963)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-873)) (-4 *3 (-1116)) + (-4 *3 (-38 (-348 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-963)) + (-12 (|has| *3 (-15 -3083 ((-585 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-348 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484))))))) + (-12 (-4 *1 (-1173 *2)) (-4 *2 (-963)) (-4 *2 (-38 (-348 (-485))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) - (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))) + (-12 (-5 *3 (-696)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) + (-4 *4 (-963)) (-14 *5 (-1091)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) - (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) + (-12 (-5 *3 (-696)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) + (-4 *4 (-963)) (-14 *5 (-1091)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-963)) (-14 *3 (-1091)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-963)) (-5 *1 (-1076 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-1091)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) - (-4 *4 (-1128)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-757)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) + (-4 *4 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) (-4 *3 (-758)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-784 *2 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-805 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) - (-4 *5 (-321 *2)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) + (-4 *5 (-322 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) - (-4 *5 (-321 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) + (-4 *5 (-322 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-484)) (-14 *5 (-695)))) + (-12 (-5 *3 (-585 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-485)) (-14 *5 (-696)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-695)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-696)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-695)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ *3)) (-15 -3614 ((-1184) $)) - (-15 -1962 ((-1184) $))))))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ *3)) (-15 -3618 ((-1186) $)) + (-15 -1965 ((-1186) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-904)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 ((-1184) $)) - (-15 -1962 ((-1184) $))))))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1965 ((-1186) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + (-12 (-5 *3 "count") (-5 *2 (-696)) (-5 *1 (-203 *4)) (-4 *4 (-758)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-758)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) - (-4 *4 (-1154 (-347 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-439)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-348 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-440)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + (-12 (-5 *2 (-585 (-485))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-86)) (-5 *3 (-585 (-802 *4))) (-5 *1 (-802 *4)) + (-4 *4 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1128)))) + (-12 (-5 *3 (-696)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-925 *2)) (-4 *2 (-1130)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) + (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-963)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-963)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) - (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) + (-12 (-5 *3 (-832)) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) + (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-989 *4 *5 *2)) - (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1057))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) + (-12 (-5 *3 (-832)) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-991 *4 *5 *2)) + (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1059))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-347 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) + (-12 (-5 *3 (-348 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) + (-12 (-5 *2 (-348 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-4 *3 (-496)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-741 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) - (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) + (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-719)) + (-4 *4 (-758)) (-4 *5 (-979 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1010)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) ((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) - ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))) -(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-784 *3 *2)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-696))))) +(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) - (-4 *5 (-321 *2)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) + (-4 *5 (-322 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -3993)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -3993)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1128)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-572)))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1130)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-573)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3993)) (-4 *1 (-594 *2)) - (-4 *2 (-1128)))) + (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3997)) (-4 *1 (-595 *2)) + (-4 *2 (-1130)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-585 (-485))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -3993)) (-4 *1 (-924 *2)) - (-4 *2 (-1128)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3997)) (-4 *1 (-925 *2)) + (-4 *2 (-1130)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) - (-4 *2 (-1128)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) + (-4 *2 (-1130)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *3)) - (-4 *3 (-1128)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) + (-4 *3 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) - (-4 *2 (-1128))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) + (-4 *2 (-1130))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (|has| *1 (-6 -3993)) (-4 *1 (-1167 *3)) - (-4 *3 (-1128))))) + (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) + (-4 *3 (-1130))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) - (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) + (-5 *2 (-752 *4)) (-5 *1 (-264 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) - (-5 *2 (-751 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) + (-5 *2 (-752 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1116) (-362 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) + (|partial| -12 (-4 *3 (-13 (-952 (-485)) (-582 (-485)) (-390))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) - (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))))) - (|:| |%type| (-1072)))) - (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) - (-14 *5 (-1089)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) + (|:| |%expTerms| (-585 (-2 (|:| |k| (-348 (-485))) (|:| |c| *4)))))) + (|:| |%type| (-1074)))) + (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-362 *3))) + (-14 *5 (-1091)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (-12 (-5 *4 (-348 (-485))) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *5 *3)))) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) - (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *6 *3)))) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-348 (-485))) + (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) - (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) - (-4 *8 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-348 (-485)))) (-5 *4 (-249 *8)) + (-5 *5 (-1147 (-348 (-485)))) (-5 *6 (-348 (-485))) + (-4 *8 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) - (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) - (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *8 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-348 (-485)))) + (-5 *7 (-348 (-485))) (-4 *3 (-13 (-27) (-1116) (-362 *8))) + (-4 *8 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-347 (-484))) (-4 *4 (-962)) (-4 *1 (-1163 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-5 *2 (-348 (-485))) (-4 *4 (-963)) (-4 *1 (-1165 *4 *3)) + (-4 *3 (-1142 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) - (-5 *2 (-347 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3))))) + (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1142 *3)) + (-5 *2 (-348 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *5 (-13 (-389) (-951 *4) (-581 *4))) (-5 *2 (-51)) - (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (-12 (-5 *4 (-485)) (-4 *5 (-13 (-390) (-952 *4) (-582 *4))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *5 *3)))) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-951 *5) (-581 *5))) (-5 *5 (-484)) (-5 *2 (-51)) - (-5 *1 (-266 *6 *3)))) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-952 *5) (-582 *5))) (-5 *5 (-485)) (-5 *2 (-51)) + (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) - (-4 *7 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) + (-4 *7 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) - (-4 *3 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *7 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) + (-4 *3 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *4 (-962)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3))))) + (-12 (-5 *2 (-485)) (-4 *4 (-963)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) + (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1142 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-832)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-963))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-484)))) - (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3142 ($ $ $))))) (-4 *3 (-495)) - (-5 *1 (-1158 *3 *4))))) + (|:| |xpnt| (-485)))) + (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496)) + (-5 *1 (-1160 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389)))) + (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) - (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1133))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) + (-4 *1 (-985 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1135))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) - (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3142 ($ $ $)))))))) + (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) + (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) - (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) + (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) - (-5 *2 (-584 (-451 *3 *4))))) + (-12 (-4 *1 (-448 *3 *4)) (-4 *3 (-72)) (-4 *4 (-761)) + (-5 *2 (-585 (-452 *3 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3951 *3) (|:| -3935 *4)))) (-5 *1 (-675 *3 *4)) - (-4 *3 (-962)) (-4 *4 (-664)))) + (-12 (-5 *2 (-585 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-676 *3 *4)) + (-4 *3 (-963)) (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) - (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) + (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-584 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))) + (-12 (-5 *2 (-585 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-831)))) - ((*1 *2 *3) - (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) - (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) - (-5 *2 (-695)) (-5 *1 (-338 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-744 (-831))))) - ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-832)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-318) (-312))) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-4 *7 (-291 *4 *5 *6)) + (-5 *2 (-696)) (-5 *1 (-339 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-745 (-832))))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) + (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1156 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) + (-12 (-5 *2 (-696)) (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) - (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) - (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-695)) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) - (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) - (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))) + (-12 (-4 *1 (-681 *4 *3)) (-4 *4 (-963)) (-4 *3 (-758)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-696)) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) + (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-1156 (-348 *4))) + (-4 *6 (-291 (-348 (-485)) *4 *5)) (-5 *2 (-696)) (-5 *1 (-825 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) - (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) - (-4 *9 (-13 (-317) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) + (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-348 *7))) (-4 *8 (-291 *6 *7 *4)) + (-4 *9 (-13 (-318) (-312))) (-5 *2 (-696)) (-5 *1 (-933 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)) (-5 *2 (-695)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) -(((*1 *1 *1) (-4 *1 (-973))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-4 *3 (-496)) (-5 *2 (-696)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) +(((*1 *1 *1) (-4 *1 (-975))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-484)))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-782 *4)) (-14 *4 *3) (-5 *3 (-485)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-347 (-484))) (-5 *1 (-782 *4 *5)) (-5 *3 (-484)) - (-4 *5 (-780 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-347 (-484))))) + (-12 (-14 *4 *3) (-5 *2 (-348 (-485))) (-5 *1 (-783 *4 *5)) (-5 *3 (-485)) + (-4 *5 (-781 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-927)) (-5 *2 (-348 (-485))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2)))) + (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1156 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3943 (*2 (-1089)))) (-4 *2 (-962))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) + (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-718)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3947 (*2 (-1091)))) (-4 *2 (-963))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-696)) (-4 *1 (-681 *3 *4)) (-4 *3 (-963)) (-4 *4 (-758)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-895 *3)) (-4 *3 (-963)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-347 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) + (-12 (-5 *3 (-348 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1093 (-348 (-485)))) (-5 *2 (-348 (-485))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1013)) - (-4 *3 (-1128)) (-5 *1 (-248 *3)))) + (-12 (-5 *2 (-585 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1015)) + (-4 *3 (-1130)) (-5 *1 (-249 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-259 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-248 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) + (-12 (-4 *2 (-260 *2)) (-4 *2 (-1015)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-347 (-484)))) (-5 *1 (-260 *2)) - (-4 *2 (-38 (-347 (-484)))))) + (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-348 (-485)))) (-5 *1 (-261 *2)) + (-4 *2 (-38 (-348 (-485)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-757)) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-324 *4 *5)) (-4 *4 (-758)) (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-758)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) - (-4 *5 (-1013)) (-4 *5 (-962)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *4 (-1 *1 *1)) (-4 *1 (-362 *5)) + (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) - (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *4 (-1 *1 (-585 *1))) + (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) - (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) - (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-696))) + (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-362 *5)) (-4 *5 (-1015)) + (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) - (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-585 (-696))) (-5 *4 (-585 (-1 *1 *1))) + (-4 *1 (-362 *5)) (-4 *5 (-1015)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1089)) (-4 *1 (-361 *5)) - (-4 *5 (-1013)) (-4 *5 (-554 (-473))))) + (-12 (-5 *2 (-585 (-86))) (-5 *3 (-585 *1)) (-5 *4 (-1091)) (-4 *1 (-362 *5)) + (-4 *5 (-1015)) (-4 *5 (-555 (-474))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) - (-4 *4 (-554 (-473))))) - ((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-554 (-473))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-362 *4)) (-4 *4 (-1015)) + (-4 *4 (-555 (-474))))) + ((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-555 (-474))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-1089))) (-4 *1 (-361 *3)) (-4 *3 (-1013)) - (-4 *3 (-554 (-473))))) + (-12 (-5 *2 (-585 (-1091))) (-4 *1 (-362 *3)) (-4 *3 (-1015)) + (-4 *3 (-555 (-474))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) - (-4 *3 (-554 (-473))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)) + (-4 *3 (-555 (-474))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-454 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-453 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1128)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-454 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1130)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-745 *3)) (-4 *3 (-312)) (-5 *1 (-657 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) - (-5 *1 (-953 *4)))) + (-12 (-5 *2 (-348 (-859 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) + (-5 *1 (-954 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-1089))) (-5 *4 (-584 (-347 (-858 *5)))) - (-5 *2 (-347 (-858 *5))) (-4 *5 (-495)) (-5 *1 (-953 *5)))) + (-12 (-5 *3 (-585 (-1091))) (-5 *4 (-585 (-348 (-859 *5)))) + (-5 *2 (-348 (-859 *5))) (-4 *5 (-496)) (-5 *1 (-954 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495)) - (-5 *1 (-953 *4)))) + (-12 (-5 *3 (-249 (-348 (-859 *4)))) (-5 *2 (-348 (-859 *4))) (-4 *4 (-496)) + (-5 *1 (-954 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-5 *2 (-347 (-858 *4))) - (-4 *4 (-495)) (-5 *1 (-953 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) + (-12 (-5 *3 (-585 (-249 (-348 (-859 *4))))) (-5 *2 (-348 (-859 *4))) + (-4 *4 (-496)) (-5 *1 (-954 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3))))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-5 *2 (-1084 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-962)) (-4 *1 (-1154 *3))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1156 *4)) (-4 *4 (-963)) (-5 *2 (-1180 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-963)) (-5 *2 (-1086 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-963)) (-4 *1 (-1156 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962))))) + (|partial| -12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-862 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-863 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1154 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-1156 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1154 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-1156 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1156 *3)) (-4 *3 (-963))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) - (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-311)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) + (-12 (-4 *2 (-312)) (-4 *2 (-811 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) - (-4 *4 (-1013)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-4 *4 (-1015)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-963))))) (((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1154 *2)) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) - (-4 *3 (-350 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-350 *3 *2 *4)) + (-4 *3 (-351 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-693 *3 *4)) - (-4 *4 (-350 *2 *3)))) + (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-694 *3 *4)) + (-4 *4 (-351 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) + ((*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) - (-4 *3 (-495)))) + (|partial| -12 (-5 *2 (-348 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-963)) + (-4 *3 (-496)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495))))) + (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-963)) (-4 *2 (-496))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3951 *4) (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1974 *3) (|:| -2904 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-977 *3 *4 *5)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-979 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| -3951 *3) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-1154 *3))))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| -3955 *3) (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-311)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) - (-5 *2 (-2 (|:| -1760 (-563 *4 *5)) (|:| -1759 (-347 *5)))) - (-5 *1 (-563 *4 *5)) (-5 *3 (-347 *5)))) + (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -1763 (-564 *4 *5)) (|:| -1762 (-348 *5)))) + (-5 *1 (-564 *4 *5)) (-5 *3 (-348 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-389)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3))))) + (-12 (-4 *3 (-390)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3))))) + (-12 (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4))))) + (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) + (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1150 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-585 *3)) (-5 *1 (-1152 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-120))) - (-5 *2 (-2 (|:| -3136 *3) (|:| -3135 *3))) (-5 *1 (-1150 *4 *3)) - (-4 *3 (-1154 *4))))) + (|partial| -12 (-4 *4 (-13 (-496) (-120))) + (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) - (-4 *2 (-1154 *3))))) + (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) + (-4 *2 (-1156 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) + (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) - (-4 *3 (-321 *5)))) + (-4 *3 (-322 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) - (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) + (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-441 *4 *5 *6 *3)) + (-4 *6 (-322 *4)) (-4 *3 (-322 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) - (-5 *2 (-2 (|:| -3264 *7) (|:| |rh| (-584 (-347 *6))))) - (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-347 *6))) (-4 *7 (-601 *6)) - (-4 *3 (-601 (-347 *6))))) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-585 (-348 *6))))) + (-5 *1 (-730 *5 *6 *7 *3)) (-5 *4 (-585 (-348 *6))) (-4 *7 (-602 *6)) + (-4 *3 (-602 (-348 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) - (-4 *3 (-1154 *5))))) + (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) - (-4 *2 (-321 *4)))) + (-12 (-4 *3 (-496)) (-4 *4 (-906 *3)) (-5 *1 (-115 *3 *4 *2)) + (-4 *2 (-322 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-4 *2 (-321 *4)) - (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) + (-12 (-4 *4 (-496)) (-4 *5 (-906 *4)) (-4 *2 (-322 *4)) + (-5 *1 (-441 *4 *5 *2 *3)) (-4 *3 (-322 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-631 *4)) - (-5 *1 (-634 *4 *5)))) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-906 *4)) (-4 *4 (-496)) (-5 *2 (-632 *4)) + (-5 *1 (-635 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-1149 *3 *4 *2)) - (-4 *2 (-1154 *4))))) + (-12 (-4 *3 (-496)) (-4 *4 (-906 *3)) (-5 *1 (-1151 *3 *4 *2)) + (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) - (-4 *3 (-321 *4)))) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) + (-4 *3 (-322 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-440 *2 *4 *5 *3)) - (-4 *5 (-321 *2)) (-4 *3 (-321 *4)))) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-441 *2 *4 *5 *3)) + (-4 *5 (-322 *2)) (-4 *3 (-322 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-495)) - (-5 *1 (-634 *2 *4)))) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-906 *2)) (-4 *2 (-496)) + (-5 *1 (-635 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) - (-4 *3 (-1154 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-12 (-4 *4 (-906 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-962)) - (-4 *2 (-717)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1084 *3)) (-4 *3 (-962)))) + (-12 (-5 *1 (-869 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-963)) + (-4 *2 (-718)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-696)) (-5 *1 (-1086 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) - (-4 *3 (-962)))) + (-12 (-5 *2 (-886)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) + (-4 *3 (-963)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-962))))) -(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-963))))) +(((*1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *2 (-1008 *3)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1003 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) - (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) + (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) - (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) + (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1154 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) + (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1156 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-585 (-696))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484)))))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) + (-12 (-5 *2 (-346 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1156 (-348 (-485)))))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1154 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) + (-12 (-5 *4 (-585 (-48))) (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1156 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))) + (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-346 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-863 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) - (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1084 *7)))) + (-12 (-5 *4 (-585 (-48))) (-4 *5 (-758)) (-4 *6 (-719)) + (-4 *7 (-863 (-48) *6 *5)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1154 (-142 *4))))) + (-12 (-4 *4 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-140 *4 *3)) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1154 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1154 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1154 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) + (-12 (-4 *4 (-299)) (-5 *2 (-346 *3)) (-5 *1 (-170 *4 *3)) + (-4 *3 (-1156 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-585 (-696))) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-585 (-696))) (-5 *5 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484))))) + (-12 (-5 *4 (-696)) (-5 *2 (-346 *3)) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-345 (-142 (-484)))) (-5 *1 (-383)) (-5 *3 (-142 (-484))))) + (-12 (-5 *2 (-346 (-142 (-485)))) (-5 *1 (-384)) (-5 *3 (-142 (-485))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089)))))) - (-4 *5 (-718)) (-4 *7 (-495)) (-5 *2 (-345 *3)) - (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-862 *7 *5 *4)))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-4 *5 (-719)) (-4 *7 (-496)) (-5 *2 (-346 *3)) + (-5 *1 (-394 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-863 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1084 *4))) (-5 *1 (-395 *4)) - (-5 *3 (-1084 *4)))) + (-12 (-4 *4 (-258)) (-5 *2 (-346 (-1086 *4))) (-5 *1 (-396 *4)) + (-5 *3 (-1086 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) - (-4 *7 (-13 (-311) (-120) (-662 *5 *6))) (-5 *2 (-345 *3)) - (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1154 *7)))) + (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-4 *7 (-13 (-312) (-120) (-663 *5 *6))) (-5 *2 (-346 *3)) + (-5 *1 (-432 *5 *6 *7 *3)) (-4 *3 (-1156 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) - (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-478 *5 *6 *7 *3)) - (-4 *3 (-862 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-346 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-758)) (-4 *6 (-719)) (-5 *2 (-346 *3)) (-5 *1 (-479 *5 *6 *7 *3)) + (-4 *3 (-863 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) - (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) - (-5 *2 (-345 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) + (-12 (-5 *4 (-1 (-346 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-758)) (-4 *6 (-719)) (-4 *8 (-863 *7 *6 *5)) + (-5 *2 (-346 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *6 (-1154 *5)) (-5 *2 (-584 (-598 (-347 *6)))) (-5 *1 (-602 *5 *6)) - (-5 *3 (-598 (-347 *6))))) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-585 (-599 (-348 *6)))) (-5 *1 (-603 *5 *6)) + (-5 *3 (-599 (-348 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) - (-5 *3 (-598 (-347 *5))))) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-585 (-599 (-348 *5)))) (-5 *1 (-603 *4 *5)) + (-5 *3 (-599 (-348 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) - (-5 *1 (-615 *4)))) + (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-616 *4))) + (-5 *1 (-616 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))) + (-12 (-5 *4 (-485)) (-5 *2 (-585 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-345 *3)) - (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-5 *2 (-346 *3)) + (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4)) - (-5 *2 (-345 (-1084 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-299)) (-4 *7 (-863 *6 *5 *4)) + (-5 *2 (-346 (-1086 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-718)) + (-12 (-4 *4 (-719)) (-4 *5 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ "failed") (-1089)))))) - (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-670 *4 *5 *6 *3)) - (-4 *3 (-862 (-858 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) - (-4 *6 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) - (-4 *3 (-862 (-347 (-858 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-257) (-120))) - (-5 *2 (-345 *3)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-862 (-347 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) - (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) - (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) - (-5 *3 (-1084 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-345 *3)) (-5 *1 (-955 *3)) - (-4 *3 (-1154 (-347 (-858 (-484))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1154 (-347 (-484)))) - (-4 *5 (-13 (-311) (-120) (-662 (-347 (-484)) *4))) (-5 *2 (-345 *3)) - (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1154 (-347 (-858 (-484))))) - (-4 *5 (-13 (-311) (-120) (-662 (-347 (-858 (-484))) *4))) (-5 *2 (-345 *3)) - (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) - (-5 *3 (-1084 (-347 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133)))) - ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-781 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-484)))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-4 *6 (-258)) (-5 *2 (-346 *3)) (-5 *1 (-671 *4 *5 *6 *3)) + (-4 *3 (-863 (-859 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *6 (-496)) (-5 *2 (-346 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-863 (-348 (-859 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-346 *3)) (-5 *1 (-674 *4 *5 *6 *3)) + (-4 *3 (-863 (-348 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-346 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-863 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-758)) (-4 *5 (-719)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-863 *6 *5 *4)) (-5 *2 (-346 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) + (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-346 *3)) (-5 *1 (-922 *3)) (-4 *3 (-1156 (-348 (-485)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-346 *3)) (-5 *1 (-956 *3)) + (-4 *3 (-1156 (-348 (-859 (-485))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1156 (-348 (-485)))) + (-4 *5 (-13 (-312) (-120) (-663 (-348 (-485)) *4))) (-5 *2 (-346 *3)) + (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1156 (-348 (-859 (-485))))) + (-4 *5 (-13 (-312) (-120) (-663 (-348 (-859 (-485))) *4))) (-5 *2 (-346 *3)) + (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-390)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-346 (-1086 (-348 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) + (-5 *3 (-1086 (-348 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-346 *1)) (-4 *1 (-1135)))) + ((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-782 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-14 *2 (-485)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) + (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-783 *3 *4)) (-4 *4 (-781 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-783 *2 *3)) (-4 *3 (-781 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1171 *2))))) + (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1173 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-963)) (-4 *3 (-1173 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *5 *3)))) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-266 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) - (-4 *6 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *5 *6)))) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-696)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *6 *3)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-695))) - (-4 *7 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-696))) + (-4 *7 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-695))) - (-4 *3 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) - (-5 *1 (-396 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3))))) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-696))) + (-4 *3 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 (-51)) + (-5 *1 (-397 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3))))) + (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1173 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) - (-5 *2 (-347 (-858 *4))))) + (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-963)) (-4 *4 (-496)) + (-5 *2 (-348 (-859 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) - (-5 *2 (-347 (-858 *4)))))) + (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-963)) (-4 *4 (-496)) + (-5 *2 (-348 (-859 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) - ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135))) - ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) + ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) - ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135))) - ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) + ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) - ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1089))) - ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-831)))) - ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1134))) - ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-383)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-665))) ((*1 *1) (-5 *1 (-1091))) + ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-832)))) + ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-832)))) ((*1 *1) (-5 *1 (-1136))) + ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-384)))) ((*1 *2 *3) (-12 (-5 *3 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) - (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-483)))) - ((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131))))) + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) + (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-875 *3)) (-4 *3 (-484)))) + ((*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3226 (-584 (-1089))) (|:| -3227 (-584 (-1089))))) - (-5 *1 (-1131))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))) + (-12 (-5 *2 (-2 (|:| -3230 (-585 (-1091))) (|:| -3231 (-585 (-1091))))) + (-5 *1 (-1133))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-757)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-758)) (-4 *3 (-1015))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) - (-4 *2 (-1013)))) + (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) + (-4 *2 (-1015)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-757)) (-5 *1 (-1130 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-758)) (-5 *1 (-1132 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1015))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) + (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) - (-5 *1 (-1130 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1015)) (-5 *2 (-85)) + (-5 *1 (-1132 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3227 (-584 *3)) (|:| -3226 (-584 *3)))) - (-5 *1 (-1130 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-2 (|:| -3231 (-585 *3)) (|:| -3230 (-585 *3)))) + (-5 *1 (-1132 *3)) (-4 *3 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *5 (-298)) (-5 *2 (-345 (-1084 (-1084 *5)))) - (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5)))))) + (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-346 (-1086 (-1086 *5)))) + (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) - (-5 *3 (-1084 (-1084 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) + (-5 *3 (-1086 (-1086 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) - (-5 *3 (-1084 (-1084 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-346 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) + (-5 *3 (-1086 (-1086 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *3)) - (-4 *3 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *3 (-757)) (-4 *2 (-977 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1126 *2)) (-4 *2 (-1128))))) + (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *3 (-758)) (-4 *2 (-979 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-1128 *2)) (-4 *2 (-1130))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) - (-5 *1 (-1125)) (-5 *3 (-855 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1125))))) + (-12 (-5 *5 (-585 (-585 (-179)))) (-5 *4 (-179)) (-5 *2 (-585 (-856 *4))) + (-5 *1 (-1127)) (-5 *3 (-856 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-1127))))) (((*1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1128)))) + (-12 (-5 *2 (-832)) (-4 *1 (-196 *3 *4)) (-4 *4 (-963)) (-4 *4 (-1130)))) ((*1 *1 *2) - (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3954 *3) (-695))) + (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) - (-2 (|:| -2399 *2) (|:| -2400 *5)))) - (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) - (-4 *7 (-862 *4 *5 (-774 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) + (-2 (|:| -2402 *2) (|:| -2403 *5)))) + (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) (-4 *2 (-758)) + (-4 *7 (-863 *4 *5 (-775 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *2 (-1186)) (-5 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-895 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-856 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-856 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)) (-5 *3 (-179))))) + (-12 (-5 *2 (-856 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-713 *3)) - (-4 *3 (-888)))) + (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-714 *3)) + (-4 *3 (-889)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) - (-4 *2 (-888))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) + (-4 *2 (-889))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-889))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-888))))) -(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-888))))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-889))))) +(((*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-889))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3321 (-584 *9)))) (-5 *3 (-584 *9)) - (-4 *1 (-1123 *6 *7 *8 *9)))) + (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) (-4 *8 (-758)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-585 *9)))) (-5 *3 (-585 *9)) + (-4 *1 (-1125 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) - (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3321 (-584 *8)))) (-5 *3 (-584 *8)) - (-4 *1 (-1123 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-979 *5 *6 *7)) + (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-585 *8)))) (-5 *3 (-585 *8)) + (-4 *1 (-1125 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *6))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-2 (|:| -3858 (-584 *6)) (|:| -1700 (-584 *6))))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-2 (|:| -3862 (-585 *6)) (|:| -1703 (-585 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) - (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) + (-12 (-5 *3 (-1 (-85) *7 (-585 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) + (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-977 *5 *6 *7))))) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-977 *2 *3 *4))))) + (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-979 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) - (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) - (-4 *10 (-1020 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *10)) + (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-985 *5 *6 *7 *8)) + (-4 *10 (-1022 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) - (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) + (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) - (-14 *6 (-584 (-1089))) - (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) - (-5 *1 (-568 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) + (-14 *6 (-585 (-1091))) + (-5 *2 (-585 (-1061 *5 (-470 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) + (-5 *1 (-569 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) - (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) + (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-960 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1123 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-1125 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| -3858 *1) (|:| -1700 (-584 *7))))) (-5 *3 (-584 *7)) - (-4 *1 (-1123 *4 *5 *6 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| -3862 *1) (|:| -1703 (-585 *7))))) (-5 *3 (-585 *7)) + (-4 *1 (-1125 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *2 (-979 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-695))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *5 (-318)) (-5 *2 (-696))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) + (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1091))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))) + (-12 (-5 *3 (-585 (-832))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-832)) (-14 *5 (-908 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-451 *2 *3)) (-4 *3 (-760)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-452 *2 *3)) (-4 *3 (-761)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) + (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1156 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-665)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *2 (-757)))) + (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *2 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *3 (-696)) (-4 *2 (-863 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-962))))) + (-12 (-5 *3 (-696)) (-5 *2 (-859 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-963))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)) - (-4 *3 (-757)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-862 *4 (-469 *3) *3)))) + (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963)) + (-4 *3 (-758)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-863 *4 (-470 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) - (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962))))) + (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) + (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963))))) (((*1 *2 *2) - (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-389)) - (-5 *1 (-1120 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) - (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-555 (-802 *3))) (-4 *3 (-798 *3)) (-4 *3 (-390)) + (-5 *1 (-1122 *3 *2)) (-4 *2 (-555 (-802 *3))) (-4 *2 (-798 *3)) + (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) -(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3)))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) +(((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-757)) - (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-484))) (-5 *1 (-1032)))) + (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-390)) (-4 *3 (-758)) + (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-863 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1034)))) ((*1 *2 *2) - (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))) + (-12 (-4 *3 (-390)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-362 *3) (-1116)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-142 (-264 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-142 (-265 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-142 *3)) - (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-142 *3)) + (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85)) - (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-85)) + (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3)))))) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3)))))) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3)))))) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3))))) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3))))) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1117)))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-1117 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-584 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013))))) + (-12 (-5 *3 (-585 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-585 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-585 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1015))))) (((*1 *2) - (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) - ((*1 *1) (-5 *1 (-414))) ((*1 *1) (-4 *1 (-1114)))) -(((*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-962))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) + (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) + ((*1 *1) (-5 *1 (-415))) ((*1 *1) (-4 *1 (-1116)))) +(((*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-963))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) - (-5 *2 (-484)))) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) + (-5 *2 (-485)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) - (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) + (|partial| -12 (-4 *4 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) + (-5 *1 (-1032 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) - (-5 *1 (-1030 *6 *3)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-752 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) + (-5 *1 (-1032 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) - (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) - (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) + (-4 *6 (-13 (-496) (-952 *2) (-582 *2) (-390))) (-5 *2 (-485)) + (-5 *1 (-1032 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-484)) - (-5 *1 (-1031 *4)))) + (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-390)) (-5 *2 (-485)) + (-5 *1 (-1033 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 (-347 (-858 *6)))) - (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-752 (-348 (-859 *6)))) + (-5 *3 (-348 (-859 *6))) (-4 *6 (-390)) (-5 *2 (-485)) (-5 *1 (-1033 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) - (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-348 (-859 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) + (-4 *6 (-390)) (-5 *2 (-485)) (-5 *1 (-1033 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-774))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-774) (-585 (-774)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-774) (-585 (-774))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) - (-15 -1962 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439)))) - ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-648)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1965 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-649)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-695)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-696)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)))) ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1013)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-832)) (-4 *3 (-1015)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-337)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) ((*1 *1) - (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) - ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) - ((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1) (-5 *1 (-1089))) - ((*1 *1) (-5 *1 (-1108)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1013)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013))))) + (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) + (-4 *4 (-610 *3)))) + ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-696)) (-4 *2 (-963)))) + ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963)))) + ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091))) + ((*1 *1) (-5 *1 (-1110)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-1110))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-696)) (-4 *1 (-636 *2)) (-4 *2 (-1015)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1015)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1013))))) + (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1015))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1013))))) + (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1015)) + (-4 *5 (-1015))))) (((*1 *2) - (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3857 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-311))))) + (-12 (-5 *2 (-585 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *1 (-1108 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-311))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-311))))) + (-12 (-5 *4 (-832)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-362 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-696)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-362 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) - (-4 *4 (-13 (-361 *3) (-916))))) - ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) - ((*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) + (-4 *4 (-13 (-362 *3) (-917))))) + ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) + ((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1015)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-372 *3 *4)) (-4 *4 (-362 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-569 *3 *4)) - (-4 *4 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013))))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-570 *3 *4)) + (-4 *4 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-934)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-584 (-584 *3))))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-585 (-585 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-585 (-585 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-1104 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) + (-12 (-4 *4 (-758)) (-5 *2 - (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) - (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) - (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 (-584 *4))))))) + (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) + (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) + (-5 *1 (-1102 *4)) (-5 *3 (-585 (-585 (-585 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) + (-12 (-4 *6 (-758)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) - (-5 *1 (-1100 *6)) (-5 *4 (-584 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) + (-5 *1 (-1102 *6)) (-5 *4 (-585 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) - (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) - (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) + (|partial| -12 (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-4 *7 (-906 *4)) (-4 *2 (-629 *7 *8 *9)) + (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) + (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)) (-4 *2 (-311)))) + (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)) (-4 *2 (-312)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962)))) + (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-312)) (-4 *2 (-963)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-962)) - (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1100 *3))))) + (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-963)) + (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)) - (-5 *3 (-584 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1100 *3))))) + (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1102 *4)) + (-5 *3 (-585 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-758)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-1102 (-584 *4))) (-5 *1 (-1100 *4)) - (-5 *3 (-584 *4))))) + (-12 (-4 *4 (-758)) (-5 *2 (-1104 (-585 *4))) (-5 *1 (-1102 *4)) + (-5 *3 (-585 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1100 *4)) - (-5 *3 (-584 (-584 *4)))))) + (-12 (-4 *4 (-758)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1102 *4)) + (-5 *3 (-585 (-585 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1102 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) - (-5 *1 (-1100 *4))))) + (-12 (-5 *3 (-1104 (-585 *4))) (-4 *4 (-758)) (-5 *2 (-585 (-585 *4))) + (-5 *1 (-1102 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) - (-5 *1 (-1100 *4)) (-4 *4 (-757))))) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) + (-5 *1 (-1102 *4)) (-4 *4 (-758))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) - (-5 *1 (-1100 *4))))) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-758)) + (-5 *1 (-1102 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) - (-5 *1 (-1100 *4))))) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-758)) + (-5 *1 (-1102 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1100 *5))))) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-585 *5)) (-4 *5 (-758)) (-5 *1 (-1102 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) - (-5 *1 (-1100 *6)) (-5 *5 (-584 *4))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1098 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 (-484))))) - (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-756) (-311))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-248 (-347 (-858 (-484)))))) - (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-756) (-311))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 (-248 (-858 *4)))) - (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-248 (-347 (-858 (-484))))) (-5 *2 (-584 (-248 (-858 *4)))) - (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-758)) (-5 *4 (-585 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-585 *4)))) + (-5 *1 (-1102 *6)) (-5 *5 (-585 *4))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-859 *5)))) (-5 *1 (-1100 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-348 (-859 (-485))))) + (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-249 (-348 (-859 (-485)))))) + (-5 *2 (-585 (-585 (-249 (-859 *4))))) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-348 (-859 (-485)))) (-5 *2 (-585 (-249 (-859 *4)))) + (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-348 (-859 (-485))))) (-5 *2 (-585 (-249 (-859 *4)))) + (-5 *1 (-330 *4)) (-4 *4 (-13 (-757) (-312))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1089)) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-4 *4 (-13 (-29 *6) (-1114) (-872))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-584 *4)))) - (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))) + (|partial| -12 (-5 *5 (-1091)) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-4 *4 (-13 (-29 *6) (-1116) (-873))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) + (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-602 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-602 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2011 (-584 *7))))) - (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-4 *7 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2014 (-585 *7))))) + (-5 *1 (-611 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-629 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1178 *5) #2="failed")) - (|:| -2011 (-584 (-1178 *5))))) - (-5 *1 (-611 *5)) (-5 *4 (-1178 *5)))) + (-2 (|:| |particular| (-3 (-1180 *5) #2="failed")) + (|:| -2014 (-585 (-1180 *5))))) + (-5 *1 (-612 *5)) (-5 *4 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1178 *5) #2#)) (|:| -2011 (-584 (-1178 *5))))) - (-5 *1 (-611 *5)) (-5 *4 (-1178 *5)))) + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) (|:| -2014 (-585 (-1180 *5))))) + (-5 *1 (-612 *5)) (-5 *4 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-312)) (-5 *2 - (-584 - (-2 (|:| |particular| (-3 (-1178 *5) #2#)) - (|:| -2011 (-584 (-1178 *5)))))) - (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) + (-585 + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) + (|:| -2014 (-585 (-1180 *5)))))) + (-5 *1 (-612 *5)) (-5 *4 (-585 (-1180 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-312)) (-5 *2 - (-584 - (-2 (|:| |particular| (-3 (-1178 *5) #2#)) - (|:| -2011 (-584 (-1178 *5)))))) - (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) + (-585 + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) + (|:| -2014 (-585 (-1180 *5)))))) + (-5 *1 (-612 *5)) (-5 *4 (-585 (-1180 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5)))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-695 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-695 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) - (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-696 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1114) (-872))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) + (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) (-5 *1 (-697 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1116) (-873))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) - (-5 *1 (-726 *6 *7)) (-5 *4 (-1178 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089)) - (-4 *6 (-13 (-29 *5) (-1114) (-872))) - (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-1178 *6))) (-5 *1 (-726 *5 *6)))) + (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) + (-5 *1 (-727 *6 *7)) (-5 *4 (-1180 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1091)) + (-4 *6 (-13 (-29 *5) (-1116) (-873))) + (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-1180 *6))) (-5 *1 (-727 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) - (-5 *1 (-726 *6 *7)))) + (|partial| -12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2011 (-584 (-1178 *7))))) - (-5 *1 (-726 *6 *7)))) + (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2014 (-585 (-1180 *7))))) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2011 (-584 *7))) *7 #3="failed")) - (-5 *1 (-726 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2014 (-585 *7))) *7 #3="failed")) + (-5 *1 (-727 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1089)) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2011 (-584 *3))) *3 #3#)) - (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-872))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1091)) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2014 (-585 *3))) *3 #3#)) + (-5 *1 (-727 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-873))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-5 *1 (-726 *6 *2)) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))))) + (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-873))) (-5 *1 (-727 *6 *2)) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2)) - (-4 *2 (-13 (-29 *6) (-1114) (-872))) - (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *1 (-726 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-873))) + (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *1 (-727 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2011 (-584 *6))) "failed") *7 *6)) - (-4 *6 (-311)) (-4 *7 (-601 *6)) - (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2011 (-631 *6)))) - (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) - (-5 *4 (-327)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) - (-5 *4 (-327)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-264 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) - (-5 *3 (-248 (-264 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) - (-5 *3 (-248 (-264 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-264 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1089))) - (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)) - (-5 *3 (-584 (-248 (-264 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5)) - (-5 *3 (-584 (-248 (-347 (-858 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) - (-5 *1 (-1098 *4)) (-5 *3 (-584 (-248 (-347 (-858 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) - (-5 *1 (-1098 *5)) (-5 *3 (-347 (-858 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) - (-5 *1 (-1098 *5)) (-5 *3 (-248 (-347 (-858 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) - (-5 *3 (-347 (-858 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) - (-5 *3 (-248 (-347 (-858 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-444)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-415)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-884)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-949)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-262)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-614)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-456)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-623)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-540)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-1094))) (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-484) (-179) (-444) (-1072) (-1094))) (-5 *1 (-1094))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-557)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2239)) (-5 *2 (-85)) (-5 *1 (-557)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-557)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2014 (-585 *6))) "failed") *7 *6)) + (-4 *6 (-312)) (-4 *7 (-602 *6)) + (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2014 (-632 *6)))) + (-5 *1 (-735 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1180 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-859 (-348 (-485)))) (-5 *2 (-585 (-328))) (-5 *1 (-938)) + (-5 *4 (-328)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-859 (-485))) (-5 *2 (-585 (-328))) (-5 *1 (-938)) + (-5 *4 (-328)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) + (-5 *3 (-249 (-265 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) + (-5 *3 (-249 (-265 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1091))) + (-4 *5 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) + (-5 *3 (-585 (-249 (-265 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-1100 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1091))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-1100 *5)) + (-5 *3 (-585 (-249 (-348 (-859 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-348 (-859 *4)))) (-4 *4 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-1100 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) + (-5 *1 (-1100 *4)) (-5 *3 (-585 (-249 (-348 (-859 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *5))))) + (-5 *1 (-1100 *5)) (-5 *3 (-348 (-859 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *5))))) + (-5 *1 (-1100 *5)) (-5 *3 (-249 (-348 (-859 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *4))))) (-5 *1 (-1100 *4)) + (-5 *3 (-348 (-859 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-585 (-249 (-348 (-859 *4))))) (-5 *1 (-1100 *4)) + (-5 *3 (-249 (-348 (-859 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774))))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-445)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-416)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-567)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1010)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1005)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-987)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-885)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-950)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-615)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-980)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-457)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-624)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1031)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-541)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-619)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1096)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-485) (-179) (-445) (-1074) (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-234))) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-558)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2242)) (-5 *2 (-85)) (-5 *1 (-558)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-558)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2364)) (-5 *2 (-85)) (-5 *1 (-633 *4)) - (-4 *4 (-553 (-773))))) + (-12 (-5 *3 (|[\|\|]| -2367)) (-5 *2 (-85)) (-5 *1 (-634 *4)) + (-4 *4 (-554 (-774))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) - (-5 *1 (-633 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-786)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-786)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-246))) ((*1 *1) (-5 *1 (-773))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-554 (-774))) (-5 *2 (-85)) + (-5 *1 (-634 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-787)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-787)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-416))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1005))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-885))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-950))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-980))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-541))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-445))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-774))) ((*1 *1) - (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-997))) + (-12 (-4 *2 (-390)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-999))) ((*1 *1) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) - ((*1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) + ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1093)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *1 (-1093))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-376)) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093))))) + (-12 (-5 *2 (-377)) (-5 *3 (-585 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-1091)) (-5 *1 (-1095)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-377)) (-5 *3 (-585 (-1091))) (-5 *1 (-1095))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-377)) (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1095))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-374)) + (-12 (-5 *3 (-375)) (-5 *2 - (-584 - (-3 (|:| -3539 (-1089)) - (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) - (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093))))) + (-585 + (-3 (|:| -3543 (-1091)) + (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485))))))))) + (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1095))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 - (-584 - (-3 (|:| -3539 (-1089)) - (|:| -3223 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))))) - (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093))))) + (-585 + (-585 + (-3 (|:| -3543 (-1091)) + (|:| -3227 (-585 (-3 (|:| S (-1091)) (|:| P (-859 (-485)))))))))) + (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1095))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| (-376))))) - (-5 *1 (-1093))))) -(((*1 *1) (-5 *1 (-1092)))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) - ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) + (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| (-377))))) + (-5 *1 (-1095))))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) + (-12 (-5 *4 (-585 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3907 #1="void"))) (-5 *2 (-1184)) - (-5 *1 (-1092)))) + (-12 (-5 *3 (-3 (|:| |fst| (-375)) (|:| -3911 #1="void"))) (-5 *2 (-1186)) + (-5 *1 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) - (-5 *2 (-1184)) (-5 *1 (-1092)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) + (-5 *2 (-1186)) (-5 *1 (-1094)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) - (-5 *2 (-1184)) (-5 *1 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) - ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))) + (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) + (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 "void"))) - (-5 *1 (-1092))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) - ((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-377 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) - ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-775)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1089)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 "void"))) + (-5 *1 (-1094))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-963)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-832)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-1015)))) + ((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-378 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-4 *1 (-749 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-776)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-990 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1031)))) ((*1 *1 *1) (-5 *1 (-1091)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) - (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) - (|:| |args| (-584 (-773))))) - (-5 *1 (-1089))))) + (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) + (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) + (|:| |args| (-585 (-774))))) + (-5 *1 (-1091))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2583 (-584 (-773))) (|:| -2482 (-584 (-773))) - (|:| |presup| (-584 (-773))) (|:| -2581 (-584 (-773))) - (|:| |args| (-584 (-773))))) - (-5 *1 (-1089)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1089))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089))))) -(((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089))))) -(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1089))))) + (-2 (|:| -2586 (-585 (-774))) (|:| -2485 (-585 (-774))) + (|:| |presup| (-585 (-774))) (|:| -2584 (-585 (-774))) + (|:| |args| (-585 (-774))))) + (-5 *1 (-1091)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-1091))))) +(((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091))))) +(((*1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-1091))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-484)) (-5 *2 (-773)) - (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-774) (-774) (-774))) (-5 *4 (-485)) (-5 *2 (-774)) + (-5 *1 (-593 *5 *6 *7)) (-4 *5 (-1015)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-774)) (-5 *1 (-765 *3 *4 *5)) (-4 *3 (-963)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-773)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1084 *3)) (-4 *3 (-962))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-774)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-774)) (-5 *1 (-1086 *3)) (-4 *3 (-963))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1001 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) - (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) - (-5 *1 (-529 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-495)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) - (-4 *3 (-862 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773))) + (-12 (-5 *5 (-1003 *3)) (-4 *3 (-863 *7 *6 *4)) (-4 *6 (-719)) (-4 *4 (-758)) + (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) + (-5 *1 (-530 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-496)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) + (-4 *3 (-863 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1116))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114))) - (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2)))) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-362 *4) (-133) (-27) (-1116))) + (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-1084 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) - (-5 *2 (-347 (-858 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-858 *5)))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)))) + (-5 *2 (-348 (-859 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-859 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) - (-5 *2 (-3 (-347 (-858 *5)) (-264 *5))) (-5 *1 (-1083 *5)) - (-5 *3 (-347 (-858 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)))) + (-5 *2 (-3 (-348 (-859 *5)) (-265 *5))) (-5 *1 (-1085 *5)) + (-5 *3 (-348 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-858 *5))) (-5 *3 (-858 *5)) - (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 *3)) (-5 *1 (-1083 *5)))) + (-12 (-5 *4 (-1006 (-859 *5))) (-5 *3 (-859 *5)) + (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-348 *3)) (-5 *1 (-1085 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) - (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 *3 (-264 *5))) - (-5 *1 (-1083 *5))))) + (-12 (-5 *4 (-1006 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) + (-4 *5 (-13 (-496) (-952 (-485)))) (-5 *2 (-3 *3 (-265 *5))) + (-5 *1 (-1085 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-802 *4 *5)) (-4 *5 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-803 *4 *5)) (-4 *5 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -2400 (-695)) (|:| -3770 *4) (|:| |num| *4)))) - (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) + (-12 (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3774 *4) (|:| |num| *4)))) + (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-340 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1="void"))) - (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-85)) (-5 *1 (-376)))) + (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1="void"))) + (-5 *3 (-585 (-859 (-485)))) (-5 *4 (-85)) (-5 *1 (-377)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 #1#))) (-5 *3 (-584 (-1089))) - (-5 *4 (-85)) (-5 *1 (-376)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 #1#))) (-5 *3 (-585 (-1091))) + (-5 *4 (-85)) (-5 *1 (-377)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-5 *1 (-608 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1013)) + (-12 (-5 *1 (-652 *2 *3 *4)) (-4 *2 (-758)) (-4 *3 (-1015)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) - (-2 (|:| -2399 *2) (|:| -2400 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-750)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) + (-2 (|:| -2402 *2) (|:| -2403 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1030)) (-5 *1 (-751)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) - (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1015)) + (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1013) (-34))) - (-5 *2 (-584 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1015) (-34))) + (-5 *2 (-585 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1598 *5)))) - (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) - (-5 *2 (-584 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) + (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1601 *5)))) + (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) + (-5 *2 (-585 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1055 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) - (-4 *2 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)) + (-4 *2 (-13 (-1015) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) + (-12 (-5 *4 (-585 (-1055 *2 *3))) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34))) (-5 *1 (-1056 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) - (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-585 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) + (-4 *2 (-13 (-1015) (-34))) (-4 *3 (-13 (-1015) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-416)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-567)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-416)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-567)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) + (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) + (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-585 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)))) + (-12 (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *2 (-696)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) + (-5 *1 (-1080 *4 *5)) (-14 *4 (-832))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))))) + (-12 (-5 *2 (-856 *4)) (-4 *4 (-963)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-856 *5)) (-5 *3 (-696)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-696)) (-5 *3 (-856 *5)) (-4 *5 (-963)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-696)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-856 *5)) (-4 *5 (-963)) + (-5 *1 (-1080 *4 *5)) (-14 *4 (-832))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-831)) (-4 *5 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-832)) (-4 *5 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-696))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-855 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-856 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-262)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) (-4 *4 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-832)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-962))))) + (-12 (-5 *2 (-585 (-856 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-963))))) (((*1 *1 *1) - (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-389)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *2 (-390)))) ((*1 *1 *1) - (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) - (-4 *4 (-1154 (-347 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-348 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-390)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *3 (-389)))) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *3 (-390)))) ((*1 *1 *1) - (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389)))) + (-12 (-4 *1 (-863 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3))))) + (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-870 *3)) (-5 *1 (-1077 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-871 *3)) (-5 *1 (-1079 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1) (-4 *1 (-430))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1) (-4 *1 (-431))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-327))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-328))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1142 *3 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-348 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-347 (-484)))) - (-5 *2 (-2 (|:| -3487 (-1068 *4)) (|:| -3488 (-1068 *4)))) - (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4))))) + (-12 (-4 *4 (-38 (-348 (-485)))) + (-5 *2 (-2 (|:| -3491 (-1070 *4)) (|:| -3492 (-1070 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-347 (-484)))) - (-5 *2 (-2 (|:| -3635 (-1068 *4)) (|:| -3631 (-1068 *4)))) - (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4))))) + (-12 (-4 *4 (-38 (-348 (-485)))) + (-5 *2 (-2 (|:| -3639 (-1070 *4)) (|:| -3635 (-1070 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-311)) - (-4 *4 (-962)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))))) + (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) + (-4 *4 (-963)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-347 (-484))) - (-5 *1 (-1074 *4))))) + (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-963)) (-5 *3 (-348 (-485))) + (-5 *1 (-1076 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) - (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962))))) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) + (-4 *4 (-38 (-348 (-485)))) (-4 *4 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) - (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962))))) + (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) + (-4 *3 (-38 (-348 (-485)))) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) - (-4 *4 (-962))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1154 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) + (-4 *4 (-963))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-806 *2 *3)) (-4 *2 (-1156 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-962)) - (-5 *1 (-1074 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-963)) + (-5 *1 (-1076 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-873))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) - (-5 *3 (-484))))) + (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-963)) + (-5 *3 (-485))))) (((*1 *2 *3) - (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) - (-5 *3 (-484))))) + (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-963)) + (-5 *3 (-485))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-311)) - (-14 *4 (-907 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-832)) (-4 *3 (-312)) + (-14 *4 (-908 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) - ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) - ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664))) + ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *1) (|partial| -4 *1 (-661))) ((*1 *1 *1) (|partial| -4 *1 (-665))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3)))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-701 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) - (-4 *2 (-1154 *3)))) + (|partial| -12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) + (-4 *2 (-1156 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) + (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) - (-4 *2 (-495)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-495))) + (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)) + (-4 *2 (-496)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-496))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)) (-4 *2 (-495)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-695))) + (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)) (-4 *2 (-496)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-696))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-496)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) - (-5 *1 (-883 *3 *4)))) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) + (-5 *1 (-884 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) - (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) + (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-963)) + (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) + (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-963)) (-5 *1 (-1076 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) - (-5 *1 (-1068 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1015)) (-4 *4 (-1130)) (-5 *2 (-85)) + (-5 *1 (-1070 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2594 (-695)) (|:| |period| (-695)))) - (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128))))) -(((*1 *1) (-5 *1 (-514))) - ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-769)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-696)) (|:| |period| (-696)))) + (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130))))) +(((*1 *1) (-5 *1 (-515))) + ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-770)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-770)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1074)) (-5 *4 (-774)) (-5 *2 (-1186)) (-5 *1 (-770)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) - (-4 *4 (-1128))))) + (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1015)) + (-4 *4 (-1130))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-774)) (-5 *1 (-1070 *3)) (-4 *3 (-1015)) (-4 *3 (-1130))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1015)) (-4 *3 (-1130))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1178 (-584 (-484)))) (-5 *1 (-417)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))) + (-12 (-5 *3 (-696)) (-5 *2 (-1180 (-585 (-485)))) (-5 *1 (-418)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) - (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) + (-4 *2 (-1173 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-4 *5 (-1154 *4)) - (-4 *6 (-662 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-318) (-555 *3))) (-4 *5 (-1156 *4)) + (-4 *6 (-663 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) - (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-318) (-555 *3))) + (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1067 *4))))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1069 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) - (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-663 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1171 *3)))) + (-12 (-4 *3 (-13 (-312) (-318) (-555 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-463)))) - ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1066))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-1048))) (-5 *1 (-1066))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-464)))) + ((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1050))) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) - ((*1 *1) (-4 *1 (-1065)))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1065))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)))) + ((*1 *1) (-4 *1 (-1067)))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1067))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3))))) + (-12 (-5 *3 (-696)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) - (-4 *3 (-977 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-585 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) + (-4 *3 (-979 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *2 (-977 *3 *4 *5)))) + (-12 (-4 *1 (-985 *3 *4 *5 *2)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *2 (-979 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-584 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) - (-4 *3 (-977 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-585 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) + (-4 *3 (-979 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-942 *5 *6 *7 *8))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) - (-5 *1 (-1059 *5 *6 *7 *8))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-85)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-585 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-942 *5 *6 *7 *8))))) + (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1059 *5 *6 *7 *8))))) - (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) - (-5 *1 (-981 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) - (-5 *1 (-1058 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1061 *5 *6 *7 *8))))) + (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1186)) + (-5 *1 (-983 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *4 (-696)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-1186)) + (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-584 *11)) - (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) - (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) - (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) - (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) - (-5 *1 (-981 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) + (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) + (-4 *11 (-985 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) + (-5 *1 (-983 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-584 *11)) - (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) - (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) - (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) - (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) - (-5 *1 (-1058 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1601 *11)))))) + (-5 *6 (-696)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1601 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-979 *7 *8 *9)) + (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-390)) (-4 *8 (-719)) (-4 *9 (-758)) + (-5 *1 (-1060 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 - (-2 (|:| -2335 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2338 (-354 *4 (-348 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3088 (-347 *6)) (|:| |special| (-347 *6)))) - (-5 *1 (-667 *5 *6)) (-5 *3 (-347 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-348 *6)) (|:| |special| (-348 *6)))) + (-5 *1 (-668 *5 *6)) (-5 *3 (-348 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-809 *3 *4)) + (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-695)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| -3136 *3) (|:| -3135 *3))) (-5 *1 (-808 *3 *5)) - (-4 *3 (-1154 *5)))) + (|partial| -12 (-5 *4 (-696)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-809 *3 *5)) + (-4 *3 (-1156 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-85)) + (-4 *8 (-979 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) - (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) + (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-719)) + (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *7 *8 *9 *3 *4)) (-4 *4 (-985 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) - (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) + (-12 (-5 *5 (-696)) (-5 *6 (-85)) (-4 *7 (-390)) (-4 *8 (-719)) + (-4 *9 (-758)) (-4 *3 (-979 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-696)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-584 *4)) - (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) - (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-983 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-979 *5 *6 *7)) + (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-696)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *1 *1) (-4 *1 (-1057)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1 *1) (-4 *1 (-1059)))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *1 *1) (-4 *1 (-1057)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) (-4 *6 (-1130)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) - (-5 *1 (-586 *5 *2)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1130)) + (-5 *1 (-587 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1015)) (-4 *5 (-1130)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-587 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) - (-5 *1 (-586 *5 *2)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1015)) (-4 *2 (-1130)) + (-5 *1 (-587 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) - (-4 *6 (-1128)) (-5 *1 (-586 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1015)) + (-4 *6 (-1130)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) - (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-695))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1015)) + (-4 *2 (-1130)) (-5 *1 (-587 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-696))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-696)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-485)) (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-485)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-322 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-468)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-757)))) - ((*1 *2 *2) - (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) - (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-521 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-519 (-347 (-858 *3)))) - (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-525 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| -3088 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-311)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1057))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117))))) + (-5 *1 (-94 *3)) (-4 *3 (-758)))) + ((*1 *2 *2) + (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) + (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-522 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-520 (-348 (-859 *3)))) + (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-526 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-668 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-585 *1)) (-4 *1 (-1059)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-585 *1)) (-4 *1 (-1059))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-321 *3)) - (-4 *4 (-321 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962))))) + (-12 (-4 *3 (-963)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-322 *3)) + (-4 *4 (-322 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-696)) (-4 *3 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-695))))) + (-12 (-5 *2 (-632 *4)) (-4 *4 (-963)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-696))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-585 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1054 *3 *4)) - (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) + (-4 *3 (-13 (-1015) (-34))) (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) - (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5))))) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1015) (-34))) + (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1054 *5 *6))))) + (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1056 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) - (-4 *2 (-1013)))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) + (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-124 *3)) - (-4 *3 (-1128)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1130)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-193 *3)) - (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) + (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-193 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) + (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1015)) (-5 *1 (-677 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-677 *2)) (-4 *2 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) - (-5 *1 (-1054 *4 *5)))) + (-12 (-5 *2 (-585 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1015) (-34))) (-4 *5 (-13 (-1015) (-34))) + (-5 *1 (-1056 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-584 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))) + (-12 (-5 *2 (-585 (-1055 *3 *4))) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) + (-12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-768)))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-903)))) - ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1128)))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-769)))) + ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-904)))) + ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1130)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-4 *2 (-13 (-1015) (-34))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-85)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963)))) ((*1 *1 *1) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) - (-4 *2 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1015) (-34))) + (-4 *2 (-13 (-1015) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1015) (-34))) + (-4 *4 (-13 (-1015) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1015) (-34))) + (-4 *3 (-13 (-1015) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1053 *5 *6))))) + (-4 *5 (-13 (-1015) (-34))) (-4 *6 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1055 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1015) (-34))) (-5 *2 (-85)) + (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1015) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1) (-4 *1 (-1052))) ((*1 *1 *1 *1) (-4 *1 (-1052)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-696)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-696)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1) (-4 *1 (-1052)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) - ((*1 *1 *1 *1) (-4 *1 (-1052)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *1 *1) (-4 *1 (-715))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *1 *1) (-4 *1 (-1052)))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-1049))))) -(((*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) - ((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *1 *1) (-4 *1 (-716))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)) (-4 *2 (-975)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1074)) (-5 *4 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-774))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-1096))) (-5 *1 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) + ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963))))) (((*1 *2) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1049 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-963)) (-5 *2 (-585 *1)) (-4 *1 (-1049 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-962)) - (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) + (-12 (-5 *3 (-585 (-856 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-963)) + (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-856 *3))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) + (-12 (-5 *2 (-585 (-856 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-856 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) - (-4 *1 (-1047 *4)))) + (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *4 (-963)) + (-4 *1 (-1049 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) + (-12 (-5 *2 (-585 (-585 (-856 *3)))) (-4 *3 (-963)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) + (-4 *4 (-963)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-585 (-856 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) + (-4 *4 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) - (-4 *1 (-1047 *5)) (-4 *5 (-962)))) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) + (-4 *1 (-1049 *5)) (-4 *5 (-963)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) - (-4 *1 (-1047 *5)) (-4 *5 (-962))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))) + (-12 (-5 *2 (-585 (-585 (-856 *5)))) (-5 *3 (-585 (-145))) (-5 *4 (-145)) + (-4 *1 (-1049 *5)) (-4 *5 (-963))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-856 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695)))))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-585 (-696)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) - (-5 *2 (-584 (-584 (-584 (-855 *3)))))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) + (-5 *2 (-585 (-585 (-585 (-856 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145)))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-585 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 (-585 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-963)) (-5 *2 - (-2 (|:| -3847 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) - (|:| |constructs| (-695))))))) + (-2 (|:| -3851 (-696)) (|:| |curves| (-696)) (|:| |polygons| (-696)) + (|:| |constructs| (-696))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3729 (-1084 *6)) (|:| -2400 (-484))))) - (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-585 (-2 (|:| -3733 (-1086 *6)) (|:| -2403 (-485))))) + (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-963))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) - (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3992) (-6 -3993)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) + (-4 *2 (-13 (-540 (-485) *4) (-10 -7 (-6 -3996) (-6 -3997)))))) ((*1 *2 *2) - (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) - (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3992) (-6 -3993))))))) + (-12 (-4 *3 (-758)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) + (-4 *2 (-13 (-540 (-485) *3) (-10 -7 (-6 -3996) (-6 -3997))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) - (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3992) (-6 -3993)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) + (-4 *2 (-13 (-540 (-485) *4) (-10 -7 (-6 -3996) (-6 -3997)))))) ((*1 *2 *2) - (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) - (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3992) (-6 -3993))))))) + (-12 (-4 *3 (-758)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) + (-4 *2 (-13 (-540 (-485) *3) (-10 -7 (-6 -3996) (-6 -3997))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-962)) (-4 *2 (-1154 *4)) - (-5 *1 (-381 *4 *2)))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-963)) (-4 *2 (-1156 *4)) + (-5 *1 (-382 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-347 (-1084 (-264 *5)))) (-5 *3 (-1178 (-264 *5))) - (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5))))) + (-12 (-5 *2 (-348 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) + (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-347 (-1084 (-264 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3))))) + (-12 (-5 *2 (-348 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) - (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) - (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-249 (-348 (-859 *5)))) (-5 *4 (-1091)) + (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-1081 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) - (-5 *1 (-1042 *5))))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-1081 (-585 (-265 *5)) (-585 (-249 (-265 *5))))) + (-5 *1 (-1044 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-584 (-264 *5))) (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-265 *5))) (-5 *1 (-1044 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) - (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-264 *5)))) - (-5 *1 (-1042 *5))))) + (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-265 *5)))) + (-5 *1 (-1044 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-13 (-257) (-120))) - (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) + (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) - (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) - (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-249 (-348 (-859 *5)))) (-5 *4 (-1091)) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-249 (-265 *5)))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) - (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) + (-12 (-5 *3 (-249 (-348 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) - (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) - (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-585 (-348 (-859 *5)))) (-5 *4 (-585 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) - (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))) + (-12 (-5 *3 (-585 (-348 (-859 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-248 (-347 (-858 *5))))) (-5 *4 (-584 (-1089))) - (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) - (-5 *1 (-1042 *5)))) + (-12 (-5 *3 (-585 (-249 (-348 (-859 *5))))) (-5 *4 (-585 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-585 (-585 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-4 *4 (-13 (-257) (-120))) - (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4))))) + (-12 (-5 *3 (-585 (-249 (-348 (-859 *4))))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-585 (-249 (-265 *4))))) (-5 *1 (-1044 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) + (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) (-5 *2 - (-2 (|:| |solns| (-584 *5)) - (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5))))) + (-2 (|:| |solns| (-585 *5)) + (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3993)))) - (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993)))) (-5 *1 (-610 *4 *5 *2 *3)) - (-4 *3 (-628 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-322 *4) (-10 -7 (-6 -3997)))) + (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997)))) (-5 *1 (-611 *4 *5 *2 *3)) + (-4 *3 (-629 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311)) - (-5 *1 (-611 *4)))) + (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-632 *4)) (-4 *4 (-312)) + (-5 *1 (-612 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) - (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) + (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) + (-5 *1 (-736 *2 *3)) (-4 *3 (-602 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) - (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-348 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1068 *7))) (-4 *6 (-757)) - (-4 *7 (-862 *5 (-469 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1068 *7) *7)) - (-5 *1 (-1039 *5 *6 *7))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1070 *7))) (-4 *6 (-758)) + (-4 *7 (-863 *5 (-470 *6) *6)) (-4 *5 (-963)) (-5 *2 (-1 (-1070 *7) *7)) + (-5 *1 (-1041 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) + (-12 (-4 *5 (-258)) (-4 *6 (-322 *5)) (-4 *4 (-322 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) + (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))) + (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) - (-4 *3 (-628 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) + (-12 (-4 *4 (-258)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) + (-4 *3 (-629 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485)))) ((*1 *2 *2) - (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-4 *3 (-258)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-696)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-962)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) + (-12 (-4 *2 (-963)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-585 *1)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-963)) (-5 *1 (-632 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1036 *3 *4 *5 *6)) + (-12 (-5 *2 (-585 *4)) (-4 *4 (-963)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-962))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 *2)) (-4 *4 (-1154 *2)) - (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4)))) + (-12 (-5 *3 (-632 *2)) (-4 *4 (-1156 *2)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-5 *1 (-437 *2 *4 *5)) (-4 *5 (-351 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-962))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-963))))) (((*1 *2 *3) - (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) - (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-312)) + (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) - (|has| *2 (-6 (-3994 "*"))) (-4 *2 (-962)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-963)))) ((*1 *2 *3) - (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3994 "*"))) (-4 *2 (-962))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-963))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) - (|has| *2 (-6 (-3994 "*"))) (-4 *2 (-962)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-322 *2)) (-4 *4 (-322 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-963)))) ((*1 *2 *3) - (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) + (-12 (-4 *4 (-322 *2)) (-4 *5 (-322 *2)) (-4 *2 (-146)) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3994 "*"))) (-4 *2 (-962))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-963))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1036 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-4 *1 (-1036 *3)) (-4 *3 (-1130)) (-5 *2 (-696))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1033)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-378)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-750)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-623)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-884)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-623)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) - (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1035)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1030)) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-379)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-751)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1030)))) + ((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-624)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-987)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-624)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-390)) (-4 *4 (-742)) (-14 *5 (-1091)) + (-5 *2 (-485)) (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) - (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-390)) (-4 *4 (-742)) (-14 *5 (-1091)) + (-5 *2 (-485)) (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-485)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 *4)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 *4)) + (-5 *1 (-1029 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) - (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) + (-12 (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 (-1149 *5 *4))) + (-5 *1 (-1029 *4 *5)) (-5 *3 (-1149 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) - (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) + (-12 (-4 *4 (-742)) (-14 *5 (-1091)) (-5 *2 (-585 (-1149 *5 *4))) + (-5 *1 (-1029 *4 *5)) (-5 *3 (-1149 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1024 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-1023)) (-5 *3 (-485))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1023))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1023)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-584 (-484))) (-5 *4 (-484)) - (-5 *1 (-1021))))) + (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-585 (-485))) (-5 *4 (-485)) + (-5 *1 (-1023))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-584 (-484))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) - (-5 *1 (-1021))))) + (-12 (-5 *2 (-585 (-485))) (-5 *3 (-585 (-832))) (-5 *4 (-85)) + (-5 *1 (-1023))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-631 (-484))) (-5 *3 (-584 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *2 (-632 (-485))) (-5 *3 (-585 (-485))) (-5 *1 (-1023))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-484))) (-5 *2 (-631 (-484))) - (-5 *1 (-1021))))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-485))) (-5 *2 (-632 (-485))) + (-5 *1 (-1023))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-1021))))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-1023))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-584 (-484))) (-5 *3 (-631 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *2 (-585 (-485))) (-5 *3 (-632 (-485))) (-5 *1 (-1023))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *3 (-585 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-1023))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) + (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) - (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) - (-4 *7 (-718)) (-4 *4 (-757)) - (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) - (-5 *1 (-1019 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) + (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-390)) + (-4 *7 (-719)) (-4 *4 (-758)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) + (-5 *1 (-1021 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) + (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-986 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-986 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-986 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *9 (-977 *6 *7 *8)) - (-5 *2 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) - (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *9 (-979 *6 *7 *8)) + (-5 *2 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-985 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *9 (-977 *6 *7 *8)) - (-5 *2 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) - (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) - (-4 *4 (-983 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *9 (-979 *6 *7 *8)) + (-5 *2 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) + (-4 *4 (-985 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) + (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 - (-584 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) - (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) + (-585 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-85)) (-4 *10 (-985 *6 *7 *8 *9)) + (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-979 *6 *7 *8)) (-5 *2 - (-584 (-2 (|:| -3264 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) - (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))) + (-585 (-2 (|:| -3268 (-585 *9)) (|:| -1601 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) - (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) + (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) - (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1601 *7)))) + (-4 *6 (-979 *3 *4 *5)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1601 *8))) + (-4 *7 (-979 *4 *5 *6)) (-4 *8 (-985 *4 *5 *6 *7)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-902 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-903 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1018 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-985 *5 *6 *7 *8)) (-4 *5 (-390)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1020 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) + (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-902 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-1020 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-985 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-985 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-902 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-903 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-985 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-988)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-951 (-484))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-952 (-485))))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *7 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3857 (-1089)) (|:| |entry| *4)))) - (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) + (-12 (-5 *2 (-585 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) + (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)))) ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *7 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-1018 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2)))) + (-12 (-4 *1 (-1018 *3 *2 *4 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-831)) (-4 *1 (-344)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-344)))) + (-12 (-4 *1 (-1018 *3 *4 *2 *5 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-832)) (-4 *1 (-345)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-345)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *2 *6)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6 *2)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-1015)) (-4 *2 (-1015))))) (((*1 *1 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) (((*1 *1 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) + (-12 (-4 *1 (-1018 *2 *3 *4 *5 *6)) (-4 *2 (-1015)) (-4 *3 (-1015)) + (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-614)))) + (|partial| -12 (-5 *2 (-832)) (-5 *1 (-1016 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-615)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-585 (-832))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *2) - (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-1180 (-1016 *3 *4))) (-5 *1 (-1016 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-818 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-85)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-696)) (-5 *1 (-1016 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) - ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) - ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1035))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) + ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-1013 *3)))) + ((*1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-5 *2 (-585 (-442 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1013)) - (-5 *1 (-509 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-618)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1008))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-903)))) + (-12 (-5 *2 (-585 (-552 *4))) (-4 *4 (-362 *3)) (-4 *3 (-1015)) + (-5 *1 (-510 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-619)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-934)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-980)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-1010))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1008 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-904)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) - (-4 *3 (-1006 *4)))) + (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-973 *3 *4)) + (-4 *3 (-1008 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1003 *4)) (-4 *4 (-1130)) (-5 *1 (-1006 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-1005))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1178 *3)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) - (-5 *2 (-1178 *3)))) + (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-1180 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-359 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-1180 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-1178 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-1180 *3)) (-5 *1 (-583 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311)) - (-5 *2 (-1178 *5)) (-5 *1 (-998 *5))))) + (-12 (-5 *4 (-585 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-312)) + (-5 *2 (-1180 *5)) (-5 *1 (-1000 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) - (-5 *2 (-1178 (-631 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-1180 (-632 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) - ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-631 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) - (-5 *2 (-1178 (-631 (-347 (-858 *5))))) (-5 *1 (-998 *5)) - (-5 *4 (-631 (-347 (-858 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-858 *5)))) - (-5 *1 (-998 *5)) (-5 *4 (-631 (-858 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1178 (-631 *4))) - (-5 *1 (-998 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-997))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-997))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997))))) -(((*1 *1) (-5 *1 (-997)))) -(((*1 *1) (-5 *1 (-997)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-632 *4))) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-632 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1091))) (-4 *5 (-312)) + (-5 *2 (-1180 (-632 (-348 (-859 *5))))) (-5 *1 (-1000 *5)) + (-5 *4 (-632 (-348 (-859 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-632 (-859 *5)))) + (-5 *1 (-1000 *5)) (-5 *4 (-632 (-859 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-632 *4))) + (-5 *1 (-1000 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-149))) (-5 *1 (-999))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-78))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-78))) (-5 *1 (-999))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-999))))) +(((*1 *1) (-5 *1 (-999)))) +(((*1 *1) (-5 *1 (-999)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-998 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))) -(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-994)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) - (-4 *3 (-1020 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-120))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3222 (-584 (-858 *4)))))) - (-5 *1 (-990 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))))) + (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-998 *2))))) +(((*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-998 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-996)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) + (-4 *3 (-1022 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *4)) (|:| -3226 (-585 (-859 *4)))))) + (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-859 *4))) (-14 *5 (-585 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3222 (-584 (-858 *5)))))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-585 (-2 (|:| -1748 (-1086 *5)) (|:| -3226 (-585 (-859 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-859 *5))) (-14 *6 (-585 (-1091)))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-987 *3 *4 *5))) (-4 *3 (-1013)) - (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-989 *3 *4 *5))))) + (-12 (-5 *2 (-585 (-989 *3 *4 *5))) (-4 *3 (-1015)) + (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3)))) (-5 *1 (-991 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *2 (-584 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) - (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *2 (-585 (-989 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) + (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) - (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) + (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *2)) + (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))))) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *1 (-989 *3 *4 *2)) (-4 *2 (-13 (-362 *4) (-798 *3) (-555 (-802 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) - (-5 *1 (-802 *4 *5)))) + (-12 (-5 *2 (-802 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1015)) (-4 *5 (-1130)) + (-5 *1 (-803 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1013)) - (-4 *5 (-1128)) (-5 *1 (-802 *4 *5)))) + (-12 (-5 *2 (-802 *4)) (-5 *3 (-585 (-1 (-85) *5))) (-4 *4 (-1015)) + (-4 *5 (-1130)) (-5 *1 (-803 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1089))) (-5 *4 (-1 (-85) (-584 *6))) - (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-802 *5 *6)))) + (-12 (-5 *2 (-802 *5)) (-5 *3 (-585 (-1091))) (-5 *4 (-1 (-85) (-585 *6))) + (-4 *5 (-1015)) (-4 *6 (-1130)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) - (-5 *2 (-264 (-484))) (-5 *1 (-849 *5)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) + (-5 *2 (-265 (-485))) (-5 *1 (-850 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) - (-5 *2 (-264 (-484))) (-5 *1 (-849 *5)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-585 (-1 (-85) *5))) (-4 *5 (-1130)) + (-5 *2 (-265 (-485))) (-5 *1 (-850 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) - (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1015)) + (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-362 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) - (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4)))) + (-12 (-5 *3 (-585 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1015)) + (-5 *1 (-851 *4 *2 *5)) (-4 *2 (-362 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1 (-85) (-584 *6))) - (-4 *6 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) - (-5 *2 (-801 *3)) (-5 *1 (-987 *3 *4 *5)) - (-4 *5 (-13 (-361 *4) (-797 *3) (-554 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) - (-5 *2 (-584 (-1089))) (-5 *1 (-987 *3 *4 *5)) - (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-262)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-884)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-908)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-1 (-85) (-585 *6))) + (-4 *6 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-989 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 *2))) + (-5 *2 (-802 *3)) (-5 *1 (-989 *3 *4 *5)) + (-4 *5 (-13 (-362 *4) (-798 *3) (-555 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1015)) (-4 *4 (-13 (-963) (-798 *3) (-555 (-802 *3)))) + (-5 *2 (-585 (-1091))) (-5 *1 (-989 *3 *4 *5)) + (-4 *5 (-13 (-362 *4) (-798 *3) (-555 (-802 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-909)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-950)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-987))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 *4)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *3 (-979 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-985 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) - (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) - (-4 *7 (-718)) (-4 *4 (-757)) - (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) - (-5 *1 (-984 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) + (-4 *8 (-979 *6 *7 *4)) (-4 *9 (-985 *6 *7 *4 *8)) (-4 *6 (-390)) + (-4 *7 (-719)) (-4 *4 (-758)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1601 *9)))) + (-5 *1 (-986 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1601 *4)))) + (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-3 (-85) (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) + (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-495)) (-4 *2 (-962)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-985 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-496)) (-4 *2 (-963)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *1)))) + (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-985 *4 *5 *6 *7)) + (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-979 *4 *5 *6)) + (-5 *2 (-585 *1)) (-4 *1 (-985 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) + (-12 (-4 *1 (-982 *4 *3)) (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-951 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-361 *3)))) + (-12 (-4 *3 (-952 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-362 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-253)))) - ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) - ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) - (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1084 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) - ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-584 *1)) - (-4 *1 (-980 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-495)))) + ((*1 *1 *1) (-12 (-4 *1 (-963)) (-4 *1 (-254)))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) + ((*1 *2) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *2)) (-4 *3 (-13 (-757) (-312))) (-4 *2 (-1156 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-859 (-485))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-859 (-348 (-485)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-348 (-485)))) (-5 *2 (-585 *1)) (-4 *1 (-927)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-927)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-757) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-585 *1)) + (-4 *1 (-982 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-362 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-496)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-832)) (-4 *1 (-927)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-5 *4 (-773)) - (-4 *1 (-926)))) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-832)) (-5 *4 (-774)) + (-4 *1 (-927)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-311))) - (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4))))) + (|partial| -12 (-5 *3 (-832)) (-4 *4 (-13 (-757) (-312))) + (-4 *1 (-982 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-938 *3)) - (-4 *3 (-13 (-756) (-311) (-934))))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-939 *3)) + (-4 *3 (-13 (-757) (-312) (-935))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-978))))) + (-12 (-4 *1 (-982 *2 *3)) (-4 *2 (-13 (-757) (-312))) (-4 *3 (-1156 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1050))) (-5 *1 (-980))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-757)))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-979 *3 *4 *2)) (-4 *2 (-758)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-618)))) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-172)))) + ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-421)) (-5 *1 (-619)))) ((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *2 (-963)) (-5 *1 (-50 *2 *3)) (-14 *3 (-585 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089))))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091))))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1015)) (-4 *2 (-963)))) ((*1 *2 *1) - (-12 (-14 *3 (-584 (-1089))) (-4 *5 (-196 (-3954 *3) (-695))) + (-12 (-14 *3 (-585 (-1091))) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *4) (|:| -2400 *5)) - (-2 (|:| -2399 *4) (|:| -2400 *5)))) - (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) - (-4 *7 (-862 *2 *5 (-774 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) - ((*1 *2 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) + (-1 (-85) (-2 (|:| -2402 *4) (|:| -2403 *5)) + (-2 (|:| -2402 *4) (|:| -2403 *5)))) + (-4 *2 (-146)) (-5 *1 (-399 *3 *2 *4 *5 *6 *7)) (-4 *4 (-758)) + (-4 *7 (-863 *2 *5 (-775 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *3 (-761)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-4 *2 (-963)) (-5 *1 (-676 *2 *3)) (-4 *3 (-758)) (-4 *3 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) + ((*1 *2 *1) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-718)) (-4 *4 (-758)) (-4 *2 (-963)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-963)) (-5 *2 (-85)) (-5 *1 (-382 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -2901 *1))) - (-4 *1 (-977 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -2904 *1))) + (-4 *1 (-979 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -2901 *1))) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -2904 *1))) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3951 *3) (|:| |gap| (-695)) (|:| -1971 (-705 *3)) - (|:| -2901 (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-2 (|:| -3955 *3) (|:| |gap| (-696)) (|:| -1974 (-706 *3)) + (|:| -2904 (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-977 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-979 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3951 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-696)) (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-979 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3478 (-695)))) - (-5 *1 (-705 *3)) (-4 *3 (-962)))) + (-5 *2 (-2 (|:| |polnum| (-706 *3)) (|:| |polden| *3) (|:| -3482 (-696)))) + (-5 *1 (-706 *3)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3478 (-695)))) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) - (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) - (-14 *7 (-831)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-696)))) + (-4 *1 (-979 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) + (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) + (-14 *7 (-832)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1128)))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-2559 (-4 *3 (-38 (-484)))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-483))) (-2559 (-4 *3 (-38 (-347 (-484))))) - (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-2562 (-4 *3 (-38 (-485)))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-348 (-485))))) + (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-906 (-485)))) (-4 *3 (-38 (-348 (-485)))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) + (|partial| -12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1128)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *1 (-891 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-2559 (-4 *3 (-38 (-484)))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-483))) (-2559 (-4 *3 (-38 (-347 (-484))))) - (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 *3)) - (-12 (-2559 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-2562 (-4 *3 (-38 (-485)))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-348 (-485))))) + (-4 *3 (-38 (-485))) (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 *3)) + (-12 (-2562 (-4 *3 (-906 (-485)))) (-4 *3 (-38 (-348 (-485)))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *1 (-979 *3 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2559 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-554 (-1089)))) - (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) - (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-2562 (-4 *3 (-38 (-348 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-555 (-1091)))) + (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758))) + (-12 (-5 *2 (-859 (-485))) (-4 *1 (-979 *3 *4 *5)) + (-12 (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091)))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) ((*1 *1 *2) - (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757))))) + (-12 (-5 *2 (-859 (-348 (-485)))) (-4 *1 (-979 *3 *4 *5)) + (-4 *3 (-38 (-348 (-485)))) (-4 *5 (-555 (-1091))) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3142 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) + (-2 (|:| -3146 (-706 *3)) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3142 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3142 (-705 *3)) (|:| |coef1| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) + (-12 (-5 *2 (-2 (|:| -3146 (-706 *3)) (|:| |coef1| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3142 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3142 (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) + (-12 (-5 *2 (-2 (|:| -3146 (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-2 (|:| -3142 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-979 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-585 *1)) (-4 *1 (-979 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *3 (-495))))) + (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *3 (-496))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *3 (-495))))) + (-12 (-5 *2 (-696)) (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *3 (-496))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) - ((*1 *1 *1 *1) (-4 *1 (-389))) - ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-695))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-390)))) + ((*1 *1 *1 *1) (-4 *1 (-390))) + ((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1156 (-485))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-696))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) - (-4 *2 (-862 *5 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) + (-4 *2 (-863 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-1084 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) - (-5 *2 (-1084 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-831))) + (-12 (-5 *3 (-585 (-1086 *7))) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) + (-5 *2 (-1086 *7)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-389)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) + (-12 (-4 *3 (-390)) (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *2 (-389))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) - ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *2 (-390))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-977)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-977))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-758)))) + ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-695)))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) - ((*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))) + (-12 (-4 *4 (-312)) (-5 *2 (-696)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) + ((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-334 *3)) (-4 *3 (-1015)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) + (-12 (-5 *2 (-696)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) - (-4 *3 (-662 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-696)) (-5 *1 (-662 *3 *4 *5)) + (-4 *3 (-663 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-495)) (-5 *2 (-345 *4)) - (-5 *1 (-359 *4)))) - ((*1 *1 *1) (-5 *1 (-837))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) + (-12 (-5 *3 (-1 (-346 *4) *4)) (-4 *4 (-496)) (-5 *2 (-346 *4)) + (-5 *1 (-360 *4)))) + ((*1 *1 *1) (-5 *1 (-838))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) - (-5 *4 (-347 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) + (-12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) + (-5 *4 (-348 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) - (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) + (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) - (-5 *4 (-347 (-484))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) + (-12 (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) + (-5 *4 (-348 (-485))) (-5 *1 (-937 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) - (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))))) + (-5 *2 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) + (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-13 (-757) (-312))) (-5 *1 (-976 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-756) (-311))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) - (-4 *3 (-1154 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-757) (-312))) (-5 *2 (-85)) (-5 *1 (-976 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-585 (-552 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-552 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1154 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-832)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-353 *3 *2 *4 *5)) - (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-951 *2))))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-906 *3)) (-5 *1 (-354 *3 *2 *4 *5)) + (-4 *3 (-258)) (-4 *5 (-13 (-351 *2 *4) (-952 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) - (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1178 *5)))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-906 *3)) (-5 *1 (-356 *3 *2 *4 *5 *6)) + (-4 *3 (-258)) (-4 *5 (-351 *2 *4)) (-14 *6 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) - (-4 *3 (-1154 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-432)))) (-5 *1 (-432)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-432))) (-5 *1 (-432)))) + (-12 (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *2 (-13 (-345) (-952 *5) (-312) (-1116) (-239))) (-5 *1 (-381 *5 *3 *2)) + (-4 *3 (-1156 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-552 (-433)))) (-5 *1 (-433)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552 (-433))) (-5 *1 (-433)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-584 (-551 (-432)))) (-5 *1 (-432)))) + (-12 (-5 *2 (-1086 (-433))) (-5 *3 (-585 (-552 (-433)))) (-5 *1 (-433)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-551 (-432))) (-5 *1 (-432)))) + (-12 (-5 *2 (-1086 (-433))) (-5 *3 (-552 (-433))) (-5 *1 (-433)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1154 *4)) - (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1154 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) - ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) - ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *1 *1) (-4 *1 (-973)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-832)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-390)) (-4 *5 (-663 *4 *2)) (-4 *2 (-1156 *4)) + (-5 *1 (-700 *4 *2 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-425)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485)))) + ((*1 *1 *1) (-4 *1 (-975)))) +(((*1 *1 *1) (-4 *1 (-975)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-696)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-482 *3)) (-4 *3 (-483)))) - ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-696)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-483 *3)) (-4 *3 (-484)))) + ((*1 *2) (-12 (-4 *1 (-689)) (-5 *2 (-696)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-721 *3 *4)) (-4 *3 (-722 *4)))) ((*1 *2) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) - ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) + (-12 (-4 *4 (-146)) (-5 *2 (-696)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-926 *3)) (-4 *3 (-927)))) + ((*1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-696)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-974 *3)) (-4 *3 (-975))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-972)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) - (-14 *4 (-695))))) + (-12 (-5 *2 (-632 *5)) (-4 *5 (-963)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-696)) + (-14 *4 (-696))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-962)) - (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) + (-12 (-5 *2 (-696)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-963)) + (-4 *1 (-629 *4 *5 *6)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-963)) (-4 *1 (-629 *3 *4 *5)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-774)))) (-5 *1 (-774)))) ((*1 *2 *1) - (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) - (-4 *4 (-311)))) + (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-832)) + (-4 *4 (-312)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-963)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-85)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-695)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-695)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-696))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) - (-4 *5 (-321 *2)) (-4 *2 (-1128)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-322 *2)) + (-4 *5 (-322 *2)) (-4 *2 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) + (-12 (-5 *3 (-696)) (-4 *2 (-1015)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1130)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-963))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) - (-4 *2 (-321 *4)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) + (-4 *2 (-322 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) + (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-963)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) - (-4 *2 (-321 *4)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) + (-4 *2 (-322 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) + (-12 (-5 *3 (-485)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-963)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) - (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) + (-12 (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-4 *7 (-906 *4)) + (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)) (-4 *2 (-257)))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)) (-4 *2 (-258)))) ((*1 *2 *2) - (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) + (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) - (-4 *6 (-196 *2 *4)) (-4 *4 (-257))))) + (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-196 *3 *4)) + (-4 *6 (-196 *2 *4)) (-4 *4 (-258))))) (((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) + (-12 (-4 *4 (-146)) (-5 *2 (-832)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-832)))) ((*1 *2) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-831)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-832)))) ((*1 *2 *3) - (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-695)) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-696)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-695)) - (-5 *1 (-611 *5)))) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-696)) + (-5 *1 (-612 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-696)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-696))))) (((*1 *2 *3) - (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) (-5 *2 (-696)) + (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-696)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-696)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-696))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -3993)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-584 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3997)) (-4 *4 (-312)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-585 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -3993)) (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-4 *7 (-905 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-584 *6)) - (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) - (-4 *10 (-628 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3997)) (-4 *4 (-496)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-4 *7 (-906 *4)) (-4 *8 (-322 *7)) (-4 *9 (-322 *7)) (-5 *2 (-585 *6)) + (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) + (-4 *10 (-629 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-4 *3 (-496)) (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-585 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-584 *7))))) + (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-963)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-585 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1089)) (-4 *5 (-311)) - (-5 *1 (-834 *4 *5)))) + (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) + (-5 *1 (-835 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1084 *5)) (-5 *1 (-834 *4 *5)) - (-14 *4 (-1089)))) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-835 *4 *5)) + (-14 *4 (-1091)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-347 (-858 *6))) - (-5 *1 (-963 *5 *6)) (-14 *5 (-1089))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-696)) (-4 *6 (-312)) (-5 *2 (-348 (-859 *6))) + (-5 *1 (-964 *5 *6)) (-14 *5 (-1091))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)) - (-5 *3 (-484))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) - ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-960))))) -(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-858 *4)))) - (-5 *1 (-956 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-961)) + (-5 *3 (-485))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1011 *4)) (-4 *4 (-1015)) (-5 *2 (-1 *4)) (-5 *1 (-932 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328)))) + ((*1 *2 *3) (-12 (-5 *3 (-1003 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-961))))) +(((*1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-258)) (-5 *2 (-348 (-346 (-859 *4)))) + (-5 *1 (-957 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1 (-328))) (-5 *1 (-955))))) (((*1 *1 *2) - (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3) - (-5 *1 (-269 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-327)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954))))) -(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954))))) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-270 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-328))) (-5 *1 (-955)) (-5 *3 (-328))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-328)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-955))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1084 (-347 (-1084 *2)))) (-5 *4 (-551 *2)) - (-4 *2 (-13 (-361 *5) (-27) (-1114))) - (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) + (-12 (-5 *3 (-1086 (-348 (-1086 *2)))) (-5 *4 (-552 *2)) + (-4 *2 (-13 (-362 *5) (-27) (-1116))) + (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1015)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *3 (-757)))) + (-12 (-5 *2 (-1086 *1)) (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *3 (-758)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1084 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) - (-4 *3 (-757)))) + (-12 (-5 *2 (-1086 *4)) (-4 *4 (-963)) (-4 *1 (-863 *4 *5 *3)) (-4 *5 (-719)) + (-4 *3 (-758)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-1084 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) + (-12 (-5 *3 (-348 (-1086 *2))) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *2 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) - (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) + (-5 *1 (-864 *5 *4 *6 *7 *2)) (-4 *7 (-863 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-1084 (-347 (-858 *5))))) (-5 *4 (-1089)) - (-5 *2 (-347 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-495))))) + (-12 (-5 *3 (-348 (-1086 (-348 (-859 *5))))) (-5 *4 (-1091)) + (-5 *2 (-348 (-859 *5))) (-5 *1 (-954 *5)) (-4 *5 (-496))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-551 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) - (-5 *2 (-347 (-1084 *1))))) + (-12 (-5 *3 (-552 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1015)) (-4 *4 (-496)) + (-5 *2 (-348 (-1086 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-1084 (-347 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) - (-4 *7 (-1013)))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-1086 (-348 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) + (-4 *7 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-962)) - (-5 *2 (-1147 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))) + (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-963)) + (-5 *2 (-1149 *5 (-859 *6))) (-5 *1 (-861 *5 *6)) (-5 *3 (-859 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-1084 *3)))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-1086 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1084 *1)) - (-4 *1 (-862 *4 *5 *3)))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-5 *2 (-1086 *1)) + (-4 *1 (-863 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) - (-5 *2 (-347 (-1084 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *5 *4)) + (-5 *2 (-348 (-1086 *3))) (-5 *1 (-864 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1084 *3)) + (-12 (-5 *2 (-1086 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))) - (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) - (-5 *1 (-863 *5 *4 *6 *7 *3)))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) + (-4 *7 (-863 *6 *5 *4)) (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-963)) + (-5 *1 (-864 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-347 (-1084 (-347 (-858 *5))))) - (-5 *1 (-953 *5)) (-5 *3 (-347 (-858 *5)))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-348 (-1086 (-348 (-859 *5))))) + (-5 *1 (-954 *5)) (-5 *3 (-348 (-859 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *2 (-757)))) + (|partial| -12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *2 (-758)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) - (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-963)) (-4 *6 (-863 *5 *4 *2)) + (-4 *2 (-758)) (-5 *1 (-864 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *6)) (-15 -2997 (*6 $)) (-15 -2996 (*6 $))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) - (-5 *1 (-953 *4))))) + (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) + (-5 *1 (-954 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-1089))))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-963)) (-5 *2 (-585 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-5 *2 (-585 (-1091))))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) - (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) (-4 *7 (-863 *6 *4 *5)) + (-5 *2 (-585 *5)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) - (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) + (-5 *2 (-585 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-1089))) - (-5 *1 (-953 *4))))) + (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-5 *2 (-585 (-1091))) + (-5 *1 (-954 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) - (-4 *6 (-13 (-495) (-951 *5))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) + (-4 *6 (-13 (-496) (-952 *5))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *6)))))) (-5 *1 (-953 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1114))) - (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-1084 (-347 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) - (-4 *7 (-1013)))) - ((*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) - ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) + (-12 (-5 *4 (-552 *6)) (-4 *6 (-13 (-362 *5) (-27) (-1116))) + (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-1086 (-348 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) + (-4 *7 (-1015)))) + ((*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) + ((*1 *2 *1) (-12 (-4 *1 (-663 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) - (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718)) - (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1084 *5))) - (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) + (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-696))) + (-5 *8 (-585 *11)) (-4 *10 (-758)) (-4 *11 (-258)) (-4 *9 (-719)) + (-4 *5 (-863 *11 *9 *10)) (-5 *2 (-585 (-1086 *5))) + (-5 *1 (-683 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311)) - (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) + (-12 (-4 *2 (-863 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-312)) + (-4 *4 (-719)) (-4 *5 (-758)) (-14 *6 (-585 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) - (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-832)) (-5 *1 (-947 *2)) + (-4 *2 (-13 (-1015) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) - (-4 *2 (-13 (-1013) (-10 -8 (-15 -3836 ($ $ $)))))))) + (-12 (-5 *3 (-832)) (-5 *1 (-946 *2)) + (-4 *2 (-13 (-1015) (-10 -8 (-15 -3840 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) - (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962))))) + (-12 (-5 *3 (-585 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) + (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-311)) (-4 *6 (-317)) - (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) - (-5 *3 (-584 (-631 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-318)) + (-4 *6 (-963)) (-5 *2 (-585 (-585 (-632 *6)))) (-5 *1 (-945 *6)) + (-5 *3 (-585 (-632 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-962)) - (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) + (-12 (-4 *4 (-312)) (-4 *4 (-318)) (-4 *4 (-963)) + (-5 *2 (-585 (-585 (-632 *4)))) (-5 *1 (-945 *4)) (-5 *3 (-585 (-632 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) - (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))) + (-12 (-5 *4 (-832)) (-4 *5 (-312)) (-4 *5 (-318)) (-4 *5 (-963)) + (-5 *2 (-585 (-585 (-632 *5)))) (-5 *1 (-945 *5)) (-5 *3 (-585 (-632 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-4 *5 (-311)) (-4 *5 (-962)) - (-5 *2 (-85)) (-5 *1 (-944 *5)))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-85)) (-5 *1 (-945 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-85)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-585 (-632 *4))) (-4 *4 (-312)) (-4 *4 (-963)) (-5 *2 (-85)) + (-5 *1 (-945 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-631 *6)) - (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962)))) + (-12 (-5 *3 (-585 (-632 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-632 *6)) + (-5 *1 (-945 *6)) (-4 *6 (-312)) (-4 *6 (-963)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) - (-4 *4 (-311)) (-4 *4 (-962)))) + (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-945 *4)) + (-4 *4 (-312)) (-4 *4 (-963)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-5 *2 (-631 *5)) - (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962))))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-485)) (-5 *2 (-632 *5)) + (-5 *1 (-945 *5)) (-4 *5 (-312)) (-4 *5 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-257)) - (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5))))) + (-12 (-5 *3 (-585 (-632 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) + (-4 *5 (-963)) (-5 *2 (-632 *5)) (-5 *1 (-945 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962)) - (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1178 *5))))) + (-12 (-5 *3 (-585 (-632 *5))) (-4 *5 (-258)) (-4 *5 (-963)) + (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-945 *5)) (-5 *4 (-1180 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-585 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-963)) + (-5 *1 (-945 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) - (-5 *1 (-944 *4))))) + (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-963)) (-5 *2 (-632 *4)) + (-5 *1 (-945 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-814 (-484))) (-5 *4 (-484)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) - (-4 *5 (-962)))) + (-12 (-5 *3 (-815 (-485))) (-5 *4 (-485)) (-5 *2 (-632 *4)) (-5 *1 (-944 *5)) + (-4 *5 (-963)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-943 *4)) - (-4 *4 (-962)))) + (-12 (-5 *3 (-585 (-485))) (-5 *2 (-632 (-485))) (-5 *1 (-944 *4)) + (-4 *4 (-963)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-814 (-484)))) (-5 *4 (-484)) (-5 *2 (-584 (-631 *4))) - (-5 *1 (-943 *5)) (-4 *5 (-962)))) + (-12 (-5 *3 (-585 (-815 (-485)))) (-5 *4 (-485)) (-5 *2 (-585 (-632 *4))) + (-5 *1 (-944 *5)) (-4 *5 (-963)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-484)))) (-5 *2 (-584 (-631 (-484)))) - (-5 *1 (-943 *4)) (-4 *4 (-962))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) + (-12 (-5 *3 (-585 (-585 (-485)))) (-5 *2 (-585 (-632 (-485)))) + (-5 *1 (-944 *4)) (-4 *4 (-963))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))) + (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-944 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-632 *3))) (-4 *3 (-963)) (-5 *1 (-944 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (-4 *4 (-963)) (-5 *1 (-944 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) - (-5 *1 (-943 *4))))) + (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (-4 *4 (-963)) + (-5 *1 (-944 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) - (-4 *4 (-962))))) + (-12 (-5 *3 (-696)) (-5 *2 (-632 (-859 *4))) (-5 *1 (-944 *4)) + (-4 *4 (-963))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3994 "*"))) - (-4 *4 (-962)) (-5 *1 (-943 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-832)) (|has| *4 (-6 (-3998 "*"))) + (-4 *4 (-963)) (-5 *1 (-944 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3994 "*"))) - (-4 *4 (-962)) (-5 *1 (-943 *4))))) + (-12 (-5 *2 (-585 (-632 *4))) (-5 *3 (-832)) (|has| *4 (-6 (-3998 "*"))) + (-4 *4 (-963)) (-5 *1 (-944 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) - (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942))))) + (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-632 (-265 (-485))))) + (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-632 (-265 (-485))))) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 (-265 (-485)))) (-5 *1 (-943))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 (-347 (-858 (-484))))) - (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942))))) + (|partial| -12 (-5 *3 (-632 (-348 (-859 (-485))))) + (-5 *2 (-632 (-265 (-485)))) (-5 *1 (-943))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-264 (-484)))) - (-5 *1 (-942))))) + (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-265 (-485)))) + (-5 *1 (-943))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) - (-5 *1 (-942)) (-5 *3 (-264 (-484)))))) + (-12 (-5 *4 (-632 (-348 (-859 (-485))))) (-5 *2 (-585 (-632 (-265 (-485))))) + (-5 *1 (-943)) (-5 *3 (-265 (-485)))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-858 (-484))))) + (-12 (-5 *3 (-632 (-348 (-859 (-485))))) (-5 *2 - (-584 - (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) - (|:| |radvect| (-584 (-631 (-264 (-484)))))))) - (-5 *1 (-942))))) + (-585 + (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) + (|:| |radvect| (-585 (-632 (-265 (-485)))))))) + (-5 *1 (-943))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1128))))) -(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3264 *3) (|:| -2512 (-584 *5)))) - (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-941 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-940 *3 *2)) (-4 *2 (-602 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-585 *5)))) + (-5 *1 (-940 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-602 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-974 (-938 *4) (-1084 (-938 *4)))) (-5 *3 (-773)) - (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-311) (-934)))))) + (-12 (-5 *2 (-976 (-939 *4) (-1086 (-939 *4)))) (-5 *3 (-774)) + (-5 *1 (-939 *4)) (-4 *4 (-13 (-757) (-312) (-935)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-974 (-938 *3) (-1084 (-938 *3)))) (-5 *1 (-938 *3)) - (-4 *3 (-13 (-756) (-311) (-934)))))) + (|partial| -12 (-5 *2 (-976 (-939 *3) (-1086 (-939 *3)))) (-5 *1 (-939 *3)) + (-4 *3 (-13 (-757) (-312) (-935)))))) (((*1 *2 *3) - (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) + (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) - (-5 *4 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))))) + (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) + (-5 *4 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-347 (-484))))) + (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-348 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *5) (|:| -3135 *5)))) - (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) - (-5 *4 (-2 (|:| -3136 *5) (|:| -3135 *5))))) + (-12 (-5 *5 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *5) (|:| -3139 *5)))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-485))) + (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))))) + (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))) - (-5 *4 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))))) + (-12 (-5 *2 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *1 (-937 *3)) (-4 *3 (-1156 (-348 (-485)))) + (-5 *4 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *4) (|:| -3135 *4)))) - (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) + (-12 (-5 *4 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *4) (|:| -3139 *4)))) + (-5 *1 (-937 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3136 *5) (|:| -3135 *5)))) - (-5 *1 (-936 *3)) (-4 *3 (-1154 *5)) - (-5 *4 (-2 (|:| -3136 *5) (|:| -3135 *5)))))) + (-12 (-5 *5 (-348 (-485))) (-5 *2 (-585 (-2 (|:| -3140 *5) (|:| -3139 *5)))) + (-5 *1 (-937 *3)) (-4 *3 (-1156 *5)) + (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484)))))) - (-5 *2 (-584 (-347 (-484)))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484)))))) + (-12 (-5 *3 (-585 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485)))))) + (-5 *2 (-585 (-348 (-485)))) (-5 *1 (-936 *4)) (-4 *4 (-1156 (-485)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3136 (-347 (-484))) (|:| -3135 (-347 (-484))))) - (-5 *2 (-347 (-484))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484)))))) + (-12 (-5 *3 (-2 (|:| -3140 (-348 (-485))) (|:| -3139 (-348 (-485))))) + (-5 *2 (-348 (-485))) (-5 *1 (-936 *4)) (-4 *4 (-1156 (-485)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) - (-5 *2 (-1 *6)) (-5 *1 (-931 *6))))) + (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1015)) + (-5 *2 (-1 *6)) (-5 *1 (-932 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3399 *4) (|:| -1520 (-484))))) (-4 *4 (-1013)) - (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) + (-12 (-5 *3 (-585 (-2 (|:| -3403 *4) (|:| -1523 (-485))))) (-4 *4 (-1015)) + (-5 *2 (-1 *4)) (-5 *1 (-932 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) - (-5 *2 (-584 (-347 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-347 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-585 (-348 *5))) (-5 *1 (-931 *4 *5)) (-5 *3 (-348 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) - (|:| |c2| (-347 *6)) (|:| -3092 *6))) - (-5 *1 (-930 *5 *6)) (-5 *3 (-347 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |h| *6) (|:| |c1| (-348 *6)) + (|:| |c2| (-348 *6)) (|:| -3095 *6))) + (-5 *1 (-931 *5 *6)) (-5 *3 (-348 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) - (-4 *6 (-13 (-311) (-120) (-951 *4))) (-5 *4 (-484)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) + (-4 *6 (-13 (-312) (-120) (-952 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3264 + (|:| -3268 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-929 *6 *3))))) + (-5 *1 (-930 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) - (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) - (-5 *3 (-347 *5))))) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| |ans| (-348 *5)) (|:| |nosol| (-85)))) (-5 *1 (-930 *4 *5)) + (-5 *3 (-348 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3092 *6))) - (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-348 *6)) (|:| |c| (-348 *6)) (|:| -3095 *6))) + (-5 *1 (-930 *5 *6)) (-5 *3 (-348 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1089)) + (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-584 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1114) (-27) (-361 *8))) - (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) - (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) + *4 (-585 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1116) (-27) (-362 *8))) + (-4 *8 (-13 (-390) (-120) (-952 *3) (-582 *3))) (-5 *3 (-485)) + (-5 *2 (-585 *4)) (-5 *1 (-929 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1089)) + (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-584 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1114) (-27) (-361 *8))) - (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3135 *4) (|:| |sol?| (-85)))) - (-5 *1 (-927 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) - ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-926)))) - ((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-926)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) - ((*1 *1 *1) (-4 *1 (-926)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) -(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-484))))) + *4 (-585 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1116) (-27) (-362 *8))) + (-4 *8 (-13 (-390) (-120) (-952 *3) (-582 *3))) (-5 *3 (-485)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85)))) + (-5 *1 (-928 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485)))) + ((*1 *1 *1) (-4 *1 (-917))) ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-927)))) + ((*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-4 *1 (-927)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-832)))) + ((*1 *1 *1) (-4 *1 (-927)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-927))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-927))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-774))))) +(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-585 *1)) (-4 *1 (-925 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-585 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-925 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3993)) (-4 *1 (-924 *3)) - (-4 *3 (-1128))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-924 *2)) (-4 *2 (-1128))))) + (-12 (-5 *2 (-585 *1)) (|has| *1 (-6 -3997)) (-4 *1 (-925 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-925 *2)) (-4 *2 (-1130))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-347 (-484))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) - (-4 *3 (-495)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) + (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-346 *3)) (-4 *3 (-484)) + (-4 *3 (-496)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-347 (-484))))) + (|partial| -12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) - (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-745 *3)) (-4 *3 (-484)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) - (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-752 *3)) (-4 *3 (-484)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-347 (-484))))) + (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-348 (-485))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) + (|partial| -12 (-5 *2 (-348 (-485))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) + (-12 (-5 *2 (-85)) (-5 *1 (-346 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-347 (-484))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-923 *3)) (-4 *3 (-952 (-348 (-485))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-346 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) + (-12 (-4 *1 (-722 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) ((*1 *2 *1) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-745 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-752 *3)) (-4 *3 (-484)) (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) - ((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920))))) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-348 (-485))))) + ((*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-923 *3)) (-4 *3 (-952 *2))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-921))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-921))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))) + (-12 (-5 *3 (-348 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-920))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-919 *3)) (-14 *3 (-485))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-345 *5)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *5) (|:| |radicand| (-584 *5)))) - (-5 *1 (-270 *5)) (-5 *4 (-695)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-484))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-914 *3))))) + (-12 (-5 *3 (-346 *5)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *5) (|:| |radicand| (-585 *5)))) + (-5 *1 (-271 *5)) (-5 *4 (-696)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-917)) (-5 *2 (-485))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-915 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) - ((*1 *1 *1 *1) (-4 *1 (-410))) - ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128))))) + ((*1 *1 *1 *1) (-4 *1 (-411))) + ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-795)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1130))))) (((*1 *1 *2) - (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311)) - (-5 *1 (-907 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-832)) (-4 *4 (-312)) + (-5 *1 (-908 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) - (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) - (-4 *1 (-361 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) + (-12 (-4 *3 (-963)) (-4 *3 (-1015)) (-5 *2 (-1040 *3 (-552 *1))) + (-4 *1 (-362 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-433)))) (-5 *1 (-433)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-560 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-665) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-664) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-656 *3)) (-5 *1 (-596 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-665) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496))))) +(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-257)) - (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))) + (-12 (-4 *3 (-906 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) + (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-952 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) - (-4 *1 (-361 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) + (-12 (-4 *3 (-496)) (-4 *3 (-1015)) (-5 *2 (-1040 *3 (-552 *1))) + (-4 *1 (-362 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-552 (-433)))) (-5 *1 (-433)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) + (-5 *1 (-560 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) - (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-962)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-665) *4)) + (-5 *1 (-596 *3 *4 *2)) (-4 *3 (-656 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-963)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015)) (-4 *2 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) - ((*1 *1) (-4 *1 (-317))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + ((*1 *1) (-4 *1 (-318))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) - ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-5 *1 (-695))) - ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) + ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484))) + ((*1 *1 *1) (-5 *1 (-696))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) - ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-483)) (-4 *2 (-495))))) + (-12 (-5 *3 (-485)) (-5 *2 (-815 *4)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-484)) (-4 *2 (-496))))) (((*1 *2 *2) (-12 (-5 *2 - (-900 (-347 (-484)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-347 (-484))))) - (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) + (-901 (-348 (-485)) (-775 *3) (-197 *4 (-696)) (-206 *3 (-348 (-485))))) + (-14 *3 (-585 (-1091))) (-14 *4 (-696)) (-5 *1 (-902 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-757)) - (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-863 *4 *6 *5)) (-4 *4 (-390)) (-4 *5 (-758)) + (-4 *6 (-719)) (-5 *1 (-901 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) - (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) + (-12 (-4 *3 (-390)) (-4 *4 (-758)) (-4 *5 (-719)) (-5 *2 (-585 *6)) + (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-863 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-389)) - (-4 *4 (-757)) (-4 *5 (-718))))) + (-12 (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-390)) + (-4 *4 (-758)) (-4 *5 (-719))))) (((*1 *1 *1) - (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *4 *3))))) + (-12 (-4 *2 (-390)) (-4 *3 (-758)) (-4 *4 (-719)) (-5 *1 (-901 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-899 *4 *2 *3 *5)) - (-4 *4 (-298)) (-4 *5 (-662 *2 *3))))) + (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-900 *4 *2 *3 *5)) + (-4 *4 (-299)) (-4 *5 (-663 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) - (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) - (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) + (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *5 (-496)) (-5 *1 (-673 *4 *3 *5 *2)) + (-4 *2 (-863 (-348 (-859 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) - (-15 -3828 ((-3 $ #1="failed") (-1089)))))) - (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) + (-15 -3832 ((-3 $ #1="failed") (-1091)))))) + (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *6)) + (-12 (-5 *3 (-585 *6)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) - (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) - (-4 *2 (-862 (-858 *4) *5 *6))))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) + (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) + (-4 *2 (-863 (-859 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) - (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) - (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) + (-12 (-4 *4 (-719)) (-4 *3 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *5 (-496)) (-5 *1 (-673 *4 *3 *5 *2)) + (-4 *2 (-863 (-348 (-859 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) - (-15 -3828 ((-3 $ #1="failed") (-1089)))))) - (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) + (-15 -3832 ((-3 $ #1="failed") (-1091)))))) + (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-863 (-859 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *6)) + (-12 (-5 *3 (-585 *6)) (-4 *6 - (-13 (-757) - (-10 -8 (-15 -3969 ((-1089) $)) (-15 -3828 ((-3 $ #1#) (-1089)))))) - (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) - (-4 *2 (-862 (-858 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114))))) + (-13 (-758) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) + (-4 *4 (-963)) (-4 *5 (-719)) (-5 *1 (-899 *4 *5 *6 *2)) + (-4 *2 (-863 (-859 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1116))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-784)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) - (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-892 *5)) - (-5 *3 (-631 *5)) (-5 *4 (-1178 *5))))) + (|partial| -12 (-5 *3 (-696)) (-4 *1 (-898 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-785)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-785)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3) (-12 (-5 *3 (-856 *2)) (-5 *1 (-897 *2)) (-4 *2 (-963))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) + (-5 *2 (-585 (-2 (|:| C (-632 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-893 *5)) + (-5 *3 (-632 *5)) (-5 *4 (-1180 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) - (-5 *1 (-892 *5))))) + (-12 (-5 *2 (-632 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-5 *1 (-893 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *2)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) - (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) - (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) + (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) + (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) + (-5 *1 (-893 *6)) (-5 *3 (-632 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) - (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) - (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) - (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) - (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-390)) (-4 *3 (-496)) + (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) - (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-390)) + (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-390)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-585 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *1 (-891 *5 *6 *7 *8))))) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *1 (-892 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) - (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9))))) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-979 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-719)) + (-4 *8 (-758)) (-5 *1 (-892 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3321 (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (|partial| -12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-414 *4 *5 *6 *7)) (|:| -3325 (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-85)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) - (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-979 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-585 (-1 (-85) *8))) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) - (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-977 *5 *6 *7)) - (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) - (-5 *1 (-891 *5 *6 *7 *8))))) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-979 *5 *6 *7)) + (-4 *5 (-496)) (-4 *6 (-719)) (-4 *7 (-758)) (-5 *2 (-85)) + (-5 *1 (-892 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-85)) (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-892 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) - (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *1 (-891 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) + (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *1 (-892 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) - (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-585 *3)) + (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-892 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-4 *6 (-979 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-977 *3 *4 *2))))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-977 *3 *4 *2))))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *5 (-977 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) + (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *5 (-979 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1130)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-815 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3128 *1) (|:| |upper| *1))) - (-4 *1 (-890 *4 *5 *3 *6))))) + (-12 (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) (-4 *6 (-979 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1))) + (-4 *1 (-891 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) + (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) + (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) -(((*1 *2 *1) - (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) - ((*1 *2 *1) - (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3954 *3) (-695))) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496))))) +(((*1 *2 *1) + (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-585 (-585 (-856 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-585 (-585 (-856 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-868)) (-5 *2 (-1003 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1003 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-963)) (-4 *2 (-1015)))) + ((*1 *2 *1) + (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) - (-4 *8 (-862 *4 *6 (-774 *3))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-5 *2 (-652 *5 *6 *7)) (-5 *1 (-399 *3 *4 *5 *6 *7 *8)) (-4 *5 (-758)) + (-4 *8 (-863 *4 *6 (-775 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) + (-12 (-4 *2 (-665)) (-4 *2 (-758)) (-5 *1 (-676 *3 *2)) (-4 *3 (-963)))) ((*1 *1 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) - (-4 *2 (-311)) (-14 *5 (-907 *4 *2)))) + (-12 (-5 *3 (-585 (-832))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-832)) + (-4 *2 (-312)) (-14 *5 (-908 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3954 *4) (-695))) + (-12 (-5 *3 (-652 *5 *6 *7)) (-4 *5 (-758)) (-4 *6 (-196 (-3958 *4) (-696))) (-14 *7 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *6)) - (-2 (|:| -2399 *5) (|:| -2400 *6)))) - (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-862 *2 *6 (-774 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *6)) + (-2 (|:| -2402 *5) (|:| -2403 *6)))) + (-14 *4 (-585 (-1091))) (-4 *2 (-146)) (-5 *1 (-399 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-863 *2 *6 (-775 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-72)) (-4 *3 (-761)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) + (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1156 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-647 *2)) (-4 *2 (-963)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3)) (-4 *2 (-963)) (-4 *3 (-665)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-757)))) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-696))) (-4 *1 (-681 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *3 (-696)) (-4 *1 (-681 *4 *2)) (-4 *4 (-963)) (-4 *2 (-758)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-696))) (-4 *1 (-863 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-719)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *2 (-757)))) + (-12 (-5 *3 (-696)) (-4 *1 (-863 *4 *5 *2)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *2 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) - (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-888 *4 *5 *6)) + (-4 *4 (-963)) (-4 *5 (-718)) (-4 *6 (-758)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) + (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-963)) (-4 *3 (-718)) (-4 *2 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) + (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *5 (-758)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) - ((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1) (-4 *1 (-780 *2))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-4 *1 (-781 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *2 (-584 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) - (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1068 (-885))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885))))) + (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-718)) (-4 *4 (-758))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-832))) (-5 *1 (-886))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1070 (-886))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-832) (-832)))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-886))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3))))) + (-12 (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3))))) + (-12 (-5 *4 (-696)) (-4 *3 (-496)) (-5 *1 (-884 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *2 (-495)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1154 *2))))) + (-12 (-5 *3 (-696)) (-4 *2 (-496)) (-5 *1 (-884 *2 *4)) (-4 *4 (-1156 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) (-4 *1 (-257)))) + (-12 (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-333 *3)))) + (|partial| -12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-334 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1971 (-695)) (|:| -2901 (-695)))) (-5 *1 (-695)))) + (-12 (-5 *2 (-2 (|:| -1974 (-696)) (|:| -2904 (-696)))) (-5 *1 (-696)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2875 *4))) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-390)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2875 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-390)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-495)) (-4 *2 (-389)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-496)) (-4 *2 (-390)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-585 (-696))) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3754 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3142 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3142 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3142 *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) - (-4 *3 (-1154 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-495)) + (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5))))) + (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-496)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) - (-4 *3 (-1154 *5))))) + (-12 (-5 *4 (-696)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-884 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-495)) + (-12 (-5 *4 (-696)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5))))) + (-5 *1 (-884 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-496)) (-5 *1 (-884 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3753 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4))) - (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-884 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *1) - (-12 (-4 *1 (-344)) (-2559 (|has| *1 (-6 -3983))) - (-2559 (|has| *1 (-6 -3975))))) - ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757)))) - ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760))) - ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) + (-12 (-4 *1 (-345)) (-2562 (|has| *1 (-6 -3987))) + (-2562 (|has| *1 (-6 -3979))))) + ((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) + ((*1 *1) (-4 *1 (-754))) ((*1 *1 *1 *1) (-4 *1 (-761))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) -(((*1 *1) (-4 *1 (-881)))) -(((*1 *1) (-4 *1 (-881)))) -(((*1 *1 *1 *1) (-4 *1 (-881)))) -(((*1 *1 *1 *1) (-4 *1 (-881)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-578 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) - (-4 *3 (-1013)) (-4 *5 (-609 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-878 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-879 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) - (-4 *3 (-1013))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-697)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-877))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-773)))) - ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-875))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-483))))) -(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483))))) -(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483))))) -(((*1 *1) (-4 *1 (-298))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-495) (-120))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1084 *5))) - (|:| |prim| (-1084 *5)))) - (-5 *1 (-372 *4 *5)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-883 *2)) (-4 *2 (-758))))) +(((*1 *1) (-4 *1 (-882)))) +(((*1 *1) (-4 *1 (-882)))) +(((*1 *1 *1 *1) (-4 *1 (-882)))) +(((*1 *1 *1 *1) (-4 *1 (-882)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-14 *3 (-585 (-1091))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-585 (-1091))) (-5 *1 (-579 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1015)) (-5 *1 (-880 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *4)) (-5 *1 (-797 *3 *4 *5)) + (-4 *3 (-1015)) (-4 *5 (-610 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-1015)) (-5 *2 (-1011 *4)) (-5 *1 (-880 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-634 (-784 (-879 *3) (-879 *3)))) (-5 *1 (-879 *3)) + (-4 *3 (-1015))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-698))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-698)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1017)) (-5 *1 (-878))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-877 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *2 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *2 (-1015)) (-5 *1 (-877 *3 *2)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-774)))) + ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1186)) (-5 *1 (-876))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-875 *3)) (-4 *3 (-484))))) +(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-484))))) +(((*1 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-484))))) +(((*1 *1) (-4 *1 (-299))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-362 *4)) (-4 *4 (-13 (-496) (-120))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1086 *5))) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-373 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-495) (-120))) + (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) - (|:| |prim| (-1084 *3)))) - (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) + (|:| |prim| (-1086 *3)))) + (-5 *1 (-373 *4 *3)) (-4 *3 (-27)) (-4 *3 (-362 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-311) (-120))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) - (-5 *1 (-873 *5)))) + (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) + (-5 *1 (-874 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) - (-4 *5 (-13 (-311) (-120))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) + (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 *5))) - (|:| |prim| (-1084 *5)))) - (-5 *1 (-873 *5)))) + (-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 *5))) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-874 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-5 *5 (-1089)) - (-4 *6 (-13 (-311) (-120))) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) (-5 *5 (-1091)) + (-4 *6 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3951 (-584 (-484))) (|:| |poly| (-584 (-1084 *6))) - (|:| |prim| (-1084 *6)))) - (-5 *1 (-873 *6))))) + (-2 (|:| -3955 (-585 (-485))) (|:| |poly| (-585 (-1086 *6))) + (|:| |prim| (-1086 *6)))) + (-5 *1 (-874 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))) + (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-952 *3)) (-4 *2 (-312)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-569 *4 *2)) - (-4 *2 (-13 (-361 *4) (-916) (-1114))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-570 *4 *2)) + (-4 *2 (-13 (-362 *4) (-917) (-1116))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) - (-5 *1 (-569 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1089)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-872))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-831)) (-4 *5 (-495)) (-5 *2 (-631 *5)) - (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-866))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *3 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| (-584 *3)))) - (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-362 *4) (-917) (-1116))) (-4 *4 (-496)) + (-5 *1 (-570 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-873)) (-5 *2 (-1091)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-873))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-832)) (-4 *5 (-496)) (-5 *2 (-632 *5)) + (-5 *1 (-870 *5 *3)) (-4 *3 (-602 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-867))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) (-4 *3 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| (-585 *3)))) + (-5 *1 (-866 *5 *6 *7 *3 *8)) (-5 *4 (-696)) (-4 *8 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *3)) (-15 -2997 (*3 $)) (-15 -2996 (*3 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) - (-4 *8 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| *3))) - (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) + (-12 (-4 *7 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) + (-4 *8 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| *3))) + (-5 *1 (-866 *5 *6 *7 *8 *3)) (-5 *4 (-696)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-484))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) - (-4 *8 (-862 *7 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *9) (|:| |radicand| *9))) - (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) + (-12 (-5 *3 (-348 (-485))) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-496)) + (-4 *8 (-863 *7 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *9) (|:| |radicand| *9))) + (-5 *1 (-866 *5 *6 *7 *8 *9)) (-5 *4 (-696)) (-4 *9 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *8)) (-15 -2997 (*8 $)) (-15 -2996 (*8 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-495)) (-4 *7 (-862 *3 *5 *6)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *8) (|:| |radicand| *8))) - (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) + (-12 (-4 *5 (-719)) (-4 *6 (-758)) (-4 *3 (-496)) (-4 *7 (-863 *3 *5 *6)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *8) (|:| |radicand| *8))) + (-5 *1 (-866 *5 *6 *3 *7 *8)) (-5 *4 (-696)) (-4 *8 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2400 (-484)))) (-4 *1 (-361 *3)))) + (|partial| -12 (-4 *3 (-963)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2403 (-485)))) (-4 *1 (-362 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2400 (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2400 (-484)))) - (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2403 (-485)))) + (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-962)) (-4 *4 (-1013)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *4)))) + (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-963)) (-4 *4 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1013)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-963)) (-4 *4 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2400 (-484)))) (-4 *1 (-361 *3)))) + (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| |var| (-552 *1)) (|:| -2403 (-485)))) (-4 *1 (-362 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2400 (-695)))) - (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-802 *3)) (|:| -2403 (-696)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-695)))))) + (|partial| -12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-696)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2400 (-484)))) - (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2403 (-485)))) + (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) - (-4 *1 (-361 *3)))) + (|partial| -12 (-4 *3 (-1027)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) + (-4 *1 (-362 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) - (-4 *1 (-361 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) (-5 *2 (-585 *1)) + (-4 *1 (-362 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) - (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-963)) + (-4 *7 (-863 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-864 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-332 *3 *4)))) + (-12 (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-585 *1)) (-4 *1 (-333 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) - (-4 *4 (-664)))) + (-12 (-5 *2 (-585 (-676 *3 *4))) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) + (-4 *4 (-665)))) ((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-963)) (-4 *2 (-718)))) + ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-963)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-584 (-695))))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-585 (-696))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) - (-5 *2 (-695))))) + (-12 (-4 *1 (-863 *4 *5 *3)) (-4 *4 (-963)) (-4 *5 (-719)) (-4 *3 (-758)) + (-5 *2 (-696))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-695)))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-863 *4 *5 *6)) (-4 *4 (-963)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-695))))) + (-12 (-4 *1 (-863 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-696))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) - (-4 *1 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *1)) + (-4 *1 (-863 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-389)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)) (-4 *2 (-390)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-584 (-484))) - (-5 *1 (-423 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-585 (-485))) + (-5 *1 (-424 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-390)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) - (-4 *3 (-389))))) + (-12 (-4 *1 (-863 *3 *4 *2)) (-4 *3 (-963)) (-4 *4 (-719)) (-4 *2 (-758)) + (-4 *3 (-390))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-484)) (-4 *5 (-756)) (-4 *5 (-311)) - (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1154 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-485)) (-4 *5 (-757)) (-4 *5 (-312)) + (-5 *2 (-696)) (-5 *1 (-858 *5 *6)) (-4 *6 (-1156 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695)) - (-5 *1 (-857 *4 *5)) (-4 *5 (-1154 *4))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-757)) (-4 *4 (-312)) (-5 *2 (-696)) + (-5 *1 (-858 *4 *5)) (-4 *5 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *2 (-312)) (-4 *2 (-757)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) - (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) - (-4 *3 (-1154 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) - (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) - (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) - (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-418 *4 *5)) - (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) - (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) - (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-854))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) - ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484))))) + (-12 (-4 *4 (-312)) (-5 *2 (-585 *3)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-206 *4 *5)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) + (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) + (-5 *2 (-859 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-963)) (-5 *2 (-419 *4 *5)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-585 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) + (-5 *2 (-206 *4 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-963)) + (-5 *2 (-419 *4 *5)) (-5 *1 (-857 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-855))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-855)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-855)) (-5 *3 (-485))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) - (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1013)) - (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) - (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-802 *6))) + (-5 *5 (-1 (-800 *6 *8) *8 (-802 *6) (-800 *6 *8))) (-4 *6 (-1015)) + (-4 *8 (-13 (-963) (-555 (-802 *6)) (-952 *7))) (-5 *2 (-800 *6 *8)) + (-4 *7 (-963)) (-5 *1 (-854 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) - (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) + (-12 (-5 *2 (-800 *5 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *3 (-139 *6)) + (-4 (-859 *6) (-798 *5)) (-4 *6 (-13 (-798 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-800 *4 *1)) (-5 *3 (-802 *4)) (-4 *1 (-798 *4)) + (-4 *4 (-1015)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) - (-4 *6 (-13 (-1013) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) + (-12 (-5 *2 (-800 *5 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) + (-4 *6 (-13 (-1015) (-952 *3))) (-4 *3 (-798 *5)) (-5 *1 (-844 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) - (-4 *3 (-13 (-361 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) - (-5 *4 (-801 *5)) (-4 *6 (-13 (-495) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) + (-4 *3 (-13 (-362 *6) (-555 *4) (-798 *5) (-952 (-552 $)))) + (-5 *4 (-802 *5)) (-4 *6 (-13 (-496) (-798 *5))) (-5 *1 (-845 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 (-484) *3)) (-5 *4 (-801 (-484))) (-4 *3 (-483)) - (-5 *1 (-845 *3)))) + (-12 (-5 *2 (-800 (-485) *3)) (-5 *4 (-802 (-485))) (-4 *3 (-484)) + (-5 *1 (-846 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1013)) - (-4 *6 (-13 (-1013) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) - (-5 *1 (-846 *5 *6)))) + (-12 (-5 *2 (-800 *5 *6)) (-5 *3 (-552 *6)) (-4 *5 (-1015)) + (-4 *6 (-13 (-1015) (-952 (-552 $)) (-555 *4) (-798 *5))) (-5 *4 (-802 *5)) + (-5 *1 (-847 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) - (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))) + (-12 (-5 *2 (-797 *5 *6 *3)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) + (-4 *6 (-798 *5)) (-4 *3 (-610 *6)) (-5 *1 (-848 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) - (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1013)) - (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) - (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-800 *6 *3) *8 (-802 *6) (-800 *6 *3))) (-4 *8 (-758)) + (-5 *2 (-800 *6 *3)) (-5 *4 (-802 *6)) (-4 *6 (-1015)) + (-4 *3 (-13 (-863 *9 *7 *8) (-555 *4))) (-4 *7 (-719)) + (-4 *9 (-13 (-963) (-798 *6))) (-5 *1 (-849 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) - (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) - (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) - (-5 *1 (-848 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) + (-4 *3 (-13 (-863 *8 *6 *7) (-555 *4))) (-5 *4 (-802 *5)) (-4 *7 (-798 *5)) + (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-13 (-963) (-798 *5))) + (-5 *1 (-849 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-905 *6)) - (-4 *6 (-13 (-495) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) - (-5 *1 (-851 *5 *6 *3)))) + (-12 (-5 *2 (-800 *5 *3)) (-4 *5 (-1015)) (-4 *3 (-906 *6)) + (-4 *6 (-13 (-496) (-798 *5) (-555 *4))) (-5 *4 (-802 *5)) + (-5 *1 (-852 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-799 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-801 *5)) - (-4 *5 (-1013)) (-5 *1 (-852 *5)))) + (-12 (-5 *2 (-800 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-802 *5)) + (-4 *5 (-1015)) (-5 *1 (-853 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) - (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1013)) - (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) - (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-951 *5))) (-4 *5 (-797 *4)) - (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-444)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) + (-12 (-5 *4 (-585 (-802 *7))) (-5 *5 (-1 *9 (-585 *9))) + (-5 *6 (-1 (-800 *7 *9) *9 (-802 *7) (-800 *7 *9))) (-4 *7 (-1015)) + (-4 *9 (-13 (-963) (-555 (-802 *7)) (-952 *8))) (-5 *2 (-800 *7 *9)) + (-5 *3 (-585 *9)) (-4 *8 (-963)) (-5 *1 (-854 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1015) (-952 *5))) (-4 *5 (-798 *4)) + (-4 *4 (-1015)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-844 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) + ((*1 *2 *2) (-12 (-4 *3 (-1015)) (-5 *1 (-843 *3 *2)) (-4 *2 (-362 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1091)) (-5 *4 (-445)) (-5 *2 (-265 (-485))) (-5 *1 (-842)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-444)) (-4 *4 (-1013)) (-5 *1 (-842 *4 *2)) (-4 *2 (-361 *4))))) + (-12 (-5 *3 (-445)) (-4 *4 (-1015)) (-5 *1 (-843 *4 *2)) (-4 *2 (-362 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1001 (-179)))) - (-5 *1 (-840))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-1003 (-179)))) + (-5 *1 (-841))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-839)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-839))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179))) (-5 *3 (-1003 (-179))) + (-5 *1 (-840))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) - (-5 *1 (-837)))) + (-12 (-5 *2 (-585 (-1 (-179) (-179)))) (-5 *3 (-1003 (-179))) + (-5 *1 (-838)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-473))))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-474))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-473))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-474))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) - ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-1003 (-179))) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-179)))) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-838)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1003 (-179))) (-5 *1 (-838)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) - (-4 *3 (-554 (-473))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) - (-5 *1 (-836 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) - (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4))))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1003 (-179))) (-5 *2 (-838)) (-5 *1 (-839 *3)) + (-4 *3 (-555 (-474))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-5 *2 (-838)) (-5 *1 (-839 *3)) (-4 *3 (-555 (-474)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-405)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-85)) + (-5 *1 (-837 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-85)) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1091)))) + (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *2)) (-4 *2 (-863 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) - (-5 *4 (-631 *12)) (-5 *5 (-584 (-347 (-858 *9)))) (-5 *6 (-584 (-584 *12))) - (-5 *7 (-695)) (-5 *8 (-484)) (-4 *9 (-13 (-257) (-120))) - (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1089)))) - (-4 *11 (-718)) - (-5 *2 - (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) - (|:| |wcond| (-584 (-858 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) + (-5 *4 (-632 *12)) (-5 *5 (-585 (-348 (-859 *9)))) (-5 *6 (-585 (-585 *12))) + (-5 *7 (-696)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) + (-4 *12 (-863 *9 *11 *10)) (-4 *10 (-13 (-758) (-555 (-1091)))) + (-4 *11 (-719)) + (-5 *2 + (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) + (|:| |wcond| (-585 (-859 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *9)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *9))))))))) - (-5 *1 (-836 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *9)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *9))))))))) + (-5 *1 (-837 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) - (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) - (-4 *7 (-718)) - (-5 *2 - (-584 - (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) - (|:| |cols| (-584 (-484)))))) - (-5 *1 (-836 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) - (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8))))) + (-12 (-5 *2 (-632 *7)) (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) (-5 *1 (-837 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-696)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) + (-4 *7 (-719)) + (-5 *2 + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-485))) + (|:| |cols| (-585 (-485)))))) + (-5 *1 (-837 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) + (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-837 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) (-5 *2 (-584 (-584 (-484)))) (-5 *1 (-836 *4 *5 *6 *7)) - (-5 *3 (-484)) (-4 *7 (-862 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) (-5 *2 (-585 (-585 (-485)))) (-5 *1 (-837 *4 *5 *6 *7)) + (-5 *3 (-485)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) - (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) - (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-863 *3 *5 *4)) + (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-758) (-555 (-1091)))) + (-4 *5 (-719)) (-5 *1 (-837 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-584 - (-2 (|:| -3107 (-695)) + (-585 + (-2 (|:| -3110 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) - (|:| |cols| (-584 (-484)))))) - (|:| |fgb| (-584 *7))))) - (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) - (-5 *1 (-836 *4 *5 *6 *7))))) + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-485))) + (|:| |cols| (-585 (-485)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-696)) + (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-584 - (-2 (|:| -3107 (-695)) + (-585 + (-2 (|:| -3110 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) - (|:| |cols| (-584 (-484)))))) - (|:| |fgb| (-584 *7))))) - (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) - (-5 *1 (-836 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) - (-4 *3 (-862 *4 *6 *5))))) + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-485))) + (|:| |cols| (-585 (-485)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 (-696)) + (-5 *1 (-837 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) (-5 *2 (-585 *3)) (-5 *1 (-837 *4 *5 *6 *3)) + (-4 *3 (-863 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-631 (-347 (-858 *4)))) (|:| |vec| (-584 (-347 (-858 *4)))) - (|:| -3107 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) - (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) - (-5 *2 - (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *4))))))) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) + (-2 (|:| |mat| (-632 (-348 (-859 *4)))) (|:| |vec| (-585 (-348 (-859 *4)))) + (|:| -3110 (-696)) (|:| |rows| (-585 (-485))) (|:| |cols| (-585 (-485))))) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) + (-5 *2 + (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *4))))))) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *4))))))) - (-5 *3 (-584 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-862 *4 *6 *5)) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) - (-5 *1 (-836 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *4))))))) + (-5 *3 (-585 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-863 *4 *6 *5)) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) + (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) - (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| -3107 (-695)) + (-585 + (-2 (|:| -3110 (-696)) (|:| |eqns| - (-584 - (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) - (|:| |cols| (-584 (-484)))))) - (|:| |fgb| (-584 *8))))) - (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695))))) + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-485))) + (|:| |cols| (-585 (-485)))))) + (|:| |fgb| (-585 *8))))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) - (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-862 *4 *6 *5)) - (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) - (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) - (-4 *7 (-862 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) - (-4 *6 (-718)) (-5 *2 (-347 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) - (-4 *3 (-862 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) - (-5 *2 (-631 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) - (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) (-4 *7 (-863 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) + (-5 *1 (-837 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-863 *4 *6 *5)) + (-5 *1 (-837 *4 *5 *6 *2)) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) + (-5 *2 (-585 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)) + (-4 *7 (-863 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-758) (-555 (-1091)))) + (-4 *6 (-719)) (-5 *2 (-348 (-859 *4))) (-5 *1 (-837 *4 *5 *6 *3)) + (-4 *3 (-863 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) + (-5 *2 (-632 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) + (-5 *2 (-585 (-348 (-859 *4)))) (-5 *1 (-837 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-347 (-858 *8)))) (-5 *5 (-695)) - (-5 *6 (-1072)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-862 *8 *10 *9)) - (-4 *9 (-13 (-757) (-554 (-1089)))) (-4 *10 (-718)) + (-12 (-5 *3 (-632 *11)) (-5 *4 (-585 (-348 (-859 *8)))) (-5 *5 (-696)) + (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-863 *8 *10 *9)) + (-4 *9 (-13 (-758) (-555 (-1091)))) (-4 *10 (-719)) (-5 *2 (-2 (|:| |rgl| - (-584 - (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) - (|:| |wcond| (-584 (-858 *8))) + (-585 + (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) + (|:| |wcond| (-585 (-859 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *8)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *8)))))))))) - (|:| |rgsz| (-484)))) - (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-484))))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *8)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *8)))))))))) + (|:| |rgsz| (-485)))) + (-5 *1 (-837 *8 *9 *10 *11)) (-5 *7 (-485))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) + (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) - (|:| |wcond| (-584 (-858 *4))) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *4)))))))))) - (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *4)))))))))) + (-5 *1 (-837 *4 *5 *6 *7)) (-4 *7 (-863 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) - (-5 *4 (-1072)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-862 *5 *7 *6)) - (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484)) - (-5 *1 (-836 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) - (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) - (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) + (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-863 *5 *7 *6)) + (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) (-5 *2 (-485)) + (-5 *1 (-837 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-863 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-758) (-555 (-1091)))) (-4 *7 (-719)) + (-5 *2 + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1089))) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) - (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-585 (-1091))) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) + (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) - (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-863 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-758) (-555 (-1091)))) (-4 *6 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) - (|:| |wcond| (-584 (-858 *4))) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-859 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *4)))))))))) - (-5 *1 (-836 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *4)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *4)))))))))) + (-5 *1 (-837 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) - (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) - (-4 *8 (-718)) + (-12 (-5 *3 (-632 *9)) (-5 *5 (-832)) (-4 *9 (-863 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) + (-4 *8 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) - (|:| |wcond| (-584 (-858 *6))) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *6)))))))))) - (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *6)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *6)))))))))) + (-5 *1 (-837 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) - (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1091))) (-5 *5 (-832)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) - (|:| |wcond| (-584 (-858 *6))) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-859 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *6)))))))))) - (-5 *1 (-836 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *6)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *6)))))))))) + (-5 *1 (-837 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) - (-4 *7 (-718)) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-832)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) + (-4 *7 (-719)) (-5 *2 - (-584 - (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) - (|:| |wcond| (-584 (-858 *5))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-859 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) - (|:| -2011 (-584 (-1178 (-347 (-858 *5)))))))))) - (-5 *1 (-836 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1180 (-348 (-859 *5)))) + (|:| -2014 (-585 (-1180 (-348 (-859 *5)))))))))) + (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1072)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) - (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) - (-5 *1 (-836 *6 *7 *8 *9)))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1074)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-485)) + (-5 *1 (-837 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-1072)) - (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) - (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) - (-5 *1 (-836 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-862 *5 *7 *6)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) - (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8)))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-585 (-1091))) (-5 *5 (-1074)) + (-4 *9 (-863 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-758) (-555 (-1091)))) (-4 *8 (-719)) (-5 *2 (-485)) + (-5 *1 (-837 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-1074)) (-4 *8 (-863 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-758) (-555 (-1091)))) + (-4 *7 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1072)) - (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) - (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) - (-5 *1 (-836 *7 *8 *9 *10)))) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 *10)) (-5 *5 (-832)) (-5 *6 (-1074)) + (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-758) (-555 (-1091)))) (-4 *9 (-719)) (-5 *2 (-485)) + (-5 *1 (-837 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-5 *6 (-1072)) - (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) - (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) - (-5 *1 (-836 *7 *8 *9 *10)))) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-585 (-1091))) (-5 *5 (-832)) (-5 *6 (-1074)) + (-4 *10 (-863 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-758) (-555 (-1091)))) (-4 *9 (-719)) (-5 *2 (-485)) + (-5 *1 (-837 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) - (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) - (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9))))) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-832)) (-5 *5 (-1074)) (-4 *9 (-863 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-758) (-555 (-1091)))) + (-4 *8 (-719)) (-5 *2 (-485)) (-5 *1 (-837 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1154 *4)) - (-5 *1 (-835 *4 *2))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) + (-5 *1 (-836 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3951 (-584 *1)) (|:| -2408 *1))) - (-5 *3 (-584 *1))))) + (-12 (-4 *1 (-834)) (-5 *2 (-2 (|:| -3955 (-585 *1)) (|:| -2411 *1))) + (-5 *3 (-585 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) + (-12 (-4 *1 (-834)) (-5 *2 (-634 (-585 *1))) (-5 *3 (-585 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) - (-5 *1 (-830 *4))))) + (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1091))) (-4 *4 (-390)) + (-5 *1 (-831 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) - (-5 *1 (-830 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))) + (-12 (-5 *2 (-585 (-859 *4))) (-5 *3 (-585 (-1091))) (-4 *4 (-390)) + (-5 *1 (-831 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2) (-12 (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-818 (-485))) (-5 *1 (-830)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-485))) (-5 *2 (-818 (-485))) (-5 *1 (-830))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) - (-4 *2 (-862 *5 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *2)) + (-4 *2 (-863 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-258)) (-5 *1 (-829 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) - (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *6 *4 *5)) (-5 *1 (-829 *4 *5 *6 *2)) + (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-346 *2)) (-4 *2 (-258)) (-5 *1 (-827 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) - (-5 *2 (-51)) (-5 *1 (-827 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-51)) (-5 *1 (-828 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-345 (-858 *6))) (-5 *5 (-1089)) (-5 *3 (-858 *6)) - (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257))))) -(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *1 (-825 *3 *2)) - (-4 *2 (-1154 (-347 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) - (-4 *3 (-1154 (-347 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) - (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *5)) - (-4 *5 (-1154 (-347 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1154 (-347 (-484)))) - (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-825 *3 *4)) - (-4 *4 (-1154 (-347 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) - (-4 *3 (-1154 (-347 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-347 *3))) (-5 *2 (-831)) - (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) - (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) - (-4 *4 (-13 (-495) (-951 (-484)))) - (-5 *2 (-2 (|:| -3769 (-695)) (|:| -2382 *8))) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) - (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) - (-4 *6 (-290 (-347 (-484)) *4 *5)) - (-5 *2 (-2 (|:| -3769 (-695)) (|:| -2382 *6))) (-5 *1 (-824 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) - (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) - (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) - (-5 *1 (-823 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) - (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-824 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-389)))) + (-12 (-5 *4 (-346 (-859 *6))) (-5 *5 (-1091)) (-5 *3 (-859 *6)) + (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-828 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-346 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-827 *3)) (-4 *3 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-258))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1156 (-348 (-485)))) (-5 *1 (-826 *3 *2)) + (-4 *2 (-1156 (-348 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *3)) + (-4 *3 (-1156 (-348 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) + (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *5)) + (-4 *5 (-1156 (-348 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1156 (-348 (-485)))) + (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-826 *3 *4)) + (-4 *4 (-1156 (-348 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1156 (-348 *2))) (-5 *2 (-485)) (-5 *1 (-826 *4 *3)) + (-4 *3 (-1156 (-348 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-348 *3))) (-5 *2 (-832)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-1156 (-348 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-952 (-485)))) + (-5 *2 (-2 (|:| -3773 (-696)) (|:| -2385 *8))) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) + (-4 *4 (-1156 (-348 (-485)))) (-4 *5 (-1156 (-348 *4))) + (-4 *6 (-291 (-348 (-485)) *4 *5)) + (-5 *2 (-2 (|:| -3773 (-696)) (|:| -2385 *6))) (-5 *1 (-825 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-362 *4)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-348 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-85)) + (-5 *1 (-824 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 (-348 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-348 (-485)))) + (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 (-348 (-485)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-825 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-390)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) - (-4 *5 (-822)) (-5 *1 (-394 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-822))))) -(((*1 *2 *3) - (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) - (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) - (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1))))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-863 *5 *3 *4)) (-4 *3 (-719)) (-4 *4 (-758)) + (-4 *5 (-823)) (-5 *1 (-395 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-823))))) +(((*1 *2 *3) + (-12 (-5 *2 (-346 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-390)) (-4 *4 (-496)) (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-346 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-390)) (-4 *4 (-496)) (-4 *4 (-1015)))) + ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *2 (-346 (-1086 *1))) (-5 *3 (-1086 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-585 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-484)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) - (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) + (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 (-484)))) (-5 *3 (-1084 (-484))) - (-5 *1 (-508)))) + (|partial| -12 (-5 *2 (-585 (-1086 (-485)))) (-5 *3 (-1086 (-485))) + (-5 *1 (-509)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-822))))) + (|partial| -12 (-5 *2 (-585 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-823))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1178 *1)))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) - (-5 *2 (-1178 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))) - ((*1 *1 *1) (-4 *1 (-298))) - ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-823)) + (-5 *2 (-1180 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)))) + ((*1 *1 *1) (-4 *1 (-299))) + ((*1 *2 *1) (-12 (-5 *2 (-634 *1)) (-4 *1 (-118)) (-4 *1 (-823))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-819 *5 *6 *7 *8)) - (-5 *4 (-1084 *8)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-758)) (-4 *5 (-823)) (-4 *6 (-719)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-346 (-1086 *8))) (-5 *1 (-820 *5 *6 *7 *8)) + (-5 *4 (-1086 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-394 *3 *4 *2 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-395 *3 *4 *2 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-4 *3 (-719)) (-4 *4 (-758)) (-4 *2 (-823)) (-5 *1 (-820 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-823)) (-5 *1 (-821 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) - (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) + (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) + (-5 *2 (-346 (-1086 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) - (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) + (-12 (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-863 *4 *5 *6)) + (-5 *2 (-346 (-1086 *7))) (-5 *1 (-820 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) - (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5))))) + (-12 (-4 *4 (-823)) (-4 *5 (-1156 *4)) (-5 *2 (-346 (-1086 *5))) + (-5 *1 (-821 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) - (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *1 (-819 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-585 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-823)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *1 (-820 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) - (-4 *5 (-1154 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) + (|partial| -12 (-5 *2 (-585 (-1086 *5))) (-5 *3 (-1086 *5)) + (-4 *5 (-1156 *4)) (-4 *4 (-823)) (-5 *1 (-821 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) - (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) - (-5 *1 (-819 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-483))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) + (|partial| -12 (-5 *2 (-585 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-863 *5 *6 *4)) (-4 *5 (-823)) (-4 *6 (-719)) (-4 *4 (-758)) + (-5 *1 (-820 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-585 *6)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) ((*1 *1) (-4 *1 (-484))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-815 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-585 (-696)))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-815 *3))) (-4 *3 (-1015)) (-5 *1 (-818 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-584 *4))) (-5 *1 (-817 *4)) - (-5 *3 (-584 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-585 *4))) (-5 *1 (-818 *4)) + (-5 *3 (-585 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-817 *4)) - (-5 *3 (-1009 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) + (-12 (-4 *4 (-1015)) (-5 *2 (-1011 (-1011 *4))) (-5 *1 (-818 *4)) + (-5 *3 (-1011 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-1011 (-1011 *3))) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) - (-5 *1 (-817 *4))))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) + (-5 *1 (-818 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) - (-5 *1 (-817 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-1015)) (-5 *2 (-585 (-696))) + (-5 *1 (-818 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-1011 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1011 *3)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-816 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-4 *1 (-816 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-831)) - (-4 *2 (-13 (-962) (-10 -7 (-6 (-3994 "*"))))) (-5 *1 (-815 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) - (-5 *1 (-814 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1009 *3)) (-5 *1 (-814 *3)) (-4 *3 (-317)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) + (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-818 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-818 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-4 *1 (-817 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-832)) + (-4 *2 (-13 (-963) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-816 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-815 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1011 *3)) (-5 *1 (-815 *3)) (-4 *3 (-318)) (-4 *3 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-815 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-696)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) - ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-696)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) + ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-808 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) - (-4 *4 (-1013)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-696))) (-4 *1 (-813 *4)) + (-4 *4 (-1015)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-813 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-813 *3)) (-4 *3 (-1015))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1154 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-5 *1 (-809 *2 *4)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1154 *3))))) -(((*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664))) - ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) - ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))) -(((*1 *2 *1) - (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) - (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) - (-4 *5 (-1128))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-809 *2 *3)) (-4 *2 (-1156 *3))))) +(((*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-661))) ((*1 *1) (-4 *1 (-665))) + ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015)))) + ((*1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-758))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) + (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))) + (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-616 *3))) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-805 *3)) (-4 *3 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-585 *5)) (-5 *1 (-803 *4 *5)) + (-4 *5 (-1130))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-803 *4 *3)) (-4 *3 (-1130))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) - (-5 *1 (-799 *4 *5)) (-4 *5 (-1013)))) + (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-5 *2 (-85)) + (-5 *1 (-800 *4 *5)) (-4 *5 (-1015)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) - (-4 *3 (-1128)))) + (-12 (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-803 *5 *3)) + (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) - (-5 *2 (-85)) (-5 *1 (-802 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-802 *5)) (-4 *5 (-1015)) (-4 *6 (-1130)) + (-5 *2 (-85)) (-5 *1 (-803 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))) + ((*1 *1) (-12 (-4 *1 (-408 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2512 (-86)) (|:| |arg| (-584 (-801 *3))))) - (-5 *1 (-801 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-585 (-802 *3))))) + (-5 *1 (-802 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) - (-4 *4 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-802 *4))) (-5 *1 (-802 *4)) + (-4 *4 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-802 *3)) (|:| |den| (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-51)) (-5 *1 (-802 *4)) (-4 *4 (-1015))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51)))) - (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-2 (|:| |var| (-585 (-1091))) (|:| |pred| (-51)))) + (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))) + (|partial| -12 (-5 *2 (-585 (-802 *3))) (-5 *1 (-802 *3)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) - (-4 *5 (-609 *4)))) + (-12 (-4 *4 (-1015)) (-5 *2 (-85)) (-5 *1 (-797 *3 *4 *5)) (-4 *3 (-1015)) + (-4 *5 (-610 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1) - (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) - (-4 *4 (-609 *3)))) - ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-4 *3 (-1015)) (-5 *1 (-797 *2 *3 *4)) (-4 *2 (-1015)) + (-4 *4 (-610 *3)))) + ((*1 *1) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) - (-5 *1 (-799 *4 *2))))) + (|partial| -12 (-5 *3 (-802 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) + (-5 *1 (-800 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-1015)) (-5 *1 (-800 *4 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) - (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-4 *6 (-798 *5)) (-5 *2 (-797 *5 *6 (-585 *6))) + (-5 *1 (-799 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4)) - (-4 *3 (-951 (-1089))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 *3))) (-5 *1 (-799 *5 *3 *4)) + (-4 *3 (-952 (-1091))) (-4 *3 (-798 *5)) (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) - (-4 *3 (-962)) (-2559 (-4 *3 (-951 (-1089)))) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-585 (-249 (-859 *3)))) (-5 *1 (-799 *5 *3 *4)) + (-4 *3 (-963)) (-2562 (-4 *3 (-952 (-1091)))) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) - (-2559 (-4 *3 (-951 (-1089)))) (-2559 (-4 *3 (-962))) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1015)) (-5 *2 (-800 *5 *3)) (-5 *1 (-799 *5 *3 *4)) + (-2562 (-4 *3 (-952 (-1091)))) (-2562 (-4 *3 (-963))) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013)))) + (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-552 *4)) (-4 *4 (-1015)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) - (-4 *4 (-554 (-801 *5))))) + (-12 (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-799 *5 *3 *4)) (-4 *3 (-798 *5)) + (-4 *4 (-555 (-802 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) - (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5)))))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-798 *5)) (-4 *5 (-1015)) (-5 *2 (-85)) + (-5 *1 (-799 *5 *6 *4)) (-4 *4 (-555 (-802 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6))))) + (-12 (-5 *2 (-800 *4 *5)) (-5 *3 (-800 *4 *6)) (-4 *4 (-1015)) + (-4 *5 (-1015)) (-4 *6 (-610 *5)) (-5 *1 (-797 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) - (-4 *3 (-1013)) (-4 *5 (-609 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-484))))) + (-12 (-4 *4 (-1015)) (-5 *2 (-800 *3 *5)) (-5 *1 (-797 *3 *4 *5)) + (-4 *3 (-1015)) (-4 *5 (-610 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-485))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) + (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484)))))) + (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *3 (-584 (-484))) (-5 *1 (-794))))) + (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *3 (-585 (-485))) (-5 *1 (-795))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1068 (-584 (-831)))) (-5 *1 (-794))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1128)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1128))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1128))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-791))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072)))) - ((*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-690 *3)) (-4 *3 (-344)))) - ((*1 *2 *1) - (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-781 *3)) (-14 *3 (-484)))) - ((*1 *2 *1) - (-12 (-14 *3 (-484)) (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-782 *3 *4)) - (-4 *4 (-780 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) - ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) - ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1068 (-484)))))) + (-12 (-5 *2 (-1070 (-585 (-485)))) (-5 *1 (-795)) (-5 *3 (-585 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 (-585 (-832)))) (-5 *1 (-795))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-789 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-791 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *1 (-794 *2)) (-4 *2 (-1130))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-1096))) (-5 *1 (-792))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1074))) (-5 *1 (-199)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-785))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-784 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-691 *3)) (-4 *3 (-345)))) + ((*1 *2 *1) + (-12 (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-782 *3)) (-14 *3 (-485)))) + ((*1 *2 *1) + (-12 (-14 *3 (-485)) (-5 *2 (-148 (-348 (-485)))) (-5 *1 (-783 *3 *4)) + (-4 *4 (-781 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) + ((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-344 *3)) (-4 *3 (-345)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) + ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832)))) + ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-1070 (-485)))))) (((*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) + ((*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-651 *3 *2)) (-4 *3 (-963)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484))))) -(((*1 *1 *1) (-4 *1 (-780 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-780 *4))))) + ((*1 *2) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485))))) +(((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-5 *2 (-485))))) +(((*1 *1 *1) (-4 *1 (-781 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-781 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-347 *6)) - (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) + (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-348 *6)) + (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) - (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) - (-5 *1 (-778 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-348 (-1149 *6 *5))) + (-5 *1 (-779 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) - (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) - (-5 *1 (-778 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-696)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-348 (-1149 *6 *5))) + (-5 *1 (-779 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-148 *6)) - (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) - (-5 *2 (-584 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-378))) (-5 *1 (-775))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-773))))) -(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-695)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) - (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) - ((*1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) - ((*1 *1 *1) (-4 *1 (-253))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) - ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) + (|partial| -12 (-5 *3 (-696)) (-4 *5 (-312)) (-5 *2 (-148 *6)) + (-5 *1 (-778 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-379))) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-696)))) + ((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) + (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-774))))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-774))) ((*1 *1 *1 *1) (-5 *1 (-774))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *1) (-4 *1 (-254))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774)))) + ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-774))) (-5 *1 (-774))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-761)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) - (-5 *1 (-740 *3)) (-4 *3 (-757)))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695))) - ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773)))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-488))) (-5 *3 (-488))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1137))) (-5 *3 (-1137))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1184)) (-5 *1 (-769))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-741 *3)) (|:| |rm| (-741 *3)))) + (-5 *1 (-741 *3)) (-4 *3 (-758)))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-696))) + ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-774)))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-489))) (-5 *3 (-489))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *2 (-634 (-1139))) (-5 *3 (-1139))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-772)) (-5 *3 (-102)) (-5 *2 (-696))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1186)) (-5 *1 (-770))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-347 (-484)))) + (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-696)) (-5 *1 (-767 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) - (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) + (-5 *1 (-692 *3 *4)) (-4 *3 (-647 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2901 *1))) - (-4 *1 (-762 *3)))) + (-12 (-4 *3 (-496)) (-4 *3 (-963)) (-5 *2 (-2 (|:| -1974 *1) (|:| -2904 *1))) + (-4 *1 (-763 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-763 *5 *3)) - (-4 *3 (-762 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-764 *5 *3)) + (-4 *3 (-763 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-592 *5)) (-4 *5 (-963)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-763 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-359 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) - (-4 *3 (-762 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-963)) (-5 *1 (-764 *2 *3)) + (-4 *3 (-763 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) - (-4 *2 (-762 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-963)) (-5 *1 (-764 *5 *2)) + (-4 *2 (-763 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-311)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) - (-4 *1 (-762 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) + (-4 *1 (-763 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (|partial| -12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-311)) (-4 *3 (-962)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) - (-4 *1 (-762 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) + (-12 (-4 *3 (-312)) (-4 *3 (-963)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) + (-4 *1 (-763 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-692 *2 *3)) (-4 *2 (-647 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-763 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) (((*1 *1) - (-12 (-4 *1 (-344)) (-2559 (|has| *1 (-6 -3983))) - (-2559 (|has| *1 (-6 -3975))))) - ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753))) - ((*1 *1 *1 *1) (-4 *1 (-760)))) + (-12 (-4 *1 (-345)) (-2562 (|has| *1 (-6 -3987))) + (-2562 (|has| *1 (-6 -3979))))) + ((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-744 *2)) (-4 *2 (-758)))) ((*1 *1) (-4 *1 (-754))) + ((*1 *1 *1 *1) (-4 *1 (-761)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) - (-14 *4 (-695))))) -(((*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013))))) -(((*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-755 *4 *5)) + (-14 *4 (-696))))) +(((*1 *2) (-12 (-5 *2 (-752 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) +(((*1 *2) (-12 (-5 *2 (-752 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-752 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-751 *3)) (-4 *3 (-1013))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-439))) (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) - (-4 *3 (-628 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-745 *3)) (-4 *3 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-752 *3)) (-4 *3 (-1015))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-440))) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-749 *3)) (-4 *3 (-1015)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) + (-4 *3 (-629 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) - ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963)))) + ((*1 *1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) + (-12 (-4 *2 (-146)) (-4 *2 (-963)) (-5 *1 (-653 *2 *3)) (-4 *3 (-592 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-146)) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1013)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-585 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1015)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1013)) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1013)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1015)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) + (-5 *1 (-653 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) - (-5 *1 (-652 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-592 *3)) (-4 *3 (-963)) + (-5 *1 (-653 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-747 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-86)) (-4 *4 (-963)) (-5 *1 (-653 *4 *2)) (-4 *2 (-592 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-747 *2)) (-4 *2 (-963))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-309 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) - (-4 *4 (-591 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) -(((*1 *2) (-12 (-5 *2 (-744 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) + (-12 (-5 *3 (-310 (-86))) (-4 *2 (-963)) (-5 *1 (-653 *2 *4)) + (-4 *4 (-592 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-747 *2)) (-4 *2 (-963))))) +(((*1 *2) (-12 (-5 *2 (-745 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-4 *3 (-963)) (-5 *1 (-743 *2 *3)) (-4 *2 (-647 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-743 *2 *3)) (-4 *3 (-963))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-616 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-620 *3)) (-4 *3 (-758)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-741 *3)) (-4 *3 (-758))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1178 *4)) - (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4))))) + (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) + (-5 *1 (-736 *4 *3)) (-4 *3 (-602 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) - (-4 *5 (-601 *4)))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-312)) (-5 *2 (-632 *4)) (-5 *1 (-736 *4 *5)) + (-4 *5 (-602 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5)) - (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-312)) (-5 *2 (-632 *5)) + (-5 *1 (-736 *5 *6)) (-4 *6 (-602 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5)))) + (-12 (-5 *3 (-585 (-859 *5))) (-5 *4 (-585 (-1091))) (-4 *5 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *5)))))) (-5 *1 (-695 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) - (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-496)) + (-5 *2 (-585 (-585 (-249 (-348 (-859 *4)))))) (-5 *1 (-695 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *7)) + (-12 (-5 *3 (-632 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2011 (-584 *6))) *7 *6)) - (-4 *6 (-311)) (-4 *7 (-601 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2014 (-585 *6))) *7 *6)) + (-4 *6 (-312)) (-4 *7 (-602 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1178 *6) "failed")) - (|:| -2011 (-584 (-1178 *6))))) - (-5 *1 (-734 *6 *7)) (-5 *4 (-1178 *6))))) + (-2 (|:| |particular| (-3 (-1180 *6) "failed")) + (|:| -2014 (-585 (-1180 *6))))) + (-5 *1 (-735 *6 *7)) (-5 *4 (-1180 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) + (-12 (-4 *5 (-312)) (-5 *2 - (-2 (|:| A (-631 *5)) + (-2 (|:| A (-632 *5)) (|:| |eqs| - (-584 - (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5)) (|:| -3264 *6) + (-585 + (-2 (|:| C (-632 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6) (|:| |rh| *5)))))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) - (-4 *6 (-601 *5)))) + (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) + (-4 *6 (-602 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *6 (-601 *5)) - (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) - (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *5))))) + (-12 (-4 *5 (-312)) (-4 *6 (-602 *5)) + (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1180 *5)))) + (-5 *1 (-735 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1180 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) + (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) - (-5 *5 (-1 (-345 *7) *7)) - (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) + (-12 (-5 *3 (-599 (-348 *7))) (-5 *4 (-1 (-585 *6) *7)) + (-5 *5 (-1 (-346 *7) *7)) + (-4 *6 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *7 (-1156 *6)) (-5 *2 (-585 (-348 *7))) (-5 *1 (-734 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *7 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) - (-5 *5 (-1 (-345 *7) *7)) - (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *5 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) - (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3264 *3)))) - (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *6 (-1154 *5)) - (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3264 (-599 *6 (-347 *6)))))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6)))))) + (-12 (-5 *3 (-600 *7 (-348 *7))) (-5 *4 (-1 (-585 *6) *7)) + (-5 *5 (-1 (-346 *7) *7)) + (-4 *6 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *7 (-1156 *6)) (-5 *2 (-585 (-348 *7))) (-5 *1 (-734 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-348 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-585 (-348 *5))) (-5 *1 (-734 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 *5 (-348 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-585 (-348 *5))) (-5 *1 (-734 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-585 (-348 *6))) (-5 *1 (-734 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3268 *3)))) + (-5 *1 (-731 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-348 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *6 (-1156 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3268 (-600 *6 (-348 *6)))))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-348 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-584 *7) *7 (-1084 *7))) (-5 *5 (-1 (-345 *7) *7)) - (-4 *7 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 (-347 (-484))))) - (-5 *2 (-584 (-2 (|:| |frac| (-347 *7)) (|:| -3264 *3)))) - (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-347 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-584 (-2 (|:| |frac| (-347 *6)) (|:| -3264 (-599 *6 (-347 *6)))))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *7 (-1154 *5)) (-4 *4 (-662 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) - (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *2 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-347 *6))) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-2 (|:| -2011 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) - (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-584 *4)))) - (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-347 *6))) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-2 (|:| -2011 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) - (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6)))))) + (-12 (-5 *4 (-1 (-585 *7) *7 (-1086 *7))) (-5 *5 (-1 (-346 *7) *7)) + (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-952 (-348 (-485))))) + (-5 *2 (-585 (-2 (|:| |frac| (-348 *7)) (|:| -3268 *3)))) + (-5 *1 (-731 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-348 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-585 (-2 (|:| |frac| (-348 *6)) (|:| -3268 (-600 *6 (-348 *6)))))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-600 *6 (-348 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-663 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-632 *6)) (|:| |vec| (-1180 *5)))) + (-5 *1 (-733 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-732 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 *2 (-348 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-732 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-348 *6))) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-2 (|:| -2014 (-585 (-348 *6))) (|:| |mat| (-632 *5)))) + (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-348 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-348 *6))) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) + (-5 *1 (-732 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-348 *6))) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-2 (|:| -2014 (-585 (-348 *6))) (|:| |mat| (-632 *5)))) + (-5 *1 (-732 *5 *6)) (-5 *4 (-585 (-348 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-1154 *4)) - (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-347 *3))))) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-1156 *4)) + (-5 *1 (-731 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-348 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) - (-4 *5 (-1154 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) - (-4 *6 (-601 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-584 *5) *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) - (-5 *2 (-584 (-2 (|:| -3949 *5) (|:| -3264 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) - (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) - (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3264 *5)))) - (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2 *3 *5)) - (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-347 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) - (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-347 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *5 *3)) - (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-601 *2)) - (-4 *3 (-601 (-347 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) - (-5 *2 (-584 (-2 (|:| -3770 *5) (|:| -3224 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) - (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) - (-5 *2 (-584 (-2 (|:| -3770 *4) (|:| -3224 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) - (-4 *3 (-601 *4)) (-4 *6 (-601 (-347 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) - (-5 *2 (-584 (-2 (|:| -3770 *5) (|:| -3224 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) - (-4 *6 (-601 *5)) (-4 *3 (-601 (-347 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) - (-5 *2 (-584 (-2 (|:| -3770 *4) (|:| -3224 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) - (-4 *6 (-601 *4)) (-4 *3 (-601 (-347 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) - (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) - (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6)) - (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) - (-4 *6 (-601 (-347 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-728 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1114) (-872)))))) + (-12 (-5 *3 (-348 *5)) (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) + (-4 *5 (-1156 *4)) (-5 *1 (-731 *4 *5 *2 *6)) (-4 *2 (-602 *5)) + (-4 *6 (-602 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-585 (-2 (|:| -3953 *5) (|:| -3268 *3)))) (-5 *1 (-731 *5 *6 *3 *7)) + (-4 *3 (-602 *6)) (-4 *7 (-602 (-348 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -3268 *5)))) + (-5 *1 (-731 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-348 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-348 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-348 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *5 *3)) + (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-602 *2)) + (-4 *3 (-602 (-348 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-585 (-2 (|:| -3774 *5) (|:| -3228 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) + (-4 *3 (-602 *5)) (-4 *6 (-602 (-348 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *4 (-1156 *5)) + (-5 *2 (-585 (-2 (|:| -3774 *4) (|:| -3228 *4)))) (-5 *1 (-730 *5 *4 *3 *6)) + (-4 *3 (-602 *4)) (-4 *6 (-602 (-348 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-585 (-2 (|:| -3774 *5) (|:| -3228 *5)))) (-5 *1 (-730 *4 *5 *6 *3)) + (-4 *6 (-602 *5)) (-4 *3 (-602 (-348 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *4 (-1156 *5)) + (-5 *2 (-585 (-2 (|:| -3774 *4) (|:| -3228 *4)))) (-5 *1 (-730 *5 *4 *6 *3)) + (-4 *6 (-602 *4)) (-4 *3 (-602 (-348 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) + (-5 *1 (-730 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) + (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-348 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-730 *5 *2 *3 *6)) + (-4 *5 (-13 (-312) (-120) (-952 (-348 (-485))))) (-4 *3 (-602 *2)) + (-4 *6 (-602 (-348 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-291 *5 *6 *7)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-348 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-729 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-728 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1116) (-873)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-5 *1 (-728 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-873)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) - (-4 *4 (-13 (-29 *6) (-1114) (-872))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2011 (-584 *4)))) - (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) + (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-952 (-485)) (-582 (-485)) (-120))) + (-4 *4 (-13 (-29 *6) (-1116) (-873))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2014 (-585 *4)))) + (-5 *1 (-726 *6 *4 *3)) (-4 *3 (-602 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-146)) (-5 *1 (-724 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146))))) (((*1 *1 *1) (-4 *1 (-201))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) - (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128))))) - ((*1 *1 *1) (-4 *1 (-410))) - ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-411)) (-4 *2 (-1130))))) + ((*1 *1 *1) (-4 *1 (-411))) + ((*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-311))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) - ((*1 *1 *1 *1) (-4 *1 (-718)))) + ((*1 *1 *1) (-12 (-4 *1 (-722 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) + ((*1 *1 *1 *1) (-4 *1 (-719)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) + (-12 (-5 *3 (-1 (-328) (-328))) (-5 *4 (-328)) (-5 *2 - (-2 (|:| -3399 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-712)) (-5 *5 (-484))))) + (-5 *1 (-713)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) - (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) + (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-484)) - (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) - (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) - (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) + (-12 (-5 *4 (-485)) + (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328)))) + (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) + (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-484)) - (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) - (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) - (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))) + (-12 (-5 *4 (-485)) + (-5 *6 (-2 (|:| |tryValue| (-328)) (|:| |did| (-328)) (|:| -1476 (-328)))) + (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) (-5 *3 (-1180 (-328))) + (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) - (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) + (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) - (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) + (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) - (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-328))) + (-5 *3 (-1180 (-328))) (-5 *5 (-328)) (-5 *2 (-1186)) (-5 *1 (-712))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-328)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-328)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-832)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1074)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-832)) (-5 *1 (-711))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1074)) (-5 *1 (-711))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) - (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-348 (-859 (-142 *4)))) (-4 *4 (-496)) + (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-348 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) - (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) + (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) - (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-758)) + (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) - (-5 *1 (-709 *5))))) + (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-758)) (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) + (-5 *1 (-710 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) - (-5 *2 (-327)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) + (-5 *2 (-328)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) - (-5 *2 (-327)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 *2)) + (-5 *2 (-328)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) + (|partial| -12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) - (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) + (-4 *4 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) - (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5))))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) + (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327))))) + (-12 (-5 *2 (-142 (-328))) (-5 *1 (-710 *3)) (-4 *3 (-555 (-328))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) - (-4 *3 (-554 (-327))))) + (-12 (-5 *4 (-832)) (-5 *2 (-142 (-328))) (-5 *1 (-710 *3)) + (-4 *3 (-555 (-328))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-832)) (-4 *5 (-146)) (-4 *5 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-146)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-348 (-859 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-348 (-859 (-142 *5)))) (-5 *4 (-832)) (-4 *5 (-496)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) - (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 (-328))) + (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) - (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-758)) + (-4 *4 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) - (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) + (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) + (-4 *5 (-555 (-328))) (-5 *2 (-142 (-328))) (-5 *1 (-710 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-328)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) + (-12 (-5 *4 (-832)) (-5 *2 (-328)) (-5 *1 (-710 *3)) (-4 *3 (-555 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327)) - (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-859 *4)) (-4 *4 (-963)) (-4 *4 (-555 *2)) (-5 *2 (-328)) + (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) - (-5 *2 (-327)) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-859 *5)) (-5 *4 (-832)) (-4 *5 (-963)) (-4 *5 (-555 *2)) + (-5 *2 (-328)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327)) - (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-348 (-859 *4))) (-4 *4 (-496)) (-4 *4 (-555 *2)) (-5 *2 (-328)) + (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2)) - (-5 *2 (-327)) (-5 *1 (-709 *5)))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-555 *2)) + (-5 *2 (-328)) (-5 *1 (-710 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2)) - (-5 *2 (-327)) (-5 *1 (-709 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-758)) (-4 *4 (-555 *2)) + (-5 *2 (-328)) (-5 *1 (-710 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) - (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5))))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-832)) (-4 *5 (-496)) (-4 *5 (-758)) + (-4 *5 (-555 *2)) (-5 *2 (-328)) (-5 *1 (-710 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) + (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) + (-12 (-5 *3 (-696)) (-5 *1 (-708 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-706 *2)) (-4 *2 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-495)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-585 (-706 *3))) (-5 *1 (-706 *3)) (-4 *3 (-496)) + (-4 *3 (-963))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3753 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) - (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962))))) + (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-706 *3)) (|:| |coef2| (-706 *3)))) + (-5 *1 (-706 *3)) (-4 *3 (-496)) (-4 *3 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3753 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) - (-4 *3 (-495)) (-4 *3 (-962))))) + (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-706 *3)))) (-5 *1 (-706 *3)) + (-4 *3 (-496)) (-4 *3 (-963))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3753 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) - (-4 *3 (-495)) (-4 *3 (-962))))) + (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-706 *3)))) (-5 *1 (-706 *3)) + (-4 *3 (-496)) (-4 *3 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-347 (-484)))) + (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 - (-584 - (-2 (|:| |outval| *4) (|:| |outmult| (-484)) - (|:| |outvect| (-584 (-631 *4)))))) - (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756)))))) + (-585 + (-2 (|:| |outval| *4) (|:| |outmult| (-485)) + (|:| |outvect| (-585 (-632 *4)))))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) - (-4 *4 (-13 (-311) (-756)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 (-585 *4)) (-5 *1 (-704 *4)) + (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-662 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-663 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-347 (-858 *5)))) (-5 *4 (-1089)) (-5 *2 (-858 *5)) - (-5 *1 (-247 *5)) (-4 *5 (-389)))) + (-12 (-5 *3 (-632 (-348 (-859 *5)))) (-5 *4 (-1091)) (-5 *2 (-859 *5)) + (-5 *1 (-248 *5)) (-4 *5 (-390)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4)) - (-4 *4 (-389)))) - ((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) + (-12 (-5 *3 (-632 (-348 (-859 *4)))) (-5 *2 (-859 *4)) (-5 *1 (-248 *4)) + (-4 *4 (-390)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-858 (-142 (-347 (-484))))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))) + (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *2 (-859 (-142 (-348 (-485))))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *4 (-1089)) - (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *5)) - (-4 *5 (-13 (-311) (-756))))) + (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *4 (-1091)) + (-5 *2 (-859 (-142 (-348 (-485))))) (-5 *1 (-690 *5)) + (-4 *5 (-13 (-312) (-757))))) ((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-858 (-347 (-484)))) - (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))) + (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *2 (-859 (-348 (-485)))) + (-5 *1 (-704 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *4 (-1089)) - (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-311) (-756)))))) + (-12 (-5 *3 (-632 (-348 (-485)))) (-5 *4 (-1091)) + (-5 *2 (-859 (-348 (-485)))) (-5 *1 (-704 *5)) (-4 *5 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695))) - (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-585 (-696))) + (-5 *1 (-703 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1154 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257)) - (-4 *10 (-862 *9 *7 *8)) + (-12 (-4 *6 (-1156 *9)) (-4 *7 (-719)) (-4 *8 (-758)) (-4 *9 (-258)) + (-4 *10 (-863 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-584 (-1084 *10))) - (|:| |dterm| (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) - (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-584 *6)) - (-5 *5 (-584 *10))))) + (-2 (|:| |deter| (-585 (-1086 *10))) + (|:| |dterm| (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) + (-5 *1 (-703 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-585 *6)) + (-5 *5 (-585 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-584 *3)) - (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831))))) + (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-585 *3)) + (-5 *1 (-702 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-832))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) - (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1072)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) - (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-700 *6 *7 *8 *4 *5)) - (-4 *5 (-983 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1074)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) + (-4 *4 (-979 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-701 *6 *7 *8 *4 *5)) + (-4 *5 (-985 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) - ((*1 *1 *1) (-5 *1 (-327))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))))) + ((*1 *1 *1) (-5 *1 (-328))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) - (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *3 (-979 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-701 *5 *6 *7 *3 *4)) (-4 *4 (-985 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-977 *4 *5 *6)) - (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) - ((*1 *1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) - ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-695))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-428)) (-5 *4 (-866)) (-5 *2 (-633 (-471))) (-5 *1 (-471)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-866)) (-4 *3 (-1013)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-347 (-484))))) - (-5 *2 - (-584 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) - (|:| |outvect| (-584 (-631 (-142 *4))))))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *1) (-4 *1 (-410))) ((*1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *1) (-4 *1 (-686)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *2 (-979 *4 *5 *6)) + (-5 *1 (-701 *4 *5 *6 *2 *3)) (-4 *3 (-985 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-328)))) + ((*1 *1 *1 *1) (-4 *1 (-484))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-696))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-429)) (-5 *4 (-867)) (-5 *2 (-634 (-472))) (-5 *1 (-472)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-867)) (-4 *3 (-1015)) (-5 *2 (-634 *1)) (-4 *1 (-693 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-142 (-348 (-485))))) + (-5 *2 + (-585 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) + (|:| |outvect| (-585 (-632 (-142 *4))))))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-142 (-348 (-485))))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-690 *4)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *1) (-4 *1 (-411))) ((*1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *1) (-4 *1 (-687)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-685 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-257)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) - (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695))))) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-4 *7 (-758)) + (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-4 *8 (-258)) (-5 *2 (-585 (-696))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *5 (-696))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-345 *2)) (-4 *2 (-862 *7 *5 *6)) - (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257))))) + (-12 (-5 *3 (-485)) (-5 *4 (-346 *2)) (-4 *2 (-863 *7 *5 *6)) + (-5 *1 (-683 *5 *6 *7 *2)) (-4 *5 (-719)) (-4 *6 (-758)) (-4 *7 (-258))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) - (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) + (-4 *7 (-758)) (-4 *8 (-258)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 - (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-584 *8)) - (|:| |Lfact| (-584 (-2 (|:| -3729 (-1084 *8)) (|:| -2400 (-484))))) + (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-585 *8)) + (|:| |Lfact| (-585 (-2 (|:| -3733 (-1086 *8)) (|:| -2403 (-485))))) (|:| |ctpol| *8))) - (-5 *1 (-682 *6 *7 *8 *9))))) + (-5 *1 (-683 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) - (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) + (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-758)) (-4 *8 (-258)) + (-4 *6 (-719)) (-4 *9 (-863 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-584 (-2 (|:| -3729 (-1084 *9)) (|:| -2400 (-484))))))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9))))) + (|:| |suPart| (-585 (-2 (|:| -3733 (-1086 *9)) (|:| -2403 (-485))))))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1086 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-484)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257)) - (-4 *9 (-862 *8 *6 *7)) - (-5 *2 (-2 (|:| -2003 (-1084 *9)) (|:| |polval| (-1084 *8)))) - (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8))))) + (-12 (-5 *5 (-485)) (-4 *6 (-719)) (-4 *7 (-758)) (-4 *8 (-258)) + (-4 *9 (-863 *8 *6 *7)) + (-5 *2 (-2 (|:| -2006 (-1086 *9)) (|:| |polval| (-1086 *8)))) + (-5 *1 (-683 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) - (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) + (-12 (-4 *5 (-719)) (-4 *4 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) + (-5 *1 (-683 *5 *4 *6 *3)) (-4 *3 (-863 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3729 (-1084 *6)) (|:| -2400 (-484))))) - (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) - (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *3 (-585 (-2 (|:| -3733 (-1086 *6)) (|:| -2403 (-485))))) + (-4 *6 (-258)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-485)) + (-5 *1 (-683 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-678))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-676 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))) - ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013))))) + (-12 (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-258)) (-5 *2 (-346 *3)) + (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-863 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-680 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-679))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-677 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015)))) + ((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-695)))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))) + (-12 (-5 *2 (-696)) (-5 *1 (-676 *3 *4)) (-4 *3 (-963)) (-4 *4 (-665))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-495)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) - (-5 *3 (-347 (-858 *6))) (-4 *5 (-718)) - (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)))))))) + (-12 (-4 *6 (-496)) (-4 *2 (-863 *3 *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) + (-5 *3 (-348 (-859 *6))) (-4 *5 (-719)) + (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 (-858 *6))) (-4 *6 (-495)) - (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) - (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $)))))))) + (-12 (-5 *3 (-1086 (-859 *6))) (-4 *6 (-496)) + (-4 *2 (-863 (-348 (-859 *6)) *5 *4)) (-5 *1 (-673 *5 *4 *6 *2)) + (-4 *5 (-719)) (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) - (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) - (-4 *4 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) (-4 *6 (-495))))) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-863 (-348 (-859 *6)) *5 *4)) + (-5 *1 (-673 *5 *4 *6 *2)) (-4 *5 (-719)) + (-4 *4 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496))))) (((*1 *2 *3) - (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3969 ((-1089) $))))) - (-4 *6 (-495)) (-5 *2 (-2 (|:| -2482 (-858 *6)) (|:| -2057 (-858 *6)))) - (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5))))) + (-12 (-4 *4 (-719)) (-4 *5 (-13 (-758) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-859 *6)) (|:| -2060 (-859 *6)))) + (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-863 (-348 (-859 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) - (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) + (-14 *6 (-696)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) - (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) + (-12 (-5 *3 (-585 *9)) (-4 *9 (-963)) (-4 *5 (-758)) (-4 *6 (-719)) + (-4 *8 (-963)) (-4 *2 (-863 *9 *7 *5)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-719)) (-4 *4 (-863 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) - (-5 *1 (-667 *5 *2)) (-4 *5 (-311))))) + (-12 (-5 *3 (-348 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) + (-5 *1 (-668 *5 *2)) (-4 *5 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| -3088 (-345 *3)) (|:| |special| (-345 *3)))) - (-5 *1 (-667 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3091 (-346 *3)) (|:| |special| (-346 *3)))) + (-5 *1 (-668 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-666 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-696)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1091))))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089))))) - ((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) + (-12 (-5 *2 (-696)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091))))) + ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-696)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1154 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) - (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) - ((*1 *1 *1) (|partial| -4 *1 (-660)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-663 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-4 *1 (-663 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-632 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-832)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-696))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + ((*1 *1 *1) (|partial| -4 *1 (-661)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + ((*1 *1 *1) (|partial| -4 *1 (-661)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-657 *2)) (-4 *2 (-312))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) - (-14 *4 (-1089)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1091)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-346 *3)) (-4 *3 (-496)))) ((*1 *2 *1) - (-12 (-4 *2 (-1013)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) + (-12 (-4 *2 (-1015)) (-5 *1 (-652 *3 *2 *4)) (-4 *3 (-758)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *2)) - (-2 (|:| -2399 *3) (|:| -2400 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-317)))) - ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-451 *3 *2)) (-4 *3 (-72)))) + (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *2)) + (-2 (|:| -2402 *3) (|:| -2403 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-4 *1 (-318)))) + ((*1 *2 *1) (-12 (-4 *2 (-761)) (-5 *1 (-452 *3 *2)) (-4 *3 (-72)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) ((*1 *2 *1) - (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1013)) + (-12 (-4 *2 (-758)) (-5 *1 (-652 *2 *3 *4)) (-4 *3 (-1015)) (-14 *4 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *3)) - (-2 (|:| -2399 *2) (|:| -2400 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *3)) + (-2 (|:| -2402 *2) (|:| -2403 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-651 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-1180 *3)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1154 *3))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-963)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-1180 *3)) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2) - (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2) - (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) - (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-963)) (-5 *2 (-871 (-651 *3 *4))) (-5 *1 (-651 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1154 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648))))) -(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648))))) + (-12 (-4 *2 (-299)) (-4 *2 (-963)) (-5 *1 (-651 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649))))) +(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1074)) (-5 *1 (-649))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-584 (-1084 *13))) (-5 *3 (-1084 *13)) - (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) - (-5 *7 (-584 (-584 (-2 (|:| -3077 (-695)) (|:| |pcoef| *13))))) - (-5 *8 (-584 (-695))) (-5 *9 (-1178 (-584 (-1084 *10)))) (-4 *12 (-757)) - (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) - (-5 *1 (-645 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-585 (-1086 *13))) (-5 *3 (-1086 *13)) + (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) + (-5 *7 (-585 (-585 (-2 (|:| -3080 (-696)) (|:| |pcoef| *13))))) + (-5 *8 (-585 (-696))) (-5 *9 (-1180 (-585 (-1086 *10)))) (-4 *12 (-758)) + (-4 *10 (-258)) (-4 *13 (-863 *10 *11 *12)) (-4 *11 (-719)) + (-5 *1 (-646 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1084 *9))) (-5 *6 (-584 *9)) - (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257)) - (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1084 *12))) - (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1084 *12))))) + (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1086 *9))) (-5 *6 (-585 *9)) + (-5 *7 (-585 *12)) (-5 *8 (-585 (-696))) (-4 *11 (-758)) (-4 *9 (-258)) + (-4 *12 (-863 *9 *10 *11)) (-4 *10 (-719)) (-5 *2 (-585 (-1086 *12))) + (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1086 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-584 (-1084 *11))) (-5 *3 (-1084 *11)) - (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) - (-5 *7 (-1178 (-584 (-1084 *8)))) (-4 *10 (-757)) (-4 *8 (-257)) - (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-585 (-1086 *11))) (-5 *3 (-1086 *11)) + (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-696))) + (-5 *7 (-1180 (-585 (-1086 *8)))) (-4 *10 (-758)) (-4 *8 (-258)) + (-4 *11 (-863 *8 *9 *10)) (-4 *9 (-719)) (-5 *1 (-646 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) - (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *3 *5 *6 *7)) + (-4 *3 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) - (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) + (-4 *3 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) - (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) + (-4 *4 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) - (-4 *3 (-1128)) (-4 *4 (-1128))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) + (-4 *3 (-1130)) (-4 *4 (-1130))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-643 *3)) (-4 *3 (-555 (-474))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-584 (-1089))) (-5 *2 (-1089)) (-5 *1 (-642 *3)) - (-4 *3 (-554 (-473)))))) + (-12 (-5 *4 (-585 (-1091))) (-5 *2 (-1091)) (-5 *1 (-643 *3)) + (-4 *3 (-555 (-474)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) - (-4 *3 (-554 (-473))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-642 *3)) + (-4 *3 (-555 (-474))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) - (-4 *3 (-554 (-473)))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-642 *3)) + (-4 *3 (-555 (-474)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) - (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-641 *4 *5 *6 *7)) + (-4 *4 (-555 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-630 *3 *4 *5 *6)) - (-4 *6 (-628 *3 *4 *5)))) + (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-631 *3 *4 *5 *6)) + (-4 *6 (-629 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2901 *3))) (-5 *1 (-639 *3)) - (-4 *3 (-257))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))) + (-12 (-5 *2 (-2 (|:| -1974 *3) (|:| -2904 *3))) (-5 *1 (-640 *3)) + (-4 *3 (-258))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-258)) (-5 *1 (-640 *3))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637))))) + (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *1 (-638))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637))))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) - (-5 *1 (-637))))) + (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-638))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) - (-5 *1 (-637)))) + (-5 *5 (-1003 (-179))) (-5 *6 (-585 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-638)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-179))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-638)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) - (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637))))) + (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-856 (-179)) (-179) (-179))) + (-5 *4 (-1003 (-179))) (-5 *5 (-585 (-221))) (-5 *1 (-638))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3))))) + (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2574 *5)))) (-4 *5 (-1154 *4)) - (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-585 (-2 (|:| |deg| (-696)) (|:| -2577 *5)))) (-4 *5 (-1156 *4)) + (-4 *4 (-299)) (-5 *2 (-585 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-2 (|:| -3729 *5) (|:| -3945 (-484))))) (-5 *4 (-484)) - (-4 *5 (-1154 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5))))) + (-12 (-5 *3 (-585 (-2 (|:| -3733 *5) (|:| -3949 (-485))))) (-5 *4 (-485)) + (-4 *5 (-1156 *4)) (-5 *2 (-585 *5)) (-5 *1 (-637 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-584 (-2 (|:| -3729 *3) (|:| -3945 *4)))) - (-5 *1 (-636 *3)) (-4 *3 (-1154 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1013))))) + (-12 (-5 *4 (-485)) (-5 *2 (-585 (-2 (|:| -3733 *3) (|:| -3949 *4)))) + (-5 *1 (-637 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-637 *2)) (-4 *2 (-1156 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-635 *3)) (-4 *3 (-1013)) - (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1944 (-695)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) -(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) + (-12 (-4 *1 (-636 *3)) (-4 *3 (-1015)) + (-5 *2 (-585 (-2 (|:| |entry| *3) (|:| -1947 (-696)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) +(((*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-554 (-774)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-696)) (-4 *4 (-963)) (-5 *1 (-633 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-963)) (-5 *1 (-633 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) - (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) + (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) + (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) - (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) + (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-322 *3)) (-4 *6 (-322 *3)) + (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) - (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6))))) + (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4)) + (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2))))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2))))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2))))) + (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-963)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3))))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3))))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3))))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) - (-4 *5 (-321 *3))))) + (-12 (-5 *2 (-485)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-963)) (-4 *4 (-322 *3)) + (-4 *5 (-322 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1013))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1013))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1015)) (-4 *6 (-1015)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1015))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1015)) (-4 *4 (-1015)) (-4 *6 (-1015)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-625 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-626 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) - (-5 *1 (-625 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1015)) (-4 *5 (-1015)) (-5 *2 (-1 *5)) + (-5 *1 (-626 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1013)) - (-4 *3 (-1013))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1015)) + (-4 *3 (-1015))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1013)) - (-5 *1 (-620 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1013)) (-5 *1 (-624 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1013)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-484)) (-5 *2 (-584 *5)) - (-5 *1 (-624 *5)) (-4 *5 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1129))) (-5 *3 (-1129)) (-5 *1 (-623))))) + (-12 (-5 *3 (-1 *2 (-696) *2)) (-5 *4 (-696)) (-4 *2 (-1015)) + (-5 *1 (-621 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-696) *3)) (-4 *3 (-1015)) (-5 *1 (-625 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1015)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-485)) (-5 *2 (-585 *5)) + (-5 *1 (-625 *5)) (-4 *5 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1131))) (-5 *3 (-1131)) (-5 *1 (-624))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *2 (-1013)) (-5 *1 (-622 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1015)) (-4 *6 (-1015)) + (-4 *2 (-1015)) (-5 *1 (-623 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))) -(((*1 *2 *3) - (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-696)) (-4 *2 (-1015)) (-5 *1 (-621 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1130)) (-5 *2 (-696))))) +(((*1 *2 *3) + (-12 (-5 *3 (-741 *4)) (-4 *4 (-758)) (-5 *2 (-85)) (-5 *1 (-616 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) + (|partial| -12 (-5 *2 (-741 *3)) (-4 *3 (-758)) (-5 *1 (-616 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) - (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) + (-5 *2 (-58 (-585 (-616 *5)))) (-5 *1 (-616 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) - (-5 *1 (-615 *5))))) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-832)) (-4 *5 (-758)) (-5 *2 (-585 (-616 *5))) + (-5 *1 (-616 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-719)) (-5 *2 - (-2 (|:| |particular| (-3 (-1178 (-347 *8)) "failed")) - (|:| -2011 (-584 (-1178 (-347 *8)))))) - (-5 *1 (-612 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1180 (-348 *8)) "failed")) + (|:| -2014 (-585 (-1180 (-348 *8)))))) + (-5 *1 (-613 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3993)))) - (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3993)))) (-5 *2 (-85)) - (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-322 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-322 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-85)) + (-5 *1 (-611 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-85)) - (-5 *1 (-611 *5))))) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) + (-5 *1 (-612 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-822)) - (-5 *1 (-606 *4))))) -(((*1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-4 *1 (-605)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) + (|partial| -12 (-5 *2 (-585 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-823)) + (-5 *1 (-607 *4))))) +(((*1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-4 *1 (-606)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) - (-4 *2 (-601 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) + (-4 *2 (-602 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311)))) + (-12 (-5 *2 (-696)) (-4 *1 (-602 *3)) (-4 *3 (-963)) (-4 *3 (-312)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2)) - (-4 *2 (-601 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) + (-12 (-5 *3 (-696)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-604 *5 *2)) + (-4 *2 (-602 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) - (-4 *2 (-601 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-604 *4 *2)) + (-4 *2 (-602 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) - (-5 *3 (-598 (-347 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-594 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))) - (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-312) (-120) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-585 (-599 (-348 *5)))) (-5 *1 (-603 *4 *5)) + (-5 *3 (-599 (-348 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-963)) (-4 *2 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-595 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-595 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-595 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))) + (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 *4)))) (-4 *3 (-1013)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1015)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-333 *4)) (-4 *4 (-1013)) (-5 *2 (-695)))) + (-12 (-5 *3 (-485)) (-4 *1 (-334 *4)) (-4 *4 (-1015)) (-5 *2 (-696)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1013)) + (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-593 *4 *2 *5)) (-4 *4 (-1015)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) + (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-334 *2)) (-4 *2 (-1015)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-485)) (-4 *2 (-1015)) (-5 *1 (-593 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)))) - ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-1130)))) + ((*1 *2 *2) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-321 *2)) (-4 *2 (-1128)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-322 *2)) (-4 *2 (-1130)))) ((*1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-593 *2 *3 *4)) (-4 *2 (-1015)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-593 *3 *4 *5)) (-4 *3 (-1015)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-333 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-696) (-696))) (-4 *1 (-334 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) - (-4 *3 (-1013))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-593 *3 *4 *5)) + (-4 *3 (-1015))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-309 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-310 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-593 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1013))))) -(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1128))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1015))))) +(((*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-585 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1015)) (-4 *2 (-1130))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4)) - (-14 *4 (-584 (-1089)))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-583 *3 *4)) + (-14 *4 (-585 (-1091)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) - (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1178 *4)))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) + (-5 *2 (-2 (|:| |mat| (-632 *4)) (|:| |vec| (-1180 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) - (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 *5)))))) + (-12 (-5 *3 (-632 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-582 *5)) (-4 *5 (-963)) + (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1180 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) + (-12 (-5 *3 (-632 *1)) (-4 *1 (-582 *4)) (-4 *4 (-963)) (-5 *2 (-632 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4)) - (-14 *4 (-584 (-1089)))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) + (-14 *4 (-585 (-1091)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) - (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-579 *5 *4)))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 *5))) + (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-580 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) - (-2559 (-4 *5 (-311))) (-4 *5 (-495)) (-5 *2 (-1178 (-347 *5))) - (-5 *1 (-579 *5 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-963) (-582 *5))) + (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-348 *5))) + (-5 *1 (-580 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) - (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-579 *4 *5))))) + (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-963) (-582 *4))) + (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-580 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495)) - (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-963) (-582 *4))) (-4 *4 (-496)) + (-5 *2 (-85)) (-5 *1 (-580 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-248 (-751 *3))) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-249 (-752 *3))) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (-751 *3) - (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-751 *3) #1#))) + (-3 (-752 *3) + (-2 (|:| |leftHandLimit| (-3 (-752 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-752 *3) #1#))) "failed")) - (-5 *1 (-576 *5 *3)))) + (-5 *1 (-577 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1072)) - (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-751 *3)) - (-5 *1 (-576 *6 *3)))) + (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) + (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-752 *3)) + (-5 *1 (-577 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-389)) + (-12 (-5 *4 (-249 (-752 (-859 *5)))) (-4 *5 (-390)) (-5 *2 - (-3 (-751 (-347 (-858 *5))) - (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-751 (-347 (-858 *5))) #2#))) + (-3 (-752 (-348 (-859 *5))) + (-2 (|:| |leftHandLimit| (-3 (-752 (-348 (-859 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-752 (-348 (-859 *5))) #2#))) #3="failed")) - (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5))))) + (-5 *1 (-578 *5)) (-5 *3 (-348 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) + (-12 (-5 *4 (-249 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-390)) (-5 *2 - (-3 (-751 *3) - (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#)) - (|:| |rightHandLimit| (-3 (-751 *3) #2#))) + (-3 (-752 *3) + (-2 (|:| |leftHandLimit| (-3 (-752 *3) #2#)) + (|:| |rightHandLimit| (-3 (-752 *3) #2#))) #3#)) - (-5 *1 (-577 *5)))) + (-5 *1 (-578 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-248 (-347 (-858 *6)))) (-5 *5 (-1072)) - (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-751 *3)) - (-5 *1 (-577 *6))))) + (|partial| -12 (-5 *4 (-249 (-348 (-859 *6)))) (-5 *5 (-1074)) + (-5 *3 (-348 (-859 *6))) (-4 *6 (-390)) (-5 *2 (-752 *3)) + (-5 *1 (-578 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-248 (-744 *3))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-744 *3)) - (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (|partial| -12 (-5 *4 (-249 (-745 *3))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-745 *3)) + (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-389)) - (-5 *2 (-744 (-347 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5))))) + (-12 (-5 *4 (-249 (-745 (-859 *5)))) (-4 *5 (-390)) + (-5 *2 (-745 (-348 (-859 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-348 (-859 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) - (-5 *2 (-744 *3)) (-5 *1 (-577 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-572))))) -(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-5 *1 (-572)))) + (-12 (-5 *4 (-249 (-348 (-859 *5)))) (-5 *3 (-348 (-859 *5))) (-4 *5 (-390)) + (-5 *2 (-745 *3)) (-5 *1 (-578 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-573))))) +(((*1 *1 *1) (-12 (-5 *1 (-549 *2)) (-4 *2 (-1015)))) + ((*1 *1 *1) (-5 *1 (-573)))) (((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) - (-5 *2 (-418 *4 *5)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) + (-5 *2 (-419 *4 *5)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1089))) - (-4 *5 (-389)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-585 (-1091))) + (-4 *5 (-390)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1089))) - (-4 *5 (-389)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *2 (-585 (-419 *4 *5))) (-5 *3 (-775 *4)) (-14 *4 (-585 (-1091))) + (-4 *5 (-390)) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-389)) - (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1089))) (-5 *1 (-571 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-206 *5 *6))) (-4 *6 (-390)) + (-5 *2 (-206 *5 *6)) (-14 *5 (-585 (-1091))) (-5 *1 (-572 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) + (-12 (-5 *2 (-1 (-856 (-179)) (-856 (-179)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-584 (-1089))) - (-4 *6 (-389)) (-5 *2 (-1178 *6)) (-5 *1 (-571 *5 *6))))) + (-12 (-5 *4 (-585 (-419 *5 *6))) (-5 *3 (-419 *5 *6)) (-14 *5 (-585 (-1091))) + (-4 *6 (-390)) (-5 *2 (-1180 *6)) (-5 *1 (-572 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-418 *3 *4))) (-14 *3 (-584 (-1089))) (-4 *4 (-389)) - (-5 *1 (-571 *3 *4))))) + (-12 (-5 *2 (-585 (-419 *3 *4))) (-14 *3 (-585 (-1091))) (-4 *4 (-390)) + (-5 *1 (-572 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) - (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))) + (-12 (-5 *3 (-585 (-419 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1091))) + (-5 *2 (-419 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-390)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) - (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389))))) + (-12 (-5 *3 (-585 (-419 *5 *6))) (-5 *4 (-775 *5)) (-14 *5 (-585 (-1091))) + (-5 *2 (-419 *5 *6)) (-5 *1 (-572 *5 *6)) (-4 *6 (-390))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) - (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-419 *4 *5))) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) + (-5 *2 (-585 (-206 *4 *5))) (-5 *1 (-572 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-584 (-1089))) (-4 *5 (-389)) - (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-484))))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5)))))) + (-12 (-14 *4 (-585 (-1091))) (-4 *5 (-390)) + (-5 *2 (-2 (|:| |glbase| (-585 (-206 *4 *5))) (|:| |glval| (-585 (-485))))) + (-5 *1 (-572 *4 *5)) (-5 *3 (-585 (-206 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) - (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-484))))) - (-5 *1 (-571 *4 *5))))) + (-12 (-5 *3 (-585 (-419 *4 *5))) (-14 *4 (-585 (-1091))) (-4 *5 (-390)) + (-5 *2 (-2 (|:| |gblist| (-585 (-206 *4 *5))) (|:| |gvlist| (-585 (-485))))) + (-5 *1 (-572 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) - (-4 *2 (-13 (-361 *3) (-916) (-1114))))) - ((*1 *1 *1) (-4 *1 (-570)))) + (-12 (-4 *3 (-496)) (-5 *1 (-570 *3 *2)) + (-4 *2 (-13 (-362 *3) (-917) (-1116))))) + ((*1 *1 *1) (-4 *1 (-571)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-361 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-362 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) - (-4 *5 (-361 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-4 *5 (-362 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) - (-4 *5 (-13 (-361 *4) (-916))))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) + (-4 *5 (-13 (-362 *4) (-917))))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253)))) - ((*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))) + ((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) - (-4 *4 (-361 *5)))) + (-12 (-5 *3 (-86)) (-4 *5 (-1015)) (-5 *2 (-85)) (-5 *1 (-361 *4 *5)) + (-4 *4 (-362 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) - (-4 *5 (-361 *4)))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-372 *4 *5)) + (-4 *5 (-362 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) - (-4 *5 (-13 (-361 *4) (-916) (-1114)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-570 *4 *5)) + (-4 *5 (-13 (-362 *4) (-917) (-1116)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) - (-14 *6 (-584 (-1089))) - (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) - (-5 *1 (-568 *5 *6))))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) + (-14 *6 (-585 (-1091))) + (-5 *2 (-585 (-1061 *5 (-470 (-775 *6)) (-775 *6) (-705 *5 (-775 *6))))) + (-5 *1 (-569 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) - (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))) + (-12 (-5 *3 (-585 (-705 *5 (-775 *6)))) (-5 *4 (-85)) (-4 *5 (-390)) + (-14 *6 (-585 (-1091))) (-5 *2 (-585 (-960 *5 *6))) (-5 *1 (-569 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-384 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-385 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-385 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) - (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4))))) + (-12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-390)) + (-14 *4 (-585 (-1091))) (-5 *1 (-569 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) - (-14 *4 (-584 (-1089))))) + (|partial| -12 (-5 *2 (-585 (-859 *3))) (-4 *3 (-390)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) - (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4))))) + (|partial| -12 (-5 *2 (-585 (-705 *3 (-775 *4)))) (-4 *3 (-390)) + (-14 *4 (-585 (-1091))) (-5 *1 (-569 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-85)) - (-5 *1 (-308 *4 *5)) (-14 *5 (-584 (-1089))))) + (-12 (-5 *3 (-585 (-859 *4))) (-4 *4 (-390)) (-5 *2 (-85)) + (-5 *1 (-309 *4 *5)) (-14 *5 (-585 (-1091))))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-389)) - (-14 *5 (-584 (-1089))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) + (-12 (-5 *3 (-585 (-705 *4 (-775 *5)))) (-4 *4 (-390)) + (-14 *5 (-585 (-1091))) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) - (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-347 (-484))))) - (-14 *6 (-831))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-758)) (-5 *2 (-585 (-608 *4 *5))) + (-5 *1 (-568 *4 *5 *6)) (-4 *5 (-13 (-146) (-656 (-348 (-485))))) + (-14 *6 (-832))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) + (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) - (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))) + (-12 (-5 *2 (-585 (-249 *4))) (-5 *1 (-568 *3 *4 *5)) (-4 *3 (-758)) + (-4 *4 (-13 (-146) (-656 (-348 (-485))))) (-14 *5 (-832))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1777 (-584 (-2 (|:| |irr| *10) (|:| -2394 (-484))))))) - (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257)) - (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) + (|:| -1780 (-585 (-2 (|:| |irr| *10) (|:| -2397 (-485))))))) + (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-758)) (-4 *3 (-258)) + (-4 *10 (-863 *3 *9 *8)) (-4 *9 (-719)) (-5 *2 - (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) - (|:| |corrfact| (-584 (-1084 *3))))) - (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1084 *3)))))) + (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) + (|:| |corrfact| (-585 (-1086 *3))))) + (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-585 (-1086 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757)) - (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) - (-4 *8 (-862 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) - (-4 *2 (-1020 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2))))) + (-12 (-5 *4 (-696)) (-5 *5 (-585 *3)) (-4 *3 (-258)) (-4 *6 (-758)) + (-4 *7 (-719)) (-5 *2 (-85)) (-5 *1 (-566 *6 *7 *3 *8)) + (-4 *8 (-863 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *6 (-979 *3 *4 *5)) + (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-985 *3 *4 *5 *6)) + (-4 *2 (-1022 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-29 *4)))))) -(((*1 *1) (-5 *1 (-557)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1116) (-873) (-29 *4)))))) +(((*1 *1) (-5 *1 (-558)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) - (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-347 *5))) (-5 *1 (-555 *4 *5)) - (-5 *3 (-347 *5)))) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-952 (-485)) (-952 (-348 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-348 *5))) (-5 *1 (-556 *4 *5)) + (-5 *3 (-348 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) - (-5 *2 (-1084 (-347 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-347 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) - (-5 *1 (-552 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *4 (-1 (-346 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-120) (-27) (-952 (-485)) (-952 (-348 (-485))))) + (-5 *2 (-1086 (-348 *6))) (-5 *1 (-556 *5 *6)) (-5 *3 (-348 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-552 *4)) (-4 *4 (-1015)) (-4 *2 (-1015)) + (-5 *1 (-553 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-552 *4)) (-5 *1 (-553 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) + ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-552 *3)) (-4 *3 (-1015)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1013)) - (-5 *1 (-551 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-86)) (-5 *3 (-585 *5)) (-5 *4 (-696)) (-4 *5 (-1015)) + (-5 *1 (-552 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-552 *3)) (-4 *3 (-1015))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-551 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) + (|partial| -12 (-4 *1 (-551 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-547)))) +(((*1 *1) (-5 *1 (-547)))) (((*1 *1) (-5 *1 (-546)))) (((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546)))) -(((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) +(((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-544)))) (((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-544)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540))))) +(((*1 *2 *1) (-12 (-5 *2 (-871 (-158 (-112)))) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-541))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *4))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-585 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *3))))) + (-12 (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1130)) (-5 *2 (-585 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1013)) - (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-540 *4 *3)) (-4 *4 (-1015)) + (-4 *3 (-1130)) (-4 *3 (-1015)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757))))) + (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1015)) (-4 *2 (-758))))) (((*1 *2 *1) - (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757))))) + (-12 (-4 *1 (-540 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1015)) (-4 *2 (-758))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-321 *2)) - (-4 *4 (-321 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-322 *2)) + (-4 *4 (-322 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1128))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-540 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) - (-4 *4 (-1128)) (-5 *2 (-1184))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-540 *3 *4)) (-4 *3 (-1015)) + (-4 *4 (-1130)) (-5 *2 (-1186))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1089))) - (-4 *2 (-13 (-361 (-142 *5)) (-916) (-1114))) (-4 *5 (-495)) - (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-916) (-1114)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) - (-4 *5 (-13 (-361 *4) (-916) (-1114))) - (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) - (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-916) (-1114)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) - (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) - (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-532))) (-5 *1 (-532))))) + (-12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-585 (-1091))) + (-4 *2 (-13 (-362 (-142 *5)) (-917) (-1116))) (-4 *5 (-496)) + (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-362 *5) (-917) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) + (-4 *5 (-13 (-362 *4) (-917) (-1116))) + (-4 *3 (-13 (-362 (-142 *4)) (-917) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *2 (-13 (-362 (-142 *4)) (-917) (-1116))) + (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-362 *4) (-917) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *2 (-13 (-362 *4) (-917) (-1116))) + (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-362 (-142 *4)) (-917) (-1116)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-362 *4) (-917) (-1116))) (-4 *4 (-496)) + (-4 *2 (-13 (-362 (-142 *4)) (-917) (-1116))) (-5 *1 (-536 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-533))) (-5 *1 (-533))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-940 (-751 (-484)))) - (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-962)) - (-5 *1 (-530 *4))))) + (-12 (-5 *2 (-941 (-752 (-485)))) + (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-963)) + (-5 *1 (-531 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-941 (-752 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-963))))) (((*1 *2 *1) - (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) + (-4 *3 (-963))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962))))) -(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-963))))) +(((*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-963))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-963))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) - (-5 *4 (-940 (-751 (-484)))) (-5 *5 (-1089)) (-5 *7 (-347 (-484))) - (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-530 *6))))) + (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) + (-5 *4 (-941 (-752 (-485)))) (-5 *5 (-1091)) (-5 *7 (-348 (-485))) + (-4 *6 (-963)) (-5 *2 (-774)) (-5 *1 (-531 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-962))))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-348 (-485)))) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) - (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-484))) (-5 *2 (-631 (-484))) - (-5 *1 (-526)))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-815 (-485))) (-5 *2 (-632 (-485))) + (-5 *1 (-527)))) ((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-527)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-484)))) - (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-526))))) + (-12 (-5 *3 (-585 (-832))) (-5 *4 (-585 (-815 (-485)))) + (-5 *2 (-585 (-632 (-485)))) (-5 *1 (-527))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-832))) (-5 *2 (-696)) (-5 *1 (-527))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *5)) - (-5 *1 (-525 *5))))) + (-12 (-5 *3 (-348 (-859 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-265 *5)) + (-5 *1 (-526 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) - (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))))) + (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) + (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))))) ((*1 *2 *3) - (-12 (-5 *3 (-519 (-347 (-858 *4)))) - (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *4)) - (-5 *1 (-525 *4))))) + (-12 (-5 *3 (-520 (-348 (-859 *4)))) + (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-526 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-298))))) -(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-696)) (-5 *1 (-524 *2)) (-4 *2 (-484))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) + (|partial| -12 (-5 *3 (-696)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2693 *3) (|:| -2400 (-695)))) (-5 *1 (-523 *3)) - (-4 *3 (-483))))) + (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2403 (-696)))) (-5 *1 (-524 *3)) + (-4 *3 (-484))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522))))) + (-12 (-5 *4 (-696)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-533)) (-5 *1 (-523))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-584 - (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *2)) - (|:| |logand| (-1084 *2))))) - (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) - (-5 *1 (-519 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311))))) + (-585 + (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 *2)) + (|:| |logand| (-1086 *2))))) + (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) + (-5 *1 (-520 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 - (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *3)) - (|:| |logand| (-1084 *3))))) - (-5 *1 (-519 *3)) (-4 *3 (-311))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-519 *3)) (-4 *3 (-311))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-311))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515))))) -(((*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-633 (-515))) (-5 *1 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-473) (-584 (-473))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-584 (-473)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-514)))) -(((*1 *1) (-5 *1 (-514)))) -(((*1 *1) (-5 *1 (-514)))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) - ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-513))))) + (-585 + (-2 (|:| |scalar| (-348 (-485))) (|:| |coeff| (-1086 *3)) + (|:| |logand| (-1086 *3))))) + (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516))))) +(((*1 *2 *3) (-12 (-5 *3 (-429)) (-5 *2 (-634 (-516))) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1 (-474) (-585 (-474))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-585 (-474)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-515)))) +(((*1 *1) (-5 *1 (-515)))) +(((*1 *1) (-5 *1 (-515)))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) + ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-514))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1089)) - (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-511 *4 *2)) - (-4 *2 (-13 (-1114) (-872) (-1052) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1091)) + (-4 *4 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-512 *4 *2)) + (-4 *2 (-13 (-1116) (-873) (-1054) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |ir| (-519 (-347 *6))) (|:| |specpart| (-347 *6)) + (-2 (|:| |ir| (-520 (-348 *6))) (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) - (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6))))) + (-5 *1 (-511 *5 *6)) (-5 *3 (-348 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-563 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3135 *4) (|:| |sol?| (-85))) (-484) *4)) - (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5))))) + (|partial| -12 (-5 *2 (-564 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4)) + (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2135 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-311)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2138 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-347 *7))) (-4 *7 (-1154 *6)) - (-5 *3 (-347 *7)) (-4 *6 (-311)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-348 *7))) (-4 *7 (-1156 *6)) + (-5 *3 (-348 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-510 *6 *7))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-511 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 (-2 (|:| -2135 (-347 *6)) (|:| |coeff| (-347 *6)))) - (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -2138 (-348 *6)) (|:| |coeff| (-348 *6)))) + (-5 *1 (-511 *5 *6)) (-5 *3 (-348 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3135 *7) (|:| |sol?| (-85))) (-484) *7)) - (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7)) + (-5 *6 (-585 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-510 *7 *8))))) + (-5 *1 (-511 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-585 (-348 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-348 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-510 *7 *8))))) + (-5 *1 (-511 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3135 *6) (|:| |sol?| (-85))) (-484) *6)) - (-4 *6 (-311)) (-4 *7 (-1154 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) - (-2 (|:| -2135 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) - (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) + (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) + (-2 (|:| -2138 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) + (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-311)) (-4 *7 (-1154 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) - (-2 (|:| -2135 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) - (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) + (-3 (-2 (|:| |answer| (-348 *7)) (|:| |a0| *6)) + (-2 (|:| -2138 (-348 *7)) (|:| |coeff| (-348 *7))) "failed")) + (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-484) *6 *6)) - (-4 *6 (-311)) (-4 *7 (-1154 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-485) *6 *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3135 *6) (|:| |sol?| (-85))) (-484) *6)) - (-4 *6 (-311)) (-4 *7 (-1154 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2135 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-311)) (-4 *7 (-1154 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2138 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-348 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-348 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) + (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) - (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-361 *7)) - (-5 *4 (-1089)) (-4 *7 (-554 (-801 (-484)))) (-4 *7 (-389)) - (-4 *7 (-797 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) - (-5 *1 (-509 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) + (-4 *3 (-239)) (-4 *3 (-571)) (-4 *3 (-952 *4)) (-4 *3 (-362 *7)) + (-5 *4 (-1091)) (-4 *7 (-555 (-802 (-485)))) (-4 *7 (-390)) + (-4 *7 (-798 (-485))) (-4 *7 (-1015)) (-5 *2 (-520 *3)) + (-5 *1 (-510 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-389)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) - (-4 *2 (-239)) (-4 *2 (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-390)) (-4 *4 (-1015)) (-5 *1 (-510 *4 *2)) + (-4 *2 (-239)) (-4 *2 (-362 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) - (-4 *2 (-361 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1015)) (-5 *1 (-510 *4 *2)) + (-4 *2 (-362 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-1089)) (-4 *6 (-361 *5)) (-4 *5 (-1013)) - (-5 *2 (-584 (-551 *6))) (-5 *1 (-509 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-1091)) (-4 *6 (-362 *5)) (-4 *5 (-1015)) + (-5 *2 (-585 (-552 *6))) (-5 *1 (-510 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1089)) (-5 *2 (-551 *6)) - (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6))))) + (-12 (-5 *3 (-585 (-552 *6))) (-5 *4 (-1091)) (-5 *2 (-552 *6)) + (-4 *6 (-362 *5)) (-4 *5 (-1015)) (-5 *1 (-510 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1013)) (-5 *2 (-551 *5)) - (-5 *1 (-509 *4 *5)) (-4 *5 (-361 *4))))) + (-12 (-5 *3 (-585 (-552 *5))) (-4 *4 (-1015)) (-5 *2 (-552 *5)) + (-5 *1 (-510 *4 *5)) (-4 *5 (-362 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1089)) (-4 *5 (-361 *4)) - (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) + (-12 (-5 *2 (-585 (-552 *5))) (-5 *3 (-1091)) (-4 *5 (-362 *4)) + (-4 *4 (-1015)) (-5 *1 (-510 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) - (-5 *2 (-2 (|:| -2135 (-347 (-858 *5))) (|:| |coeff| (-347 (-858 *5))))) - (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5)))))) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-120))) + (-5 *2 (-2 (|:| -2138 (-348 (-859 *5))) (|:| |coeff| (-348 (-859 *5))))) + (-5 *1 (-507 *5)) (-5 *3 (-348 (-859 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 (-347 (-858 *6)))) - (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-120))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 (-348 (-859 *6)))) + (-5 *3 (-348 (-859 *6))) (-4 *6 (-13 (-496) (-952 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-506 *6))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-507 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) - (-4 *4 (-13 (-495) (-951 (-484)) (-120))) (-5 *1 (-506 *4))))) + (|partial| -12 (-5 *2 (-348 (-859 *4))) (-5 *3 (-1091)) + (-4 *4 (-13 (-496) (-952 (-485)) (-120))) (-5 *1 (-507 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) - (-5 *2 (-519 (-347 (-858 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5)))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-120))) + (-5 *2 (-520 (-348 (-859 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-348 (-859 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2))))) + (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-952 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-584 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-311) (-120) (-951 (-484)))) + (|partial| -12 (-5 *4 (-585 (-348 *6))) (-5 *3 (-348 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-952 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-504 *5 *6))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-505 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) - (-5 *2 (-2 (|:| -2135 (-347 *5)) (|:| |coeff| (-347 *5)))) - (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-952 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -2138 (-348 *5)) (|:| |coeff| (-348 *5)))) + (-5 *1 (-505 *4 *5)) (-5 *3 (-348 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) - (-4 *3 (-13 (-311) (-120) (-951 (-484)))) (-5 *1 (-504 *3 *4))))) + (|partial| -12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) + (-4 *3 (-13 (-312) (-120) (-952 (-485)))) (-5 *1 (-505 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) - (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-555 (-802 (-485)))) + (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1116) (-362 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-751 *2)) (-4 *2 (-1052)) - (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-554 (-801 (-484)))) - (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) - (-5 *1 (-503 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) - (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) - (-5 *2 (-2 (|:| -2337 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) + (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-752 *2)) (-4 *2 (-1054)) + (-4 *2 (-13 (-27) (-1116) (-362 *5))) (-4 *5 (-555 (-802 (-485)))) + (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) + (-5 *1 (-504 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-555 (-802 (-485)))) + (-4 *5 (-798 (-485))) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-952 (-485)) (-390) (-582 (-485)))) + (-5 *2 (-2 (|:| -2340 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-361 *7) (-27) (-1114))) - (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013))))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-362 *7) (-27) (-1116))) + (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) - (-4 *2 (-13 (-361 *5) (-27) (-1114))) - (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013))))) + (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) + (-4 *2 (-13 (-362 *5) (-27) (-1116))) + (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1015))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) - (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) - (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) - (-4 *6 (-1013))))) + (|partial| -12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1116))) + (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) + (-4 *6 (-1015))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) - (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) - (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2134 *3))) - (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) - (-5 *2 - (-2 (|:| |answer| (-347 *6)) (|:| -2134 (-347 *6)) - (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) - (-5 *1 (-501 *5 *6)) (-5 *3 (-347 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-695)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-13 (-362 *5) (-27) (-1116))) + (-4 *5 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1015))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-4 *7 (-1156 (-348 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2137 *3))) + (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 + (-2 (|:| |answer| (-348 *6)) (|:| -2137 (-348 *6)) + (|:| |specpart| (-348 *6)) (|:| |polypart| *6))) + (-5 *1 (-502 *5 *6)) (-5 *3 (-348 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-696)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257)) + (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 *8)) + (-12 (-5 *3 (-585 *8)) (-5 *4 - (-584 - (-2 (|:| -2011 (-631 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-631 *7))))) - (-5 *5 (-695)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-298)) - (-5 *2 - (-2 (|:| -2011 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) - (-5 *1 (-435 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) + (-585 + (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-632 *7))))) + (-5 *5 (-696)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) + (-5 *2 + (-2 (|:| -2014 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) + (-5 *1 (-436 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-1084 *4)) - (-4 *4 (-13 (-361 *7) (-27) (-1114))) - (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2011 (-584 *4)))) - (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-1086 *4)) + (-4 *4 (-13 (-362 *7) (-27) (-1116))) + (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2014 (-585 *4)))) + (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-551 *4)) (-5 *6 (-347 (-1084 *4))) - (-4 *4 (-13 (-361 *7) (-27) (-1114))) - (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2011 (-584 *4)))) - (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013))))) + (-12 (-5 *5 (-552 *4)) (-5 *6 (-348 (-1086 *4))) + (-4 *4 (-13 (-362 *7) (-27) (-1116))) + (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2014 (-585 *4)))) + (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1015))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-551 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1089))) (-5 *5 (-1084 *2)) - (-4 *2 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) + (|partial| -12 (-5 *3 (-552 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1091))) (-5 *5 (-1086 *2)) + (-4 *2 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1015)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) - (-5 *5 (-347 (-1084 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))) + (|partial| -12 (-5 *3 (-552 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) + (-5 *5 (-348 (-1086 *2))) (-4 *2 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1084 *3)) - (-4 *3 (-13 (-361 *7) (-27) (-1114))) - (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1086 *3)) + (-4 *3 (-13 (-362 *7) (-27) (-1116))) + (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1015)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-347 (-1084 *3))) - (-4 *3 (-13 (-361 *7) (-27) (-1114))) - (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-585 *3)) (-5 *6 (-348 (-1086 *3))) + (-4 *3 (-13 (-362 *7) (-27) (-1116))) + (-4 *7 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1015))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) - (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) - (-4 *7 (-1013)))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) + (-4 *7 (-1015)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) - (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) - (-4 *7 (-1013))))) + (|partial| -12 (-5 *4 (-552 *3)) (-5 *5 (-348 (-1086 *3))) + (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) + (-4 *7 (-1015))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) - (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) - (-4 *3 (-13 (-361 *6) (-27) (-1114))) - (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-348 (-1086 *3))) + (-4 *3 (-13 (-362 *6) (-27) (-1116))) + (-4 *6 (-13 (-390) (-952 (-485)) (-120) (-582 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1015))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-346 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *7))) - (-4 *7 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) + (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-585 (-552 *3))) (-5 *5 (-552 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *7))) + (-4 *7 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1089)) - (-4 *4 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-496 *4 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *4)))))) + (|partial| -12 (-5 *3 (-1091)) + (-4 *4 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *1 (-497 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *6))) - (-4 *6 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *6))) + (-4 *6 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-496 *6 *3))))) + (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-497 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1089)) - (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-2 (|:| -2135 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) - (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3979 *1) (|:| |associate| *1))) - (-4 *1 (-495))))) -(((*1 *1 *1) (-4 *1 (-495)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1091)) + (-4 *5 (-13 (-390) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-2 (|:| -2138 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1773 *1) (|:| -3983 *1) (|:| |associate| *1))) + (-4 *1 (-496))))) +(((*1 *1 *1) (-4 *1 (-496)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-347 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))))) - ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))) + (-12 (-5 *2 (-348 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))))) + ((*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116)))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-345) (-1116)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-345) (-1116))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) - (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484)))) - (-4 *7 (-1154 (-347 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) - (-4 *2 (-290 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) - (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) - (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) - (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) - (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-27) (-362 *4))) (-4 *4 (-13 (-496) (-952 (-485)))) + (-4 *7 (-1156 (-348 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) + (-4 *2 (-291 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-362 *5))) + (-4 *5 (-13 (-496) (-952 (-485)))) (-4 *8 (-1156 (-348 *7))) + (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-362 *5))) + (-4 *5 (-13 (-496) (-952 (-485)))) (-4 *8 (-1156 (-348 *7))) + (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) - (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) - (-5 *1 (-490 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) + (-12 (-5 *4 (-552 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) + (-4 *3 (-13 (-27) (-362 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) + (-5 *1 (-491 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-962)) - (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-963)) + (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484)) - (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-485)) + (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484)) - (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1154 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1154 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-963)) (-5 *2 (-485)) + (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-398 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) - (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3))))) + (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-696))) + (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) - (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) - (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-696)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1089))) (-4 *6 (-311)) - (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-389)) - (-4 *7 (-13 (-311) (-756)))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1091))) (-4 *6 (-312)) + (-5 *2 (-585 (-249 (-859 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-390)) + (-4 *7 (-13 (-312) (-757)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-389)) - (-5 *2 (-584 (-584 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-311)) - (-4 *5 (-13 (-311) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) - (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-858 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) - (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) - ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128))))) -(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-473))) (-5 *1 (-473))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-473))))) -(((*1 *1 *1) (-5 *1 (-473)))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 (-473))) (-5 *2 (-1089)) (-5 *1 (-473))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 (-473))) (-5 *1 (-473))))) + (-12 (-5 *3 (-585 (-859 *6))) (-5 *4 (-585 (-1091))) (-4 *6 (-390)) + (-5 *2 (-585 (-585 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) + (-4 *5 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-390)) (-5 *2 (-585 *6)) + (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-859 *5)) (-4 *5 (-390)) (-5 *2 (-585 *6)) + (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) + ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-474))) (-5 *1 (-474))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1091))) (-5 *1 (-474))))) +(((*1 *1 *1) (-5 *1 (-474)))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-474))) (-5 *2 (-1091)) (-5 *1 (-474))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-585 (-474))) (-5 *1 (-474))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-345 (-1084 *6)) (-1084 *6))) - (-4 *6 (-311)) + (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-346 (-1086 *6)) (-1086 *6))) + (-4 *6 (-312)) (-5 *2 - (-584 - (-2 (|:| |outval| *7) (|:| |outmult| (-484)) - (|:| |outvect| (-584 (-631 *7)))))) - (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-756)))))) + (-585 + (-2 (|:| |outval| *7) (|:| |outmult| (-485)) + (|:| |outvect| (-585 (-632 *7)))))) + (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6)) - (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756)))))) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-585 *6)) + (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1084 *4)) - (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-756)))))) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) + (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-757)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-665) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) - ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-467))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-665) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-468))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-468))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1084 *1)) - (-4 *1 (-279 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) + (-12 (-5 *3 (-832)) (-4 *4 (-318)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) + (-4 *1 (-280 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1154 *3)))) + (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4))))) -(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) +(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-495)) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-359 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *4)))) - ((*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *3)))) + (-12 (-5 *3 (-832)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) + ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) - (-4 *1 (-350 *3 *4)))) + (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) + (-4 *1 (-351 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) - (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-5 *1 (-354 *3 *4 *5 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) - (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-358 *3)))) + (-12 (-4 *3 (-258)) (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-5 *1 (-356 *3 *4 *5 *6 *7)) (-4 *6 (-351 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-359 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) - (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) + (-4 *4 (-299))))) (((*1 *2 *1) - (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-466 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-831)))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-832)))) ((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-466 *4))))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-832)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-298)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1035)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1178 *5)) (-5 *3 (-695)) (-5 *4 (-1033)) (-4 *5 (-298)) - (-5 *1 (-466 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-695)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) - (-4 *4 (-298)) (-5 *2 (-1184)) (-5 *1 (-466 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-488)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1137)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1134)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1135)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-695))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462))))) -(((*1 *2 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-277 *3)))) + (-12 (-5 *2 (-1180 *5)) (-5 *3 (-696)) (-5 *4 (-1035)) (-4 *5 (-299)) + (-5 *1 (-467 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-696)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-489)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1139)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1136)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-487)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-634 (-1137)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-696))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1131))) (-5 *1 (-463))))) +(((*1 *2 *2) + (-12 (-4 *3 (-312)) (-4 *4 (-322 *3)) (-4 *5 (-322 *3)) + (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-457))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-455 *3 *4)) (-14 *4 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-456 *3 *4)) (-14 *4 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-5 *2 (-695)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-696)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) + (-12 (-5 *2 (-485)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) + (-12 (-5 *2 (-85)) (-5 *1 (-456 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-452 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) (((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) - (-5 *1 (-448 *4 *5)) (-4 *5 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) -(((*1 *1) (-5 *1 (-444)))) + (-5 *1 (-449 *4 *5)) (-4 *5 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-448 *3 *2)) (-4 *3 (-72)) (-4 *2 (-761))))) +(((*1 *1) (-5 *1 (-445)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-696)) (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) - (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) - (-5 *1 (-442 *4 *5))))) + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) + (-5 *3 (-585 (-775 *4))) (-14 *4 (-585 (-1091))) (-14 *5 (-696)) + (-5 *1 (-443 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-584 (-1089))) (-14 *5 (-695)) + (-12 (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 - (-584 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))) - (-5 *1 (-442 *4 *5)) + (-585 + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485)))))) + (-5 *1 (-443 *4 *5)) (-5 *3 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))))) + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-441 (-347 (-484)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-347 (-484))))) - (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-442 *3 *4))))) + (-442 (-348 (-485)) (-197 *4 (-696)) (-775 *3) (-206 *3 (-348 (-485))))) + (-14 *3 (-585 (-1091))) (-14 *4 (-696)) (-5 *1 (-443 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) - (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) + (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) - (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))) + (-442 (-348 (-485)) (-197 *5 (-696)) (-775 *4) (-206 *4 (-348 (-485))))) + (-14 *4 (-585 (-1091))) (-14 *5 (-696)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) - (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *2 (-85)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) (-5 *2 - (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) - (|:| |genIdeal| (-441 *4 *5 *6 *7)))) - (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) + (|:| |genIdeal| (-442 *4 *5 *6 *7)))) + (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) - (|:| |genIdeal| (-441 *3 *4 *5 *6)))) - (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) - (-4 *6 (-862 *3 *4 *5))))) + (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) + (|:| |genIdeal| (-442 *3 *4 *5 *6)))) + (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6)) + (-4 *6 (-863 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) - (-4 *5 (-862 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-719)) (-4 *4 (-758)) (-5 *1 (-442 *2 *3 *4 *5)) + (-4 *5 (-863 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) - (-5 *2 (-353 *4 (-347 *4) *5 *6)))) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) + (-5 *2 (-354 *4 (-348 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))) - (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257)) - (-5 *1 (-353 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-351 *4 *5) (-952 *4))) + (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) + (-5 *1 (-354 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-442 *3 *4 *5 *6)) (-4 *6 (-863 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) - (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-758)) (-4 *4 (-312)) (-4 *5 (-719)) + (-5 *1 (-442 *4 *5 *6 *2)) (-4 *2 (-863 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-442 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1089))) - (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-1079 (-584 (-858 *4)) (-584 (-248 (-858 *4))))) - (-5 *1 (-441 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *6 (-555 (-1091))) + (-4 *4 (-312)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-1081 (-585 (-859 *4)) (-585 (-249 (-859 *4))))) + (-5 *1 (-442 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-832)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) - (-15 -1962 (*2 $))))))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1965 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-757) - (-10 -8 (-15 -3797 ((-1072) $ (-1089))) (-15 -3614 (*2 $)) - (-15 -1962 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439))))) + (-13 (-758) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1965 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1154 *5)) - (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1154 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *6 (-1156 *5)) + (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-439 *5 *6 *4 *7)) (-4 *4 (-1156 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1084 *8))) - (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *6)) - (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1154 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1086 *8))) + (-4 *5 (-963)) (-4 *8 (-963)) (-4 *6 (-1156 *5)) (-5 *2 (-632 *6)) + (-5 *1 (-439 *5 *6 *7 *8)) (-4 *7 (-1156 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) - (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) - (-4 *6 (-1154 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) + (-4 *5 (-963)) (-4 *7 (-963)) (-4 *2 (-1156 *5)) (-5 *1 (-439 *5 *2 *6 *7)) + (-4 *6 (-1156 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962)) - (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-963)) (-4 *7 (-963)) + (-4 *2 (-1156 *5)) (-5 *1 (-439 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1154 *5)) - (-5 *2 (-1084 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1154 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-963)) (-4 *7 (-963)) (-4 *4 (-1156 *5)) + (-5 *2 (-1086 *7)) (-5 *1 (-439 *5 *4 *6 *7)) (-4 *6 (-1156 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2011 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) - (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *4 (-1154 *3)) - (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) + (-2 (|:| -2014 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) + (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *4 (-1156 *3)) + (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-695)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) - (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))) + (-12 (-5 *2 (-696)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-437 *3 *4 *5)) (-4 *5 (-351 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-484)) - (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *5 (-1154 *2)) - (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5))))) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-485)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *5 (-1156 *2)) + (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) - (-4 *2 (-13 (-257) (-10 -8 (-15 -3968 ((-345 $) $))))) (-4 *5 (-1154 *2)) - (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5))))) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-696)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-346 $) $))))) (-4 *5 (-1156 *2)) + (-5 *1 (-437 *2 *5 *6)) (-4 *6 (-351 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1154 *5)) + (-12 (-5 *4 (-696)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 - (-584 - (-2 (|:| -2011 (-631 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-631 *6))))) - (-5 *1 (-435 *5 *6 *7)) + (-585 + (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-632 *6))))) + (-5 *1 (-436 *5 *6 *7)) (-5 *3 - (-2 (|:| -2011 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) - (-4 *7 (-1154 *6))))) + (-2 (|:| -2014 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) + (-4 *7 (-1156 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-584 + (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-484))))) - (-5 *1 (-345 *3)) (-4 *3 (-495)))) + (|:| |xpnt| (-485))))) + (-5 *1 (-346 *3)) (-4 *3 (-496)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1154 *3)) - (-5 *2 (-584 (-1084 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1154 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-428))))) + (-12 (-5 *4 (-696)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) + (-5 *2 (-585 (-1086 *3))) (-5 *1 (-436 *3 *5 *6)) (-4 *6 (-1156 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-433))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-429))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) - (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-322 *3)) (-4 *5 (-322 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3993)) (-4 *1 (-426 *3)) - (-4 *3 (-1128))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-427 *3)) + (-4 *3 (-1130))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) - (-4 *4 (-1128)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) + (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) - (-4 *4 (-1128)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) + (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) - (-5 *2 (-695)))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-427 *3)) (-4 *3 (-1130)) (-4 *3 (-1015)) + (-5 *2 (-696)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *4)) - (-4 *4 (-1128)) (-5 *2 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 (-484))) (-5 *2 (-484)) (-5 *1 (-423 *4)) - (-4 *4 (-1154 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484)))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-421 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-786))) (-5 *1 (-420))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-444))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-420))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-427 *4)) + (-4 *4 (-1130)) (-5 *2 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-425))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-485))) (-5 *2 (-485)) (-5 *1 (-424 *4)) + (-4 *4 (-1156 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-424 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-424 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-424 *2)) (-4 *2 (-1156 (-485)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-422 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-787))) (-5 *1 (-421))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-445))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-787))) (-5 *1 (-421))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1089))) - (-4 *4 (-962)))) + (-12 (-5 *2 (-585 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-585 (-1091))) + (-4 *4 (-963)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-484))) (-14 *3 (-584 (-1089))) (-5 *1 (-391 *3 *4 *5)) - (-4 *4 (-962)) (-4 *5 (-196 (-3954 *3) (-695))))) + (-12 (-5 *2 (-585 (-485))) (-14 *3 (-585 (-1091))) (-5 *1 (-392 *3 *4 *5)) + (-4 *4 (-963)) (-4 *5 (-196 (-3958 *3) (-696))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-484))) (-5 *1 (-418 *3 *4)) (-14 *3 (-584 (-1089))) - (-4 *4 (-962))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-417))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-417))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) - (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-484))))) - (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389))))) + (-12 (-5 *2 (-585 (-485))) (-5 *1 (-419 *3 *4)) (-14 *3 (-585 (-1091))) + (-4 *4 (-963))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-418))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-418))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1091))) (-4 *6 (-390)) + (-5 *2 (-2 (|:| |dpolys| (-585 (-206 *5 *6))) (|:| |coords| (-585 (-485))))) + (-5 *1 (-409 *5 *6 *7)) (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-390))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-584 (-774 *4))) - (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) - (-4 *6 (-389))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) - (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) - (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389))))) -(((*1 *1) (-5 *1 (-405)))) + (|partial| -12 (-5 *2 (-585 (-419 *4 *5))) (-5 *3 (-585 (-775 *4))) + (-14 *4 (-585 (-1091))) (-4 *5 (-390)) (-5 *1 (-409 *4 *5 *6)) + (-4 *6 (-390))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-775 *5))) (-14 *5 (-585 (-1091))) (-4 *6 (-390)) + (-5 *2 (-585 (-585 (-206 *5 *6)))) (-5 *1 (-409 *5 *6 *7)) + (-5 *3 (-585 (-206 *5 *6))) (-4 *7 (-390))))) +(((*1 *1) (-5 *1 (-406)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-405)))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *4 (-585 (-832))) (-5 *5 (-585 (-221))) (-5 *1 (-406)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *4 (-584 (-831))) (-5 *1 (-405)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) - ((*1 *1 *1) (-5 *1 (-405)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *4 (-585 (-832))) (-5 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406)))) + ((*1 *1 *1) (-5 *1 (-406)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *1 (-406))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))) - ((*1 *2 *1) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405))))) + (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-406))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184)) - (-5 *1 (-405)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))) + (-12 (-5 *3 (-856 (-179))) (-5 *4 (-785)) (-5 *5 (-832)) (-5 *2 (-1186)) + (-5 *1 (-406)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-406)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) - (-5 *2 (-1184)) (-5 *1 (-405))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405))))) + (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-785)) (-5 *5 (-832)) + (-5 *2 (-1186)) (-5 *1 (-406))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-856 (-179))) (-5 *2 (-1186)) (-5 *1 (-406))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) - (-5 *1 (-405))))) + (-12 (-5 *2 (-585 (-585 (-856 (-179))))) (-5 *3 (-585 (-785))) + (-5 *1 (-406))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) - (-5 *1 (-405))))) + (-12 (-5 *3 (-585 (-585 (-856 (-179))))) (-5 *2 (-585 (-179))) + (-5 *1 (-406))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) - ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))) -(((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-403))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222)))) + ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405)))) + ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-405))))) +(((*1 *2 *3) + (-12 (-5 *3 (-832)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-404))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-831)) (-5 *1 (-403))))) + (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-832)) (-5 *1 (-404))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-495)) - (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-758)) (-4 *5 (-719)) (-4 *6 (-496)) + (-4 *7 (-863 *6 *5 *3)) (-5 *1 (-400 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-951 (-347 (-484))) (-311) - (-10 -8 (-15 -3943 ($ *7)) (-15 -2997 (*7 $)) (-15 -2996 (*7 $)))))))) + (-13 (-952 (-348 (-485))) (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) + (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *2)) - (-2 (|:| -2399 *5) (|:| -2400 *2)))) - (-4 *2 (-196 (-3954 *3) (-695))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3)))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *2)) + (-2 (|:| -2402 *5) (|:| -2403 *2)))) + (-4 *2 (-196 (-3958 *3) (-696))) (-5 *1 (-399 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-758)) (-4 *7 (-863 *4 *2 (-775 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3954 *3) (-695))) + (-12 (-14 *3 (-585 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *2) (|:| -2400 *5)) - (-2 (|:| -2399 *2) (|:| -2400 *5)))) - (-4 *2 (-757)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-862 *4 *5 (-774 *3)))))) + (-1 (-85) (-2 (|:| -2402 *2) (|:| -2403 *5)) + (-2 (|:| -2402 *2) (|:| -2403 *5)))) + (-4 *2 (-758)) (-5 *1 (-399 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-863 *4 *5 (-775 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-584 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3954 *5) (-695))) + (-12 (-14 *5 (-585 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *3) (|:| -2400 *4)) - (-2 (|:| -2399 *3) (|:| -2400 *4)))) - (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) - (-4 *7 (-862 *2 *4 (-774 *5)))))) + (-1 (-85) (-2 (|:| -2402 *3) (|:| -2403 *4)) + (-2 (|:| -2402 *3) (|:| -2403 *4)))) + (-5 *1 (-399 *5 *2 *3 *4 *6 *7)) (-4 *3 (-758)) + (-4 *7 (-863 *2 *4 (-775 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3954 *4) (-695))) + (-12 (-14 *4 (-585 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-696))) (-14 *6 - (-1 (-85) (-2 (|:| -2399 *5) (|:| -2400 *3)) - (-2 (|:| -2399 *5) (|:| -2400 *3)))) - (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) - (-4 *7 (-862 *2 *3 (-774 *4)))))) + (-1 (-85) (-2 (|:| -2402 *5) (|:| -2403 *3)) + (-2 (|:| -2402 *5) (|:| -2403 *3)))) + (-5 *1 (-399 *4 *2 *5 *3 *6 *7)) (-4 *5 (-758)) + (-4 *7 (-863 *2 *3 (-775 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1154 *4)) (-4 *4 (-257)) - (-5 *1 (-397 *4 *3))))) + (-12 (-5 *2 (-585 *3)) (-5 *5 (-832)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) + (-5 *1 (-398 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1154 *5)) - (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) - (-5 *4 (-584 *3))))) + (-12 (-5 *6 (-832)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) + (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-398 *5 *3)) + (-5 *4 (-585 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-257)) (-5 *2 (-85)) - (-5 *1 (-392 *3 *5))))) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) + (-5 *1 (-393 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1178 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3)) - (-5 *1 (-392 *4 *3)) (-4 *3 (-1154 *4))))) + (|partial| -12 (-5 *5 (-1180 (-585 *3))) (-4 *4 (-258)) (-5 *2 (-585 *3)) + (-5 *1 (-393 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1154 *4)) - (-5 *2 (-1178 (-584 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-584 *6))))) + (|partial| -12 (-5 *3 (-696)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) + (-5 *2 (-1180 (-585 *6))) (-5 *1 (-393 *4 *6)) (-5 *5 (-585 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-257)) (-5 *2 (-695)) - (-5 *1 (-392 *5 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-696)) + (-5 *1 (-393 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-584 *1)))) (-4 *1 (-315 *3)))) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-390 *3 *4 *5 *6)) - (|:| -2011 (-584 (-390 *3 *4 *5 *6))))) - (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) - (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3)))))) + (-2 (|:| |particular| (-391 *3 *4 *5 *6)) + (|:| -2014 (-585 (-391 *3 *4 *5 *6))))) + (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) + (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2011 (-584 *1)))) (-4 *1 (-315 *3)))) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2014 (-585 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-390 *3 *4 *5 *6)) - (|:| -2011 (-584 (-390 *3 *4 *5 *6))))) - (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) - (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3)))))) + (-2 (|:| |particular| (-391 *3 *4 *5 *6)) + (|:| -2014 (-585 (-391 *3 *4 *5 *6))))) + (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-832)) + (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) - (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) - (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))) + (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-391 *4 *5 *6 *7))) + (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) + (-14 *6 (-585 (-1091))) (-14 *7 (-1180 (-632 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) - (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) - (-14 *7 (-1178 (-631 *4))))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-391 *4 *5 *6 *7))) + (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-832)) (-14 *6 (-585 *2)) + (-14 *7 (-1180 (-632 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3))))) + (-12 (-5 *2 (-1180 (-391 *3 *4 *5 *6))) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) + (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-832)) (-14 *5 (-585 (-1091))) (-14 *6 (-1180 (-632 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1178 (-631 *3))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-832)) (-14 *5 (-585 *2)) (-14 *6 (-1180 (-632 *3))))) ((*1 *1) - (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) - (-14 *4 (-584 (-1089))) (-14 *5 (-1178 (-631 *2)))))) + (-12 (-5 *1 (-391 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-832)) + (-14 *4 (-585 (-1091))) (-14 *5 (-1180 (-632 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-859 *4))) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) ((*1 *2) - (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) - (-5 *2 (-1084 (-858 *3))))) + (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) + (-5 *2 (-1086 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-859 *4))) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) ((*1 *2) - (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) - (-5 *2 (-1084 (-858 *3))))) + (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-4 *3 (-312)) + (-5 *2 (-1086 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-1086 (-348 (-859 *3)))) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2) - (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3)))))) + (-12 (-5 *2 (-348 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) - (-5 *2 (-584 (-858 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-585 (-859 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) - ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-585 (-859 *4))) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-585 (-859 *3))))) ((*1 *2) - (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) - (-14 *6 (-1178 (-631 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) - (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-831)) - (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) - ((*1 *1 *1 *1) (-4 *1 (-389)))) -(((*1 *2 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) - (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-5 *2 (-585 (-859 *3))) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-832)) (-14 *5 (-585 (-1091))) + (-14 *6 (-1180 (-632 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1180 (-391 *4 *5 *6 *7))) (-5 *2 (-585 (-859 *4))) + (-5 *1 (-391 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-832)) + (-14 *6 (-585 (-1091))) (-14 *7 (-1180 (-632 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-390)))) + ((*1 *1 *1 *1) (-4 *1 (-390)))) +(((*1 *2 *3) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-696)) + (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2003 *4))) (-5 *5 (-695)) - (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-696)) (|:| -2006 *4))) (-5 *5 (-696)) + (-4 *4 (-863 *6 *7 *8)) (-4 *6 (-390)) (-4 *7 (-719)) (-4 *8 (-758)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-387 *6 *7 *8 *4))))) + (-5 *1 (-388 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) - (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7))))) + (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) + (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) - (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) + (-12 (-5 *3 (-485)) (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) + (-5 *2 (-1186)) (-5 *1 (-388 *4 *5 *6 *7)) (-4 *7 (-863 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *2 (-1186)) (-5 *1 (-388 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-484)) + (-12 (-5 *2 (-485)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) - (-5 *1 (-387 *5 *6 *7 *4))))) + (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-758)) + (-5 *1 (-388 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-484)) + (-12 (-5 *2 (-485)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-696)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) - (-5 *1 (-387 *5 *6 *7 *4))))) + (-4 *6 (-719)) (-4 *4 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *7 (-758)) + (-5 *1 (-388 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) - (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-1186)) + (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-484)) - (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) + (-12 (-4 *4 (-390)) (-4 *5 (-719)) (-4 *6 (-758)) (-5 *2 (-485)) + (-5 *1 (-388 *4 *5 *6 *3)) (-4 *3 (-863 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) - (-5 *1 (-387 *3 *4 *5 *6))))) + (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-758)) + (-5 *1 (-388 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) - (-4 *4 (-389)) (-4 *6 (-757))))) + (-4 *5 (-719)) (-4 *2 (-863 *4 *5 *6)) (-5 *1 (-388 *4 *5 *6 *2)) + (-4 *4 (-390)) (-4 *6 (-758))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2003 *3)))) (-5 *4 (-695)) - (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) - (-5 *1 (-387 *5 *6 *7 *3))))) + (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-696)) (|:| -2006 *3)))) (-5 *4 (-696)) + (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) (-4 *7 (-758)) + (-5 *1 (-388 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *2)) - (-4 *2 (-862 *3 *4 *5))))) + (-12 (-4 *3 (-390)) (-4 *4 (-719)) (-4 *5 (-758)) (-5 *1 (-388 *3 *4 *5 *2)) + (-4 *2 (-863 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) - (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-387 *5 *6 *7 *3))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-863 *5 *6 *7)) (-4 *5 (-390)) (-4 *6 (-719)) + (-4 *7 (-758)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-388 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-757)) - (-5 *1 (-387 *4 *3 *5 *6))))) + (-4 *3 (-719)) (-4 *6 (-863 *4 *3 *5)) (-4 *4 (-390)) (-4 *5 (-758)) + (-5 *1 (-388 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-696)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) - (-5 *1 (-387 *3 *4 *5 *6))))) + (-4 *4 (-719)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-390)) (-4 *5 (-758)) + (-5 *1 (-388 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-584 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) + (-585 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) - (-5 *1 (-387 *4 *5 *6 *3))))) + (-4 *5 (-719)) (-4 *3 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) + (-5 *1 (-388 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) + (-12 (-4 *4 (-390)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) - (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) + (-12 (-4 *4 (-390)) (-4 *3 (-719)) (-4 *5 (-758)) (-5 *2 (-85)) + (-5 *1 (-388 *4 *3 *5 *6)) (-4 *6 (-863 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-696)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) - (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7))))) + (-4 *5 (-719)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *6 (-758)) + (-5 *2 (-85)) (-5 *1 (-388 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-485)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-390)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-390)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-388 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) - (-5 *3 (-584 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) + (-5 *3 (-585 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) - (-5 *3 (-584 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) + (-5 *3 (-585 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) - (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) - (-5 *3 (-584 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-719)) (-4 *6 (-758)) + (-4 *7 (-863 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-387 *4 *5 *6 *7)) + (-5 *3 (-585 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) - (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) - (-5 *3 (-584 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-719)) (-4 *7 (-758)) + (-4 *8 (-863 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-387 *5 *6 *7 *8)) + (-5 *3 (-585 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718)) - (-4 *5 (-757)) (-5 *1 (-385 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-863 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-719)) + (-4 *5 (-758)) (-5 *1 (-386 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) - (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7))))) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1074)) (-4 *7 (-863 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-719)) (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) - (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-383)) (-5 *3 (-484))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-863 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-719)) + (-4 *6 (-758)) (-5 *1 (-386 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-384)) (-5 *3 (-485))))) (((*1 *2 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962))))) + (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962))))) + (-12 (-5 *2 (-485)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-382 *3)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962))))) -(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) - ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962))))) + (-12 (-5 *2 (-485)) (-5 *1 (-383 *3)) (-4 *3 (-345)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-383 *3)) (-4 *3 (-963))))) +(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963))))) +(((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963)))) + ((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-383 *3)) (-4 *3 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-484)) (-5 *1 (-382 *2)) (-4 *2 (-962))))) + (-12 (-5 *3 (-696)) (-5 *4 (-485)) (-5 *1 (-383 *2)) (-4 *2 (-963))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-345 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-962)) - (-5 *2 (-584 *6)) (-5 *1 (-381 *5 *6))))) + (-12 (-5 *3 (-832)) (-5 *4 (-346 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-963)) + (-5 *2 (-585 *6)) (-5 *1 (-382 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-831)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) + (|partial| -12 (-5 *3 (-832)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-379 *2)) - (-4 *2 (-1154 (-484))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-696)) (-5 *1 (-380 *2)) + (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-379 *2)) - (-4 *2 (-1154 (-484))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *1 (-380 *2)) + (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) - (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) + (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) - (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) + (|partial| -12 (-5 *3 (-832)) (-5 *4 (-585 (-696))) (-5 *5 (-696)) + (-5 *6 (-85)) (-5 *1 (-380 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-345 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-381 *5 *2)) - (-4 *5 (-962))))) + (-12 (-5 *3 (-832)) (-5 *4 (-346 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-382 *5 *2)) + (-4 *5 (-963))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3729 *4) (|:| -3945 (-484))))) - (-4 *4 (-1154 (-484))) (-5 *2 (-676 (-695))) (-5 *1 (-379 *4)))) + (-12 (-5 *3 (-585 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-677 (-696))) (-5 *1 (-380 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-345 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-962)) - (-5 *2 (-676 (-695))) (-5 *1 (-381 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3))))) + (-12 (-5 *3 (-346 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-963)) + (-5 *2 (-677 (-696))) (-5 *1 (-382 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-963)) (-5 *1 (-382 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) - (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) + (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) - (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) + (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *5 *3 *6)) - (-4 *3 (-1154 *5)) (-4 *6 (-13 (-344) (-951 *5) (-311) (-1114) (-239))))) + (-12 (-5 *4 (-696)) (-4 *5 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *5 *3 *6)) + (-4 *3 (-1156 *5)) (-4 *6 (-13 (-345) (-952 *5) (-312) (-1116) (-239))))) ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) - (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) - (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) - (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) + (-12 (-4 *4 (-963)) (-4 *2 (-13 (-345) (-952 *4) (-312) (-1116) (-239))) + (-5 *1 (-381 *4 *3 *2)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-831)) (-4 *5 (-962)) - (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) - (-4 *3 (-1154 *5))))) + (-12 (-5 *4 (-832)) (-4 *5 (-963)) + (-4 *2 (-13 (-345) (-952 *5) (-312) (-1116) (-239))) (-5 *1 (-381 *5 *3 *2)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) - (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))))) + (-12 (-4 *4 (-963)) (-5 *2 (-485)) (-5 *1 (-381 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-345) (-952 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-695))) (-5 *6 (-695)) - (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) - (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2577 (-484)) (|:| -1777 (-584 *3)))) (-5 *1 (-379 *3)) - (-4 *3 (-1154 (-484)))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-2 (|:| -3729 *4) (|:| -3945 (-484))))) - (-4 *4 (-1154 (-484))) (-5 *2 (-695)) (-5 *1 (-379 *4))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1011 (-696))) (-5 *6 (-696)) + (-5 *2 + (-2 (|:| |contp| (-485)) + (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) + (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1780 (-585 *3)))) (-5 *1 (-380 *3)) + (-4 *3 (-1156 (-485)))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-346 *3)) (-4 *3 (-496)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-696)) (-5 *1 (-380 *4))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-380 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-584 + (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-484))))) - (-4 *2 (-495)) (-5 *1 (-345 *2)))) + (|:| |xpnt| (-485))))) + (-4 *2 (-496)) (-5 *1 (-346 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-484)) - (|:| -1777 (-584 (-2 (|:| |irr| *4) (|:| -2394 (-484))))))) - (-4 *4 (-1154 (-484))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3907 "void"))) (-5 *1 (-376))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-484)))) (-5 *1 (-376))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376))))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *1) (-5 *1 (-376)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-495) (-951 (-484)))) - (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-48)))) (-5 *1 (-375 *4 *5 *3)) - (-4 *3 (-1154 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) - (-5 *2 - (-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) - (|:| -2638 (-85)))) - (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) - (-5 *2 (-345 (-1084 (-347 (-484))))) (-5 *1 (-375 *4 *5 *3)) - (-4 *3 (-1154 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) - (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-585 (-2 (|:| |irr| *4) (|:| -2397 (-485))))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-346 *4)) (-5 *1 (-380 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-375)) (|:| -3911 "void"))) (-5 *1 (-377))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-859 (-485)))) (-5 *1 (-377))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *1) (-5 *1 (-377)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-952 (-48))) (-4 *4 (-13 (-496) (-952 (-485)))) + (-4 *5 (-362 *4)) (-5 *2 (-346 (-1086 (-48)))) (-5 *1 (-376 *4 *5 *3)) + (-4 *3 (-1156 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) + (-5 *2 + (-3 (|:| |overq| (-1086 (-348 (-485)))) (|:| |overan| (-1086 (-48))) + (|:| -2641 (-85)))) + (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) + (-5 *2 (-346 (-1086 (-348 (-485))))) (-5 *1 (-376 *4 *5 *3)) + (-4 *3 (-1156 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-4 *5 (-362 *4)) (-5 *2 (-346 *3)) + (-5 *1 (-376 *4 *5 *3)) (-4 *3 (-1156 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-375))))) (((*1 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *2 (-1184)) (-5 *1 (-373 *3 *4)) - (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)))) (-5 *2 (-1186)) (-5 *1 (-374 *3 *4)) + (-4 *4 (-362 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-484))) - (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4)))) + (-12 (-4 *4 (-13 (-496) (-952 (-485)))) (-5 *2 (-348 (-485))) + (-5 *1 (-374 *4 *3)) (-4 *3 (-362 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-551 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-495) (-951 (-484)))) - (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-373 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))) + (-12 (-5 *4 (-552 *3)) (-4 *3 (-362 *5)) (-4 *5 (-13 (-496) (-952 (-485)))) + (-5 *2 (-1086 (-348 (-485)))) (-5 *1 (-374 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-372 *3 *2)) (-4 *2 (-362 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) - (-4 *2 (-13 (-757) (-21)))))) + (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-485))))) + (-4 *2 (-13 (-758) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) - (-4 *2 (-13 (-757) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1013)) (-5 *2 (-695))))) -(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-317))))) -(((*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1013))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-361 *3))) - (-14 *4 (-1089)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-4 *2 (-13 (-27) (-1114) (-361 *3) (-10 -8 (-15 -3943 ($ *4))))) - (-4 *4 (-756)) + (-12 (-5 *1 (-370 *3 *2)) (-4 *3 (-13 (-146) (-38 (-348 (-485))))) + (-4 *2 (-13 (-758) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-369 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1015)) (-5 *2 (-696))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1015)) (-4 *2 (-318))))) +(((*1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-318)) (-4 *2 (-1015))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-364 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-362 *3))) + (-14 *4 (-1091)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-4 *2 (-13 (-27) (-1116) (-362 *3) (-10 -8 (-15 -3947 ($ *4))))) + (-4 *4 (-757)) (-4 *5 - (-13 (-1157 *2 *4) (-311) (-1114) - (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) - (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1089))))) + (-13 (-1159 *2 *4) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) + (-5 *1 (-365 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1091))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3943 ($ *7))))) - (-4 *7 (-756)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-4 *3 (-13 (-27) (-1116) (-362 *6) (-10 -8 (-15 -3947 ($ *7))))) + (-4 *7 (-757)) (-4 *8 - (-13 (-1157 *3 *7) (-311) (-1114) - (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) + (-13 (-1159 *3 *7) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) - (-14 *10 (-1089))))) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-898 *8)) + (-14 *10 (-1091))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3943 ($ *7))))) - (-4 *7 (-756)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-4 *3 (-13 (-27) (-1116) (-362 *6) (-10 -8 (-15 -3947 ($ *7))))) + (-4 *7 (-757)) (-4 *8 - (-13 (-1157 *3 *7) (-311) (-1114) - (-10 -8 (-15 -3755 ($ $)) (-15 -3809 ($ $))))) + (-13 (-1159 *3 *7) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) - (-14 *10 (-1089))))) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-365 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-898 *8)) + (-14 *10 (-1091))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) - (-14 *6 (-1089)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-364 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-362 *5))) + (-14 *6 (-1091)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1015)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-718)) (-4 *2 (-963)))) + ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1015))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-584 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-585 *1)) (-4 *1 (-362 *4)) (-4 *4 (-1015)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| -3951 (-484)) (|:| |var| (-551 *1)))) (-4 *1 (-361 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-495)) (-5 *1 (-359 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) + (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-362 *3)) (-4 *3 (-1015))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1015)) + (-5 *2 (-2 (|:| -3955 (-485)) (|:| |var| (-552 *1)))) (-4 *1 (-362 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-346 *3)) (-4 *3 (-496)) (-5 *1 (-360 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) - (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-348 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) - (-4 *1 (-319 *4 *5)) (-4 *5 (-1154 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) + (-4 *1 (-320 *4 *5)) (-4 *5 (-1156 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) - (-4 *4 (-1154 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) - ((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) - ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) - ((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-351 *3 *4)) + (-4 *4 (-1156 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-359 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) + ((*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-358 *3 *2)) (-4 *3 (-359 *2)))) + ((*1 *2) (-12 (-4 *1 (-359 *2)) (-4 *2 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) - ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) - (-4 *3 (-358 *4)))) - ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-4 *4 (-146)) (-5 *2 (-632 *4)) (-5 *1 (-358 *3 *4)) + (-4 *3 (-359 *4)))) + ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-146)) (-5 *2 (-632 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257)) - (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-350 *4 *5)) - (-14 *7 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-354 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-258)) + (-4 *4 (-906 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-351 *4 *5)) + (-14 *7 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1178 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-905 *3)) - (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1180 *6)) (-4 *6 (-351 *4 *5)) (-4 *4 (-906 *3)) + (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) - (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3)))))) + (-12 (-4 *2 (-258)) (-4 *3 (-906 *2)) (-4 *4 (-1156 *3)) + (-5 *1 (-354 *2 *3 *4 *5)) (-4 *5 (-13 (-351 *3 *4) (-952 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-695)) (-5 *4 (-1178 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5)) - (-4 *2 (-13 (-350 *6 *7) (-951 *6))) (-5 *1 (-353 *5 *6 *7 *2)) - (-4 *7 (-1154 *6))))) + (-12 (-5 *3 (-696)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-906 *5)) + (-4 *2 (-13 (-351 *6 *7) (-952 *6))) (-5 *1 (-354 *5 *6 *7 *2)) + (-4 *7 (-1156 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)) - (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)) + (-5 *1 (-350 *3 *4 *5)) (-4 *3 (-351 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) - (-5 *2 (-631 *3))))) + (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-632 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-632 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) - (-5 *2 (-631 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495))))) + (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-632 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 (-484))))) (-5 *1 (-309 *3)) - (-4 *3 (-1013)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 (-485))))) (-5 *1 (-310 *3)) + (-4 *3 (-1015)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) - (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3940 (-695))))))) + (-12 (-4 *1 (-334 *3)) (-4 *3 (-1015)) + (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3944 (-696))))))) ((*1 *2 *1) - (-12 (-5 *2 (-584 (-2 (|:| -3729 *3) (|:| -2400 (-484))))) (-5 *1 (-345 *3)) - (-4 *3 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495))))) + (-12 (-5 *2 (-585 (-2 (|:| -3733 *3) (|:| -2403 (-485))))) (-5 *1 (-346 *3)) + (-4 *3 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-346 *3)) (-4 *3 (-496))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-345 *4)) (-4 *4 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495))))) + (-12 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-346 *4)) (-4 *4 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-346 *2)) (-4 *2 (-496))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-345 *2)) (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-221)))) - ((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) - ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3983)) (-4 *1 (-344)))) - ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484)) (|has| *1 (-6 -3983)) (-4 *1 (-344)) (-5 *2 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484)) (|has| *1 (-6 -3983)) (-4 *1 (-344)) (-5 *2 (-831))))) -(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-695)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-695))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-695)))) - ((*1 *1 *1) (-4 *1 (-342)))) + (-12 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-346 *2)) (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-328))) (-5 *1 (-221)))) + ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-5 *1 (-346 *2)) (-4 *2 (-496))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-485))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) + ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (|has| *1 (-6 -3987)) (-4 *1 (-345)))) + ((*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-345)) (-5 *2 (-832))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-345)) (-5 *2 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-696)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-343)) (-5 *2 (-696))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-696)))) + ((*1 *1 *1) (-4 *1 (-343)))) (((*1 *1 *2) - (-12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) - (-5 *1 (-339 *3 *4))))) + (-12 (-5 *2 (-348 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) + (-5 *1 (-340 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1154 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120)))))) + (-12 (-4 *2 (-1156 *3)) (-5 *1 (-340 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-311) (-120))) - (-5 *2 (-584 (-2 (|:| -2400 (-695)) (|:| -3770 *4) (|:| |num| *4)))) - (-5 *1 (-339 *3 *4)) (-4 *4 (-1154 *3))))) + (-12 (-4 *3 (-13 (-312) (-120))) + (-5 *2 (-585 (-2 (|:| -2403 (-696)) (|:| -3774 *4) (|:| |num| *4)))) + (-5 *1 (-340 *3 *4)) (-4 *4 (-1156 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) + (-12 (-5 *2 (-774)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) + (-12 (-5 *2 (-774)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-696)) (-14 *4 (-696)) (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-337))))) +(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-337)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-334 *2)) (-4 *2 (-1015))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-333 *3))))) + (-12 (-4 *3 (-1015)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-334 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-963)) (-4 *4 (-1015)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *4 (-584 (-1089))) - (-5 *2 (-584 (-584 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-756) (-311))))) + (-12 (-5 *3 (-585 (-348 (-859 (-485))))) (-5 *4 (-585 (-1091))) + (-5 *2 (-585 (-585 *5))) (-5 *1 (-330 *5)) (-4 *5 (-13 (-757) (-312))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-329 *4)) - (-4 *4 (-13 (-756) (-311)))))) + (-12 (-5 *3 (-348 (-859 (-485)))) (-5 *2 (-585 *4)) (-5 *1 (-330 *4)) + (-4 *4 (-13 (-757) (-312)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) + (-12 (-5 *3 (-348 (-859 (-142 (-485))))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-329 *4)) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *4 (-584 (-1089))) - (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-328 *5)) - (-4 *5 (-13 (-311) (-756)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) - (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) - (-4 *4 (-13 (-311) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-248 (-347 (-858 (-142 (-484))))))) - (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) - (-4 *4 (-13 (-311) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-347 (-858 (-142 (-484))))) - (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) - (-4 *4 (-13 (-311) (-756))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-248 (-347 (-858 (-142 (-484)))))) - (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) - (-4 *4 (-13 (-311) (-756)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-327))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327))))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327))) - ((*1 *1) (-5 *1 (-327)))) -(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327))) - ((*1 *1) (-5 *1 (-327)))) -(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-327)))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) - ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) - ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) - ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327))))) + (-12 (-5 *3 (-585 (-348 (-859 (-142 (-485)))))) (-5 *4 (-585 (-1091))) + (-5 *2 (-585 (-585 (-142 *5)))) (-5 *1 (-329 *5)) + (-4 *5 (-13 (-312) (-757)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-348 (-859 (-142 (-485)))))) + (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-249 (-348 (-859 (-142 (-485))))))) + (-5 *2 (-585 (-585 (-249 (-859 (-142 *4)))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-348 (-859 (-142 (-485))))) + (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-312) (-757))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-348 (-859 (-142 (-485)))))) + (-5 *2 (-585 (-249 (-859 (-142 *4))))) (-5 *1 (-329 *4)) + (-4 *4 (-13 (-312) (-757)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-328))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-328)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-696)) (-5 *2 (-348 (-485))) (-5 *1 (-328))))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-328))) + ((*1 *1) (-5 *1 (-328)))) +(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-328))) + ((*1 *1) (-5 *1 (-328)))) +(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-328)))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-328))))) +(((*1 *2 *3) (-12 (-5 *3 (-696)) (-5 *2 (-1186)) (-5 *1 (-328))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) - (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) + (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) - (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) + (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) - (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3993))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-325 *4 *2)) + (-4 *2 (-13 (-322 *4) (-10 -7 (-6 -3997))))))) (((*1 *1 *2) - (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-616 *3)) (-4 *3 (-758)) (-4 *1 (-324 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-757)) (-5 *2 (-85)))) + (-12 (-4 *1 (-322 *3)) (-4 *3 (-1130)) (-4 *3 (-758)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-322 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-484)) (|has| *1 (-6 -3993)) (-4 *1 (-321 *3)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-322 *3)) (-4 *3 (-1130))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-322 *2)) (-4 *2 (-1130)) (-4 *2 (-758)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3993)) (-4 *1 (-321 *3)) - (-4 *3 (-1128))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-315 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-322 *3)) + (-4 *3 (-1130))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) - ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1178 *4))) (-5 *1 (-314 *3 *4)) - (-4 *3 (-315 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-585 (-1180 *4))) (-5 *1 (-315 *3 *4)) + (-4 *3 (-316 *4)))) ((*1 *2) - (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) - (-5 *2 (-584 (-1178 *3)))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) + (-5 *2 (-585 (-1180 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) - ((*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1015)) (-4 *4 (-1015)))) + ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1072)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015))))) (((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-1015))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) (-5 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1015)) (-4 *2 (-1015))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 - (-13 (-342) - (-10 -7 (-15 -3943 (*2 *4)) (-15 -2009 ((-831) *2)) - (-15 -2011 ((-1178 *2) (-831))) (-15 -3925 (*2 *2))))) - (-5 *1 (-305 *2 *4))))) + (-13 (-343) + (-10 -7 (-15 -3947 (*2 *4)) (-15 -2012 ((-832) *2)) + (-15 -2014 ((-1180 *2) (-832))) (-15 -3929 (*2 *2))))) + (-5 *1 (-306 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-870 (-1084 *4))) (-5 *1 (-304 *4)) - (-5 *3 (-1084 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (-12 (-4 *4 (-299)) (-5 *2 (-871 (-1086 *4))) (-5 *1 (-305 *4)) + (-5 *3 (-1086 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) -(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298))))) -(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) + (-12 (-5 *3 (-832)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-832)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) (((*1 *2) - (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 (-818 *3)) (|:| -2399 (-1033)))))) - (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) + (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 (-819 *3)) (|:| -2402 (-1035)))))) + (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033)))))) - (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) *2)))) + (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035)))))) + (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033)))))) - (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831))))) + (-12 (-5 *2 (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035)))))) + (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2) - (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-632 (-819 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033))))))))) + (-3 (-1086 *3) (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035))))))))) ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831))))) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) - (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4)))) + (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-696)) (-5 *1 (-296 *4)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) + (-12 (-5 *2 (-696)) (-5 *1 (-301 *3 *4)) (-14 *3 (-832)) (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) + (-12 (-5 *2 (-696)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3399 *3) (|:| -2399 (-1033))))))))) + (-3 (-1086 *3) (-1180 (-585 (-2 (|:| -3403 *3) (|:| -2402 (-1035))))))))) ((*1 *2) - (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831))))) + (-12 (-5 *2 (-696)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-832))))) (((*1 *2) - (-12 (-4 *1 (-298)) - (-5 *2 (-584 (-2 (|:| -3729 (-484)) (|:| -2400 (-484)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-484)) (-5 *2 (-1101 (-831) (-695)))))) -(((*1 *1) (-4 *1 (-298)))) + (-12 (-4 *1 (-299)) + (-5 *2 (-585 (-2 (|:| -3733 (-485)) (|:| -2403 (-485)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-832) (-696)))))) +(((*1 *1) (-4 *1 (-299)))) (((*1 *2) - (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-831)) + (-12 (-5 *3 (-832)) (-5 *2 - (-3 (-1084 *4) (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033))))))) - (-5 *1 (-295 *4)) (-4 *4 (-298))))) + (-3 (-1086 *4) (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035))))))) + (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-831)) - (-5 *2 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) - (-5 *1 (-295 *4)) (-4 *4 (-298))))) + (|partial| -12 (-5 *3 (-832)) + (-5 *2 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) + (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) - (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4))))) + (-12 (-5 *3 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) + (-4 *4 (-299)) (-5 *2 (-632 *4)) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) - (-5 *2 (-1178 (-584 (-2 (|:| -3399 *4) (|:| -2399 (-1033)))))) - (-5 *1 (-295 *4))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) + (-5 *2 (-1180 (-585 (-2 (|:| -3403 *4) (|:| -2402 (-1035)))))) + (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1033))) - (-5 *1 (-295 *4))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-871 (-1035))) + (-5 *1 (-296 *4))))) (((*1 *2) - (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-292 *3 *4)) (-14 *3 (-831)) - (-14 *4 (-831)))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-293 *3 *4)) (-14 *3 (-832)) + (-14 *4 (-832)))) ((*1 *2) - (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) - (-14 *4 (-1084 *3)))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-1086 *3)))) ((*1 *2) - (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) - (-14 *4 (-831))))) + (-12 (-5 *2 (-871 (-1035))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-832))))) (((*1 *2) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-696)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-696))))) (((*1 *2) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) + (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) - (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) - (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) - (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5))))) + (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) - (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-348 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) - (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) - (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) - (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4)))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4)))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4)))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4)))))) (((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-5 *2 (-632 (-348 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) - (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3)))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-348 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) - (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-348 *2))) (-4 *2 (-1156 *4)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) - (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) + (-4 *4 (-1156 (-348 *2))) (-4 *2 (-1156 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-348 *2))) (-4 *2 (-1156 *4)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) - (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) + (-4 *4 (-1156 (-348 *2))) (-4 *2 (-1156 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) - (-4 *6 (-1154 (-347 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) + (-4 *6 (-1156 (-348 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-290 *4 *5 *6))))) + (-4 *1 (-291 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) - (-4 *7 (-1154 (-347 *6))) (-5 *2 (-584 (-858 *5))) - (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) + (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-348 *6))) (-5 *2 (-585 (-859 *5))) + (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) - (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *4 (-311)) - (-5 *2 (-584 (-858 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) (-4 *4 (-312)) + (-5 *2 (-585 (-859 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) - (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6)) - (-4 *3 (-290 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-348 *5))) + (-5 *2 (-585 (-585 *4))) (-5 *1 (-290 *3 *4 *5 *6)) + (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-584 (-584 *3)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *3 (-318)) (-5 *2 (-585 (-585 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-311)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) - (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5)))) + (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-348 *3))) + (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-311)) (-4 *4 (-1154 *2)) - (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) - (-4 *6 (-290 *2 *4 *5)))) + (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) + (-4 *5 (-1156 (-348 *4))) (-4 *1 (-286 *2 *4 *5 *6)) + (-4 *6 (-291 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))) - (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-348 *3))) + (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) - (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) + (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) - (-4 *1 (-285 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) - (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85))))) -(((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) - (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1094) (-695)))) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-757))))) -(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311))))) + (-12 (-5 *2 (-354 *4 (-348 *4) *5 *6)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) + (-4 *1 (-286 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-348 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-348 *4))) + (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-784 (-1096) (-696)))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-871 (-696))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-445)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-758))))) +(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-318)) (-4 *2 (-312))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1084 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311))))) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-318)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) (((*1 *2 *1) - (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1086 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) - (-5 *2 (-1084 *3)))) + (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) + (-5 *2 (-1086 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-318)) (-5 *2 (-1086 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-963)) (-4 *3 (-718))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) + (-12 (-5 *2 (-696)) (-4 *1 (-277 *3 *4)) (-4 *3 (-963)) (-4 *4 (-718)) (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104))))) + (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1015)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-717))))) + (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1015)) (-4 *3 (-104)) (-4 *3 (-718))))) (((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) - (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5))))) + (-12 (-5 *3 (-485)) (-4 *4 (-719)) (-4 *5 (-758)) (-4 *2 (-963)) + (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-863 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) - (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) + (-4 *5 (-758)) (-4 *6 (-963)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) - (-5 *2 (-1084 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) + (-12 (-5 *3 (-1086 *6)) (-4 *6 (-963)) (-4 *4 (-719)) (-4 *5 (-758)) + (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-863 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) - (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-271 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-863 *6 *4 *5)) (-4 *4 (-719)) (-4 *5 (-758)) + (-4 *6 (-963)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) - (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1084 *8)) - (-5 *1 (-271 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-758)) + (-4 *8 (-963)) (-4 *9 (-863 *8 *6 *7)) (-4 *6 (-719)) (-5 *2 (-1086 *8)) + (-5 *1 (-272 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-347 (-484))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) - (-14 *4 (-1089)) (-14 *5 *3)))) + (-12 (-5 *2 (-348 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1091)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-485)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-840))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-839))) - (-5 *1 (-268))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179))))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1003 (-179))) + (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-840))) + (-5 *1 (-269))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) - (-4 *5 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6)))) + (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-362 *5)) + (-4 *5 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-361 *6)) - (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-585 *7)) (-4 *7 (-362 *6)) + (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) - (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) - (-5 *1 (-267 *6 *7)))) + (-12 (-5 *3 (-585 (-249 *7))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) + (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *8)) - (-5 *6 (-584 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473)))) - (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) + (-12 (-5 *3 (-585 (-249 *8))) (-5 *4 (-585 (-86))) (-5 *5 (-249 *8)) + (-5 *6 (-585 *8)) (-4 *8 (-362 *7)) (-4 *7 (-13 (-496) (-555 (-474)))) + (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) - (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) - (-5 *1 (-267 *6 *7)))) + (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) + (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-248 *8))) - (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-495) (-554 (-473)))) - (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-86))) (-5 *6 (-585 (-249 *8))) + (-4 *8 (-362 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-555 (-474)))) + (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) - (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) + (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-362 *6)) + (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) - (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) + (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) - (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-362 *6)) + (-4 *6 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-361 *7)) - (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-585 *3)) (-4 *3 (-362 *7)) + (-4 *7 (-13 (-496) (-555 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1015))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-695))))) + (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1015))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-696))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-257)))) + (-4 *1 (-258)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2408 *1))) - (-4 *1 (-257))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-257))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1128)))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2411 *1))) + (-4 *1 (-258))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-258))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253))))) -(((*1 *1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-4 *1 (-253)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-253))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253))))) -(((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-584 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85))))) -(((*1 *2 *3) - (-12 (-5 *3 (-551 *5)) (-4 *5 (-361 *4)) (-4 *4 (-951 (-484))) (-4 *4 (-495)) - (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1084 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-261)) (-5 *1 (-251)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 (-1072))) (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251))))) -(((*1 *2 *2) - (-12 (-4 *3 (-962)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1154 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128))))) -(((*1 *2 *1) - (-12 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-495)) - (-4 *3 (-1128))))) -(((*1 *2 *3) - (-12 (-4 *4 (-389)) - (-5 *2 - (-584 - (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) - (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 *4)))))))) - (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-389)) - (-5 *2 - (-584 - (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) - (|:| |geneigvec| (-584 (-631 (-347 (-858 *4)))))))) - (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4))))))) + (-12 (-5 *2 (-585 (-552 *1))) (-5 *3 (-585 *1)) (-4 *1 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-249 *1))) (-4 *1 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254))))) +(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-552 *1)) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-552 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-585 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552 *5)) (-4 *5 (-362 *4)) (-4 *4 (-952 (-485))) (-4 *4 (-496)) + (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-552 *1)) (-4 *1 (-963)) (-4 *1 (-254)) (-5 *2 (-1086 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) +(((*1 *2 *2) + (-12 (-4 *3 (-963)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1156 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1130))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-665)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) + (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-390)) + (-5 *2 + (-585 + (-2 (|:| |eigval| (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4)))) + (|:| |eigmult| (-696)) (|:| |eigvec| (-585 (-632 (-348 (-859 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-632 (-348 (-859 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-390)) + (-5 *2 + (-585 + (-2 (|:| |eigval| (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4)))) + (|:| |geneigvec| (-585 (-632 (-348 (-859 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-632 (-348 (-859 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-347 (-858 *6)) (-1079 (-1089) (-858 *6)))) (-5 *5 (-695)) - (-4 *6 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *6))))) (-5 *1 (-247 *6)) - (-5 *4 (-631 (-347 (-858 *6)))))) + (-12 (-5 *3 (-3 (-348 (-859 *6)) (-1081 (-1091) (-859 *6)))) (-5 *5 (-696)) + (-4 *6 (-390)) (-5 *2 (-585 (-632 (-348 (-859 *6))))) (-5 *1 (-248 *6)) + (-5 *4 (-632 (-348 (-859 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) - (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) - (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) - (-5 *4 (-631 (-347 (-858 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (-4 *5 (-389)) - (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) - (-5 *4 (-631 (-347 (-858 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-4 *4 (-389)) - (-5 *2 (-584 (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4))))) - (-5 *1 (-247 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-997))) (-5 *1 (-246))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-1015))) (-5 *1 (-246))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-246))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-584 (-877))) (-5 *1 (-246))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-246))))) -(((*1 *1) (-5 *1 (-246)))) -(((*1 *1) (-5 *1 (-246)))) -(((*1 *1) (-5 *1 (-246)))) + (-2 (|:| |eigval| (-3 (-348 (-859 *5)) (-1081 (-1091) (-859 *5)))) + (|:| |eigmult| (-696)) (|:| |eigvec| (-585 *4)))) + (-4 *5 (-390)) (-5 *2 (-585 (-632 (-348 (-859 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-632 (-348 (-859 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-348 (-859 *5)) (-1081 (-1091) (-859 *5)))) (-4 *5 (-390)) + (-5 *2 (-585 (-632 (-348 (-859 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-632 (-348 (-859 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-348 (-859 *4)))) (-4 *4 (-390)) + (-5 *2 (-585 (-3 (-348 (-859 *4)) (-1081 (-1091) (-859 *4))))) + (-5 *1 (-248 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-999))) (-5 *1 (-247))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-1017))) (-5 *1 (-247))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1017)) (-5 *1 (-247))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-585 (-878))) (-5 *1 (-247))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-878))) (-5 *1 (-247))))) +(((*1 *1) (-5 *1 (-247)))) +(((*1 *1) (-5 *1 (-247)))) +(((*1 *1) (-5 *1 (-247)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) - (-4 *5 (-321 *2)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-322 *2)) + (-4 *5 (-322 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3993)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1128))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-311)) (-5 *2 (-584 (-1068 *4))) (-5 *1 (-240 *4 *5)) - (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1015)) + (-4 *2 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-312)) (-5 *2 (-585 (-1070 *4))) (-5 *1 (-240 *4 *5)) + (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3992)) (-4 *1 (-193 *3)) - (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) + (-4 *3 (-1015)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-246)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234))))) + (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1017)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-445)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-347 (-484))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-5 *3 (-348 (-485))) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))) - (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2))))) + (-12 (-5 *3 (-552 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4))) + (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1089)) - (-4 *2 (-13 (-27) (-1114) (-361 *5))) - (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *5 *2))))) + (|partial| -12 (-5 *3 (-585 (-552 *2))) (-5 *4 (-1091)) + (-4 *2 (-13 (-27) (-1116) (-362 *5))) + (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1114) (-361 *3))))) + (-12 (-4 *3 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-362 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-952 (-485)) (-582 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-362 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-952 (-485)) (-582 (-485)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) - (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-585 (-552 *3))) (|:| |vals| (-585 *3)))) + (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-362 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) - (-4 *3 (-13 (-361 *4) (-916)))))) + (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) + (-4 *3 (-13 (-362 *4) (-917)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-361 *4) (-916))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2))))) + (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-362 *4) (-917))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-362 *3) (-917)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) + (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) (((*1 *2) - (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) - (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) - (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-362 *3) (-917))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-485))) (-5 *1 (-229))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-229))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-228 *4)) + (-4 *6 (-719)) (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-963)) (-4 *3 (-758)) (-4 *5 (-228 *3)) (-4 *6 (-719)) + (-5 *2 (-1 *1 (-696))) (-4 *1 (-213 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-696)) (-4 *1 (-228 *2)) (-4 *2 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-696)))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-696)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-758)) (-5 *2 (-696))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) - (-4 *2 (-1128))))) -(((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + (|partial| -12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) + (-4 *2 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-328)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + ((*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-785)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-585 (-221))) (-5 *1 (-222))))) (((*1 *2 *3) - (-12 (-5 *3 (-837)) + (-12 (-5 *3 (-838)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) + (-12 (-5 *3 (-838)) (-5 *4 (-348 (-485))) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) - (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-5 *1 (-126)) (-5 *3 (-585 (-856 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) - (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) + (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-785)) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-221))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-347 (-484))))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-348 (-485))))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1003 (-328)))) (-5 *1 (-221))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221))))) + (-12 (-5 *3 (-585 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1183)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-789 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 *5)) (-5 *4 (-1004 (-327))) - (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-789 *5)) (-5 *4 (-1006 (-328))) + (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) - (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-328))) + (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1184)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) - (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-328))) + (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) - (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *5 (-585 (-221))) + (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) + (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-248 *7)) (-5 *4 (-1089)) (-5 *5 (-584 (-221))) - (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-757) (-951 (-484)))) (-5 *2 (-1181)) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-585 (-221))) + (-4 *7 (-362 *6)) (-4 *6 (-13 (-496) (-758) (-952 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) + (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) + (-12 (-5 *3 (-585 (-856 (-179)))) (-5 *4 (-585 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) + (-12 (-5 *3 (-585 (-179))) (-5 *4 (-585 (-221))) (-5 *2 (-1184)) (-5 *1 (-220))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) - (-5 *2 (-1182)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) + (-5 *2 (-1184)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) - (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1003 (-179))) + (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) + (-12 (-5 *2 (-1 (-856 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) + (-12 (-5 *3 (-791 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) - (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) + (-12 (-5 *3 (-791 *5)) (-5 *4 (-1006 (-328))) + (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-554 (-473)) (-1013))))) + (-12 (-5 *4 (-1006 (-328))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-555 (-474)) (-1015))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) - (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) + (-12 (-5 *3 (-794 *6)) (-5 *4 (-1006 (-328))) (-5 *5 (-585 (-221))) + (-4 *6 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) - (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) + (-12 (-5 *3 (-794 *5)) (-5 *4 (-1006 (-328))) + (-4 *5 (-13 (-555 (-474)) (-1015))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-791 (-1 (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-856 (-179)) (-179) (-179))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *5 (-585 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) - (-5 *2 (-1046 (-179))) (-5 *1 (-216))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) - ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4))))) + (-12 (-5 *3 (-794 (-1 (-179) (-179) (-179)))) (-5 *4 (-1003 (-328))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) + ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) - (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-963)) (-4 *3 (-758)) + (-4 *5 (-228 *3)) (-4 *6 (-719)) (-5 *2 (-585 (-696))))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-585 (-696)))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) - (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-963)) (-4 *4 (-758)) + (-4 *5 (-228 *4)) (-4 *6 (-719)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) + (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-963)) (-4 *4 (-758)) (-4 *5 (-719)) (-4 *2 (-228 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) - (-4 *4 (-228 *3)) (-4 *5 (-718))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) + (-4 *4 (-228 *3)) (-4 *5 (-719))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) - (-4 *4 (-228 *3)) (-4 *5 (-718))))) -(((*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-963)) (-4 *3 (-758)) + (-4 *4 (-228 *3)) (-4 *5 (-719))))) +(((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) (((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) (((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-695)) - (-4 *3 (-13 (-664) (-317) (-10 -7 (-15 ** (*3 *3 (-484)))))) + (|partial| -12 (-5 *2 (-696)) + (-4 *3 (-13 (-665) (-318) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-484)) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-248 (-858 (-484)))) - (-5 *2 - (-2 (|:| |varOrder| (-584 (-1089))) - (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) - (|:| |hom| (-584 (-1178 (-695)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-203 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-485)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 (-859 (-485)))) + (-5 *2 + (-2 (|:| |varOrder| (-585 (-1091))) + (|:| |inhom| (-3 (-585 (-1180 (-696))) "failed")) + (|:| |hom| (-585 (-1180 (-696)))))) (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) - ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-4 *1 (-193 *3)))) + ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1015))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1089)) - (-5 *5 (-751 *7)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-859 *6)) (-5 *4 (-1091)) + (-5 *5 (-752 *7)) (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-751 *6)) - (-4 *6 (-13 (-1114) (-29 *5))) - (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-752 *6)) + (-4 *6 (-13 (-1116) (-29 *5))) + (-4 *5 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1114) (-29 *6))) - (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-752 *4)) (-5 *3 (-552 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1116) (-29 *6))) + (-4 *6 (-13 (-390) (-952 (-485)) (-582 (-485)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-390) (-952 (-485)) (-582 (-485)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-963)) (-14 *3 (-585 (-1091))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1089)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1091)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) - (-14 *4 (-584 (-1089))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-963)) + (-14 *4 (-585 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) - (-14 *4 (-584 (-1089)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-963) (-758))) + (-14 *4 (-585 (-1091)))))) (((*1 *1 *2) - (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-584 (-1089)))))) + (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-963) (-758))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-585 (-1091)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) - (-14 *3 (-584 (-1089)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-963) (-758))) + (-14 *3 (-585 (-1091)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *6 (-85)) - (-4 *7 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) - (-4 *3 (-13 (-1114) (-872) (-29 *7))) + (-12 (-5 *4 (-1091)) (-5 *6 (-85)) + (-4 *7 (-13 (-258) (-120) (-952 (-485)) (-582 (-485)))) + (-4 *3 (-13 (-1116) (-873) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-752 *3)) (|:| |f2| (-585 (-752 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-752 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-348 (-485))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))) + (-12 (-5 *3 (-696)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2574 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-585 (-2 (|:| |deg| (-696)) (|:| -2577 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-298)) + (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2394 (-484))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5))))) + (|:| -1780 (-585 (-2 (|:| |irr| *3) (|:| -2397 (-485))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1154 (-347 *2))) - (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-348 *2))) + (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-345 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-584 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) + (-12 (-5 *3 (-696)) (-5 *1 (-166 *4 *2)) (-14 *4 (-832)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-346 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-584 (-484))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-585 (-485))) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-585 (-832))) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) - (-5 *2 (-1178 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) + (-12 (-5 *3 (-1093 (-348 (-485)))) (-5 *2 (-348 (-485))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1093 (-348 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 (-632 *4))) (-4 *4 (-146)) + (-5 *2 (-1180 (-632 (-859 *4)))) (-5 *1 (-163 *4))))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-585 (-776)))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-634 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1128)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4))))) + (-12 (-4 *4 (-1130)) (-5 *2 (-696)) (-5 *1 (-156 *4 *3)) (-4 *3 (-618 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) + (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-618 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-756))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-345 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1154 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1780 (-346 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1154 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-756))) - (-4 *3 (-1154 *2))))) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-757))) + (-4 *3 (-1156 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1154 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1154 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-757))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1154 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1156 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1154 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-346 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1154 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-757))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1156 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-756))) - (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-757))) + (-5 *2 (-585 (-2 (|:| -1780 (-585 *3)) (|:| -1597 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-311) (-756))) - (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-757))) + (-5 *2 (-585 (-2 (|:| -1780 (-585 *3)) (|:| -1597 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-311) (-756))))) + (-12 (-5 *2 (-585 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-757))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-312) (-757))) (-5 *2 (-585 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-311) (-1114) (-916)))))) + (-12 (-5 *2 (-1 (-856 *3) (-856 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-917)))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) + (-12 (-5 *2 (-856 *3)) (-4 *3 (-13 (-312) (-1116) (-917))) (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-78))) (-5 *1 (-149))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-348 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-246)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-633 (-235))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-634 (-235))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-585 (-634 (-235)))) (-5 *1 (-141))))) (((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-975)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-362 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1006 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2))))) (((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-362 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-362 *3))))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130))))) +(((*1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1001 *4)) - (|:| |yValues| (-1001 *4)))) - (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4))))))) + (-2 (|:| |brans| (-585 (-585 (-856 *4)))) (|:| |xValues| (-1003 *4)) + (|:| |yValues| (-1003 *4)))) + (-5 *1 (-126)) (-5 *3 (-585 (-585 (-856 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-837)) + (-12 (-5 *3 (-838)) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) + (-12 (-5 *3 (-838)) (-5 *4 (-348 (-485))) (-5 *2 - (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-585 (-585 (-856 (-179))))) + (|:| |xValues| (-1003 (-179))) (|:| |yValues| (-1003 (-179))))) (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) - (-14 *5 (-907 *3 *4))))) + (-12 (-5 *2 (-832)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) + (-14 *5 (-908 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3992)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) - (-4 *2 (-1013))))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) + (-4 *2 (-1015))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) - (|:| |c2| (-347 *5)) (|:| |deg| (-695)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-348 *5)) + (|:| |c2| (-348 *5)) (|:| |deg| (-696)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-348 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1154 (-347 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-347 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) - (-5 *2 (-2 (|:| -2400 (-695)) (|:| -3951 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1154 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) - (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-695)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) - (-5 *2 (-2 (|:| -3951 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1154 (-347 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1156 (-348 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-348 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) + (-5 *2 (-2 (|:| -2403 (-696)) (|:| -3955 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-696)) (-4 *7 (-1156 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| |radicand| (-348 *5)) (|:| |deg| (-696)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-348 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -3955 (-348 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1156 (-348 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-117))))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) @@ -13171,996 +13172,997 @@ (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114))))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-751))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-584 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-695)) (-4 *5 (-146))))) + (-12 (-5 *2 (-585 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-696)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-695)) (-4 *5 (-146))))) + (-12 (-5 *2 (-585 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-696)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-695))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107))))) + (-12 (-5 *2 (-585 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-696))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-107))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1184))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-696)) (-5 *2 (-1186))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1015))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1015))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3993)) (-4 *1 (-92 *2)) (-4 *2 (-1128))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-311) (-951 (-347 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1154 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-758)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-758))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-696)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-952 (-348 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1015))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1015))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1013)) + (-12 (-5 *2 (-86)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1015)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-585 (-1 *4 (-585 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1015))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-878))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-698))) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-697)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-697)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3994 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) - (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) - (-4 *4 (-628 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-445)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-698)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-698)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-698))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-585 (-878))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) + (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) + (-4 *4 (-629 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3994 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) - (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) - (-4 *4 (-628 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-322 *2)) (-4 *6 (-322 *2)) + (-4 *2 (-963)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) + (-4 *4 (-629 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) + (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1156 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-963)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1156 *4)) (-4 *5 (-322 *4)) (-4 *6 (-322 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-73 *3)) (-4 *3 (-1015))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1015)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1015))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1015)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1154 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-389) (-120))) - (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-311)) (-4 *5 (-495)) - (-5 *2 - (-2 (|:| |minor| (-584 (-831))) (|:| -3264 *3) - (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-631 *4)) (-4 *5 (-601 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-495)) - (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 (-584 (-831)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1128)))) - ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-390) (-120))) (-5 *2 (-346 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1156 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-390) (-120))) + (-5 *2 (-346 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-963)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-963)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1015)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *5 (-496)) + (-5 *2 + (-2 (|:| |minor| (-585 (-832))) (|:| -3268 *3) + (|:| |minors| (-585 (-585 (-832)))) (|:| |ops| (-585 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-632 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-632 *4)) (-4 *5 (-602 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-496)) + (-5 *2 (-2 (|:| |mat| (-632 *5)) (|:| |vec| (-1180 (-585 (-832)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-832)) (-4 *3 (-602 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-58 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-321 *4)) - (-4 *5 (-321 *4))))) + (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-322 *4)) + (-4 *5 (-322 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) - (-4 *3 (-321 *4))))) + (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-322 *4)) + (-4 *3 (-322 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4))))))) + (-12 (-5 *3 (-585 (-1091))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-584 (-987 *4 *5 *2))) (-4 *4 (-1013)) - (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) - (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-585 (-989 *4 *5 *2))) (-4 *4 (-1015)) + (-4 *5 (-13 (-963) (-798 *4) (-555 (-802 *4)))) + (-4 *2 (-13 (-362 *5) (-798 *4) (-555 (-802 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-584 (-987 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1013)) - (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) - (-4 *2 (-13 (-361 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-697)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) + (-12 (-5 *3 (-585 (-989 *5 *6 *2))) (-5 *4 (-832)) (-4 *5 (-1015)) + (-4 *6 (-13 (-963) (-798 *5) (-555 (-802 *5)))) + (-4 *2 (-13 (-362 *6) (-798 *5) (-555 (-802 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-698)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-698)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 (-632 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-585 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-585 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-359 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-696)) (-5 *1 (-43 *4 *3)) (-4 *3 (-359 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)))) - (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-696)) (-4 *5 (-13 (-390) (-952 (-485)))) + (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-362 *5)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *5 (-551 $)) $)) - (-15 -2996 ((-1038 *5 (-551 $)) $)) - (-15 -3943 ($ (-1038 *5 (-551 $)))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *5 (-552 $)) $)) + (-15 -2999 ((-1040 *5 (-552 $)) $)) + (-15 -3947 ($ (-1040 *5 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-361 *3)) + (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-362 *3)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $)))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-361 *3)) + (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-362 *3)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $)))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-361 *3)) + (-12 (-4 *3 (-13 (-390) (-952 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-362 *3)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $)))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) - (-15 -2996 ((-1038 *4 (-551 $)) $)) - (-15 -3943 ($ (-1038 *4 (-551 $)))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) + (-15 -2999 ((-1040 *4 (-552 $)) $)) + (-15 -3947 ($ (-1040 *4 (-552 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $))))))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 *2)) + (-12 (-5 *3 (-585 *2)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) - (-15 -2996 ((-1038 *4 (-551 $)) $)) - (-15 -3943 ($ (-1038 *4 (-551 $))))))) - (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) + (-15 -2999 ((-1040 *4 (-552 $)) $)) + (-15 -3947 ($ (-1040 *4 (-552 $))))))) + (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-584 (-551 *2))) + (-12 (-5 *3 (-585 (-552 *2))) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *4 (-551 $)) $)) - (-15 -2996 ((-1038 *4 (-551 $)) $)) - (-15 -3943 ($ (-1038 *4 (-551 $))))))) - (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *4 (-552 $)) $)) + (-15 -2999 ((-1040 *4 (-552 $)) $)) + (-15 -3947 ($ (-1040 *4 (-552 $))))))) + (-4 *4 (-496)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-311) (-253) - (-10 -8 (-15 -2997 ((-1038 *3 (-551 $)) $)) - (-15 -2996 ((-1038 *3 (-551 $)) $)) - (-15 -3943 ($ (-1038 *3 (-551 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-347 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))) + (-13 (-312) (-254) + (-10 -8 (-15 -3000 ((-1040 *3 (-552 $)) $)) + (-15 -2999 ((-1040 *3 (-552 $)) $)) + (-15 -3947 ($ (-1040 *3 (-552 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-696)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-348 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-5 *2 (-2 (|:| -3857 *3) (|:| |entry| *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1015)) (-4 *4 (-1015)) + (-5 *2 (-2 (|:| -3861 *3) (|:| |entry| *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) - (-4 *3 (-495))))) + (-12 (-5 *4 (-485)) (-4 *2 (-362 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-952 *4)) + (-4 *3 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-495)) (-5 *2 (-773)) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-362 *4)) (-4 *4 (-496)) (-5 *2 (-774)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-362 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-858 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-347 (-484)))) + (-12 (-5 *2 (-859 (-485))) (-5 *3 (-1091)) (-5 *4 (-1003 (-348 (-485)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-859 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-859 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) -((-1213 . 630555) (-1214 . 630253) (-1215 . 629857) (-1216 . 629736) - (-1217 . 629634) (-1218 . 629521) (-1219 . 629405) (-1220 . 629352) - (-1221 . 629215) (-1222 . 629140) (-1223 . 628984) (-1224 . 628756) - (-1225 . 627792) (-1226 . 627545) (-1227 . 627261) (-1228 . 626977) - (-1229 . 626693) (-1230 . 626374) (-1231 . 626282) (-1232 . 626190) - (-1233 . 626098) (-1234 . 626006) (-1235 . 625914) (-1236 . 625822) - (-1237 . 625727) (-1238 . 625632) (-1239 . 625540) (-1240 . 625448) - (-1241 . 625356) (-1242 . 625264) (-1243 . 625172) (-1244 . 625070) - (-1245 . 624968) (-1246 . 624866) (-1247 . 624774) (-1248 . 624723) - (-1249 . 624671) (-1250 . 624601) (-1251 . 624181) (-1252 . 623987) - (-1253 . 623960) (-1254 . 623837) (-1255 . 623714) (-1256 . 623570) - (-1257 . 623400) (-1258 . 623276) (-1259 . 623037) (-1260 . 622964) - (-1261 . 622739) (-1262 . 622493) (-1263 . 622440) (-1264 . 622262) - (-1265 . 622093) (-1266 . 622017) (-1267 . 621944) (-1268 . 621791) - (-1269 . 621638) (-1270 . 621454) (-1271 . 621273) (-1272 . 621218) - (-1273 . 621163) (-1274 . 621090) (-1275 . 621014) (-1276 . 620937) - (-1277 . 620869) (-1278 . 620726) (-1279 . 620619) (-1280 . 620551) - (-1281 . 620481) (-1282 . 620411) (-1283 . 620361) (-1284 . 620311) - (-1285 . 620261) (-1286 . 620140) (-1287 . 619824) (-1288 . 619755) - (-1289 . 619676) (-1290 . 619557) (-1291 . 619477) (-1292 . 619397) - (-1293 . 619244) (-1294 . 619095) (-1295 . 619019) (-1296 . 618962) - (-1297 . 618890) (-1298 . 618827) (-1299 . 618764) (-1300 . 618703) - (-1301 . 618631) (-1302 . 618515) (-1303 . 618463) (-1304 . 618408) - (-1305 . 618356) (-1306 . 618304) (-1307 . 618276) (-1308 . 618248) - (-1309 . 618220) (-1310 . 618176) (-1311 . 618105) (-1312 . 618054) - (-1313 . 618006) (-1314 . 617955) (-1315 . 617903) (-1316 . 617787) - (-1317 . 617671) (-1318 . 617579) (-1319 . 617487) (-1320 . 617364) - (-1321 . 617298) (-1322 . 617232) (-1323 . 617173) (-1324 . 617145) - (-1325 . 617117) (-1326 . 617089) (-1327 . 617061) (-1328 . 616951) - (-1329 . 616900) (-1330 . 616849) (-1331 . 616798) (-1332 . 616747) - (-1333 . 616696) (-1334 . 616645) (-1335 . 616617) (-1336 . 616589) - (-1337 . 616561) (-1338 . 616533) (-1339 . 616505) (-1340 . 616477) - (-1341 . 616449) (-1342 . 616421) (-1343 . 616393) (-1344 . 616290) - (-1345 . 616238) (-1346 . 616072) (-1347 . 615888) (-1348 . 615677) - (-1349 . 615562) (-1350 . 615329) (-1351 . 615230) (-1352 . 615137) - (-1353 . 615022) (-1354 . 614624) (-1355 . 614406) (-1356 . 614357) - (-1357 . 614329) (-1358 . 614253) (-1359 . 614154) (-1360 . 614055) - (-1361 . 613956) (-1362 . 613857) (-1363 . 613758) (-1364 . 613659) - (-1365 . 613501) (-1366 . 613425) (-1367 . 613258) (-1368 . 613200) - (-1369 . 613142) (-1370 . 612833) (-1371 . 612579) (-1372 . 612495) - (-1373 . 612363) (-1374 . 612305) (-1375 . 612253) (-1376 . 612171) - (-1377 . 612096) (-1378 . 612025) (-1379 . 611971) (-1380 . 611920) - (-1381 . 611846) (-1382 . 611772) (-1383 . 611691) (-1384 . 611610) - (-1385 . 611555) (-1386 . 611481) (-1387 . 611407) (-1388 . 611333) - (-1389 . 611256) (-1390 . 611202) (-1391 . 611144) (-1392 . 611045) - (-1393 . 610946) (-1394 . 610847) (-1395 . 610748) (-1396 . 610649) - (-1397 . 610550) (-1398 . 610451) (-1399 . 610337) (-1400 . 610223) - (-1401 . 610109) (-1402 . 609995) (-1403 . 609881) (-1404 . 609767) - (-1405 . 609650) (-1406 . 609574) (-1407 . 609498) (-1408 . 609111) - (-1409 . 608766) (-1410 . 608664) (-1411 . 608403) (-1412 . 608301) - (-1413 . 608096) (-1414 . 607983) (-1415 . 607881) (-1416 . 607724) - (-1417 . 607635) (-1418 . 607541) (-1419 . 607461) (-1420 . 607387) - (-1421 . 607309) (-1422 . 607250) (-1423 . 607192) (-1424 . 607090) - (-7 . 607062) (-8 . 607034) (-9 . 607006) (-1428 . 606887) (-1429 . 606805) - (-1430 . 606723) (-1431 . 606641) (-1432 . 606559) (-1433 . 606477) - (-1434 . 606383) (-1435 . 606313) (-1436 . 606243) (-1437 . 606152) - (-1438 . 606058) (-1439 . 605976) (-1440 . 605894) (-1441 . 605796) - (-1442 . 605636) (-1443 . 605438) (-1444 . 605302) (-1445 . 605202) - (-1446 . 605102) (-1447 . 605009) (-1448 . 604950) (-1449 . 604617) - (-1450 . 604517) (-1451 . 604399) (-1452 . 604187) (-1453 . 604008) - (-1454 . 603850) (-1455 . 603647) (-1456 . 603229) (-1457 . 603178) - (-1458 . 603069) (-1459 . 602954) (-1460 . 602885) (-1461 . 602816) - (-1462 . 602747) (-1463 . 602681) (-1464 . 602556) (-1465 . 602339) - (-1466 . 602261) (-1467 . 602211) (-1468 . 602140) (-1469 . 601997) - (-1470 . 601856) (-1471 . 601775) (-1472 . 601694) (-1473 . 601638) - (-1474 . 601582) (-1475 . 601509) (-1476 . 601369) (-1477 . 601316) - (-1478 . 601257) (-1479 . 601198) (-1480 . 601043) (-1481 . 600991) - (-1482 . 600874) (-1483 . 600757) (-1484 . 600640) (-1485 . 600509) - (-1486 . 600230) (-1487 . 600095) (-1488 . 600039) (-1489 . 599983) - (-1490 . 599924) (-1491 . 599865) (-1492 . 599809) (-1493 . 599753) - (-1494 . 599556) (-1495 . 597214) (-1496 . 597087) (-1497 . 596942) - (-1498 . 596814) (-1499 . 596762) (-1500 . 596710) (-1501 . 596658) - (-1502 . 592620) (-1503 . 592526) (-1504 . 592387) (-1505 . 592178) - (-1506 . 592076) (-1507 . 591974) (-1508 . 591059) (-1509 . 590983) - (-1510 . 590854) (-1511 . 590729) (-1512 . 590652) (-1513 . 590575) - (-1514 . 590448) (-1515 . 590321) (-1516 . 590155) (-1517 . 590028) - (-1518 . 589901) (-1519 . 589684) (-1520 . 589250) (-1521 . 588886) - (-1522 . 588834) (-1523 . 588775) (-1524 . 588687) (-1525 . 588599) - (-1526 . 588508) (-1527 . 588417) (-1528 . 588326) (-1529 . 588235) - (-1530 . 588144) (-1531 . 588053) (-1532 . 587962) (-1533 . 587871) - (-1534 . 587780) (-1535 . 587689) (-1536 . 587598) (-1537 . 587507) - (-1538 . 587416) (-1539 . 587325) (-1540 . 587234) (-1541 . 587143) - (-1542 . 587052) (-1543 . 586961) (-1544 . 586870) (-1545 . 586779) - (-1546 . 586688) (-1547 . 586597) (-1548 . 586506) (-1549 . 586415) - (-1550 . 586324) (-1551 . 586233) (-1552 . 586071) (-1553 . 585963) - (-1554 . 585720) (-1555 . 585433) (-1556 . 585238) (-1557 . 585082) - (-1558 . 584922) (-1559 . 584871) (-1560 . 584809) (-1561 . 584758) - (-1562 . 584695) (-1563 . 584642) (-1564 . 584590) (-1565 . 584538) - (-1566 . 584486) (-1567 . 584396) (-1568 . 584209) (-1569 . 584055) - (-1570 . 583975) (-1571 . 583895) (-1572 . 583815) (-1573 . 583685) - (-1574 . 583453) (-1575 . 583425) (-1576 . 583397) (-1577 . 583369) - (-1578 . 583289) (-1579 . 583212) (-1580 . 583135) (-1581 . 583054) - (-1582 . 582995) (-1583 . 582837) (-1584 . 582644) (-1585 . 582159) - (-1586 . 581917) (-1587 . 581655) (-1588 . 581554) (-1589 . 581473) - (-1590 . 581392) (-1591 . 581322) (-1592 . 581252) (-1593 . 581094) - (-1594 . 580790) (-1595 . 580562) (-1596 . 580440) (-1597 . 580382) - (-1598 . 580320) (-1599 . 580258) (-1600 . 580193) (-1601 . 580131) - (-1602 . 579852) (-1603 . 579784) (-1604 . 579574) (-1605 . 579522) - (-1606 . 579468) (-1607 . 579377) (-1608 . 579290) (-1609 . 577543) - (-1610 . 577464) (-1611 . 576719) (-1612 . 576602) (-1613 . 576396) - (-1614 . 576235) (-1615 . 576074) (-1616 . 575914) (-1617 . 575776) - (-1618 . 575682) (-1619 . 575584) (-1620 . 575490) (-1621 . 575376) - (-1622 . 575294) (-1623 . 575197) (-1624 . 575001) (-1625 . 574910) - (-1626 . 574816) (-1627 . 574749) (-1628 . 574680) (-1629 . 574628) - (-1630 . 574569) (-1631 . 574495) (-1632 . 574443) (-1633 . 574286) - (-1634 . 574129) (-1635 . 573977) (-1636 . 573219) (-1637 . 572908) - (-1638 . 572556) (-1639 . 572339) (-1640 . 572076) (-1641 . 571701) - (-1642 . 571517) (-1643 . 571383) (-1644 . 571217) (-1645 . 571051) - (-1646 . 570917) (-1647 . 570783) (-1648 . 570649) (-1649 . 570515) - (-1650 . 570384) (-1651 . 570253) (-1652 . 570122) (-1653 . 569742) - (-1654 . 569616) (-1655 . 569488) (-1656 . 569238) (-1657 . 569115) - (-1658 . 568865) (-1659 . 568742) (-1660 . 568492) (-1661 . 568369) - (-1662 . 568086) (-1663 . 567815) (-1664 . 567542) (-1665 . 567244) - (-1666 . 567142) (-1667 . 566997) (-1668 . 566856) (-1669 . 566705) - (-1670 . 566544) (-1671 . 566456) (-1672 . 566428) (-1673 . 566346) - (-1674 . 566249) (-1675 . 565781) (-1676 . 565430) (-1677 . 564997) - (-1678 . 564858) (-1679 . 564788) (-1680 . 564718) (-1681 . 564648) - (-1682 . 564557) (-1683 . 564466) (-1684 . 564375) (-1685 . 564284) - (-1686 . 564193) (-1687 . 564107) (-1688 . 564021) (-1689 . 563935) - (-1690 . 563849) (-1691 . 563763) (-1692 . 563689) (-1693 . 563584) - (-1694 . 563358) (-1695 . 563280) (-1696 . 563205) (-1697 . 563112) - (-1698 . 563008) (-1699 . 562912) (-1700 . 562743) (-1701 . 562666) - (-1702 . 562589) (-1703 . 562498) (-1704 . 562407) (-1705 . 562207) - (-1706 . 562054) (-1707 . 561901) (-1708 . 561748) (-1709 . 561595) - (-1710 . 561442) (-1711 . 561289) (-1712 . 561223) (-1713 . 561070) - (-1714 . 560917) (-1715 . 560764) (-1716 . 560611) (-1717 . 560458) - (-1718 . 560305) (-1719 . 560152) (-1720 . 559999) (-1721 . 559925) - (-1722 . 559851) (-1723 . 559796) (-1724 . 559741) (-1725 . 559686) - (-1726 . 559631) (-1727 . 559560) (-1728 . 559356) (-1729 . 559255) - (-1730 . 559067) (-1731 . 558974) (-1732 . 558838) (-1733 . 558702) - (-1734 . 558566) (-1735 . 558498) (-1736 . 558382) (-1737 . 558266) - (-1738 . 558150) (-1739 . 558097) (-1740 . 558012) (-1741 . 557927) - (-1742 . 557619) (-1743 . 557564) (-1744 . 556912) (-1745 . 556597) - (-1746 . 556313) (-1747 . 556195) (-1748 . 556076) (-1749 . 556017) - (-1750 . 555958) (-1751 . 555907) (-1752 . 555856) (-1753 . 555805) - (-1754 . 555752) (-1755 . 555699) (-1756 . 555640) (-1757 . 555527) - (-1758 . 555414) (-1759 . 555247) (-1760 . 555155) (-1761 . 555042) - (-1762 . 554958) (-1763 . 554843) (-1764 . 554752) (-1765 . 554661) - (-1766 . 554540) (-1767 . 554353) (-1768 . 554301) (-1769 . 554246) - (-1770 . 554059) (-1771 . 553936) (-1772 . 553863) (-1773 . 553790) - (-1774 . 553670) (-1775 . 553597) (-1776 . 553524) (-1777 . 553184) - (-1778 . 553111) (-1779 . 552891) (-1780 . 552558) (-1781 . 552375) - (-1782 . 552232) (-1783 . 551872) (-1784 . 551704) (-1785 . 551536) - (-1786 . 551280) (-1787 . 551024) (-1788 . 550829) (-1789 . 550634) - (-1790 . 550040) (-1791 . 549964) (-1792 . 549825) (-1793 . 549418) - (-1794 . 549291) (-1795 . 549134) (-1796 . 548817) (-1797 . 548337) - (-1798 . 547857) (-1799 . 547355) (-1800 . 547287) (-1801 . 547216) - (-1802 . 547145) (-1803 . 546973) (-1804 . 546854) (-1805 . 546735) - (-1806 . 546659) (-1807 . 546583) (-1808 . 546310) (-1809 . 546196) - (-1810 . 546145) (-1811 . 546094) (-1812 . 546043) (-1813 . 545992) - (-1814 . 545941) (-1815 . 545800) (-1816 . 545627) (-1817 . 545396) - (-1818 . 545210) (-1819 . 545182) (-1820 . 545154) (-1821 . 545126) - (-1822 . 545098) (-1823 . 545070) (-1824 . 545042) (-1825 . 545014) - (-1826 . 544963) (-1827 . 544897) (-1828 . 544807) (-1829 . 544436) - (-1830 . 544285) (-1831 . 544134) (-1832 . 543929) (-1833 . 543807) - (-1834 . 543733) (-1835 . 543656) (-1836 . 543582) (-1837 . 543505) - (-1838 . 543428) (-1839 . 543354) (-1840 . 543277) (-1841 . 543044) - (-1842 . 542891) (-1843 . 542596) (-1844 . 542443) (-1845 . 542121) - (-1846 . 541983) (-1847 . 541845) (-1848 . 541765) (-1849 . 541685) - (-1850 . 541421) (-1851 . 540690) (-1852 . 540554) (-1853 . 540464) - (-1854 . 540329) (-1855 . 540262) (-1856 . 540194) (-1857 . 540107) - (-1858 . 540020) (-1859 . 539853) (-1860 . 539779) (-1861 . 539635) - (-1862 . 539175) (-1863 . 538796) (-1864 . 538034) (-1865 . 537890) - (-1866 . 537746) (-1867 . 537584) (-1868 . 537347) (-1869 . 537207) - (-1870 . 537061) (-1871 . 536822) (-1872 . 536586) (-1873 . 536347) - (-1874 . 536155) (-1875 . 536032) (-1876 . 535828) (-1877 . 535605) - (-1878 . 535366) (-1879 . 535225) (-1880 . 535087) (-1881 . 534948) - (-1882 . 534695) (-1883 . 534439) (-1884 . 534282) (-1885 . 534128) - (-1886 . 533888) (-1887 . 533603) (-1888 . 533465) (-1889 . 533378) - (-1890 . 532712) (-1891 . 532536) (-1892 . 532354) (-1893 . 532178) - (-1894 . 531996) (-1895 . 531817) (-1896 . 531638) (-1897 . 531451) - (-1898 . 531069) (-1899 . 530890) (-1900 . 530711) (-1901 . 530524) - (-1902 . 530142) (-1903 . 529149) (-1904 . 528765) (-1905 . 528381) - (-1906 . 528263) (-1907 . 528106) (-1908 . 527964) (-1909 . 527847) - (-1910 . 527665) (-1911 . 527541) (-1912 . 527252) (-1913 . 526963) - (-1914 . 526680) (-1915 . 526397) (-1916 . 526119) (-1917 . 526031) - (-1918 . 525946) (-1919 . 525849) (-1920 . 525752) (-1921 . 525532) - (-1922 . 525432) (-1923 . 525329) (-1924 . 525251) (-1925 . 524926) - (-1926 . 524634) (-1927 . 524561) (-1928 . 524176) (-1929 . 524148) - (-1930 . 523949) (-1931 . 523775) (-1932 . 523534) (-1933 . 523479) - (-1934 . 523404) (-1935 . 523036) (-1936 . 522921) (-1937 . 522844) - (-1938 . 522771) (-1939 . 522690) (-1940 . 522609) (-1941 . 522528) - (-1942 . 522427) (-1943 . 522368) (-1944 . 522130) (-1945 . 522008) - (-1946 . 521886) (-1947 . 521659) (-1948 . 521606) (-1949 . 521552) - (-1950 . 521220) (-1951 . 520896) (-1952 . 520708) (-1953 . 520517) - (-1954 . 520353) (-1955 . 520018) (-1956 . 519851) (-1957 . 519610) - (-1958 . 519286) (-1959 . 519096) (-1960 . 518881) (-1961 . 518710) - (-1962 . 518288) (-1963 . 518061) (-1964 . 517790) (-1965 . 517653) - (-1966 . 517512) (-1967 . 517035) (-1968 . 516912) (-1969 . 516676) - (-1970 . 516422) (-1971 . 516172) (-1972 . 515879) (-1973 . 515739) - (-1974 . 515599) (-1975 . 515459) (-1976 . 515270) (-1977 . 515081) - (-1978 . 514906) (-1979 . 514632) (-1980 . 514197) (-1981 . 514169) - (-1982 . 514097) (-1983 . 513964) (-1984 . 513889) (-1985 . 513730) - (-1986 . 513567) (-1987 . 513406) (-1988 . 513239) (-1989 . 513186) - (-1990 . 513133) (-1991 . 513004) (-1992 . 512944) (-1993 . 512891) - (-1994 . 512821) (-1995 . 512761) (-1996 . 512702) (-1997 . 512642) - (-1998 . 512583) (-1999 . 512523) (-2000 . 512464) (-2001 . 512405) - (-2002 . 512263) (-2003 . 512168) (-2004 . 512077) (-2005 . 511961) - (-2006 . 511867) (-2007 . 511769) (-2008 . 511675) (-2009 . 511534) - (-2010 . 511272) (-2011 . 510416) (-2012 . 510260) (-2013 . 509891) - (-2014 . 509835) (-2015 . 509784) (-2016 . 509681) (-2017 . 509596) - (-2018 . 509508) (-2019 . 509362) (-2020 . 509213) (-2021 . 508923) - (-2022 . 508845) (-2023 . 508770) (-2024 . 508717) (-2025 . 508664) - (-2026 . 508633) (-2027 . 508570) (-2028 . 508452) (-2029 . 508363) - (-2030 . 508243) (-2031 . 507948) (-2032 . 507754) (-2033 . 507566) - (-2034 . 507421) (-2035 . 507276) (-2036 . 506990) (-2037 . 506548) - (-2038 . 506514) (-2039 . 506477) (-2040 . 506440) (-2041 . 506403) - (-2042 . 506366) (-2043 . 506335) (-2044 . 506304) (-2045 . 506273) - (-2046 . 506239) (-2047 . 506205) (-2048 . 506151) (-2049 . 505975) - (-2050 . 505741) (-2051 . 505507) (-2052 . 505278) (-2053 . 505226) - (-2054 . 505171) (-2055 . 505102) (-2056 . 505014) (-2057 . 504945) - (-2058 . 504873) (-2059 . 504643) (-2060 . 504592) (-2061 . 504538) - (-2062 . 504507) (-2063 . 504401) (-2064 . 504176) (-2065 . 503866) - (-2066 . 503692) (-2067 . 503510) (-2068 . 503239) (-2069 . 503166) - (-2070 . 503101) (-2071 . 502625) (-2072 . 502063) (-2073 . 501337) - (-2074 . 500776) (-2075 . 500148) (-2076 . 499569) (-2077 . 499495) - (-2078 . 499443) (-2079 . 499391) (-2080 . 499317) (-2081 . 499262) - (-2082 . 499210) (-2083 . 499158) (-2084 . 499106) (-2085 . 499036) - (-2086 . 498588) (-2087 . 498382) (-2088 . 498133) (-2089 . 497799) - (-2090 . 497545) (-2091 . 497243) (-2092 . 497040) (-2093 . 496751) - (-2094 . 496203) (-2095 . 496066) (-2096 . 495864) (-2097 . 495584) - (-2098 . 495499) (-2099 . 495166) (-2100 . 495025) (-2101 . 494734) - (-2102 . 494514) (-2103 . 494388) (-2104 . 494263) (-2105 . 494116) - (-2106 . 493972) (-2107 . 493856) (-2108 . 493725) (-2109 . 493353) - (-2110 . 493093) (-2111 . 492823) (-2112 . 492583) (-2113 . 492253) - (-2114 . 491913) (-2115 . 491505) (-2116 . 491087) (-2117 . 490890) - (-2118 . 490615) (-2119 . 490447) (-2120 . 490251) (-2121 . 490029) - (-2122 . 489874) (-2123 . 489689) (-2124 . 489586) (-2125 . 489558) - (-2126 . 489530) (-2127 . 489356) (-2128 . 489282) (-2129 . 489221) - (-2130 . 489168) (-2131 . 489099) (-2132 . 489030) (-2133 . 488911) - (-2134 . 488733) (-2135 . 488678) (-2136 . 488432) (-2137 . 488359) - (-2138 . 488289) (-2139 . 488219) (-2140 . 488130) (-2141 . 487940) - (-2142 . 487867) (-2143 . 487798) (-2144 . 487733) (-2145 . 487678) - (-2146 . 487587) (-2147 . 487296) (-2148 . 486970) (-2149 . 486896) - (-2150 . 486574) (-2151 . 486369) (-2152 . 486284) (-2153 . 486199) - (-2154 . 486114) (-2155 . 486029) (-2156 . 485944) (-2157 . 485859) - (-2158 . 485774) (-2159 . 485689) (-2160 . 485604) (-2161 . 485519) - (-2162 . 485434) (-2163 . 485349) (-2164 . 485264) (-2165 . 485179) - (-2166 . 485094) (-2167 . 485009) (-2168 . 484924) (-2169 . 484839) - (-2170 . 484754) (-2171 . 484669) (-2172 . 484584) (-2173 . 484499) - (-2174 . 484414) (-2175 . 484329) (-2176 . 484244) (-2177 . 484159) - (-2178 . 484057) (-2179 . 483969) (-2180 . 483761) (-2181 . 483703) - (-2182 . 483648) (-2183 . 483561) (-2184 . 483450) (-2185 . 483364) - (-2186 . 483218) (-2187 . 483156) (-2188 . 483128) (-2189 . 483100) - (-2190 . 483072) (-2191 . 483044) (-2192 . 482875) (-2193 . 482724) - (-2194 . 482573) (-2195 . 482401) (-2196 . 482193) (-2197 . 482069) - (-2198 . 481861) (-2199 . 481769) (-2200 . 481677) (-2201 . 481542) - (-2202 . 481447) (-2203 . 481353) (-2204 . 481258) (-2205 . 481134) - (-2206 . 481106) (-2207 . 481078) (-2208 . 481050) (-2209 . 481022) - (-2210 . 480994) (-2211 . 480966) (-2212 . 480938) (-2213 . 480910) - (-2214 . 480882) (-2215 . 480854) (-2216 . 480826) (-2217 . 480798) - (-2218 . 480770) (-2219 . 480742) (-2220 . 480714) (-2221 . 480686) - (-2222 . 480633) (-2223 . 480605) (-2224 . 480577) (-2225 . 480499) - (-2226 . 480446) (-2227 . 480393) (-2228 . 480340) (-2229 . 480262) - (-2230 . 480172) (-2231 . 480077) (-2232 . 479983) (-2233 . 479901) - (-2234 . 479595) (-2235 . 479399) (-2236 . 479304) (-2237 . 479196) - (-2238 . 478785) (-2239 . 478757) (-2240 . 478593) (-2241 . 478516) - (-2242 . 478329) (-2243 . 478150) (-2244 . 477726) (-2245 . 477574) - (-2246 . 477394) (-2247 . 477221) (-2248 . 476961) (-2249 . 476709) - (-2250 . 475898) (-2251 . 475731) (-2252 . 475513) (-2253 . 474689) - (-2254 . 474558) (-2255 . 474427) (-2256 . 474296) (-2257 . 474165) - (-2258 . 474034) (-2259 . 473903) (-2260 . 473708) (-2261 . 473514) - (-2262 . 473371) (-2263 . 473056) (-2264 . 472941) (-2265 . 472601) - (-2266 . 472441) (-2267 . 472302) (-2268 . 472163) (-2269 . 472034) - (-2270 . 471949) (-2271 . 471897) (-2272 . 471417) (-2273 . 470155) - (-2274 . 470028) (-2275 . 469886) (-2276 . 469550) (-2277 . 469445) - (-2278 . 469196) (-2279 . 468964) (-2280 . 468859) (-2281 . 468784) - (-2282 . 468709) (-2283 . 468634) (-2284 . 468575) (-2285 . 468505) - (-2286 . 468452) (-2287 . 468390) (-2288 . 468320) (-2289 . 467957) - (-2290 . 467670) (-2291 . 467560) (-2292 . 467373) (-2293 . 467280) - (-2294 . 467187) (-2295 . 467100) (-2296 . 466880) (-2297 . 466661) - (-2298 . 466243) (-2299 . 465971) (-2300 . 465828) (-2301 . 465735) - (-2302 . 465592) (-2303 . 465440) (-2304 . 465286) (-2305 . 465216) - (-2306 . 465009) (-2307 . 464832) (-2308 . 464623) (-2309 . 464446) - (-2310 . 464412) (-2311 . 464378) (-2312 . 464347) (-2313 . 464229) - (-2314 . 463916) (-2315 . 463638) (-2316 . 463517) (-2317 . 463390) - (-2318 . 463305) (-2319 . 463232) (-2320 . 463143) (-2321 . 463072) - (-2322 . 463016) (-2323 . 462960) (-2324 . 462904) (-2325 . 462834) - (-2326 . 462764) (-2327 . 462694) (-2328 . 462596) (-2329 . 462518) - (-2330 . 462440) (-2331 . 462297) (-2332 . 462218) (-2333 . 462146) - (-2334 . 461943) (-2335 . 461887) (-2336 . 461699) (-2337 . 461600) - (-2338 . 461482) (-2339 . 461361) (-2340 . 461218) (-2341 . 461075) - (-2342 . 460935) (-2343 . 460795) (-2344 . 460652) (-2345 . 460526) - (-2346 . 460397) (-2347 . 460274) (-2348 . 460151) (-2349 . 460046) - (-2350 . 459941) (-2351 . 459839) (-2352 . 459689) (-2353 . 459536) - (-2354 . 459383) (-2355 . 459239) (-2356 . 459085) (-2357 . 459009) - (-2358 . 458930) (-2359 . 458777) (-2360 . 458698) (-2361 . 458619) - (-2362 . 458540) (-2363 . 458438) (-2364 . 458379) (-2365 . 458317) - (-2366 . 458200) (-2367 . 458074) (-2368 . 457997) (-2369 . 457865) - (-2370 . 457559) (-2371 . 457376) (-2372 . 456831) (-2373 . 456611) - (-2374 . 456437) (-2375 . 456267) (-2376 . 456194) (-2377 . 456118) - (-2378 . 456039) (-2379 . 455742) (-2380 . 455580) (-2381 . 455346) - (-2382 . 454904) (-2383 . 454774) (-2384 . 454634) (-2385 . 454325) - (-2386 . 454023) (-2387 . 453707) (-2388 . 453301) (-2389 . 453233) - (-2390 . 453165) (-2391 . 453097) (-2392 . 453003) (-2393 . 452896) - (-2394 . 452789) (-2395 . 452688) (-2396 . 452587) (-2397 . 452486) - (-2398 . 452409) (-2399 . 452016) (-2400 . 451599) (-2401 . 450972) - (-2402 . 450908) (-2403 . 450789) (-2404 . 450670) (-2405 . 450562) - (-2406 . 450454) (-2407 . 450298) (-2408 . 449698) (-2409 . 449415) - (-2410 . 449336) (-2411 . 449282) (-2412 . 449114) (-2413 . 448992) - (-2414 . 448596) (-2415 . 448360) (-2416 . 448159) (-2417 . 447951) - (-2418 . 447758) (-2419 . 447491) (-2420 . 447312) (-2421 . 447243) - (-2422 . 447167) (-2423 . 447026) (-2424 . 446823) (-2425 . 446679) - (-2426 . 446429) (-2427 . 446121) (-2428 . 445765) (-2429 . 445606) - (-2430 . 445400) (-2431 . 445240) (-2432 . 445167) (-2433 . 445133) - (-2434 . 445068) (-2435 . 445031) (-2436 . 444894) (-2437 . 444656) - (-2438 . 444586) (-2439 . 444400) (-2440 . 444151) (-2441 . 443995) - (-2442 . 443472) (-2443 . 443275) (-2444 . 443063) (-2445 . 442901) - (-2446 . 442502) (-2447 . 442335) (-2448 . 441260) (-2449 . 441137) - (-2450 . 440920) (-2451 . 440790) (-2452 . 440660) (-2453 . 440503) - (-2454 . 440400) (-2455 . 440342) (-2456 . 440284) (-2457 . 440178) - (-2458 . 440072) (-2459 . 439156) (-2460 . 437029) (-2461 . 436215) - (-2462 . 434412) (-2463 . 434344) (-2464 . 434276) (-2465 . 434208) - (-2466 . 434140) (-2467 . 434072) (-2468 . 433994) (-2469 . 433638) - (-2470 . 433456) (-2471 . 432917) (-2472 . 432741) (-2473 . 432520) - (-2474 . 432299) (-2475 . 432078) (-2476 . 431860) (-2477 . 431642) - (-2478 . 431424) (-2479 . 431206) (-2480 . 430988) (-2481 . 430770) - (-2482 . 430669) (-2483 . 429936) (-2484 . 429881) (-2485 . 429826) - (-2486 . 429771) (-2487 . 429716) (-2488 . 429566) (-2489 . 429318) - (-2490 . 429157) (-2491 . 428977) (-2492 . 428690) (-2493 . 428304) - (-2494 . 427432) (-2495 . 427092) (-2496 . 426924) (-2497 . 426702) - (-2498 . 426452) (-2499 . 426104) (-2500 . 425094) (-2501 . 424783) - (-2502 . 424571) (-2503 . 424007) (-2504 . 423494) (-2505 . 421738) - (-2506 . 421266) (-2507 . 420667) (-2508 . 420417) (-2509 . 420283) - (-2510 . 420071) (-2511 . 419995) (-2512 . 419919) (-2513 . 419812) - (-2514 . 419630) (-2515 . 419465) (-2516 . 419287) (-2517 . 418706) - (-2518 . 418545) (-2519 . 417972) (-2520 . 417902) (-2521 . 417827) - (-2522 . 417755) (-2523 . 417617) (-2524 . 417430) (-2525 . 417323) - (-2526 . 417216) (-2527 . 417101) (-2528 . 416986) (-2529 . 416871) - (-2530 . 416593) (-2531 . 416443) (-2532 . 416300) (-2533 . 416227) - (-2534 . 416142) (-2535 . 416069) (-2536 . 415996) (-2537 . 415923) - (-2538 . 415780) (-2539 . 415630) (-2540 . 415456) (-2541 . 415306) - (-2542 . 415156) (-2543 . 415030) (-2544 . 414644) (-2545 . 414360) - (-2546 . 414076) (-2547 . 413667) (-2548 . 413383) (-2549 . 413310) - (-2550 . 413163) (-2551 . 413057) (-2552 . 412983) (-2553 . 412913) - (-2554 . 412834) (-2555 . 412757) (-2556 . 412680) (-2557 . 412531) - (-2558 . 412428) (-2559 . 412370) (-2560 . 412306) (-2561 . 412242) - (-2562 . 412145) (-2563 . 412048) (-2564 . 411888) (-2565 . 411802) - (-2566 . 411716) (-2567 . 411631) (-2568 . 411572) (-2569 . 411513) - (-2570 . 411454) (-2571 . 411395) (-2572 . 411225) (-2573 . 411137) - (-2574 . 411040) (-2575 . 411006) (-2576 . 410975) (-2577 . 410891) - (-2578 . 410835) (-2579 . 410773) (-2580 . 410739) (-2581 . 410705) - (-2582 . 410671) (-2583 . 410637) (-2584 . 410603) (-2585 . 410569) - (-2586 . 410535) (-2587 . 410501) (-2588 . 410467) (-2589 . 410355) - (-2590 . 410321) (-2591 . 410270) (-2592 . 410236) (-2593 . 410139) - (-2594 . 410077) (-2595 . 409986) (-2596 . 409895) (-2597 . 409840) - (-2598 . 409788) (-2599 . 409736) (-2600 . 409684) (-2601 . 409632) - (-2602 . 409209) (-2603 . 409043) (-2604 . 408990) (-2605 . 408921) - (-2606 . 408868) (-2607 . 408638) (-2608 . 408482) (-2609 . 407961) - (-2610 . 407820) (-2611 . 407786) (-2612 . 407731) (-2613 . 407021) - (-2614 . 406706) (-2615 . 406202) (-2616 . 406124) (-2617 . 406072) - (-2618 . 406020) (-2619 . 405836) (-2620 . 405784) (-2621 . 405732) - (-2622 . 405656) (-2623 . 405594) (-2624 . 405376) (-2625 . 405309) - (-2626 . 405215) (-2627 . 405121) (-2628 . 404938) (-2629 . 404856) - (-2630 . 404734) (-2631 . 404588) (-2632 . 403937) (-2633 . 403235) - (-2634 . 403131) (-2635 . 403030) (-2636 . 402929) (-2637 . 402818) - (-2638 . 402650) (-2639 . 402446) (-2640 . 402353) (-2641 . 402276) - (-2642 . 402220) (-2643 . 402150) (-2644 . 402030) (-2645 . 401929) - (-2646 . 401832) (-2647 . 401752) (-2648 . 401672) (-2649 . 401595) - (-2650 . 401525) (-2651 . 401455) (-2652 . 401385) (-2653 . 401315) - (-2654 . 401245) (-2655 . 401175) (-2656 . 401082) (-2657 . 400954) - (-2658 . 400712) (-2659 . 400542) (-2660 . 400173) (-2661 . 400004) - (-2662 . 399888) (-2663 . 399392) (-2664 . 399011) (-2665 . 398765) - (-2666 . 398673) (-2667 . 398576) (-2668 . 397914) (-2669 . 397801) - (-2670 . 397727) (-2671 . 397635) (-2672 . 397445) (-2673 . 397255) - (-2674 . 397184) (-2675 . 397113) (-2676 . 397032) (-2677 . 396951) - (-2678 . 396826) (-2679 . 396693) (-2680 . 396612) (-2681 . 396538) - (-2682 . 396373) (-2683 . 396216) (-2684 . 395988) (-2685 . 395840) - (-2686 . 395736) (-2687 . 395632) (-2688 . 395547) (-2689 . 395179) - (-2690 . 395098) (-2691 . 395011) (-2692 . 394930) (-2693 . 394734) - (-2694 . 394514) (-2695 . 394327) (-2696 . 394005) (-2697 . 393712) - (-2698 . 393419) (-2699 . 393109) (-2700 . 392792) (-2701 . 392640) - (-2702 . 392452) (-2703 . 391979) (-2704 . 391897) (-2705 . 391681) - (-2706 . 391465) (-2707 . 391206) (-2708 . 390785) (-2709 . 390272) - (-2710 . 390142) (-2711 . 389868) (-2712 . 389689) (-2713 . 389574) - (-2714 . 389470) (-2715 . 389415) (-2716 . 389338) (-2717 . 389268) - (-2718 . 389195) (-2719 . 389140) (-2720 . 389067) (-2721 . 389012) - (-2722 . 388657) (-2723 . 388249) (-2724 . 388096) (-2725 . 387943) - (-2726 . 387862) (-2727 . 387709) (-2728 . 387556) (-2729 . 387421) - (-2730 . 387286) (-2731 . 387151) (-2732 . 387016) (-2733 . 386881) - (-2734 . 386746) (-2735 . 386690) (-2736 . 386537) (-2737 . 386426) - (-2738 . 386315) (-2739 . 386230) (-2740 . 386120) (-2741 . 386017) - (-2742 . 381866) (-2743 . 381418) (-2744 . 380991) (-2745 . 380374) - (-2746 . 379773) (-2747 . 379555) (-2748 . 379377) (-2749 . 379118) - (-2750 . 378707) (-2751 . 378413) (-2752 . 377970) (-2753 . 377792) - (-2754 . 377399) (-2755 . 377006) (-2756 . 376821) (-2757 . 376614) - (-2758 . 376394) (-2759 . 376088) (-2760 . 375889) (-2761 . 375260) - (-2762 . 375103) (-2763 . 374714) (-2764 . 374663) (-2765 . 374614) - (-2766 . 374563) (-2767 . 374515) (-2768 . 374463) (-2769 . 374317) - (-2770 . 374265) (-2771 . 374119) (-2772 . 374067) (-2773 . 373921) - (-2774 . 373870) (-2775 . 373495) (-2776 . 373444) (-2777 . 373395) - (-2778 . 373344) (-2779 . 373296) (-2780 . 373244) (-2781 . 373195) - (-2782 . 373143) (-2783 . 373094) (-2784 . 373042) (-2785 . 372993) - (-2786 . 372927) (-2787 . 372809) (-2788 . 371647) (-2789 . 371230) - (-2790 . 371122) (-2791 . 370880) (-2792 . 370730) (-2793 . 370580) - (-2794 . 370419) (-2795 . 368212) (-2796 . 367951) (-2797 . 367797) - (-2798 . 367651) (-2799 . 367505) (-2800 . 367286) (-2801 . 367154) - (-2802 . 367079) (-2803 . 367004) (-2804 . 366869) (-2805 . 366740) - (-2806 . 366611) (-2807 . 366485) (-2808 . 366359) (-2809 . 366233) - (-2810 . 366107) (-2811 . 366004) (-2812 . 365904) (-2813 . 365810) - (-2814 . 365680) (-2815 . 365529) (-2816 . 365153) (-2817 . 365039) - (-2818 . 364798) (-2819 . 364340) (-2820 . 364030) (-2821 . 363463) - (-2822 . 362894) (-2823 . 361884) (-2824 . 361342) (-2825 . 361029) - (-2826 . 360691) (-2827 . 360360) (-2828 . 360040) (-2829 . 359987) - (-2830 . 359860) (-2831 . 359358) (-2832 . 358215) (-2833 . 358160) - (-2834 . 358105) (-2835 . 358029) (-2836 . 357910) (-2837 . 357835) - (-2838 . 357760) (-2839 . 357682) (-2840 . 357459) (-2841 . 357400) - (-2842 . 357341) (-2843 . 357238) (-2844 . 357135) (-2845 . 357032) - (-2846 . 356929) (-2847 . 356848) (-2848 . 356774) (-2849 . 356559) - (-2850 . 356325) (-2851 . 356291) (-2852 . 356257) (-2853 . 356229) - (-2854 . 356201) (-2855 . 355984) (-2856 . 355706) (-2857 . 355556) - (-2858 . 355426) (-2859 . 355296) (-2860 . 355196) (-2861 . 355019) - (-2862 . 354859) (-2863 . 354759) (-2864 . 354582) (-2865 . 354422) - (-2866 . 354263) (-2867 . 354124) (-2868 . 353974) (-2869 . 353844) - (-2870 . 353714) (-2871 . 353567) (-2872 . 353440) (-2873 . 353337) - (-2874 . 353230) (-2875 . 353133) (-2876 . 352968) (-2877 . 352820) - (-2878 . 352405) (-2879 . 352305) (-2880 . 352202) (-2881 . 352114) - (-2882 . 352034) (-2883 . 351884) (-2884 . 351754) (-2885 . 351702) - (-2886 . 351629) (-2887 . 351554) (-2888 . 351278) (-2889 . 351166) - (-2890 . 350854) (-2891 . 350677) (-2892 . 349079) (-2893 . 348451) - (-2894 . 348391) (-2895 . 348273) (-2896 . 348155) (-2897 . 348011) - (-2898 . 347859) (-2899 . 347700) (-2900 . 347541) (-2901 . 347335) - (-2902 . 347148) (-2903 . 346996) (-2904 . 346841) (-2905 . 346686) - (-2906 . 346534) (-2907 . 346397) (-2908 . 345974) (-2909 . 345848) - (-2910 . 345722) (-2911 . 345596) (-2912 . 345456) (-2913 . 345315) - (-2914 . 345174) (-2915 . 345030) (-2916 . 344282) (-2917 . 344124) - (-2918 . 343938) (-2919 . 343783) (-2920 . 343545) (-2921 . 343300) - (-2922 . 343055) (-2923 . 342845) (-2924 . 342708) (-2925 . 342498) - (-2926 . 342361) (-2927 . 342151) (-2928 . 342014) (-2929 . 341804) - (-2930 . 341501) (-2931 . 341357) (-2932 . 341216) (-2933 . 340993) - (-2934 . 340852) (-2935 . 340630) (-2936 . 340433) (-2937 . 340277) - (-2938 . 339950) (-2939 . 339791) (-2940 . 339632) (-2941 . 339473) - (-2942 . 339302) (-2943 . 339131) (-2944 . 338957) (-2945 . 338605) - (-2946 . 338482) (-2947 . 338320) (-2948 . 338247) (-2949 . 338174) - (-2950 . 338101) (-2951 . 338028) (-2952 . 337955) (-2953 . 337882) - (-2954 . 337759) (-2955 . 337586) (-2956 . 337463) (-2957 . 337377) - (-2958 . 337311) (-2959 . 337245) (-2960 . 337179) (-2961 . 337113) - (-2962 . 337047) (-2963 . 336981) (-2964 . 336915) (-2965 . 336849) - (-2966 . 336783) (-2967 . 336717) (-2968 . 336651) (-2969 . 336585) - (-2970 . 336519) (-2971 . 336453) (-2972 . 336387) (-2973 . 336321) - (-2974 . 336255) (-2975 . 336189) (-2976 . 336123) (-2977 . 336057) - (-2978 . 335991) (-2979 . 335925) (-2980 . 335859) (-2981 . 335793) - (-2982 . 335727) (-2983 . 335661) (-2984 . 335014) (-2985 . 334367) - (-2986 . 334239) (-2987 . 334116) (-2988 . 333993) (-2989 . 333852) - (-2990 . 333698) (-2991 . 333554) (-2992 . 333379) (-2993 . 332769) - (-2994 . 332645) (-2995 . 332521) (-2996 . 331843) (-2997 . 331146) - (-2998 . 331045) (-2999 . 330989) (-3000 . 330933) (-3001 . 330877) - (-3002 . 330821) (-3003 . 330762) (-3004 . 330698) (-3005 . 330590) - (-3006 . 330482) (-3007 . 330374) (-3008 . 330095) (-3009 . 330021) - (-3010 . 329795) (-3011 . 329714) (-3012 . 329636) (-3013 . 329558) - (-3014 . 329480) (-3015 . 329401) (-3016 . 329323) (-3017 . 329230) - (-3018 . 329131) (-3019 . 329063) (-3020 . 329014) (-3021 . 328323) - (-3022 . 327683) (-3023 . 326892) (-3024 . 326811) (-3025 . 326707) - (-3026 . 326616) (-3027 . 326525) (-3028 . 326451) (-3029 . 326377) - (-3030 . 326303) (-3031 . 326248) (-3032 . 326193) (-3033 . 326127) - (-3034 . 326061) (-3035 . 325999) (-3036 . 325724) (-3037 . 325232) - (-3038 . 324774) (-3039 . 324521) (-3040 . 324333) (-3041 . 323992) - (-3042 . 323696) (-3043 . 323528) (-3044 . 323397) (-3045 . 323257) - (-3046 . 323102) (-3047 . 322933) (-3048 . 321547) (-3049 . 321414) - (-3050 . 321273) (-3051 . 321044) (-3052 . 320985) (-3053 . 320929) - (-3054 . 320873) (-3055 . 320608) (-3056 . 320396) (-3057 . 320257) - (-3058 . 320150) (-3059 . 320033) (-3060 . 319967) (-3061 . 319894) - (-3062 . 319780) (-3063 . 319527) (-3064 . 319427) (-3065 . 319233) - (-3066 . 318925) (-3067 . 318459) (-3068 . 318354) (-3069 . 318248) - (-3070 . 318099) (-3071 . 317959) (-3072 . 317547) (-3073 . 317303) - (-3074 . 316645) (-3075 . 316492) (-3076 . 316378) (-3077 . 316268) - (-3078 . 315448) (-3079 . 315254) (-3080 . 314228) (-3081 . 313780) - (-3082 . 312391) (-3083 . 311540) (-3084 . 311491) (-3085 . 311442) - (-3086 . 311393) (-3087 . 311326) (-3088 . 311251) (-3089 . 311061) - (-3090 . 310989) (-3091 . 310914) (-3092 . 310842) (-3093 . 310725) - (-3094 . 310674) (-3095 . 310595) (-3096 . 310516) (-3097 . 310437) - (-3098 . 310386) (-3099 . 310142) (-3100 . 309840) (-3101 . 309758) - (-3102 . 309676) (-3103 . 309615) (-3104 . 309226) (-3105 . 308354) - (-3106 . 307781) (-3107 . 306546) (-3108 . 305739) (-3109 . 305489) - (-3110 . 305239) (-3111 . 304814) (-3112 . 304570) (-3113 . 304326) - (-3114 . 304082) (-3115 . 303838) (-3116 . 303594) (-3117 . 303350) - (-3118 . 303108) (-3119 . 302866) (-3120 . 302624) (-3121 . 302382) - (-3122 . 301804) (-3123 . 301688) (-3124 . 300846) (-3125 . 300815) - (-3126 . 300470) (-3127 . 300244) (-3128 . 300145) (-3129 . 300046) - (-3130 . 298280) (-3131 . 298168) (-3132 . 297118) (-3133 . 297026) - (-3134 . 296104) (-3135 . 295771) (-3136 . 295438) (-3137 . 295335) - (-3138 . 295224) (-3139 . 295113) (-3140 . 295002) (-3141 . 294891) - (-3142 . 293804) (-3143 . 293684) (-3144 . 293549) (-3145 . 293417) - (-3146 . 293285) (-3147 . 292991) (-3148 . 292697) (-3149 . 292352) - (-3150 . 292126) (-3151 . 291900) (-3152 . 291789) (-3153 . 291678) - (-3154 . 290216) (-3155 . 288512) (-3156 . 288203) (-3157 . 288051) - (-3158 . 287528) (-3159 . 287199) (-3160 . 287006) (-3161 . 286813) - (-3162 . 286620) (-3163 . 286427) (-3164 . 286314) (-3165 . 286191) - (-3166 . 286077) (-3167 . 285963) (-3168 . 285870) (-3169 . 285777) - (-3170 . 285667) (-3171 . 285466) (-3172 . 284322) (-3173 . 284229) - (-3174 . 284115) (-3175 . 284022) (-3176 . 283775) (-3177 . 283664) - (-3178 . 283450) (-3179 . 283332) (-3180 . 283035) (-3181 . 282307) - (-3182 . 281731) (-3183 . 281253) (-3184 . 281009) (-3185 . 280765) - (-3186 . 280422) (-3187 . 279816) (-3188 . 279373) (-3189 . 279218) - (-3190 . 279074) (-3191 . 278754) (-3192 . 278599) (-3193 . 278459) - (-3194 . 278319) (-3195 . 278179) (-3196 . 277904) (-3197 . 277685) - (-3198 . 277166) (-3199 . 276954) (-3200 . 276742) (-3201 . 276362) - (-3202 . 276188) (-3203 . 275979) (-3204 . 275671) (-3205 . 275479) - (-3206 . 275306) (-3207 . 274170) (-3208 . 273805) (-3209 . 273605) - (-3210 . 273405) (-3211 . 272569) (-3212 . 272541) (-3213 . 272473) - (-3214 . 272403) (-3215 . 272239) (-3216 . 272211) (-3217 . 272183) - (-3218 . 272129) (-3219 . 271979) (-3220 . 271920) (-3221 . 271227) - (-3222 . 269842) (-3223 . 269781) (-3224 . 269457) (-3225 . 269385) - (-3226 . 269328) (-3227 . 269271) (-3228 . 269214) (-3229 . 269157) - (-3230 . 269082) (-3231 . 268492) (-3232 . 268132) (-3233 . 268058) - (-3234 . 267998) (-3235 . 267880) (-3236 . 266937) (-3237 . 266810) - (-3238 . 266597) (-3239 . 266523) (-3240 . 266469) (-3241 . 266415) - (-3242 . 266306) (-3243 . 265996) (-3244 . 265888) (-3245 . 265785) - (-3246 . 265624) (-3247 . 265523) (-3248 . 265425) (-3249 . 265287) - (-3250 . 265149) (-3251 . 265011) (-3252 . 264749) (-3253 . 264540) - (-3254 . 264402) (-3255 . 264111) (-3256 . 263959) (-3257 . 263684) - (-3258 . 263464) (-3259 . 263312) (-3260 . 263160) (-3261 . 263008) - (-3262 . 262856) (-3263 . 262704) (-3264 . 262497) (-3265 . 262110) - (-3266 . 261779) (-3267 . 261440) (-3268 . 261093) (-3269 . 260754) - (-3270 . 260415) (-3271 . 260034) (-3272 . 259653) (-3273 . 259272) - (-3274 . 258907) (-3275 . 258189) (-3276 . 257842) (-3277 . 257397) - (-3278 . 256972) (-3279 . 256361) (-3280 . 255769) (-3281 . 255382) - (-3282 . 255051) (-3283 . 254664) (-3284 . 254333) (-3285 . 254113) - (-3286 . 253592) (-3287 . 253379) (-3288 . 253166) (-3289 . 252953) - (-3290 . 252775) (-3291 . 252562) (-3292 . 252384) (-3293 . 252002) - (-3294 . 251824) (-3295 . 251614) (-3296 . 251524) (-3297 . 251434) - (-3298 . 251343) (-3299 . 251231) (-3300 . 251141) (-3301 . 251034) - (-3302 . 250845) (-3303 . 250789) (-3304 . 250708) (-3305 . 250627) - (-3306 . 250546) (-3307 . 250469) (-3308 . 250334) (-3309 . 250199) - (-3310 . 250075) (-3311 . 249954) (-3312 . 249836) (-3313 . 249700) - (-3314 . 249567) (-3315 . 249448) (-3316 . 249190) (-3317 . 248905) - (-3318 . 248833) (-3319 . 248737) (-3320 . 248596) (-3321 . 248539) - (-3322 . 248482) (-3323 . 248422) (-3324 . 248027) (-3325 . 247505) - (-3326 . 247228) (-3327 . 246808) (-3328 . 246696) (-3329 . 246258) - (-3330 . 246028) (-3331 . 245825) (-3332 . 245643) (-3333 . 245513) - (-3334 . 245307) (-3335 . 245100) (-3336 . 244910) (-3337 . 244345) - (-3338 . 244089) (-3339 . 243798) (-3340 . 243504) (-3341 . 243207) - (-3342 . 242907) (-3343 . 242777) (-3344 . 242644) (-3345 . 242508) - (-3346 . 242369) (-3347 . 241152) (-3348 . 240844) (-3349 . 240480) - (-3350 . 240383) (-3351 . 240143) (-3352 . 239848) (-3353 . 239553) - (-3354 . 239294) (-3355 . 239120) (-3356 . 239042) (-3357 . 238955) - (-3358 . 238855) (-3359 . 238761) (-3360 . 238680) (-3361 . 238610) - (-3362 . 237819) (-3363 . 237749) (-3364 . 237421) (-3365 . 237351) - (-3366 . 237023) (-3367 . 236953) (-3368 . 236508) (-3369 . 236438) - (-3370 . 236334) (-3371 . 236260) (-3372 . 236186) (-3373 . 236115) - (-3374 . 235773) (-3375 . 235645) (-3376 . 235568) (-3377 . 235337) - (-3378 . 235194) (-3379 . 235051) (-3380 . 234712) (-3381 . 234382) - (-3382 . 234169) (-3383 . 233914) (-3384 . 233564) (-3385 . 233339) - (-3386 . 233114) (-3387 . 232889) (-3388 . 232664) (-3389 . 232451) - (-3390 . 232238) (-3391 . 232088) (-3392 . 231907) (-3393 . 231802) - (-3394 . 231680) (-3395 . 231572) (-3396 . 231464) (-3397 . 231139) - (-3398 . 230875) (-3399 . 230564) (-3400 . 230262) (-3401 . 229953) - (-3402 . 229224) (-3403 . 228635) (-3404 . 228460) (-3405 . 228316) - (-3406 . 228161) (-3407 . 228038) (-3408 . 227933) (-3409 . 227818) - (-3410 . 227723) (-3411 . 227242) (-3412 . 227132) (-3413 . 227022) - (-3414 . 226912) (-3415 . 225840) (-3416 . 225329) (-3417 . 225262) - (-3418 . 225189) (-3419 . 224316) (-3420 . 224243) (-3421 . 224188) - (-3422 . 224133) (-3423 . 224101) (-3424 . 224015) (-3425 . 223983) - (-3426 . 223897) (-3427 . 223477) (-3428 . 223057) (-3429 . 222505) - (-3430 . 221401) (-3431 . 219691) (-3432 . 218141) (-3433 . 217349) - (-3434 . 216849) (-3435 . 216363) (-3436 . 215961) (-3437 . 215311) - (-3438 . 215236) (-3439 . 215145) (-3440 . 215074) (-3441 . 215003) - (-3442 . 214947) (-3443 . 214827) (-3444 . 214773) (-3445 . 214712) - (-3446 . 214658) (-3447 . 214555) (-3448 . 214115) (-3449 . 213675) - (-3450 . 213235) (-3451 . 212713) (-3452 . 212552) (-3453 . 212391) - (-3454 . 212080) (-3455 . 211994) (-3456 . 211904) (-3457 . 211546) - (-3458 . 211429) (-3459 . 211348) (-3460 . 211190) (-3461 . 211077) - (-3462 . 211002) (-3463 . 210156) (-3464 . 208974) (-3465 . 208875) - (-3466 . 208776) (-3467 . 208447) (-3468 . 208369) (-3469 . 208294) - (-3470 . 208188) (-3471 . 208032) (-3472 . 207925) (-3473 . 207790) - (-3474 . 207655) (-3475 . 207533) (-3476 . 207438) (-3477 . 207290) - (-3478 . 207195) (-3479 . 207040) (-3480 . 206885) (-3481 . 206333) - (-3482 . 205781) (-3483 . 205166) (-3484 . 204614) (-3485 . 204062) - (-3486 . 203510) (-3487 . 202957) (-3488 . 202404) (-3489 . 201851) - (-3490 . 201298) (-3491 . 200745) (-3492 . 200192) (-3493 . 199640) - (-3494 . 199088) (-3495 . 198536) (-3496 . 197984) (-3497 . 197432) - (-3498 . 196880) (-3499 . 196776) (-3500 . 196191) (-3501 . 196086) - (-3502 . 196011) (-3503 . 195869) (-3504 . 195777) (-3505 . 195686) - (-3506 . 195594) (-3507 . 195499) (-3508 . 195394) (-3509 . 195271) - (-3510 . 195149) (-3511 . 194785) (-3512 . 194663) (-3513 . 194565) - (-3514 . 194204) (-3515 . 193675) (-3516 . 193600) (-3517 . 193525) - (-3518 . 193433) (-3519 . 193252) (-3520 . 193157) (-3521 . 193082) - (-3522 . 192991) (-3523 . 192900) (-3524 . 192741) (-3525 . 192192) - (-3526 . 191643) (-3527 . 188936) (-3528 . 188764) (-3529 . 187354) - (-3530 . 186794) (-3531 . 186679) (-3532 . 186307) (-3533 . 186244) - (-3534 . 186181) (-3535 . 186118) (-3536 . 185840) (-3537 . 185573) - (-3538 . 185521) (-3539 . 184880) (-3540 . 184829) (-3541 . 184641) - (-3542 . 184568) (-3543 . 184488) (-3544 . 184375) (-3545 . 184185) - (-3546 . 183821) (-3547 . 183549) (-3548 . 183498) (-3549 . 183447) - (-3550 . 183377) (-3551 . 183258) (-3552 . 183229) (-3553 . 183125) - (-3554 . 183003) (-3555 . 182949) (-3556 . 182772) (-3557 . 182711) - (-3558 . 182530) (-3559 . 182469) (-3560 . 182397) (-3561 . 181922) - (-3562 . 181548) (-3563 . 178016) (-3564 . 177964) (-3565 . 177836) - (-3566 . 177686) (-3567 . 177634) (-3568 . 177493) (-3569 . 175435) - (-3570 . 167792) (-3571 . 167641) (-3572 . 167571) (-3573 . 167520) - (-3574 . 167470) (-3575 . 167419) (-3576 . 167368) (-3577 . 167172) - (-3578 . 167030) (-3579 . 166916) (-3580 . 166795) (-3581 . 166677) - (-3582 . 166565) (-3583 . 166447) (-3584 . 166342) (-3585 . 166261) - (-3586 . 166157) (-3587 . 165223) (-3588 . 165003) (-3589 . 164766) - (-3590 . 164684) (-3591 . 164340) (-3592 . 163201) (-3593 . 163127) - (-3594 . 163032) (-3595 . 162958) (-3596 . 162754) (-3597 . 162663) - (-3598 . 162547) (-3599 . 162434) (-3600 . 162343) (-3601 . 162252) - (-3602 . 162163) (-3603 . 162074) (-3604 . 161985) (-3605 . 161897) - (-3606 . 161409) (-3607 . 161345) (-3608 . 161281) (-3609 . 161217) - (-3610 . 161156) (-3611 . 160416) (-3612 . 160355) (-3613 . 160294) - (-3614 . 159668) (-3615 . 159616) (-3616 . 159488) (-3617 . 159424) - (-3618 . 159370) (-3619 . 159261) (-3620 . 157964) (-3621 . 157883) - (-3622 . 157794) (-3623 . 157736) (-3624 . 157596) (-3625 . 157511) - (-3626 . 157437) (-3627 . 157352) (-3628 . 157295) (-3629 . 157079) - (-3630 . 156940) (-3631 . 156333) (-3632 . 155779) (-3633 . 155225) - (-3634 . 154671) (-3635 . 154064) (-3636 . 153510) (-3637 . 152950) - (-3638 . 152390) (-3639 . 152128) (-3640 . 151689) (-3641 . 151356) - (-3642 . 151017) (-3643 . 150712) (-3644 . 150579) (-3645 . 150446) - (-3646 . 150058) (-3647 . 149965) (-3648 . 149872) (-3649 . 149779) - (-3650 . 149686) (-3651 . 149593) (-3652 . 149500) (-3653 . 149407) - (-3654 . 149314) (-3655 . 149221) (-3656 . 149128) (-3657 . 149035) - (-3658 . 148942) (-3659 . 148849) (-3660 . 148756) (-3661 . 148663) - (-3662 . 148570) (-3663 . 148477) (-3664 . 148384) (-3665 . 148291) - (-3666 . 148198) (-3667 . 148105) (-3668 . 148012) (-3669 . 147919) - (-3670 . 147826) (-3671 . 147733) (-3672 . 147548) (-3673 . 147238) - (-3674 . 145610) (-3675 . 145456) (-3676 . 145319) (-3677 . 145177) - (-3678 . 144975) (-3679 . 143048) (-3680 . 142921) (-3681 . 142797) - (-3682 . 142670) (-3683 . 142449) (-3684 . 142228) (-3685 . 142101) - (-3686 . 141900) (-3687 . 141724) (-3688 . 141207) (-3689 . 140690) - (-3690 . 140413) (-3691 . 140004) (-3692 . 139487) (-3693 . 139303) - (-3694 . 139161) (-3695 . 138666) (-3696 . 138035) (-3697 . 137979) - (-3698 . 137885) (-3699 . 137766) (-3700 . 137696) (-3701 . 137623) - (-3702 . 137393) (-3703 . 136774) (-3704 . 136344) (-3705 . 136262) - (-3706 . 136120) (-3707 . 135646) (-3708 . 135524) (-3709 . 135402) - (-3710 . 135262) (-3711 . 135075) (-3712 . 134959) (-3713 . 134679) - (-3714 . 134611) (-3715 . 134413) (-3716 . 134233) (-3717 . 134078) - (-3718 . 133971) (-3719 . 133920) (-3720 . 133543) (-3721 . 133015) - (-3722 . 132793) (-3723 . 132571) (-3724 . 132332) (-3725 . 132242) - (-3726 . 130500) (-3727 . 129918) (-3728 . 129840) (-3729 . 124380) - (-3730 . 123590) (-3731 . 123213) (-3732 . 123142) (-3733 . 122877) - (-3734 . 122702) (-3735 . 122217) (-3736 . 121795) (-3737 . 121355) - (-3738 . 120492) (-3739 . 120368) (-3740 . 120241) (-3741 . 120132) - (-3742 . 119980) (-3743 . 119866) (-3744 . 119727) (-3745 . 119646) - (-3746 . 119565) (-3747 . 119461) (-3748 . 119043) (-3749 . 118622) - (-3750 . 118548) (-3751 . 118285) (-3752 . 118021) (-3753 . 117642) - (-3754 . 116943) (-3755 . 115900) (-3756 . 115841) (-3757 . 115767) - (-3758 . 115693) (-3759 . 115571) (-3760 . 115321) (-3761 . 115235) - (-3762 . 115160) (-3763 . 115085) (-3764 . 114990) (-3765 . 111215) - (-3766 . 110045) (-3767 . 109385) (-3768 . 109201) (-3769 . 106996) - (-3770 . 106671) (-3771 . 106189) (-3772 . 105748) (-3773 . 105513) - (-3774 . 105268) (-3775 . 105178) (-3776 . 103743) (-3777 . 103665) - (-3778 . 103560) (-3779 . 102084) (-3780 . 101679) (-3781 . 101278) - (-3782 . 101176) (-3783 . 101094) (-3784 . 100936) (-3785 . 99702) - (-3786 . 99620) (-3787 . 99541) (-3788 . 99186) (-3789 . 99129) - (-3790 . 99057) (-3791 . 99000) (-3792 . 98943) (-3793 . 98813) - (-3794 . 98611) (-3795 . 98243) (-3796 . 97822) (-3797 . 94012) - (-3798 . 93410) (-3799 . 92943) (-3800 . 92730) (-3801 . 92517) - (-3802 . 92351) (-3803 . 92138) (-3804 . 91972) (-3805 . 91806) - (-3806 . 91640) (-3807 . 91474) (-3808 . 91204) (-3809 . 85790) (** . 82837) - (-3811 . 82421) (-3812 . 82180) (-3813 . 82124) (-3814 . 81632) - (-3815 . 78824) (-3816 . 78674) (-3817 . 78510) (-3818 . 78346) - (-3819 . 78250) (-3820 . 78132) (-3821 . 78008) (-3822 . 77865) - (-3823 . 77694) (-3824 . 77568) (-3825 . 77424) (-3826 . 77272) - (-3827 . 77113) (-3828 . 76600) (-3829 . 76511) (-3830 . 75846) - (-3831 . 75654) (-3832 . 75559) (-3833 . 75251) (-3834 . 74079) - (-3835 . 73873) (-3836 . 72698) (-3837 . 72623) (-3838 . 71442) - (-3839 . 67861) (-3840 . 67497) (-3841 . 67220) (-3842 . 67128) - (-3843 . 67035) (-3844 . 66758) (-3845 . 66665) (-3846 . 66572) - (-3847 . 66479) (-3848 . 66095) (-3849 . 66024) (-3850 . 65932) - (-3851 . 65774) (-3852 . 65420) (-3853 . 65262) (-3854 . 65154) - (-3855 . 65125) (-3856 . 65058) (-3857 . 64904) (-3858 . 64746) - (-3859 . 64352) (-3860 . 64277) (-3861 . 64171) (-3862 . 64099) - (-3863 . 64021) (-3864 . 63948) (-3865 . 63875) (-3866 . 63802) - (-3867 . 63730) (-3868 . 63658) (-3869 . 63585) (-3870 . 63344) - (-3871 . 63004) (-3872 . 62856) (-3873 . 62783) (-3874 . 62710) - (-3875 . 62637) (-3876 . 62383) (-3877 . 62239) (-3878 . 60903) - (-3879 . 60709) (-3880 . 60438) (-3881 . 60290) (-3882 . 60142) - (-3883 . 59902) (-3884 . 59708) (-3885 . 59440) (-3886 . 59244) - (-3887 . 59215) (-3888 . 59114) (-3889 . 59013) (-3890 . 58912) - (-3891 . 58811) (-3892 . 58710) (-3893 . 58609) (-3894 . 58508) - (-3895 . 58407) (-3896 . 58306) (-3897 . 58205) (-3898 . 58090) - (-3899 . 57975) (-3900 . 57924) (-3901 . 57807) (-3902 . 57749) - (-3903 . 57648) (-3904 . 57547) (-3905 . 57446) (-3906 . 57330) - (-3907 . 57301) (-3908 . 56570) (-3909 . 56445) (-3910 . 56320) - (-3911 . 56180) (-3912 . 56062) (-3913 . 55937) (-3914 . 55782) - (-3915 . 54799) (-3916 . 53940) (-3917 . 53886) (-3918 . 53832) - (-3919 . 53624) (-3920 . 53252) (-3921 . 52841) (-3922 . 52483) - (-3923 . 52125) (-3924 . 51973) (-3925 . 51671) (-3926 . 51515) - (-3927 . 51189) (-3928 . 51119) (-3929 . 51049) (-3930 . 50840) - (-3931 . 50231) (-3932 . 50027) (-3933 . 49654) (-3934 . 49145) - (-3935 . 48880) (-3936 . 48399) (-3937 . 47918) (-3938 . 47793) - (-3939 . 46693) (-3940 . 45617) (-3941 . 45044) (-3942 . 44826) - (-3943 . 36500) (-3944 . 36315) (-3945 . 34232) (-3946 . 32064) - (-3947 . 31918) (-3948 . 31740) (-3949 . 31333) (-3950 . 31038) - (-3951 . 30690) (-3952 . 30524) (-3953 . 30358) (-3954 . 29945) - (-3955 . 16071) (-3956 . 14964) (* . 10917) (-3958 . 10663) (-3959 . 10479) - (-3960 . 9522) (-3961 . 9469) (-3962 . 9409) (-3963 . 9140) (-3964 . 8513) - (-3965 . 7240) (-3966 . 5996) (-3967 . 5127) (-3968 . 3864) (-3969 . 420) - (-3970 . 306) (-3971 . 173) (-3972 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +((-1215 . 631009) (-1216 . 630613) (-1217 . 630311) (-1218 . 629915) + (-1219 . 629794) (-1220 . 629692) (-1221 . 629579) (-1222 . 629463) + (-1223 . 629410) (-1224 . 629273) (-1225 . 629198) (-1226 . 629042) + (-1227 . 628814) (-1228 . 627850) (-1229 . 627603) (-1230 . 627319) + (-1231 . 627035) (-1232 . 626751) (-1233 . 626432) (-1234 . 626340) + (-1235 . 626248) (-1236 . 626156) (-1237 . 626064) (-1238 . 625972) + (-1239 . 625880) (-1240 . 625785) (-1241 . 625690) (-1242 . 625598) + (-1243 . 625506) (-1244 . 625414) (-1245 . 625322) (-1246 . 625230) + (-1247 . 625128) (-1248 . 625026) (-1249 . 624924) (-1250 . 624832) + (-1251 . 624781) (-1252 . 624729) (-1253 . 624659) (-1254 . 624239) + (-1255 . 624045) (-1256 . 624018) (-1257 . 623895) (-1258 . 623772) + (-1259 . 623628) (-1260 . 623458) (-1261 . 623334) (-1262 . 623095) + (-1263 . 623022) (-1264 . 622797) (-1265 . 622551) (-1266 . 622498) + (-1267 . 622320) (-1268 . 622151) (-1269 . 622075) (-1270 . 622002) + (-1271 . 621849) (-1272 . 621696) (-1273 . 621512) (-1274 . 621331) + (-1275 . 621276) (-1276 . 621221) (-1277 . 621148) (-1278 . 621072) + (-1279 . 620995) (-1280 . 620927) (-1281 . 620784) (-1282 . 620677) + (-1283 . 620609) (-1284 . 620539) (-1285 . 620469) (-1286 . 620419) + (-1287 . 620369) (-1288 . 620319) (-1289 . 620198) (-1290 . 619882) + (-1291 . 619813) (-1292 . 619734) (-1293 . 619615) (-1294 . 619535) + (-1295 . 619455) (-1296 . 619302) (-1297 . 619153) (-1298 . 619077) + (-1299 . 619020) (-1300 . 618948) (-1301 . 618885) (-1302 . 618822) + (-1303 . 618761) (-1304 . 618689) (-1305 . 618573) (-1306 . 618521) + (-1307 . 618466) (-1308 . 618414) (-1309 . 618362) (-1310 . 618334) + (-1311 . 618306) (-1312 . 618278) (-1313 . 618234) (-1314 . 618163) + (-1315 . 618112) (-1316 . 618064) (-1317 . 618013) (-1318 . 617961) + (-1319 . 617845) (-1320 . 617729) (-1321 . 617637) (-1322 . 617545) + (-1323 . 617422) (-1324 . 617356) (-1325 . 617290) (-1326 . 617231) + (-1327 . 617203) (-1328 . 617175) (-1329 . 617147) (-1330 . 617119) + (-1331 . 617009) (-1332 . 616958) (-1333 . 616907) (-1334 . 616856) + (-1335 . 616805) (-1336 . 616754) (-1337 . 616703) (-1338 . 616675) + (-1339 . 616647) (-1340 . 616619) (-1341 . 616591) (-1342 . 616563) + (-1343 . 616535) (-1344 . 616507) (-1345 . 616479) (-1346 . 616451) + (-1347 . 616348) (-1348 . 616296) (-1349 . 616130) (-1350 . 615946) + (-1351 . 615735) (-1352 . 615620) (-1353 . 615387) (-1354 . 615288) + (-1355 . 615195) (-1356 . 615080) (-1357 . 614682) (-1358 . 614464) + (-1359 . 614415) (-1360 . 614387) (-1361 . 614311) (-1362 . 614212) + (-1363 . 614113) (-1364 . 614014) (-1365 . 613915) (-1366 . 613816) + (-1367 . 613717) (-1368 . 613559) (-1369 . 613483) (-1370 . 613316) + (-1371 . 613258) (-1372 . 613200) (-1373 . 612891) (-1374 . 612637) + (-1375 . 612553) (-1376 . 612421) (-1377 . 612363) (-1378 . 612311) + (-1379 . 612229) (-1380 . 612154) (-1381 . 612083) (-1382 . 612029) + (-1383 . 611978) (-1384 . 611904) (-1385 . 611830) (-1386 . 611749) + (-1387 . 611668) (-1388 . 611613) (-1389 . 611539) (-1390 . 611465) + (-1391 . 611391) (-1392 . 611314) (-1393 . 611260) (-1394 . 611202) + (-1395 . 611103) (-1396 . 611004) (-1397 . 610905) (-1398 . 610806) + (-1399 . 610707) (-1400 . 610608) (-1401 . 610509) (-1402 . 610395) + (-1403 . 610281) (-1404 . 610167) (-1405 . 610053) (-1406 . 609939) + (-1407 . 609825) (-1408 . 609708) (-1409 . 609632) (-1410 . 609556) + (-1411 . 609169) (-1412 . 608824) (-1413 . 608722) (-1414 . 608461) + (-1415 . 608359) (-1416 . 608154) (-1417 . 608041) (-1418 . 607939) + (-1419 . 607782) (-1420 . 607693) (-1421 . 607599) (-1422 . 607519) + (-1423 . 607445) (-1424 . 607367) (-1425 . 607308) (-1426 . 607250) + (-1427 . 607148) (-7 . 607120) (-8 . 607092) (-9 . 607064) (-1431 . 606945) + (-1432 . 606863) (-1433 . 606781) (-1434 . 606699) (-1435 . 606617) + (-1436 . 606535) (-1437 . 606441) (-1438 . 606371) (-1439 . 606301) + (-1440 . 606210) (-1441 . 606116) (-1442 . 606034) (-1443 . 605952) + (-1444 . 605854) (-1445 . 605694) (-1446 . 605496) (-1447 . 605360) + (-1448 . 605260) (-1449 . 605160) (-1450 . 605067) (-1451 . 605008) + (-1452 . 604675) (-1453 . 604575) (-1454 . 604457) (-1455 . 604245) + (-1456 . 604066) (-1457 . 603908) (-1458 . 603705) (-1459 . 603287) + (-1460 . 603236) (-1461 . 603127) (-1462 . 603012) (-1463 . 602943) + (-1464 . 602874) (-1465 . 602805) (-1466 . 602739) (-1467 . 602614) + (-1468 . 602397) (-1469 . 602319) (-1470 . 602269) (-1471 . 602198) + (-1472 . 602055) (-1473 . 601914) (-1474 . 601833) (-1475 . 601752) + (-1476 . 601696) (-1477 . 601640) (-1478 . 601567) (-1479 . 601427) + (-1480 . 601374) (-1481 . 601315) (-1482 . 601256) (-1483 . 601101) + (-1484 . 601049) (-1485 . 600932) (-1486 . 600815) (-1487 . 600698) + (-1488 . 600567) (-1489 . 600288) (-1490 . 600153) (-1491 . 600097) + (-1492 . 600041) (-1493 . 599982) (-1494 . 599923) (-1495 . 599867) + (-1496 . 599811) (-1497 . 599614) (-1498 . 597272) (-1499 . 597145) + (-1500 . 597000) (-1501 . 596872) (-1502 . 596820) (-1503 . 596768) + (-1504 . 596716) (-1505 . 592678) (-1506 . 592584) (-1507 . 592445) + (-1508 . 592236) (-1509 . 592134) (-1510 . 592032) (-1511 . 591117) + (-1512 . 591041) (-1513 . 590912) (-1514 . 590787) (-1515 . 590710) + (-1516 . 590633) (-1517 . 590506) (-1518 . 590379) (-1519 . 590213) + (-1520 . 590086) (-1521 . 589959) (-1522 . 589742) (-1523 . 589308) + (-1524 . 588944) (-1525 . 588892) (-1526 . 588833) (-1527 . 588745) + (-1528 . 588657) (-1529 . 588566) (-1530 . 588475) (-1531 . 588384) + (-1532 . 588293) (-1533 . 588202) (-1534 . 588111) (-1535 . 588020) + (-1536 . 587929) (-1537 . 587838) (-1538 . 587747) (-1539 . 587656) + (-1540 . 587565) (-1541 . 587474) (-1542 . 587383) (-1543 . 587292) + (-1544 . 587201) (-1545 . 587110) (-1546 . 587019) (-1547 . 586928) + (-1548 . 586837) (-1549 . 586746) (-1550 . 586655) (-1551 . 586564) + (-1552 . 586473) (-1553 . 586382) (-1554 . 586291) (-1555 . 586129) + (-1556 . 586021) (-1557 . 585778) (-1558 . 585491) (-1559 . 585296) + (-1560 . 585140) (-1561 . 584980) (-1562 . 584929) (-1563 . 584867) + (-1564 . 584816) (-1565 . 584753) (-1566 . 584700) (-1567 . 584648) + (-1568 . 584596) (-1569 . 584544) (-1570 . 584454) (-1571 . 584267) + (-1572 . 584113) (-1573 . 584033) (-1574 . 583953) (-1575 . 583873) + (-1576 . 583743) (-1577 . 583511) (-1578 . 583483) (-1579 . 583455) + (-1580 . 583427) (-1581 . 583347) (-1582 . 583270) (-1583 . 583193) + (-1584 . 583112) (-1585 . 583053) (-1586 . 582895) (-1587 . 582702) + (-1588 . 582217) (-1589 . 581975) (-1590 . 581713) (-1591 . 581612) + (-1592 . 581531) (-1593 . 581450) (-1594 . 581380) (-1595 . 581310) + (-1596 . 581152) (-1597 . 580848) (-1598 . 580620) (-1599 . 580498) + (-1600 . 580440) (-1601 . 580378) (-1602 . 580316) (-1603 . 580251) + (-1604 . 580189) (-1605 . 579910) (-1606 . 579842) (-1607 . 579632) + (-1608 . 579580) (-1609 . 579526) (-1610 . 579435) (-1611 . 579348) + (-1612 . 577601) (-1613 . 577522) (-1614 . 576777) (-1615 . 576660) + (-1616 . 576454) (-1617 . 576293) (-1618 . 576132) (-1619 . 575972) + (-1620 . 575834) (-1621 . 575740) (-1622 . 575642) (-1623 . 575548) + (-1624 . 575434) (-1625 . 575352) (-1626 . 575255) (-1627 . 575059) + (-1628 . 574968) (-1629 . 574874) (-1630 . 574807) (-1631 . 574738) + (-1632 . 574686) (-1633 . 574627) (-1634 . 574553) (-1635 . 574501) + (-1636 . 574344) (-1637 . 574187) (-1638 . 574035) (-1639 . 573277) + (-1640 . 572966) (-1641 . 572614) (-1642 . 572397) (-1643 . 572134) + (-1644 . 571759) (-1645 . 571575) (-1646 . 571441) (-1647 . 571275) + (-1648 . 571109) (-1649 . 570975) (-1650 . 570841) (-1651 . 570707) + (-1652 . 570573) (-1653 . 570442) (-1654 . 570311) (-1655 . 570180) + (-1656 . 569800) (-1657 . 569674) (-1658 . 569546) (-1659 . 569296) + (-1660 . 569173) (-1661 . 568923) (-1662 . 568800) (-1663 . 568550) + (-1664 . 568427) (-1665 . 568144) (-1666 . 567873) (-1667 . 567600) + (-1668 . 567302) (-1669 . 567200) (-1670 . 567055) (-1671 . 566914) + (-1672 . 566763) (-1673 . 566602) (-1674 . 566514) (-1675 . 566486) + (-1676 . 566404) (-1677 . 566307) (-1678 . 565839) (-1679 . 565488) + (-1680 . 565055) (-1681 . 564916) (-1682 . 564846) (-1683 . 564776) + (-1684 . 564706) (-1685 . 564615) (-1686 . 564524) (-1687 . 564433) + (-1688 . 564342) (-1689 . 564251) (-1690 . 564165) (-1691 . 564079) + (-1692 . 563993) (-1693 . 563907) (-1694 . 563821) (-1695 . 563747) + (-1696 . 563642) (-1697 . 563416) (-1698 . 563338) (-1699 . 563263) + (-1700 . 563170) (-1701 . 563066) (-1702 . 562970) (-1703 . 562801) + (-1704 . 562724) (-1705 . 562647) (-1706 . 562556) (-1707 . 562465) + (-1708 . 562265) (-1709 . 562112) (-1710 . 561959) (-1711 . 561806) + (-1712 . 561653) (-1713 . 561500) (-1714 . 561347) (-1715 . 561281) + (-1716 . 561128) (-1717 . 560975) (-1718 . 560822) (-1719 . 560669) + (-1720 . 560516) (-1721 . 560363) (-1722 . 560210) (-1723 . 560057) + (-1724 . 559983) (-1725 . 559909) (-1726 . 559854) (-1727 . 559799) + (-1728 . 559744) (-1729 . 559689) (-1730 . 559618) (-1731 . 559414) + (-1732 . 559313) (-1733 . 559125) (-1734 . 559032) (-1735 . 558896) + (-1736 . 558760) (-1737 . 558624) (-1738 . 558556) (-1739 . 558440) + (-1740 . 558324) (-1741 . 558208) (-1742 . 558155) (-1743 . 558070) + (-1744 . 557985) (-1745 . 557677) (-1746 . 557622) (-1747 . 556970) + (-1748 . 556655) (-1749 . 556371) (-1750 . 556253) (-1751 . 556134) + (-1752 . 556075) (-1753 . 556016) (-1754 . 555965) (-1755 . 555914) + (-1756 . 555863) (-1757 . 555810) (-1758 . 555757) (-1759 . 555698) + (-1760 . 555585) (-1761 . 555472) (-1762 . 555305) (-1763 . 555213) + (-1764 . 555100) (-1765 . 555016) (-1766 . 554901) (-1767 . 554810) + (-1768 . 554719) (-1769 . 554598) (-1770 . 554411) (-1771 . 554359) + (-1772 . 554304) (-1773 . 554117) (-1774 . 553994) (-1775 . 553921) + (-1776 . 553848) (-1777 . 553728) (-1778 . 553655) (-1779 . 553582) + (-1780 . 553242) (-1781 . 553169) (-1782 . 552949) (-1783 . 552616) + (-1784 . 552433) (-1785 . 552290) (-1786 . 551930) (-1787 . 551762) + (-1788 . 551594) (-1789 . 551338) (-1790 . 551082) (-1791 . 550887) + (-1792 . 550692) (-1793 . 550098) (-1794 . 550022) (-1795 . 549883) + (-1796 . 549476) (-1797 . 549349) (-1798 . 549192) (-1799 . 548875) + (-1800 . 548395) (-1801 . 547915) (-1802 . 547413) (-1803 . 547345) + (-1804 . 547274) (-1805 . 547203) (-1806 . 547031) (-1807 . 546912) + (-1808 . 546793) (-1809 . 546717) (-1810 . 546641) (-1811 . 546368) + (-1812 . 546254) (-1813 . 546203) (-1814 . 546152) (-1815 . 546101) + (-1816 . 546050) (-1817 . 545999) (-1818 . 545858) (-1819 . 545685) + (-1820 . 545454) (-1821 . 545268) (-1822 . 545240) (-1823 . 545212) + (-1824 . 545184) (-1825 . 545156) (-1826 . 545128) (-1827 . 545100) + (-1828 . 545072) (-1829 . 545021) (-1830 . 544955) (-1831 . 544865) + (-1832 . 544494) (-1833 . 544343) (-1834 . 544192) (-1835 . 543987) + (-1836 . 543865) (-1837 . 543791) (-1838 . 543714) (-1839 . 543640) + (-1840 . 543563) (-1841 . 543486) (-1842 . 543412) (-1843 . 543335) + (-1844 . 543102) (-1845 . 542949) (-1846 . 542654) (-1847 . 542501) + (-1848 . 542179) (-1849 . 542041) (-1850 . 541903) (-1851 . 541823) + (-1852 . 541743) (-1853 . 541479) (-1854 . 540748) (-1855 . 540612) + (-1856 . 540522) (-1857 . 540387) (-1858 . 540320) (-1859 . 540252) + (-1860 . 540165) (-1861 . 540078) (-1862 . 539911) (-1863 . 539837) + (-1864 . 539693) (-1865 . 539233) (-1866 . 538854) (-1867 . 538092) + (-1868 . 537948) (-1869 . 537804) (-1870 . 537642) (-1871 . 537405) + (-1872 . 537265) (-1873 . 537119) (-1874 . 536880) (-1875 . 536644) + (-1876 . 536405) (-1877 . 536213) (-1878 . 536090) (-1879 . 535886) + (-1880 . 535663) (-1881 . 535424) (-1882 . 535283) (-1883 . 535145) + (-1884 . 535006) (-1885 . 534753) (-1886 . 534497) (-1887 . 534340) + (-1888 . 534186) (-1889 . 533946) (-1890 . 533661) (-1891 . 533523) + (-1892 . 533436) (-1893 . 532770) (-1894 . 532594) (-1895 . 532412) + (-1896 . 532236) (-1897 . 532054) (-1898 . 531875) (-1899 . 531696) + (-1900 . 531509) (-1901 . 531127) (-1902 . 530948) (-1903 . 530769) + (-1904 . 530582) (-1905 . 530200) (-1906 . 529207) (-1907 . 528823) + (-1908 . 528439) (-1909 . 528321) (-1910 . 528164) (-1911 . 528022) + (-1912 . 527905) (-1913 . 527723) (-1914 . 527599) (-1915 . 527310) + (-1916 . 527021) (-1917 . 526738) (-1918 . 526455) (-1919 . 526177) + (-1920 . 526089) (-1921 . 526004) (-1922 . 525907) (-1923 . 525810) + (-1924 . 525590) (-1925 . 525490) (-1926 . 525387) (-1927 . 525309) + (-1928 . 524984) (-1929 . 524692) (-1930 . 524619) (-1931 . 524234) + (-1932 . 524206) (-1933 . 524007) (-1934 . 523833) (-1935 . 523592) + (-1936 . 523537) (-1937 . 523462) (-1938 . 523094) (-1939 . 522979) + (-1940 . 522902) (-1941 . 522829) (-1942 . 522748) (-1943 . 522667) + (-1944 . 522586) (-1945 . 522485) (-1946 . 522426) (-1947 . 522188) + (-1948 . 522066) (-1949 . 521944) (-1950 . 521717) (-1951 . 521664) + (-1952 . 521610) (-1953 . 521278) (-1954 . 520954) (-1955 . 520766) + (-1956 . 520575) (-1957 . 520411) (-1958 . 520076) (-1959 . 519909) + (-1960 . 519668) (-1961 . 519344) (-1962 . 519154) (-1963 . 518939) + (-1964 . 518768) (-1965 . 518346) (-1966 . 518119) (-1967 . 517848) + (-1968 . 517711) (-1969 . 517570) (-1970 . 517093) (-1971 . 516970) + (-1972 . 516734) (-1973 . 516480) (-1974 . 516230) (-1975 . 515937) + (-1976 . 515797) (-1977 . 515657) (-1978 . 515517) (-1979 . 515328) + (-1980 . 515139) (-1981 . 514964) (-1982 . 514690) (-1983 . 514255) + (-1984 . 514227) (-1985 . 514155) (-1986 . 514022) (-1987 . 513947) + (-1988 . 513788) (-1989 . 513625) (-1990 . 513464) (-1991 . 513297) + (-1992 . 513244) (-1993 . 513191) (-1994 . 513062) (-1995 . 513002) + (-1996 . 512949) (-1997 . 512879) (-1998 . 512819) (-1999 . 512760) + (-2000 . 512700) (-2001 . 512641) (-2002 . 512581) (-2003 . 512522) + (-2004 . 512463) (-2005 . 512321) (-2006 . 512226) (-2007 . 512135) + (-2008 . 512019) (-2009 . 511925) (-2010 . 511827) (-2011 . 511733) + (-2012 . 511592) (-2013 . 511330) (-2014 . 510474) (-2015 . 510318) + (-2016 . 509949) (-2017 . 509893) (-2018 . 509842) (-2019 . 509739) + (-2020 . 509654) (-2021 . 509566) (-2022 . 509420) (-2023 . 509271) + (-2024 . 508981) (-2025 . 508903) (-2026 . 508828) (-2027 . 508775) + (-2028 . 508722) (-2029 . 508691) (-2030 . 508628) (-2031 . 508510) + (-2032 . 508421) (-2033 . 508301) (-2034 . 508006) (-2035 . 507812) + (-2036 . 507624) (-2037 . 507479) (-2038 . 507334) (-2039 . 507048) + (-2040 . 506606) (-2041 . 506572) (-2042 . 506535) (-2043 . 506498) + (-2044 . 506461) (-2045 . 506424) (-2046 . 506393) (-2047 . 506362) + (-2048 . 506331) (-2049 . 506297) (-2050 . 506263) (-2051 . 506209) + (-2052 . 506033) (-2053 . 505799) (-2054 . 505565) (-2055 . 505336) + (-2056 . 505284) (-2057 . 505229) (-2058 . 505160) (-2059 . 505072) + (-2060 . 505003) (-2061 . 504931) (-2062 . 504701) (-2063 . 504650) + (-2064 . 504596) (-2065 . 504565) (-2066 . 504459) (-2067 . 504234) + (-2068 . 503924) (-2069 . 503750) (-2070 . 503568) (-2071 . 503297) + (-2072 . 503224) (-2073 . 503159) (-2074 . 502683) (-2075 . 502121) + (-2076 . 501395) (-2077 . 500834) (-2078 . 500206) (-2079 . 499627) + (-2080 . 499553) (-2081 . 499501) (-2082 . 499449) (-2083 . 499375) + (-2084 . 499320) (-2085 . 499268) (-2086 . 499216) (-2087 . 499164) + (-2088 . 499094) (-2089 . 498646) (-2090 . 498440) (-2091 . 498191) + (-2092 . 497857) (-2093 . 497603) (-2094 . 497301) (-2095 . 497098) + (-2096 . 496809) (-2097 . 496261) (-2098 . 496124) (-2099 . 495922) + (-2100 . 495642) (-2101 . 495557) (-2102 . 495224) (-2103 . 495083) + (-2104 . 494792) (-2105 . 494572) (-2106 . 494446) (-2107 . 494321) + (-2108 . 494174) (-2109 . 494030) (-2110 . 493914) (-2111 . 493783) + (-2112 . 493411) (-2113 . 493151) (-2114 . 492881) (-2115 . 492641) + (-2116 . 492311) (-2117 . 491971) (-2118 . 491563) (-2119 . 491145) + (-2120 . 490948) (-2121 . 490673) (-2122 . 490505) (-2123 . 490309) + (-2124 . 490087) (-2125 . 489932) (-2126 . 489747) (-2127 . 489644) + (-2128 . 489616) (-2129 . 489588) (-2130 . 489414) (-2131 . 489340) + (-2132 . 489279) (-2133 . 489226) (-2134 . 489157) (-2135 . 489088) + (-2136 . 488969) (-2137 . 488791) (-2138 . 488736) (-2139 . 488490) + (-2140 . 488417) (-2141 . 488347) (-2142 . 488277) (-2143 . 488188) + (-2144 . 487998) (-2145 . 487925) (-2146 . 487856) (-2147 . 487791) + (-2148 . 487736) (-2149 . 487645) (-2150 . 487354) (-2151 . 487028) + (-2152 . 486954) (-2153 . 486632) (-2154 . 486427) (-2155 . 486342) + (-2156 . 486257) (-2157 . 486172) (-2158 . 486087) (-2159 . 486002) + (-2160 . 485917) (-2161 . 485832) (-2162 . 485747) (-2163 . 485662) + (-2164 . 485577) (-2165 . 485492) (-2166 . 485407) (-2167 . 485322) + (-2168 . 485237) (-2169 . 485152) (-2170 . 485067) (-2171 . 484982) + (-2172 . 484897) (-2173 . 484812) (-2174 . 484727) (-2175 . 484642) + (-2176 . 484557) (-2177 . 484472) (-2178 . 484387) (-2179 . 484302) + (-2180 . 484217) (-2181 . 484115) (-2182 . 484027) (-2183 . 483819) + (-2184 . 483761) (-2185 . 483706) (-2186 . 483619) (-2187 . 483508) + (-2188 . 483422) (-2189 . 483276) (-2190 . 483214) (-2191 . 483186) + (-2192 . 483158) (-2193 . 483130) (-2194 . 483102) (-2195 . 482933) + (-2196 . 482782) (-2197 . 482631) (-2198 . 482459) (-2199 . 482251) + (-2200 . 482127) (-2201 . 481919) (-2202 . 481827) (-2203 . 481735) + (-2204 . 481600) (-2205 . 481505) (-2206 . 481411) (-2207 . 481316) + (-2208 . 481192) (-2209 . 481164) (-2210 . 481136) (-2211 . 481108) + (-2212 . 481080) (-2213 . 481052) (-2214 . 481024) (-2215 . 480996) + (-2216 . 480968) (-2217 . 480940) (-2218 . 480912) (-2219 . 480884) + (-2220 . 480856) (-2221 . 480828) (-2222 . 480800) (-2223 . 480772) + (-2224 . 480744) (-2225 . 480691) (-2226 . 480663) (-2227 . 480635) + (-2228 . 480557) (-2229 . 480504) (-2230 . 480451) (-2231 . 480398) + (-2232 . 480320) (-2233 . 480230) (-2234 . 480135) (-2235 . 480041) + (-2236 . 479959) (-2237 . 479653) (-2238 . 479457) (-2239 . 479362) + (-2240 . 479254) (-2241 . 478843) (-2242 . 478815) (-2243 . 478651) + (-2244 . 478574) (-2245 . 478387) (-2246 . 478208) (-2247 . 477784) + (-2248 . 477632) (-2249 . 477452) (-2250 . 477279) (-2251 . 477019) + (-2252 . 476767) (-2253 . 475956) (-2254 . 475789) (-2255 . 475571) + (-2256 . 474747) (-2257 . 474616) (-2258 . 474485) (-2259 . 474354) + (-2260 . 474223) (-2261 . 474092) (-2262 . 473961) (-2263 . 473766) + (-2264 . 473572) (-2265 . 473429) (-2266 . 473114) (-2267 . 472999) + (-2268 . 472659) (-2269 . 472499) (-2270 . 472360) (-2271 . 472221) + (-2272 . 472092) (-2273 . 472007) (-2274 . 471955) (-2275 . 471475) + (-2276 . 470213) (-2277 . 470086) (-2278 . 469944) (-2279 . 469608) + (-2280 . 469503) (-2281 . 469254) (-2282 . 469022) (-2283 . 468917) + (-2284 . 468842) (-2285 . 468767) (-2286 . 468692) (-2287 . 468633) + (-2288 . 468563) (-2289 . 468510) (-2290 . 468448) (-2291 . 468378) + (-2292 . 468015) (-2293 . 467728) (-2294 . 467618) (-2295 . 467431) + (-2296 . 467338) (-2297 . 467245) (-2298 . 467158) (-2299 . 466938) + (-2300 . 466719) (-2301 . 466301) (-2302 . 466029) (-2303 . 465886) + (-2304 . 465793) (-2305 . 465650) (-2306 . 465498) (-2307 . 465344) + (-2308 . 465274) (-2309 . 465067) (-2310 . 464890) (-2311 . 464681) + (-2312 . 464504) (-2313 . 464470) (-2314 . 464436) (-2315 . 464405) + (-2316 . 464287) (-2317 . 463974) (-2318 . 463696) (-2319 . 463575) + (-2320 . 463448) (-2321 . 463363) (-2322 . 463290) (-2323 . 463201) + (-2324 . 463130) (-2325 . 463074) (-2326 . 463018) (-2327 . 462962) + (-2328 . 462892) (-2329 . 462822) (-2330 . 462752) (-2331 . 462654) + (-2332 . 462576) (-2333 . 462498) (-2334 . 462355) (-2335 . 462276) + (-2336 . 462204) (-2337 . 462001) (-2338 . 461945) (-2339 . 461757) + (-2340 . 461658) (-2341 . 461540) (-2342 . 461419) (-2343 . 461276) + (-2344 . 461133) (-2345 . 460993) (-2346 . 460853) (-2347 . 460710) + (-2348 . 460584) (-2349 . 460455) (-2350 . 460332) (-2351 . 460209) + (-2352 . 460104) (-2353 . 459999) (-2354 . 459897) (-2355 . 459747) + (-2356 . 459594) (-2357 . 459441) (-2358 . 459297) (-2359 . 459143) + (-2360 . 459067) (-2361 . 458988) (-2362 . 458835) (-2363 . 458756) + (-2364 . 458677) (-2365 . 458598) (-2366 . 458496) (-2367 . 458437) + (-2368 . 458375) (-2369 . 458258) (-2370 . 458132) (-2371 . 458055) + (-2372 . 457923) (-2373 . 457617) (-2374 . 457434) (-2375 . 456889) + (-2376 . 456669) (-2377 . 456495) (-2378 . 456325) (-2379 . 456252) + (-2380 . 456176) (-2381 . 456097) (-2382 . 455800) (-2383 . 455638) + (-2384 . 455404) (-2385 . 454962) (-2386 . 454832) (-2387 . 454692) + (-2388 . 454383) (-2389 . 454081) (-2390 . 453765) (-2391 . 453359) + (-2392 . 453291) (-2393 . 453223) (-2394 . 453155) (-2395 . 453061) + (-2396 . 452954) (-2397 . 452847) (-2398 . 452746) (-2399 . 452645) + (-2400 . 452544) (-2401 . 452467) (-2402 . 452074) (-2403 . 451657) + (-2404 . 451030) (-2405 . 450966) (-2406 . 450847) (-2407 . 450728) + (-2408 . 450620) (-2409 . 450512) (-2410 . 450356) (-2411 . 449756) + (-2412 . 449473) (-2413 . 449394) (-2414 . 449340) (-2415 . 449172) + (-2416 . 449050) (-2417 . 448654) (-2418 . 448418) (-2419 . 448217) + (-2420 . 448009) (-2421 . 447816) (-2422 . 447549) (-2423 . 447370) + (-2424 . 447301) (-2425 . 447225) (-2426 . 447084) (-2427 . 446881) + (-2428 . 446737) (-2429 . 446487) (-2430 . 446179) (-2431 . 445823) + (-2432 . 445664) (-2433 . 445458) (-2434 . 445298) (-2435 . 445225) + (-2436 . 445191) (-2437 . 445126) (-2438 . 445089) (-2439 . 444952) + (-2440 . 444714) (-2441 . 444644) (-2442 . 444458) (-2443 . 444209) + (-2444 . 444053) (-2445 . 443530) (-2446 . 443333) (-2447 . 443121) + (-2448 . 442959) (-2449 . 442560) (-2450 . 442393) (-2451 . 441318) + (-2452 . 441195) (-2453 . 440978) (-2454 . 440848) (-2455 . 440718) + (-2456 . 440561) (-2457 . 440458) (-2458 . 440400) (-2459 . 440342) + (-2460 . 440236) (-2461 . 440130) (-2462 . 439214) (-2463 . 437087) + (-2464 . 436273) (-2465 . 434470) (-2466 . 434402) (-2467 . 434334) + (-2468 . 434266) (-2469 . 434198) (-2470 . 434130) (-2471 . 434052) + (-2472 . 433696) (-2473 . 433514) (-2474 . 432975) (-2475 . 432799) + (-2476 . 432578) (-2477 . 432357) (-2478 . 432136) (-2479 . 431918) + (-2480 . 431700) (-2481 . 431482) (-2482 . 431264) (-2483 . 431046) + (-2484 . 430828) (-2485 . 430727) (-2486 . 429994) (-2487 . 429939) + (-2488 . 429884) (-2489 . 429829) (-2490 . 429774) (-2491 . 429624) + (-2492 . 429376) (-2493 . 429215) (-2494 . 429035) (-2495 . 428748) + (-2496 . 428362) (-2497 . 427490) (-2498 . 427150) (-2499 . 426982) + (-2500 . 426760) (-2501 . 426510) (-2502 . 426162) (-2503 . 425152) + (-2504 . 424841) (-2505 . 424629) (-2506 . 424065) (-2507 . 423552) + (-2508 . 421796) (-2509 . 421324) (-2510 . 420725) (-2511 . 420475) + (-2512 . 420341) (-2513 . 420129) (-2514 . 420053) (-2515 . 419977) + (-2516 . 419870) (-2517 . 419688) (-2518 . 419523) (-2519 . 419345) + (-2520 . 418764) (-2521 . 418603) (-2522 . 418030) (-2523 . 417960) + (-2524 . 417885) (-2525 . 417813) (-2526 . 417675) (-2527 . 417488) + (-2528 . 417381) (-2529 . 417274) (-2530 . 417159) (-2531 . 417044) + (-2532 . 416929) (-2533 . 416651) (-2534 . 416501) (-2535 . 416358) + (-2536 . 416285) (-2537 . 416200) (-2538 . 416127) (-2539 . 416054) + (-2540 . 415981) (-2541 . 415838) (-2542 . 415688) (-2543 . 415514) + (-2544 . 415364) (-2545 . 415214) (-2546 . 415088) (-2547 . 414702) + (-2548 . 414418) (-2549 . 414134) (-2550 . 413725) (-2551 . 413441) + (-2552 . 413368) (-2553 . 413221) (-2554 . 413115) (-2555 . 413041) + (-2556 . 412971) (-2557 . 412892) (-2558 . 412815) (-2559 . 412738) + (-2560 . 412589) (-2561 . 412486) (-2562 . 412428) (-2563 . 412364) + (-2564 . 412300) (-2565 . 412203) (-2566 . 412106) (-2567 . 411946) + (-2568 . 411860) (-2569 . 411774) (-2570 . 411689) (-2571 . 411630) + (-2572 . 411571) (-2573 . 411512) (-2574 . 411453) (-2575 . 411283) + (-2576 . 411195) (-2577 . 411098) (-2578 . 411064) (-2579 . 411033) + (-2580 . 410949) (-2581 . 410893) (-2582 . 410831) (-2583 . 410797) + (-2584 . 410763) (-2585 . 410729) (-2586 . 410695) (-2587 . 410661) + (-2588 . 410627) (-2589 . 410593) (-2590 . 410559) (-2591 . 410525) + (-2592 . 410413) (-2593 . 410379) (-2594 . 410328) (-2595 . 410294) + (-2596 . 410197) (-2597 . 410135) (-2598 . 410044) (-2599 . 409953) + (-2600 . 409898) (-2601 . 409846) (-2602 . 409794) (-2603 . 409742) + (-2604 . 409690) (-2605 . 409267) (-2606 . 409101) (-2607 . 409048) + (-2608 . 408979) (-2609 . 408926) (-2610 . 408696) (-2611 . 408540) + (-2612 . 408019) (-2613 . 407878) (-2614 . 407844) (-2615 . 407789) + (-2616 . 407079) (-2617 . 406764) (-2618 . 406260) (-2619 . 406182) + (-2620 . 406130) (-2621 . 406078) (-2622 . 405894) (-2623 . 405842) + (-2624 . 405790) (-2625 . 405714) (-2626 . 405652) (-2627 . 405434) + (-2628 . 405367) (-2629 . 405273) (-2630 . 405179) (-2631 . 404996) + (-2632 . 404914) (-2633 . 404792) (-2634 . 404646) (-2635 . 403995) + (-2636 . 403293) (-2637 . 403189) (-2638 . 403088) (-2639 . 402987) + (-2640 . 402876) (-2641 . 402708) (-2642 . 402504) (-2643 . 402411) + (-2644 . 402334) (-2645 . 402278) (-2646 . 402208) (-2647 . 402088) + (-2648 . 401987) (-2649 . 401890) (-2650 . 401810) (-2651 . 401730) + (-2652 . 401653) (-2653 . 401583) (-2654 . 401513) (-2655 . 401443) + (-2656 . 401373) (-2657 . 401303) (-2658 . 401233) (-2659 . 401140) + (-2660 . 401012) (-2661 . 400770) (-2662 . 400600) (-2663 . 400231) + (-2664 . 400062) (-2665 . 399946) (-2666 . 399450) (-2667 . 399069) + (-2668 . 398823) (-2669 . 398731) (-2670 . 398634) (-2671 . 397972) + (-2672 . 397859) (-2673 . 397785) (-2674 . 397693) (-2675 . 397503) + (-2676 . 397313) (-2677 . 397242) (-2678 . 397171) (-2679 . 397090) + (-2680 . 397009) (-2681 . 396884) (-2682 . 396751) (-2683 . 396670) + (-2684 . 396596) (-2685 . 396431) (-2686 . 396274) (-2687 . 396046) + (-2688 . 395898) (-2689 . 395794) (-2690 . 395690) (-2691 . 395605) + (-2692 . 395237) (-2693 . 395156) (-2694 . 395069) (-2695 . 394988) + (-2696 . 394792) (-2697 . 394572) (-2698 . 394385) (-2699 . 394063) + (-2700 . 393770) (-2701 . 393477) (-2702 . 393167) (-2703 . 392850) + (-2704 . 392698) (-2705 . 392510) (-2706 . 392037) (-2707 . 391955) + (-2708 . 391739) (-2709 . 391523) (-2710 . 391264) (-2711 . 390843) + (-2712 . 390330) (-2713 . 390200) (-2714 . 389926) (-2715 . 389747) + (-2716 . 389632) (-2717 . 389528) (-2718 . 389473) (-2719 . 389396) + (-2720 . 389326) (-2721 . 389253) (-2722 . 389198) (-2723 . 389125) + (-2724 . 389070) (-2725 . 388715) (-2726 . 388307) (-2727 . 388154) + (-2728 . 388001) (-2729 . 387920) (-2730 . 387767) (-2731 . 387614) + (-2732 . 387479) (-2733 . 387344) (-2734 . 387209) (-2735 . 387074) + (-2736 . 386939) (-2737 . 386804) (-2738 . 386748) (-2739 . 386595) + (-2740 . 386484) (-2741 . 386373) (-2742 . 386288) (-2743 . 386178) + (-2744 . 386075) (-2745 . 381924) (-2746 . 381476) (-2747 . 381049) + (-2748 . 380432) (-2749 . 379831) (-2750 . 379613) (-2751 . 379435) + (-2752 . 379176) (-2753 . 378765) (-2754 . 378471) (-2755 . 378028) + (-2756 . 377850) (-2757 . 377457) (-2758 . 377064) (-2759 . 376879) + (-2760 . 376672) (-2761 . 376452) (-2762 . 376146) (-2763 . 375947) + (-2764 . 375318) (-2765 . 375161) (-2766 . 374772) (-2767 . 374721) + (-2768 . 374672) (-2769 . 374621) (-2770 . 374573) (-2771 . 374521) + (-2772 . 374375) (-2773 . 374323) (-2774 . 374177) (-2775 . 374125) + (-2776 . 373979) (-2777 . 373928) (-2778 . 373553) (-2779 . 373502) + (-2780 . 373453) (-2781 . 373402) (-2782 . 373354) (-2783 . 373302) + (-2784 . 373253) (-2785 . 373201) (-2786 . 373152) (-2787 . 373100) + (-2788 . 373051) (-2789 . 372985) (-2790 . 372867) (-2791 . 371705) + (-2792 . 371288) (-2793 . 371180) (-2794 . 370938) (-2795 . 370788) + (-2796 . 370638) (-2797 . 370477) (-2798 . 368270) (-2799 . 368009) + (-2800 . 367855) (-2801 . 367709) (-2802 . 367563) (-2803 . 367344) + (-2804 . 367212) (-2805 . 367137) (-2806 . 367062) (-2807 . 366927) + (-2808 . 366798) (-2809 . 366669) (-2810 . 366543) (-2811 . 366417) + (-2812 . 366291) (-2813 . 366165) (-2814 . 366062) (-2815 . 365962) + (-2816 . 365868) (-2817 . 365738) (-2818 . 365587) (-2819 . 365211) + (-2820 . 365097) (-2821 . 364856) (-2822 . 364398) (-2823 . 364088) + (-2824 . 363521) (-2825 . 362952) (-2826 . 361942) (-2827 . 361400) + (-2828 . 361087) (-2829 . 360749) (-2830 . 360418) (-2831 . 360098) + (-2832 . 360045) (-2833 . 359918) (-2834 . 359416) (-2835 . 358273) + (-2836 . 358218) (-2837 . 358163) (-2838 . 358087) (-2839 . 357968) + (-2840 . 357893) (-2841 . 357818) (-2842 . 357740) (-2843 . 357517) + (-2844 . 357458) (-2845 . 357399) (-2846 . 357296) (-2847 . 357193) + (-2848 . 357090) (-2849 . 356987) (-2850 . 356906) (-2851 . 356832) + (-2852 . 356617) (-2853 . 356383) (-2854 . 356349) (-2855 . 356315) + (-2856 . 356287) (-2857 . 356259) (-2858 . 356042) (-2859 . 355764) + (-2860 . 355614) (-2861 . 355484) (-2862 . 355354) (-2863 . 355254) + (-2864 . 355077) (-2865 . 354917) (-2866 . 354817) (-2867 . 354640) + (-2868 . 354480) (-2869 . 354321) (-2870 . 354182) (-2871 . 354032) + (-2872 . 353902) (-2873 . 353772) (-2874 . 353625) (-2875 . 353498) + (-2876 . 353395) (-2877 . 353288) (-2878 . 353191) (-2879 . 353026) + (-2880 . 352878) (-2881 . 352463) (-2882 . 352363) (-2883 . 352260) + (-2884 . 352172) (-2885 . 352092) (-2886 . 351942) (-2887 . 351812) + (-2888 . 351760) (-2889 . 351687) (-2890 . 351612) (-2891 . 351336) + (-2892 . 351224) (-2893 . 350912) (-2894 . 350735) (-2895 . 349137) + (-2896 . 348509) (-2897 . 348449) (-2898 . 348331) (-2899 . 348213) + (-2900 . 348069) (-2901 . 347917) (-2902 . 347758) (-2903 . 347599) + (-2904 . 347393) (-2905 . 347206) (-2906 . 347054) (-2907 . 346899) + (-2908 . 346744) (-2909 . 346592) (-2910 . 346455) (-2911 . 346032) + (-2912 . 345906) (-2913 . 345780) (-2914 . 345654) (-2915 . 345514) + (-2916 . 345373) (-2917 . 345232) (-2918 . 345088) (-2919 . 344340) + (-2920 . 344182) (-2921 . 343996) (-2922 . 343841) (-2923 . 343603) + (-2924 . 343358) (-2925 . 343113) (-2926 . 342903) (-2927 . 342766) + (-2928 . 342556) (-2929 . 342419) (-2930 . 342209) (-2931 . 342072) + (-2932 . 341862) (-2933 . 341559) (-2934 . 341415) (-2935 . 341274) + (-2936 . 341051) (-2937 . 340910) (-2938 . 340688) (-2939 . 340491) + (-2940 . 340335) (-2941 . 340008) (-2942 . 339849) (-2943 . 339690) + (-2944 . 339531) (-2945 . 339360) (-2946 . 339189) (-2947 . 339015) + (-2948 . 338663) (-2949 . 338540) (-2950 . 338378) (-2951 . 338305) + (-2952 . 338232) (-2953 . 338159) (-2954 . 338086) (-2955 . 338013) + (-2956 . 337940) (-2957 . 337817) (-2958 . 337644) (-2959 . 337521) + (-2960 . 337435) (-2961 . 337369) (-2962 . 337303) (-2963 . 337237) + (-2964 . 337171) (-2965 . 337105) (-2966 . 337039) (-2967 . 336973) + (-2968 . 336907) (-2969 . 336841) (-2970 . 336775) (-2971 . 336709) + (-2972 . 336643) (-2973 . 336577) (-2974 . 336511) (-2975 . 336445) + (-2976 . 336379) (-2977 . 336313) (-2978 . 336247) (-2979 . 336181) + (-2980 . 336115) (-2981 . 336049) (-2982 . 335983) (-2983 . 335917) + (-2984 . 335851) (-2985 . 335785) (-2986 . 335719) (-2987 . 335072) + (-2988 . 334425) (-2989 . 334297) (-2990 . 334174) (-2991 . 334051) + (-2992 . 333910) (-2993 . 333756) (-2994 . 333612) (-2995 . 333437) + (-2996 . 332827) (-2997 . 332703) (-2998 . 332579) (-2999 . 331901) + (-3000 . 331204) (-3001 . 331103) (-3002 . 331047) (-3003 . 330991) + (-3004 . 330935) (-3005 . 330879) (-3006 . 330820) (-3007 . 330756) + (-3008 . 330648) (-3009 . 330540) (-3010 . 330432) (-3011 . 330153) + (-3012 . 330079) (-3013 . 329853) (-3014 . 329772) (-3015 . 329694) + (-3016 . 329616) (-3017 . 329538) (-3018 . 329459) (-3019 . 329381) + (-3020 . 329288) (-3021 . 329189) (-3022 . 329121) (-3023 . 329072) + (-3024 . 328381) (-3025 . 327741) (-3026 . 326950) (-3027 . 326869) + (-3028 . 326765) (-3029 . 326674) (-3030 . 326583) (-3031 . 326509) + (-3032 . 326435) (-3033 . 326361) (-3034 . 326306) (-3035 . 326251) + (-3036 . 326185) (-3037 . 326119) (-3038 . 326057) (-3039 . 325782) + (-3040 . 325290) (-3041 . 324832) (-3042 . 324579) (-3043 . 324391) + (-3044 . 324050) (-3045 . 323754) (-3046 . 323586) (-3047 . 323455) + (-3048 . 323315) (-3049 . 323160) (-3050 . 322991) (-3051 . 321605) + (-3052 . 321472) (-3053 . 321331) (-3054 . 321102) (-3055 . 321043) + (-3056 . 320987) (-3057 . 320931) (-3058 . 320666) (-3059 . 320454) + (-3060 . 320315) (-3061 . 320208) (-3062 . 320091) (-3063 . 320025) + (-3064 . 319952) (-3065 . 319838) (-3066 . 319585) (-3067 . 319485) + (-3068 . 319291) (-3069 . 318983) (-3070 . 318517) (-3071 . 318412) + (-3072 . 318306) (-3073 . 318157) (-3074 . 318017) (-3075 . 317605) + (-3076 . 317361) (-3077 . 316703) (-3078 . 316550) (-3079 . 316436) + (-3080 . 316326) (-3081 . 315506) (-3082 . 315312) (-3083 . 314286) + (-3084 . 313838) (-3085 . 312449) (-3086 . 311598) (-3087 . 311549) + (-3088 . 311500) (-3089 . 311451) (-3090 . 311384) (-3091 . 311309) + (-3092 . 311119) (-3093 . 311047) (-3094 . 310972) (-3095 . 310900) + (-3096 . 310783) (-3097 . 310732) (-3098 . 310653) (-3099 . 310574) + (-3100 . 310495) (-3101 . 310444) (-3102 . 310200) (-3103 . 309898) + (-3104 . 309816) (-3105 . 309734) (-3106 . 309673) (-3107 . 309284) + (-3108 . 308412) (-3109 . 307839) (-3110 . 306604) (-3111 . 305797) + (-3112 . 305547) (-3113 . 305297) (-3114 . 304872) (-3115 . 304628) + (-3116 . 304384) (-3117 . 304140) (-3118 . 303896) (-3119 . 303652) + (-3120 . 303408) (-3121 . 303166) (-3122 . 302924) (-3123 . 302682) + (-3124 . 302440) (-3125 . 301862) (-3126 . 301746) (-3127 . 301692) + (-3128 . 300850) (-3129 . 300819) (-3130 . 300474) (-3131 . 300248) + (-3132 . 300149) (-3133 . 300050) (-3134 . 298284) (-3135 . 298172) + (-3136 . 297122) (-3137 . 297030) (-3138 . 296108) (-3139 . 295775) + (-3140 . 295442) (-3141 . 295339) (-3142 . 295228) (-3143 . 295117) + (-3144 . 295006) (-3145 . 294895) (-3146 . 293808) (-3147 . 293688) + (-3148 . 293553) (-3149 . 293421) (-3150 . 293289) (-3151 . 292995) + (-3152 . 292701) (-3153 . 292356) (-3154 . 292130) (-3155 . 291904) + (-3156 . 291793) (-3157 . 291682) (-3158 . 290220) (-3159 . 288516) + (-3160 . 288207) (-3161 . 288055) (-3162 . 287532) (-3163 . 287203) + (-3164 . 287010) (-3165 . 286817) (-3166 . 286624) (-3167 . 286431) + (-3168 . 286318) (-3169 . 286195) (-3170 . 286081) (-3171 . 285967) + (-3172 . 285874) (-3173 . 285781) (-3174 . 285671) (-3175 . 285470) + (-3176 . 284326) (-3177 . 284233) (-3178 . 284119) (-3179 . 284026) + (-3180 . 283779) (-3181 . 283668) (-3182 . 283454) (-3183 . 283336) + (-3184 . 283039) (-3185 . 282311) (-3186 . 281735) (-3187 . 281257) + (-3188 . 281013) (-3189 . 280769) (-3190 . 280426) (-3191 . 279820) + (-3192 . 279377) (-3193 . 279222) (-3194 . 279078) (-3195 . 278758) + (-3196 . 278603) (-3197 . 278463) (-3198 . 278323) (-3199 . 278183) + (-3200 . 277908) (-3201 . 277689) (-3202 . 277170) (-3203 . 276958) + (-3204 . 276746) (-3205 . 276366) (-3206 . 276192) (-3207 . 275983) + (-3208 . 275675) (-3209 . 275483) (-3210 . 275310) (-3211 . 274174) + (-3212 . 273809) (-3213 . 273609) (-3214 . 273409) (-3215 . 272573) + (-3216 . 272545) (-3217 . 272477) (-3218 . 272407) (-3219 . 272243) + (-3220 . 272215) (-3221 . 272187) (-3222 . 272133) (-3223 . 271983) + (-3224 . 271924) (-3225 . 271228) (-3226 . 269842) (-3227 . 269781) + (-3228 . 269457) (-3229 . 269385) (-3230 . 269328) (-3231 . 269271) + (-3232 . 269214) (-3233 . 269157) (-3234 . 269082) (-3235 . 268492) + (-3236 . 268132) (-3237 . 268058) (-3238 . 267998) (-3239 . 267880) + (-3240 . 266937) (-3241 . 266810) (-3242 . 266597) (-3243 . 266523) + (-3244 . 266469) (-3245 . 266415) (-3246 . 266306) (-3247 . 265996) + (-3248 . 265888) (-3249 . 265785) (-3250 . 265624) (-3251 . 265523) + (-3252 . 265425) (-3253 . 265287) (-3254 . 265149) (-3255 . 265011) + (-3256 . 264749) (-3257 . 264540) (-3258 . 264402) (-3259 . 264111) + (-3260 . 263959) (-3261 . 263684) (-3262 . 263464) (-3263 . 263312) + (-3264 . 263160) (-3265 . 263008) (-3266 . 262856) (-3267 . 262704) + (-3268 . 262497) (-3269 . 262110) (-3270 . 261779) (-3271 . 261440) + (-3272 . 261093) (-3273 . 260754) (-3274 . 260415) (-3275 . 260034) + (-3276 . 259653) (-3277 . 259272) (-3278 . 258907) (-3279 . 258189) + (-3280 . 257842) (-3281 . 257397) (-3282 . 256972) (-3283 . 256361) + (-3284 . 255769) (-3285 . 255382) (-3286 . 255051) (-3287 . 254664) + (-3288 . 254333) (-3289 . 254113) (-3290 . 253592) (-3291 . 253379) + (-3292 . 253166) (-3293 . 252953) (-3294 . 252775) (-3295 . 252562) + (-3296 . 252384) (-3297 . 252002) (-3298 . 251824) (-3299 . 251614) + (-3300 . 251524) (-3301 . 251434) (-3302 . 251343) (-3303 . 251231) + (-3304 . 251141) (-3305 . 251034) (-3306 . 250845) (-3307 . 250789) + (-3308 . 250708) (-3309 . 250627) (-3310 . 250546) (-3311 . 250469) + (-3312 . 250334) (-3313 . 250199) (-3314 . 250075) (-3315 . 249954) + (-3316 . 249836) (-3317 . 249700) (-3318 . 249567) (-3319 . 249448) + (-3320 . 249190) (-3321 . 248905) (-3322 . 248833) (-3323 . 248737) + (-3324 . 248596) (-3325 . 248539) (-3326 . 248482) (-3327 . 248422) + (-3328 . 248027) (-3329 . 247505) (-3330 . 247228) (-3331 . 246808) + (-3332 . 246696) (-3333 . 246258) (-3334 . 246028) (-3335 . 245825) + (-3336 . 245643) (-3337 . 245513) (-3338 . 245307) (-3339 . 245100) + (-3340 . 244910) (-3341 . 244345) (-3342 . 244089) (-3343 . 243798) + (-3344 . 243504) (-3345 . 243207) (-3346 . 242907) (-3347 . 242777) + (-3348 . 242644) (-3349 . 242508) (-3350 . 242369) (-3351 . 241152) + (-3352 . 240844) (-3353 . 240480) (-3354 . 240383) (-3355 . 240143) + (-3356 . 239848) (-3357 . 239553) (-3358 . 239294) (-3359 . 239120) + (-3360 . 239042) (-3361 . 238955) (-3362 . 238855) (-3363 . 238761) + (-3364 . 238680) (-3365 . 238610) (-3366 . 237819) (-3367 . 237749) + (-3368 . 237421) (-3369 . 237351) (-3370 . 237023) (-3371 . 236953) + (-3372 . 236508) (-3373 . 236438) (-3374 . 236334) (-3375 . 236260) + (-3376 . 236186) (-3377 . 236115) (-3378 . 235773) (-3379 . 235645) + (-3380 . 235568) (-3381 . 235337) (-3382 . 235194) (-3383 . 235051) + (-3384 . 234712) (-3385 . 234382) (-3386 . 234169) (-3387 . 233914) + (-3388 . 233564) (-3389 . 233339) (-3390 . 233114) (-3391 . 232889) + (-3392 . 232664) (-3393 . 232451) (-3394 . 232238) (-3395 . 232088) + (-3396 . 231907) (-3397 . 231802) (-3398 . 231680) (-3399 . 231572) + (-3400 . 231464) (-3401 . 231139) (-3402 . 230875) (-3403 . 230564) + (-3404 . 230262) (-3405 . 229953) (-3406 . 229224) (-3407 . 228635) + (-3408 . 228460) (-3409 . 228316) (-3410 . 228161) (-3411 . 228038) + (-3412 . 227933) (-3413 . 227818) (-3414 . 227723) (-3415 . 227242) + (-3416 . 227132) (-3417 . 227022) (-3418 . 226912) (-3419 . 225840) + (-3420 . 225329) (-3421 . 225262) (-3422 . 225189) (-3423 . 224316) + (-3424 . 224243) (-3425 . 224188) (-3426 . 224133) (-3427 . 224101) + (-3428 . 224015) (-3429 . 223983) (-3430 . 223897) (-3431 . 223477) + (-3432 . 223057) (-3433 . 222505) (-3434 . 221401) (-3435 . 219691) + (-3436 . 218141) (-3437 . 217349) (-3438 . 216849) (-3439 . 216363) + (-3440 . 215961) (-3441 . 215311) (-3442 . 215236) (-3443 . 215145) + (-3444 . 215074) (-3445 . 215003) (-3446 . 214947) (-3447 . 214827) + (-3448 . 214773) (-3449 . 214712) (-3450 . 214658) (-3451 . 214555) + (-3452 . 214115) (-3453 . 213675) (-3454 . 213235) (-3455 . 212713) + (-3456 . 212552) (-3457 . 212391) (-3458 . 212080) (-3459 . 211994) + (-3460 . 211904) (-3461 . 211546) (-3462 . 211429) (-3463 . 211348) + (-3464 . 211190) (-3465 . 211077) (-3466 . 211002) (-3467 . 210156) + (-3468 . 208974) (-3469 . 208875) (-3470 . 208776) (-3471 . 208447) + (-3472 . 208369) (-3473 . 208294) (-3474 . 208188) (-3475 . 208032) + (-3476 . 207925) (-3477 . 207790) (-3478 . 207655) (-3479 . 207533) + (-3480 . 207438) (-3481 . 207290) (-3482 . 207195) (-3483 . 207040) + (-3484 . 206885) (-3485 . 206333) (-3486 . 205781) (-3487 . 205166) + (-3488 . 204614) (-3489 . 204062) (-3490 . 203510) (-3491 . 202957) + (-3492 . 202404) (-3493 . 201851) (-3494 . 201298) (-3495 . 200745) + (-3496 . 200192) (-3497 . 199640) (-3498 . 199088) (-3499 . 198536) + (-3500 . 197984) (-3501 . 197432) (-3502 . 196880) (-3503 . 196776) + (-3504 . 196191) (-3505 . 196086) (-3506 . 196011) (-3507 . 195869) + (-3508 . 195777) (-3509 . 195686) (-3510 . 195594) (-3511 . 195499) + (-3512 . 195394) (-3513 . 195271) (-3514 . 195149) (-3515 . 194785) + (-3516 . 194663) (-3517 . 194565) (-3518 . 194204) (-3519 . 193675) + (-3520 . 193600) (-3521 . 193525) (-3522 . 193433) (-3523 . 193252) + (-3524 . 193157) (-3525 . 193082) (-3526 . 192991) (-3527 . 192900) + (-3528 . 192741) (-3529 . 192192) (-3530 . 191643) (-3531 . 188936) + (-3532 . 188764) (-3533 . 187354) (-3534 . 186794) (-3535 . 186679) + (-3536 . 186307) (-3537 . 186244) (-3538 . 186181) (-3539 . 186118) + (-3540 . 185840) (-3541 . 185573) (-3542 . 185521) (-3543 . 184880) + (-3544 . 184829) (-3545 . 184641) (-3546 . 184568) (-3547 . 184488) + (-3548 . 184375) (-3549 . 184185) (-3550 . 183821) (-3551 . 183549) + (-3552 . 183498) (-3553 . 183447) (-3554 . 183377) (-3555 . 183258) + (-3556 . 183229) (-3557 . 183125) (-3558 . 183003) (-3559 . 182949) + (-3560 . 182772) (-3561 . 182711) (-3562 . 182530) (-3563 . 182469) + (-3564 . 182397) (-3565 . 181922) (-3566 . 181548) (-3567 . 178016) + (-3568 . 177964) (-3569 . 177836) (-3570 . 177686) (-3571 . 177634) + (-3572 . 177493) (-3573 . 175435) (-3574 . 167792) (-3575 . 167641) + (-3576 . 167571) (-3577 . 167520) (-3578 . 167470) (-3579 . 167419) + (-3580 . 167368) (-3581 . 167172) (-3582 . 167030) (-3583 . 166916) + (-3584 . 166795) (-3585 . 166677) (-3586 . 166565) (-3587 . 166447) + (-3588 . 166342) (-3589 . 166261) (-3590 . 166157) (-3591 . 165223) + (-3592 . 165003) (-3593 . 164766) (-3594 . 164684) (-3595 . 164340) + (-3596 . 163201) (-3597 . 163127) (-3598 . 163032) (-3599 . 162958) + (-3600 . 162754) (-3601 . 162663) (-3602 . 162547) (-3603 . 162434) + (-3604 . 162343) (-3605 . 162252) (-3606 . 162163) (-3607 . 162074) + (-3608 . 161985) (-3609 . 161897) (-3610 . 161409) (-3611 . 161345) + (-3612 . 161281) (-3613 . 161217) (-3614 . 161156) (-3615 . 160416) + (-3616 . 160355) (-3617 . 160294) (-3618 . 159668) (-3619 . 159616) + (-3620 . 159488) (-3621 . 159424) (-3622 . 159370) (-3623 . 159261) + (-3624 . 157964) (-3625 . 157883) (-3626 . 157794) (-3627 . 157736) + (-3628 . 157596) (-3629 . 157511) (-3630 . 157437) (-3631 . 157352) + (-3632 . 157295) (-3633 . 157079) (-3634 . 156940) (-3635 . 156333) + (-3636 . 155779) (-3637 . 155225) (-3638 . 154671) (-3639 . 154064) + (-3640 . 153510) (-3641 . 152950) (-3642 . 152390) (-3643 . 152128) + (-3644 . 151689) (-3645 . 151356) (-3646 . 151017) (-3647 . 150712) + (-3648 . 150579) (-3649 . 150446) (-3650 . 150058) (-3651 . 149965) + (-3652 . 149872) (-3653 . 149779) (-3654 . 149686) (-3655 . 149593) + (-3656 . 149500) (-3657 . 149407) (-3658 . 149314) (-3659 . 149221) + (-3660 . 149128) (-3661 . 149035) (-3662 . 148942) (-3663 . 148849) + (-3664 . 148756) (-3665 . 148663) (-3666 . 148570) (-3667 . 148477) + (-3668 . 148384) (-3669 . 148291) (-3670 . 148198) (-3671 . 148105) + (-3672 . 148012) (-3673 . 147919) (-3674 . 147826) (-3675 . 147733) + (-3676 . 147548) (-3677 . 147238) (-3678 . 145610) (-3679 . 145456) + (-3680 . 145319) (-3681 . 145177) (-3682 . 144975) (-3683 . 143048) + (-3684 . 142921) (-3685 . 142797) (-3686 . 142670) (-3687 . 142449) + (-3688 . 142228) (-3689 . 142101) (-3690 . 141900) (-3691 . 141724) + (-3692 . 141207) (-3693 . 140690) (-3694 . 140413) (-3695 . 140004) + (-3696 . 139487) (-3697 . 139303) (-3698 . 139161) (-3699 . 138666) + (-3700 . 138035) (-3701 . 137979) (-3702 . 137885) (-3703 . 137766) + (-3704 . 137696) (-3705 . 137623) (-3706 . 137393) (-3707 . 136774) + (-3708 . 136344) (-3709 . 136262) (-3710 . 136120) (-3711 . 135646) + (-3712 . 135524) (-3713 . 135402) (-3714 . 135262) (-3715 . 135075) + (-3716 . 134959) (-3717 . 134679) (-3718 . 134611) (-3719 . 134413) + (-3720 . 134233) (-3721 . 134078) (-3722 . 133971) (-3723 . 133920) + (-3724 . 133543) (-3725 . 133015) (-3726 . 132793) (-3727 . 132571) + (-3728 . 132332) (-3729 . 132242) (-3730 . 130500) (-3731 . 129918) + (-3732 . 129840) (-3733 . 124380) (-3734 . 123590) (-3735 . 123213) + (-3736 . 123142) (-3737 . 122877) (-3738 . 122702) (-3739 . 122217) + (-3740 . 121795) (-3741 . 121355) (-3742 . 120492) (-3743 . 120368) + (-3744 . 120241) (-3745 . 120132) (-3746 . 119980) (-3747 . 119866) + (-3748 . 119727) (-3749 . 119646) (-3750 . 119565) (-3751 . 119461) + (-3752 . 119043) (-3753 . 118622) (-3754 . 118548) (-3755 . 118285) + (-3756 . 118021) (-3757 . 117642) (-3758 . 116943) (-3759 . 115900) + (-3760 . 115841) (-3761 . 115767) (-3762 . 115693) (-3763 . 115571) + (-3764 . 115321) (-3765 . 115235) (-3766 . 115160) (-3767 . 115085) + (-3768 . 114990) (-3769 . 111215) (-3770 . 110045) (-3771 . 109385) + (-3772 . 109201) (-3773 . 106996) (-3774 . 106671) (-3775 . 106189) + (-3776 . 105748) (-3777 . 105513) (-3778 . 105268) (-3779 . 105178) + (-3780 . 103743) (-3781 . 103665) (-3782 . 103560) (-3783 . 102084) + (-3784 . 101679) (-3785 . 101278) (-3786 . 101176) (-3787 . 101094) + (-3788 . 100936) (-3789 . 99702) (-3790 . 99620) (-3791 . 99541) + (-3792 . 99186) (-3793 . 99129) (-3794 . 99057) (-3795 . 99000) + (-3796 . 98943) (-3797 . 98813) (-3798 . 98611) (-3799 . 98243) + (-3800 . 97822) (-3801 . 94012) (-3802 . 93410) (-3803 . 92943) + (-3804 . 92730) (-3805 . 92517) (-3806 . 92351) (-3807 . 92138) + (-3808 . 91972) (-3809 . 91806) (-3810 . 91640) (-3811 . 91474) + (-3812 . 91204) (-3813 . 85790) (** . 82837) (-3815 . 82421) (-3816 . 82180) + (-3817 . 82124) (-3818 . 81632) (-3819 . 78824) (-3820 . 78674) + (-3821 . 78510) (-3822 . 78346) (-3823 . 78250) (-3824 . 78132) + (-3825 . 78008) (-3826 . 77865) (-3827 . 77694) (-3828 . 77568) + (-3829 . 77424) (-3830 . 77272) (-3831 . 77113) (-3832 . 76600) + (-3833 . 76511) (-3834 . 75846) (-3835 . 75654) (-3836 . 75559) + (-3837 . 75251) (-3838 . 74079) (-3839 . 73873) (-3840 . 72698) + (-3841 . 72623) (-3842 . 71442) (-3843 . 67861) (-3844 . 67497) + (-3845 . 67220) (-3846 . 67128) (-3847 . 67035) (-3848 . 66758) + (-3849 . 66665) (-3850 . 66572) (-3851 . 66479) (-3852 . 66095) + (-3853 . 66024) (-3854 . 65932) (-3855 . 65774) (-3856 . 65420) + (-3857 . 65262) (-3858 . 65154) (-3859 . 65125) (-3860 . 65058) + (-3861 . 64904) (-3862 . 64746) (-3863 . 64352) (-3864 . 64277) + (-3865 . 64171) (-3866 . 64099) (-3867 . 64021) (-3868 . 63948) + (-3869 . 63875) (-3870 . 63802) (-3871 . 63730) (-3872 . 63658) + (-3873 . 63585) (-3874 . 63344) (-3875 . 63004) (-3876 . 62856) + (-3877 . 62783) (-3878 . 62710) (-3879 . 62637) (-3880 . 62383) + (-3881 . 62239) (-3882 . 60903) (-3883 . 60709) (-3884 . 60438) + (-3885 . 60290) (-3886 . 60142) (-3887 . 59902) (-3888 . 59708) + (-3889 . 59440) (-3890 . 59244) (-3891 . 59215) (-3892 . 59114) + (-3893 . 59013) (-3894 . 58912) (-3895 . 58811) (-3896 . 58710) + (-3897 . 58609) (-3898 . 58508) (-3899 . 58407) (-3900 . 58306) + (-3901 . 58205) (-3902 . 58090) (-3903 . 57975) (-3904 . 57924) + (-3905 . 57807) (-3906 . 57749) (-3907 . 57648) (-3908 . 57547) + (-3909 . 57446) (-3910 . 57330) (-3911 . 57301) (-3912 . 56570) + (-3913 . 56445) (-3914 . 56320) (-3915 . 56180) (-3916 . 56062) + (-3917 . 55937) (-3918 . 55782) (-3919 . 54799) (-3920 . 53940) + (-3921 . 53886) (-3922 . 53832) (-3923 . 53624) (-3924 . 53252) + (-3925 . 52841) (-3926 . 52483) (-3927 . 52125) (-3928 . 51973) + (-3929 . 51671) (-3930 . 51515) (-3931 . 51189) (-3932 . 51119) + (-3933 . 51049) (-3934 . 50840) (-3935 . 50231) (-3936 . 50027) + (-3937 . 49654) (-3938 . 49145) (-3939 . 48880) (-3940 . 48399) + (-3941 . 47918) (-3942 . 47793) (-3943 . 46693) (-3944 . 45617) + (-3945 . 45044) (-3946 . 44826) (-3947 . 36500) (-3948 . 36315) + (-3949 . 34232) (-3950 . 32064) (-3951 . 31918) (-3952 . 31740) + (-3953 . 31333) (-3954 . 31038) (-3955 . 30690) (-3956 . 30524) + (-3957 . 30358) (-3958 . 29945) (-3959 . 16071) (-3960 . 14964) (* . 10917) + (-3962 . 10663) (-3963 . 10479) (-3964 . 9522) (-3965 . 9469) (-3966 . 9409) + (-3967 . 9140) (-3968 . 8513) (-3969 . 7240) (-3970 . 5996) (-3971 . 5127) + (-3972 . 3864) (-3973 . 420) (-3974 . 306) (-3975 . 173) (-3976 . 30))
\ No newline at end of file |